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§1. Introduction

1.1. Let p bea prime number, £ an algebraically closed field of characteristic pand
0 a complete discrete valuation ring with residue field 4. In [3] Broué and ourself
commenced the study of a block b of a finite group G from a new point of view, the
hypothesis being no longer on the structure of a defect group P of b but on the kind
of embedding of P in (¢ Gb, namely on the so called “local structure” of b which
was implicitely represented in [3] by the equivalent class of the Brauer category (see
[1] for a formal definition). Precisely, assuming that for any subgroup Q of P and
any block f of Cgz(Q) associated with b, the quotient Ng(@, f)/Cs(Q) of the
stabilizer of (Q, /) in G by the centralizer of Q is a p-group, we determined (up to
signs) the full matrix of generalized decomposition numbers of b, regardless the
structure of P.

L.2. In [9] we modified the notion of “local structure” in order to enlarge its area
of application to any interior G-algebra (actually, to any G-algebra) and in
particular, to the full algebra of ®-endomorphisms of any ¢ G-module: the “local
structure” of b was implicitely represented in [9] by the equivalent class of the so
called local category (see [11] for a formal definition), which is in general finer than
the Brauer one. As in the @G-module case; the concept of “source” arises
naturally in the new context, and the source of the interior G-algebra ¢ Gb - which
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is an interior P-algebra — turns out to be a (the most?) powerful invariant of the
block b (see for instance the introduction in [11]).

1.3. The main purpose of this paper is to give the structure of the source algebras
of the blocks considered in [3], but to be coherent with our approach in [9] we with
state our hypothesis on b in terms of the local category: we will assume indeed that
the quotient Ng(Q;)/Cs(Q) is a p-group for any local pointed group @, on ¢ Gb.
This change of point of view does not change the blocks that we consider since in
both cases

(1.3.1) Brauer and local categories coincide.

Actually, it would be not surprising that they coincide only in these blocks, as we
explain in 1.9 below.

1.4. Our main theorem shows in particular that for these blocks (see 1.8 below)
(1.4.1)  the O-algebra O Gb is isomorphic to a full matrix algebra over O P,

proving a conjecture stated by Broué in a lecture at Yale University in May 1978
(when P is abelian, a proof of (1.4.1) was already in [3]). But our result is more
precise that (1.4.1) since it describes the source algebra as an interior P-algebra —
not only as an (-algebra — which allows us, for instance, to compute the
generalized decomposition numbers of b (see (1.12.3) below). The first time we
conjectured such a description was in the Midwest group theory seminar at
Chicago University in April 1979, In June 1981, in an Oberwolfach meeting, we
announced (and issued a preprint [10] on) a complete proof of the main theorem
below (provided that ¢ was “big enough”), where we made use of a consequence
of the main result in [3]. From that time the underlying ideas have been developed
(see the introductions to Sects.4 and 5) and the proof we present here takes
advantage of a better understanding on what is going on (although the steps are
essentially the same as in [10]). The main difference from {10]is that here we do not
need to quote [3], which allows us to supply a new proof of the main result in [3]:
actually we improve this result since we do not assume that ¢ contains the group of
|G| ~roots of unity (see remark 1.14 below).

1.5. In the sequel we will freely use notation and terminology introduced in
Sect. 2. Consider O G as interior G-algebra and set a = {4}, so that a is a point of G
on @G. Let P, be a defect pointed group of G, and denote by é: B— Res§ (0 Gb) an
embedded algebra associated with P, (as a pointed group on ¢Gb). In this paper
we will prove the following statement.

1.6. Main theorem. With the notation above, the following two conditions on o ar¢
equivalent:

(1.6.1) For any local pointed group Qs on OG such that Q; = G,, the quotient
Ng(Q5)/Ce(Q) is a p-group.

(1.6.2) There is an O-simple P-algebra S such that B = SP as interior P-algebras.

In that case, the P-algebra S is unique up to isomorphism and has a P-stable
O-basis which contains the unity as the unique P-fixed element.
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1.7. In Sect. 3 we will prove by the so called “‘local methods” — which just involve
induction arguments on the partially ordered set of local pointed groups on @ Gb
and the analogous statement to Sylow’s theorem — that (1.6.1) is equivalent to each
of the following conditions on «:

(1.7.1)  For any b-Brauer pair (Q, f), the quotient N;(Q, )/Cs(Q) is a p-group.

(1.7.2)  For any local pointed group Qs on O G such that Q5 = P, and any element x
of G such that (Q;)* < P, we have x = zu where ze Cs(Q) and ue P.

The equivalence between (1.6.1) and (1.7.1) shows that the blocks considered in
the main theorem above are exactly the nilpotent blocks in [3]. Condition (1.7.2)
should be considered as the genuine definition of a nilpotent block (or block with
nilpotent local structure): it is the condition on o which plays an effective role in the
proof of (1.6.2). On the other hand, this condition has several “local conse-
quences” which are actually equivalent to (1.7.2), condition (1.6.1) being just one
of them (which we have chosen to state the main theorem by evident historical
reasons).

1.8. Let us show now that (1.6.2) and the last statement in 1.6 imply (1.4.1).
Indeed, they imply that rank, (S) = 1 mod (p) and therefore that (see 6.2 below for
a more detailed argument)

(1.8.1) there is a unique group homomorphism g: P — S* lifting the actionof Pon S

such that det(o(u)) =1 for any ue P; in particular, there is a unique O-algebra

isomorphism SP = S (X) O P mapping su on sg (u) ® u for any s€ S and any ue P.
0

Now (1.6.2) and (1.8.1) imply that B and therefore Ind§ (B) are isomorphic to full
matrix algebras over ¢ P; then, since there is a canonical embedding from ¢ Gb to
Ind$ (B) (cf. [9], th.3.4), ©®Gb is a full matrix algebra over O P too. In [7)
Okuyama and Tsushima proved that, if P is abelian, (1.4.1) implies (1.6.1) (notice
that, if P is abelian, it suffices to prove that the inertial index of b is one to
get (1.6.1)). It is not difficult to prove that (1.4.1) implies (1.6.1) whenever G is
p-solvable. So, a question arises: is condition (1.4.1) on o« always equivalent to
conditions (1.6.1) and (1.6.2)?

1.9. In particular, condition (1.4.1) on « implies that
(1.9.1)  the quotient O Gb/J(OGb) is a simple £-algebra,

but the converse is definitely not true: example 1.3 in [3] supplies a counter-
example. However, it is not difficult to see that condition (1.7.1) on b implies
condition (1.7.1) on f for any block f of any centralizer C(Q) whenever (Q, f)isa
b-Brauer pair (cf.[3], Th. 1.2.(4)); that is, if b is a nilpotent block, we have:

(1..9.2) For any b-Brauer pair (Q, f), the quotient OC45(Q) flJ(OCs(Q)f) is a
simple £-algebra.

Cpnversely, it is probably true that condition (1.9.2) on b implies that b is a
nilpotent block. Moreover, notice that (1.9.2) is equivalent to the following local
condition on a:

(1.9.3)  For any subgroup Q of P there is a unique 6 € £ %, (Q) such that Q; < P,.

I(ndeed, if (Q, f) is a b-Brauer pair, there is a unique point f of Q.C4(Q) on
€G such that Brg(B) = {Bry(f)} (since Bry((0G)2@)=Z((0G)(Q)) and
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Z{(0G) (@)= Z£Cy(Q)by[12],(2.9.2)); hence, if R, is a defect pointed group of
Q.C(Q)y, we have @, < R, for any 6 € £ P, (Q) fulfilling

(1.9.4) Br,(f) - Bry(8) = Bry(d)

since (1.9.4) implies O, <= Q.C;(Q), and therefore, R, contains a Q.C4;(Q)-
conjugate of @, (cf.[9], Th. 1.2); consequently, there is x € G such that (Q,)* < P,
for any d € %, (Q) fulfilling (1.9.4) (cf. [9], Th. 1.2), and it suffices to apply [2],
Th. 1.8 and [12], (2.9.2) and (2.10.1). Finally, notice that (1.9.3) and (1.3.1) are

clearly equivalent.

1.10. Assume now that (@ is a ring of characteristic zero and denote by ¥~ its
quotient field. Then, assuming that « fulfills conditions (1.7.2) and (1.6.2), with the
last statements in 1.6 (which are actually easy consequences of (1.6.2), as we show
in 7.5 below), we will show how to compute the full matrix of generalized
decomposition numbers of the block & of G over ¢, and get the formulae giving the
irreducible characters of #Gb in terms of the family of absolutely irreducible
Brauer characters in any block f of any centralizer Cg; (1) where (u, f) runs over the
set of h-Brauer elements.

1.11. First of all, notice that the uniqueness of S implies that tr (¢(u)) is a rational
integer for any ue P, where ¢: P— S* is the group homomorphism described in
(1.8.1). Indeed, ¢ is always an extension of a complete unramified discrete
valuation ring @' having the same residue field # (cf.[15], Ch.1, §5, Th.4); as
be0’'G,y =yn0'Gisalocal point of Pon ¢'G (cf. (2.13.1)), and P, is still a defect
pointed group of G, on 0’ G (cf. (2.13.1)), we may assume that B= ( @B’ where

é&': B'>Res§ (0’ Gb) is an embedded algebra associated with P,., an% therefore
that S = ¢ (X) S’ where S’ is an ¢’-simple P-algebra obtained from (1.6.2); in that
case, we hgve 0=1d® o where ¢': P—(5')* is the group homomorphism
described in (1.8.1); but it is now clear that tr{¢’()) is a rational integer for any
ue P*'. Then, we have:

(1.11.1) For any ue P, tr (o)) = w(u) m},, where w(u)e {1, —1} and 5 (u) is the
unique local point of {uy on OG such that {u)s, < P,.

Indeed, the uniqueness of d(u) follows already from (1.9.3); moreover,
since P stabilizes an (@-basis of S containing the unity, we have
tr (o (u))* = dim, (S (u))) # 0 for any ue P (cf. [12], (2.8.4)); but S({u))is a simple
£-algebra (cf. Cor. 5.8 below) and as (SP) ({u)) = S ({w)) ®£ Cp(u) (cf. (1.8.1),

Prop. 5.6 below and [12], (2.9.2)), we have S((u))-:-B(éu),,(,,,) (cf. (1.6.2));
consequently, we get tr (¢ ())* = (m},)* (cf. 2.6 below).

1.12. On the other hand, if M is a simple H#'Gh-module, we know that
Resyy g (M) is a simple #(X) B-module (cf. [9], Cor. 3.5) and therefore, by (1.6.2)
there is a simple A4 P-modlfle N such that
(1.12.1) Res g . (M) = VRN

0

1 Another proof of the inclusion tr (¢ (P)) < Z can be obtained from the fact that P and therefore any
cyclic subgroup of P stabilizes an @-basis of S (a more detailed discussion on the function treg will
appear in {14])
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where V is a projective indecomposable S-module and we identify B with S ()0 P

(cf. (1.8.1) and [9], Prop. 2.1). Consequently, denoting by y the character gf M,
by 4 the character of N and by i the element e(1) of y, for any ue P we have
(cf.(1.11.1), (1.12.1) and [9], Th.4.3)

(1.12.2) X&(u)(u) mzm =y (ui) =try ®N (1) = w(u) mg(uM(“)-

Hence, denoting by U a set of representatives for the conjugacy classes of P, we
get:

(1.12.3)  The full matrix of generalized decomposition numbers of the block b of G
over O is (w(u) A(w)), U, ielrry (P) *

Indeed, it follows from (1.7.2) and (1.9.3) that {u;,},.y is a set of represent-
atives for the G-conjugacy classes of local pointed elements in G,, and we know
that the correspondence induced by (1.12.1) mapping y on A is a bijection from
Irr, (G, b) onto Irr,, (P) (cf.[9], Prop. 2.1 and Cor. 3.5); then (1.12.3) follows from
(1.12.2) and [9], Cor. 4.4.

1.13. Finally, by (1.7.2) and (1.9.3), for any p-element u of G there is a bijection
from E; ({u), P) onto L%, (u>) mapping 6 € E;({u), P) on the unique local
point & of <(u) on OGbH fulfilling (u;)*e P, and o () =u* for some xeG (i.e.
d=06(a{u))*"), and we denote by ¢, the irreducible Brauer character of C¢ (1)
determined by J (cf. [12], (2.9.2) and (2.10.1)). Then, with the notation above, it
follows from [9], Cor. 4.4 again and (1.12.3) above that:

(1.13.1)  For any p-element u of G and any p'-element s of Cg{u),
xws)= ) w(oW)iaw)ess).

6eEg({u),P)

L.14. Remark. Although we assume that k is algebraically closed (whereas in [3]
we just assumed that the field k was generated by the group of | G| p-Toots of unity),
the interested reader will convince himself that our arguments extend easily to the
case where k is just perfect and all the algebras we consider are “split”
(“déployées”) in the sense developed in [8]. Moreover, the classical results on
splitting fields show that all the algebras we consider in the proof of the main
theorem are split whenever k contains the group of |G| ,-roots of unity: indeed, in
that case for any subgroup H of G the ¢-algebra O H is split and it suffices to apply
systematically the following fact:

(1.14.1) Letkbea perfect field of characteristic p, O a complete discrete valuation
ring with residue field k and A a G-algebra over (. Assume that, for any local pointed
group P, on A, A(P,) is amatrix algebra over k and k Ng (P,) is asplit algebra. Then
the algebra AS is split too.

(We denote by k,Ng (P,) the twisted algebra associated with the central
k*-extension Ng (P,) of Ng(P,) defined by the action of Ng(P,) on the simple
k-algebra A (P,); see [12], 5.12 and 6.2 for a more detailed definition).

This paper is divided in seven sections mostly devoted to prove the main
theorem. Sects.4 and 5 are significant exceptions: their contents have been
developed in more general frames than needed here to provide handy references in
fOrthcoming papers, avoiding tedious rewritings.
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§2. Notation and terminology

2.1. The notation and terminology we need here are mostly contained in [9], in
[11] and specially in [12] where we made a particular effort to be complete. There is
no sense in repeating such an effort but we recall (rewrite) briefly all the necessary
definitions and just comment with more detail some extra specific notation.
Throughout the paper p is a prime number, & a field of characteristic p that we
assume algebraically closed (except in Remark 1.14!) and ¢ a complete discrete
valuation ring with residue field k& (we allow the case O = £).

2.2. All the ¢-algebras we consider are associative with unity, and @-free of finite
rank as O-modules. An (J-algebra isomorphic to a finite direct product of full
matrix algebras over O is shortly called O-semisimple, and O-simple if there
is just one factor. If 4 is an (-algebra, all the 4-modules we consider here are
O-free of finite rank as O-modules. We denote by 4* the group of invertible
elements of 4, by A° the opposite U-algebra, by ZA the center, by Aut(A4) the
group of automorphisms, by J(A) the Jacobson radical and by £ (4) the set of
A*-conjugacy classes of primitive idempotents of 4. For any o € # (4), we denote
by A () the simple factor of 4 associated with o, by s,: 4 — A4(e) the canonical
homomorphism and by 4 - o - 4 the two sided ideal generated by « (cf. [9], p. 266),
and we set dim,(4(®))=(m,)* and J(A-a- A)=J(A)nA a-A. A decom-
position of unity in A is a set I of pairwise orthogonal primitive idempotents of 4
such that ) i=1; notice that
iel

(2.2.1) for any ae P (A) we have m, = |Ina|.

2.3. A homomorphism f: 4 — B between (-algebras is not required to be unitary,
and we denote by f*: 4* — B* the group homomorphism mapping a*€ A* on
f(a*—1)+1.If N is a B-module, Res,(N) denotes f(1) - N endowed with the
evident A-module structure. An exomorphism f from A to B is the set of
homomorphisms obtained by composing a homomorphism f: 4 — B with all the
inner automorphisms of 4 and B (cf. [9], Def. 3.1 or [11], p. 360); we denote by
Hom (4, B) the set of exomorphisms from A4 to B. We say that fe Hom (4, B) isan
embedding if Ker (f)= {0} and Im (/) =f(1) Bf (1). If /* 4— B is an O-algebra
exomorphism, for any a e Z (4) and any fe # (B) we set m{ 7 )5 = 1J 0 B| where,
choosing iew, J is a decomposition of unity in f(7) Bf (i) (cf. [9], Def. 2.2); notice
that, if g: B> C is another ¢0-algebra exomorphism,

(2.3.1) for any ae P (A) and any ye P (C) we have

m@gof)= ¥ m(Dim@).
pe?(B)

2.4. Let G be a finite group. As usual we denote by | G| the order of G, by ZG the
center, by @(G) the Frattini subgroup, by Ng(H) and C4(H) the normalizer and
the centralizer of a subgroup H of G, and by x” and [x, y] the elements y ! xy and
x~ 1y~ txy where x, yeG. As above, an exomorphism @:G— H is the set of
homomorphisms from G to H obtained by composing a group homomorphism ¢:
G — Hwith all the inner automorphisms of G and H; we denote by Flom (G, H) the
set of exomorphisms from G to H.
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2.5. A G-algebra A (over 0) is an (-algebra endowed with a group homo-
morphism ¢: G— Aut(4); we usually write a” instead of @ (x~')(a). If H
is a subgroup of G, A¥ denotes the unitary subalgebra of H-fixed ele-
ments of 4 and, for any subgroup K of H, Tr¥: 4X - 4¥ denotes the relative
trace map and A¥ its image (cf. [9], p. 266). For any p-subgroup P of G we set

A(P)= A"/<Z AG+J(0) - A”) where Q runs over the set of proper subgroups

0
of P, and we denote by Brp: 4¥ — 4 (P) (or Brj to avoid confusion) the canonical
homomorphism.

2.6. Let 4 be a G-algebra. A pointed group H, on A is a pair formed by a subgroup
H of G and an element § of 2 (4™) (cf. [9], Def. 1.1); we say that Bis a point of H on
A, set A(Hy)=A"(B) and denote by Ng(H,) the stabilizer of § in Ng(H); if
H={x) we say that x; is a pointed element on A. Moreover, we set
P,(H)=2(A™). If K, is a pointed group on A4 such that K < H we write m’
insteed of m (f )% where f is the inclusion map A¥ < 4% (cf. 2.3); then, we say that
K, is contained in Hy, and write K, = Hy (or y,e Hy if K= (y)) whenever m# + 0.
A pointed group P, (or a point y of P) on 4 is local if Brp(y) & {0}; we denote by
Z2,(P) the set of local points of P on A. A defect pointed group P, of Hy is a
maximal local pointed group on A such that P, < H; (cf.[9], Th.1.2).

27. An interior G-algebra A (over ¢0) is an (-algebra endowed with a group
homomorphism ¢: G- A4* (cf.[11], p. 359); we usually write x - a - y instead of
¢(x) ap(y); in particular, 4 becomes a G-algebra setting a*=x""'-a- x. If y:
H~- G is a group homomorphism, we denote by Res, (A4) the interior H-algebra
defined by ¢ o y: H— A*, and we set Resf}(4) = Res,, (4) when H is a subgroup of
G and y the inclusion map. If B is a G-algebra, we denote by BG the interior G-
algebra formed by the free B-module over G endowed with the distributive
product fulfilling

(bx) (cy) = be* ' xy

forany x, ye G and any b, ce B, and with the canonical map from G to BG. Notice
that the tensor product of interior G-algebras has a structure of interior G-algebra
fulfilling x - (@®b)-y=x-a-y®x-b -y, and that if 4 is an interior G-algebra
then, denoting by e the unit element of G,

(2.7.1)  there is a unique interior G-algebra isomorphism AG = A (X)0G mapping
aecAG ona®e. 0

28. A homomorphism of interior G-algebras /> A — A’ is an O-algebra homomor-
phism fulfilling f(x - @ y) = x - f(a) - yforany x, ye Gand any a€ 4. Asabove, an
exomorphism f. A— A’ is the set of homomorphisms obtained composing a
homomorphism f: A— A’ with all the inner automorphisms of 4 and A’ (that is,
Induced by (4€)* and (4’ ¢)*); if w: H— G is a group homomorphism, we denote
by Res,, (f) the exomorphism of interior H-algebras from Res, (4) to Res,(4")
containing £ (cf.[11], p. 360), and we set Res$(f) = Resw(f') whenever H is a
subgroup of G and y the inclusion map. We say that ' is an embedding of interior
G-algebras if Res$ (f) is an embedding of O-algebras; in this case, for any pointed
group Hy on A, there is a unique pointed group Hj. on A’ fulfilling /() = ', and
We usually denote 8 and §’ by the same letter.
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2.9. Let H be a subgroup of G and B an interior H-algebra; the induced interior
G-algebra Ind$(B) is formed by the tensor product 0 G X)B(X)¢G endowed
with the distributive product fulfilling 6H O0H

X®b-yx"-b'®y if yx'eH
0 otherwise

(x@b@y)(x'@b’@y%{

for any x, y, x’, y’€G and any b, b’e B, and with the group homomorphism
mapping xe G on Y xy® 1® y~! where y runs over a set of representatives for

G/H in G. Moreovgr, we denote by
(2.9.1) dS(B): B— Res§ Ind$(B)

the canonical embedding determined by the interior H-algebra homomorphism
mapping be Bon 1 ® b® 1 (cf.[9], Def. 3.3 or [11], p. 360). Finally, if §: B— B’ is
an interior H-algebra exomorphism, we denote by

(2.9.2) Ind$ (£): Ind$ (B) — Ind§ (B

the interior G-algebra exomorphism determined by the correspondence mapping
x®b®y on x® g(b)® y for any be B and any x, yeG; clearly,

(2.9.3) Res$ Ind$(g) - d§(B)=d5(B) -8

which proves by the way that 2.9.2 does not depend on the choice of g in g (cf. {12],
(2.3.4) and (2.12.2)).

2.10. Let 4 be an interior G-algebra. If H, is a pointed group on A, an embedded
algebra (B, §) associated with Hyis a pair formed by an interior H-algebra Band an
embedding g: B— Res$, (4) such that g(1)ep (cf.[11], 1.6); then, we have:

(2.10.1) If i: C—>Res$(A) is an interior H-algebra exomorphism such that
h(1)j=h(1)=jh(1) for some je B, there is a unique interior H-algebra exomor-
phism f- C— B such that k=g f.

Indeed assuming that g(1)=j, it is clear that G induces an isomorphism
B = jAj whereas Im (k) c jA4j, which proves the existence of f: the uniqueness
follows from [12], (2.3.3) and (2.12.2). Usually we denote by (4, f;,) an embedded
algebra associated with H, chosen once for ever, and still denote by § the unique
point of H on A4, (cf. 2.8).

2.11. Let Hy and K, be pointed groups on 4; an A-fusion ¢ from K, to Hy is 2
group exomorphism @: K — H such that ¢ is injective and there is an exomorphism
fp: A, > Res,(4,) fulfilling

.11.1) Res¥(f;) = Res?(f;) o Res¥(f)

(cf. [11], Def. 2.5); we denote by F, (K, H,) the set of 4-fusions from K, to H;, and
set F,(Hy) = F,(H,, Hy). On the other hand, we denote by E¢(K,, H) the set of
@< Hom (K, H) such that there is x € G fulfilling (X .y Hyand ¢(y) = y* for any
yeK (cf.[11], Def. 2.1), and set Eg(H;) = Eg(Hgy, Hy); moreover, if A=0, the
trivial interior G-algebra, we set Eg(K, H) = E¢(K,, Hy) where y= {1} = .
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2.12. This paragraph is only needed in sections 4 and 5 for statements which do no
concern the proof of the main theorem (and which are discussed there for the sake
of completeness). A £*-group is a group G endowed with an injective group
homomorphism §: £* - ZG (cf.[12], 5.2). If 4 is an interior G-algebra, P, a
pointed p-group on A, N, (P) the subgroup of be A* such that P-b=5- P
NA (P) the quotient N, (P)/P a+ J(AP)), and E a subgroup of F,(P,) then we
denote by £7 the # *-group formed by the subgroup of (b, ) e NA (P) x E where b
isthe image in NA (P)ofbe N, (P)fulfillingd - u=¢(u) - b for any ue P,endowed
with the 1nJect1ve group homomorphlsm mapping Ae£* on (4, 1d) where we
identify £* with the image of (40)* in NA (P); moreover, if E= F,(P,) we set
FA(P)—E? (cf.[12], 7.1).

2.13. According 2.7 we denote by @0 G the group algebra of G over @, considered as
an interior G-algebra. Notice that, as the canonical homomorphism ¢ G — £G
maps (0 G)* onto (4G)¥ for any subgroup H of G,

(2.13.1)  the canonical homomorphism O G — £G induces a bijection between the
sets of pointed groups on OG and £G which preserves inclusions and localness.

A block of G is for us a primitive idempotent b of ZOG; a b-Brauer pair is a pair
(P,e) where P is a p-subgroup of G fulfilling Brp(b) # 0 (cf. 2.5) and e a block of
C¢(P) such that Brp(be) =% 0, the normalizer N; (P, e) of (P, e) being the stabilizer
of e in Ng (P) (cf.[2], Def. 1.6); if P = {u) we say that (u, e) is a b-Brauer element
(cf.[2], Def. 2.1).

2.14. Assume that ¢ is of characteristic zero and denote by % its quotient field.
We denote respectively by L, (G) and L,(G) the Grothendieck rings of the
categories of G- and £ G-modules (cf. [12], 2.4); recall that (cf.[16],§16.1, Th. 33)

(214.1)  Brauer’s decomposition homomorphism Ly, (G)— L,(G) is surjective.

If b is an idempotent of ZOG, we denote respectively by Irr, (G,b) and
Irr, (G, b) the sets of Frobenius and Brauer characters of the simple #'Gb- and
£Gb-modules, where b is the image of b in £G, and we simply write Irr, (G) and
Irr,(G) when b=1.

2.15. Let b be a block of G, so that « = {b} is a point of G on ¢'G, and choose a set U
of representatives for the G-conjugacy classes of local pointed elements u; on G
such that u; € G, (cf. 2.6). The full matrix of Brauer’s generalized decomposition num-
bers of b is the matrix (¢°(u)),eim, .5, u,cv Where for any yelrr, (G, b) and any
Use U, choosing jed, we have y°(u) = x(uj) (cf.[9], Cor.4.4). Now the generalized
Cartan integers of b may be defined by the equalities (cf. [16], §15.4)

(2.15.1) cus,v)= Y 2’ x ()

xelmr, (G, b)
where u; and v, run over U; notice that (cf.[16], §15.1 and §18.3)

(215.2) ifuandv are not G- -conjugate then c (uz, v,) = 0, whereas if u = v we have
€(us,u,) = rank, (jO Cg (1) [) where je & and Iee.
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Finally, if 2 and u are Frobenius characters of #'Gbh-modules, we denote by
(A, )¢ the usual scalar product; it is not difficult to check that, denoting by
(c°(us,1,))y,, e v the inverse (over Q) of the generalized Cartan matrix, we have

(2.15.3) Awe= ) c(usv) ) ().

us.v,el

§3. Local control

3.1. In this section we prove the equivalence between conditions (1.6.1), (1.7.1)
and (1.7.2), and show a relationship between condition (1.7.2) and induction from
P to G which plays a crucial role in proving that (1.6.1) implies (1.6.2) (see
Corollary 4.23 and the proof of Proposition 7.2 below). Actually, this relationship
was already stated (in a slightly different form) in [9], Prop.3.9, but for the
convenience of the reader we do not quote this result. From the point of view of
our previous preprint [10], this section develops the contents of Sect.2 and
proposition 7.1 in [10], although we will introduce here two slightly different
notions of local control, in order to clarify the arguments.

3.2. Let G be a finite group, H a subgroup of G and B an interior H-algebra (over
0). We say that G is locally controlled by H on B if for any pair of local pointed
groups P, and Q; on B we have

3.2.1) F3(Q5, P) N E(Q, P) = E4(Q;. P,).

Notice that (3 2.1) is equivalent to the following equality over the interior
G-algebra Ind§ (B)

(3.2.2) EG(Qé’P )=EH(Q6’P )

where, as usual, we identify P, and Qa with their images over Ind§ (B) through the
canonical embedding d§ (B) — Res$ Ind§ (B) (cf. 2.8 and (2.9.1)); indeed, by [11],
2.10 and Prop. 2.14, setting 4 = Ind$ (B) we have

FB(Q67Py)=FA(Qé9Py) and FA(Q(SaPy)mEG(Qa P)=Es(Q;, P,).

3.3. The point is that equalities (3.2.2) are equivalent to easy formulae to compute
the multiplicity algebras (cf.[12], 2.10) of local pointed groups on Ind% (B) from
the multiplicity algebras of local pointed groups on B. Precisely, let L, be a pointed
group on B; since

(Resf; Ind; (B)) (L) = Res¢5 (i) (Ind§ (B) (L,)) ,

the canonical embedding d§ (B): B~ Res§Ind$ (B) (cf.2.9.1) induces a unique
embedding of interior Cg(L)-algebras

(33.1) &5 (L,): IndSe(®) (B(L,) »Ind§(B) (L,)
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such that the following diagram commutes (cf. [12], 2.12.3)

Res¢i (i} (@5 (L)

Resco () Indgg (D (B(L,) Res¢s (i) (Indf (B) (L))

(33.2) dés B (B(LY) d5(B)(L,)
B(L,);

indeed, the existence follows from [12], (2.12.3) and (2.14.2), and the uniqueness
from [12], (2.3.4) and (2.12.2). Then, we have:

3.4. Proposition. With the notation above, local pointed groups on Ind$ (B) are the
G-conjugate of local pointed groups on B. Moreover, the following conditions are
equivalent:

(3.4.1) The group G is locally controlled by H on B.
(3.4.2)  For any local pointed group P, on B we have
e§(P,): IndSe ) (B(P,) = Ind§ (B)(P,).

Proof. Let Q; be a local pointed group on Ind% (B); as Tr (1 ® 1 ® 1) is the unity
of Ind§ (B), s;(Tr& (1 ® 1® 1)) is the unity of Ind§(B)(Q;); but & being local, we
have
(3.4.3) STrHIR1I®1) =3 55(x@1®x71)

xeX
where X is a set of representatives in G for the double cosets QyH such that
Q’cHand s;(y®1®y~") =+ 0 or equivalently 55 (1 ® 1 ® 1) =+ 0; in particular,
(@5) is a local pointed group on B for any ye X, and the first statement follows
from X =+ Q.

Assume now that Q; is already a local pointed group on B. If G is locally
controlled by H in B, it follows from (3.2.2) that for any x e X there is 4 € H such
that (Q;)* = (Q,)"* and u* = u" for any u e Q (since (Q;)* is a local pointed group on
B), and therefore we may assume that X < C,(Q) which implies clearly

(3.4.4) Y s (x®@1@x7Y) =Trég @ (s, (1 @1®1));
xeX

$0, in this case é5(Q;) is an isomorphism (since it is a unitary embedding).
Conversely, if ¢§(Q;) is an isomorphism, the equality (3.4.4) holds and therefore
forany ye X we have OyHn Cg(Q) + 0; so, if P, is alocal pointed group on B, ¢
an element of Eg(Q,, P,) (over Ind§j(B)) and x an element of G such that
Q) = P,and ¢(u) = u* forany ue Q, we have x = zh where ze C;(Q) and he H,
and therefore e Ey(Q;, P,); consequently, (3.2.2) holds.

3.5. Let 4 be an interior G-algebra, o a point of G on A and f a point of H on A4
such that H, < G,. We say that G, is locally controlled by Hy (or that Hy is a control
pointed subgroup of G,) if « = Tr§ (A" - - A%) and, for any pair of local pointed
groups P, and Q, on 4 contained in Hj,, we have

(351) EG(Q&!Py)=EH(Q6’PV)'



88 L. Puig

In this case, there is a unique embedding (cf. [9], Prop. 3.6)
3.5.2) g2 A,~1nd§(4,)

such that the following diagram commutes

(3.5.3) Resf(4,) —— ResfjInd(4,)
T Mﬂ)
ey

and in particular, G is locally controlled by H on A4, (since (3.5.1) remains true
over Ind§ (4,), after the usual identifications). Conversely, it is quite clear that if
such an embedding exists and G is locally controlled by H on A4, then G, is locally
controlled by H; (cf.(3.2.2) and [9], Prop.3.6). Moreover, the inclusion
a < Tr§ (4% - - A™) implies that H, contains a defect pointed group of G, (cf. [9],
Th. 1.2) and this statement has the following partial converse, which provides a
criterion on the existence of control pointed subgroups of G,.

3.6. Lemma. Let A be an interior G-algebra, o a point of G on A and P, a defect
pointed group of G,. If P < H there is fe P (H) such that

(3.6.1) P,cH;cG, and oacTrid" p-4").

Proof. We may assume that o= {1}. Set N=N;(P,)/P and M= Ny(P,)/P;
as A(P,)Y contains the unity (cf.[9], Prop.1.3), we have 4(P)"=A(P,)}
and A (P)M=A(P)Y =s,(45), and therefore there is fe #,(H) such that

(3.62) Trl (s, (A" - 4™) = A(P);

in particular, we have P, = H, and therefore, f = Trp (4" -y A7) (since H; < G,
and P, is a maximal local pointed subgroup of G,); but, for any ae A” - y - A%, we
have (cf.[9], Prop.1.3)

(3.6.3) Try, (s, (Trf (@) = Tr (5,(@)) = 5, (Tr§ (TrF (a)));

s0, by (3.6.2) and (3.6.3), we get s,(Trf (4" -ﬁ-AH))=A(Pv)N and therefore,
Tr§ (A" - B- A") = A%, consequently, g fulfills condition (3.6.1).

3.7. Proposition. Let A be an interior G-algebra, o a point of G on A and P, a defect
pointed group of G,. Assume that P = H and that, for any local pointed group Q;
on A such that Qs < P, and any element x of G such that (Qs)* = P, we have x = zh
where ze C;(Q) andhe H. Then there is f€ #4(H) such that P, « Hy < G,and G, is
locally controlled by Hy.

Proof. Let  be a point of H on A fulfilling condition (3.6.1). As P, is still a defect
pointed group of Hy (cf.[9], Th.1.2), if Q, and R, are local pointed groups on 4
contained in Hj, there are elements 4 and k of H such that (Q;)" < P, and
(R)* < P,; so, if ¢ is an element of E;(R,, Q) and x an element of G such that
(R.)* = Qsand ¢(u) = u* for any u€ R, we have (R,)* < P, and by hypothesis, we
get k™ 1xh=z*] where ze C4;(R) and /e H; hence, x =zkih~! and therefore.
@€ Eg(R,, Q;). Consequently, G, is locally controlled by Hy.
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Our last result states the announced equivalence between conditions (1.6.1),
(1.7.1) and (1.7.2). Notice that, by Proposition 3.7, conditions (1.7.2) and (3.8.2)
below are equivalent.

3.8. Theorem. Let o= {b} be a point of G on OG and P, a defect pointed group of
G,. The following three conditions on o are equivalent:

(3.8.1) For any local pointed subgroup Q; of G,, E;(Q;) is a p-group.
(3.8.2) The pointed group G, is locally controlled by P,.
(3.8.3) For any b-Brauer pair (Q, ), the quotient Ng(Q, f)/Cs(Q) is a p-group.

In order to prove theorem 3.8 we need the following two lemmas. Recall that,
for any p-subgroup Q of G, we have (0G)Y(Q) = £Cs;(Q) (cf.[12], (2.9.2)) and
therefore any simple £ C; (Q)-module is associated with a local point of Q on 0 G
(cf.[12], (2.10.1)).

3.9. Lemma. Let Q; be a local pointed group on O G such that Q.C;(Q) < H and
Vasimple £(Cg(Q)/ZQ)-module associated with 6. There is a unique point B of H on
O0G such that Q; = Hy, andthen Q;is a defect pointed group of Hyif and only if Visa
projective module and Egx(Q;) is a p'-group.

Proof. Set A=0G, C=0Q.C4(Q), C=C/Q and N=Ngx(Q,)/Q; as A(Q;)
~End,(V), we have A(Q;)C~#£; so, on one hand we get s;(4%) =~ £ which
proves the uniqueness of f (the existence being trivially true), and on the other
hand we have 4 (Qa)’v_= | Ey(Q5)1 A(Q5){; but Q, is a defect pointed group of H,
if and only if 4(Q;)} = # (cf.[9], Prop.1.3), and by Higman’s criterion, ¥ is
projective if and only if 4(Q;) =#.

3.10. Lemma. Let Q; be a local pointed group on UG and R a p-subgroup of
Eg(Qs). If H is the inverse image of R in N;(Qj), B the point of H on OG such that
Qs< Hy and R, a defect pointed group of Hy, then H= R.C;(Q).

Proof. First of all notice that Q,; = R, (since R, contains an H-conjugate of Q;).
Now set L = R.C;(Q) and N = Ny (L), and denote respectively by A and v the
points of L and N on OG such that R,c L; < N, <= H, (cf. Lemma3.9), or
equivalently Q; = L, = N,; on one hand, as N normalizes Q; and L, N normalizes
L, and by Frattini’s argument, we get N = L.Ny (R,); on the other hand, R, is still
a defect pointed group of N, and therefore Ey(R,) is a p’-group (cf. Lemma 3.9).
Consequently, N/L is both a p-group and a p’-group and therefore, N = L; but, as
f/Q.C4(Q)~ R, L is subnormal in H; hence, H=L.

Proof of Theorem 3.8. Assume that (3.8.1) holds; by Proposition 3.7, to prove
Statement (3.8.2) it suffices to prove that, if Q, is a local pointed group on @ G such
that 0, = P,and x is an element of G such that Q; = (P,)*, we have x = uz where
4eP and ze C,(Q). We argue by induction on |P:Q|; as Ng (P,)=P.Cx(P)
(cf.(3.8.1) and Lemma 3.9), we may assume that Q + P. Assume that H = Ng(Q;)
and denote by # the point of H on ¢G such that Q; < Hj (cf. Lemma 3.9); by
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Lemma 3.10, if R, is a defect pointed group of Hj, we have H= R.C;(Q); but
there are local pointed groups R, and R.. on @G such that (cf.[9], Cor.1.5)

(3.8.4) Qs R, =P, and Q;5 R/ c(P)";
so, there are elements #n' and n” of C;(Q) such that
(3.8.5) R.c(R)" and Rl c(R)”

(since Hy contains both R;. and R;.). Consequently, if y is an element of G such
that R, = (P,)?, we have (cf. (3.8.5))

(3.8.6) R,<=(P)"™ and Rl c(P)"
ke ¥

and by (3.8.4) and the induction hypothesis, we get yn'=u'z" and
yn"x~ ' =u"(z")*" where u', u"eP and z, z”€ Cz(Q) (since Cgz(Q) contains
Cs;(R) and Cg(R"); hence, x=uz where u=@")"'v'eP and
z=z7(m)"'n" (") e Ce(Q).

Assume that (3.8.2) holds and set 4= 0G; as A(Q) = £Cs(Q), Bro(f) isa
primitive idempotent of ZA4(Q) and there is d € X2, (Q) such that s;{ /) + 0 (and
then, s;(f) = 1). Assume that H = N;(Q;) and denote by f the point of H on 0G
such that Q; = H, (cf. Lemma 3.9); as 5,(f) + {0} and Bry(4%) = ZA(Q), we get
Bry(8) = {Bry(f)} and therefore, if xe N3(Q, f) we have Qs < Hj too. Let R,
be a defect pointed group of Hj such that Q- = R,; on one hand we have Q; = R,
too (since R, contains an H-conjugate of @;), and on the other hand there
is ye G such that (R))” = P,. Now P, contains Q;, (Q;)” and (Q,)*, and by
(3.8.2) and Proposition 3.7 we have y = z'u’ and xy = z"u” where ', u”e P and
Z', "€ C4(Q); hence, x=(z' ) 'z"u" (') e C4(Q).P. Consequently, we get
Ng(Q, f) = Ce(Q).Np(Q, f) and therefore Ng(Q, )/C(Q) is a p-group.

Finally, assume that (3.8.3) holds and let Q; be a local pointed group on G
such that Q; = G,, or equivalently s;(b) # 0; it is clear that there is a unique block
fof Cs(Q) such that s;(f) +0; as s;(b) =1 =55(f), (Q, f) is a b-Brauer pair and
the uniqueness of f forces N;(Q;) = Ng(Q, f), so that E;(Q;) is a p-group.

§4. (2, 2)-covering exomorphisms

4.1. Let G be afinite group. As we said in [10] the most important tool to prove the
main theorem is a class of exomorphisms of interior G-algebras that we name
covering exomorphisms. This class allows us to lift pointed groups preserving
multiplicities (see Proposition4.18 below), and is stable by induction from a
subgroup H of G whenever G is locally controlled by H on the arrowhead interior
H-algebra (see Corollary 4.23 below). By (3.8.2) the last statement applies when
inducing a source interior P-algebra of a nilpotent block b of G from a defect
group P of b (see Proposition 7.2 below).

4.2. The surprising fact which was not yet clear in [10] is that a slightly more
general class of exomorphisms — named (&, £)-covering exomorphisms, where £
and § are suitable sets of local pointed groups which are just empty in covering
exomorphisms— plays a significant role in situations which have nothing to do with
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our proof of the main theorem (see example 4.24 below). Since the arguments to
study (&, ®)-covering exomorphisms are essentially the same that we employed in
[10] to study coverings, we think reasonable to develop already here the general
notion, thus providing a useful reference.

4.3. First of all, it is handy to consider the (-algebra case (i.e. the case where
G = {1}). Let Band B be ¢-algebras and §: B— B an (-algebra exomorphism. We
say that g is a covering exomorphism if B=Im(g)+ J(B). Then, we say that § is
strict if moreover Ker(g) = J(B).

4.4. Proposition. With the notation above, the following conditions on § are
equivalent:

(4.4.1) The exomorphism §: B— B is a covering.

(44.2) Wehaveg(1)=1andjorany fc P (B)thereisa unique f € P (B) such that
gf)y=pand my=m,.

(44.3) There is an injective map §*: #(B) > (B) such that, for any fe P (B),
setting f = g*(B) we have g(f) < p and mg=my.

In that case if fe P (B), f ¢ Ker(g) is equivalent to feIm(§*); in particular, § is
strict if and only if §* is bijective.

4.5. Remark. Notice that if fe#(B) and fe?(B) fulfill m(g)” +0 and
mg = m, then g induces an isomorphism B(f) = B(p) and for any f’ 65" (B), we
have m(g)g =055 -

Proof. If B=Im(g)+J(B), g induces a surjective homomorphism
B-B/J(By~ |] B(B), and therefore for any fe 2 (B), B(p) is a simple factor

Be# (B)
of B which corresponds to some fe2(B) such that m (g) =dg p for any
f'e?(B) and m; = my; moreover, g(1) and 1 lift the unity of B/J(B) in B and
therefore, g(1) =1.

Assume now that (4.4.2) holds. For any fe 2 (B) set §*(f) = f where fe 2 (B)
fulfills m(g)’3 g for any f’'e Z (B) and m; = my; so §* is a map from 2 (B)
to Z(B) fulﬁlhng g(/i’) < Band my = mz which shows that &* is injective and that
felm 1(§%) is equivalent to f ¢ ker (g) for any fe 2 (B) (since f¢ Im (g*) implies
m(g). =0 for any f'€ 2 (B)).

Fmally, assume that (4.4.3) holds. By Remark 4.5, g induces an isomorphism
B(B) = B(f) where /3 £*(B) for any fe #(B), and therefore an isomorphism
BlI(By~ T[] B(f); hence, B=Im(g)+ J(B).

Belm(g*)
4.6. Proposition. With the notation above, let B be an O-algebra and h: B>Ban
C-algebra exomorphism.

(4.6.1) If ¢ and i are covering exomorphisms then g K is also a covering
exomorphism and (g - h)* = h* o *. In particular, if two of them are strict, the third
Is strict too.

(4.6.2) Ifgohisa covering exomorphism then g is a covering exomorphism too. If
Moreover § is strict then h is also a covering exomorphism.
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Proof. 1f § and }7 are covermg exomorphisms, they induce surjective homo-
morphisms B/J(B) - B[J(B) - B/J(B) and therefore B=Im(g-h) + J(B)
moreover, we have g (h(B)) = g(f) = ,Bwhereﬁeg’(B) f=g*(B) and ﬂ B*(p),
which proves the equality (Foh)* = h*og*

Clearly B=Im(gh) + J(B) implies B = Im (g) + J(B); if moreover g is strict,
g induces an isomorphism B/J(B) = B/J(B) which maps the image of Im (%) onto
the image of Im (g h), forcing B =Im(h) + J(B).

7. Proposition. With the notation above, let C and C be O-algebras, é: C - B and
C-B embeddings, and h: - C a unitary ©- )-algebra exomorphism such that
F=goé. If § is a covering exomorphism then i is also a covering exomorphism,

which is strict if § is so.

4.
e:
€o

4.8. Remark. If § and /i are covering exomorphism, the injective maps £*and h*
are clearly compatible with the injective maps 2 (C)— 2 (B) and Z (&)—>2(B)
induced respectively by é and @ (cf. 2.8). So, we may identify as usual 2 (C) and
2 (€) with their respective images in 2 (B) and 2 (B).

Proof. Assume that ech=goé. As h is unitary, we have e(1)=g(é(1)) and
therefore, (1) Im(g) e(1) = e(Im(k)); but clearly e(1) J(B) e(1) = e(J(C)); con-
sequently, B = Im(g) + J(B) implies C = Im () + J(C). Similarly, Ker(g) = J (B)
implies Ker (h) = J(C).

4.9. We are ready to discuss the interior G-algebra case. Let 4 be an interior G-
algebra and € a set of local pointed groups on A4 fulfilling the following condition

(4.9.1) IfP,e Land Q;isalocal pointed group on A such that (Q5)* = P, for some
x€G then Q;8.

For any subgroup H of G, we set
(4.9.2) AR=Y Tri(4-y-47)

P,efy
where £y is the set of P, € £ such that P < H, and we denote by 25 (H) the set of
points fe 2, (H) such that f & A5 that is, if Q; is a defect pointed group of Hy,
Be 5 (H)is equivalent to Q,¢ £ (cf. [9], Th. 1.2). Notice that £, is a set of local
pointed groups on Res$ (4) fulfilling condition (4.9.1). For any p-subgroup P of
G, we set
(4.9.3) A(P)o=Brp(4f) = ) A(P) - Brp(y) - A(P)

PELP,(P)~ P4 (P)
and we denote by L2 (P) the intersection of L2, (P) and 2% (P).

4.10. If B is an interior G-algebra and é&: B— A an interior G-algebra embedding
itis clear that the set &' (£) of local pointed groups P, on B such that P, e € fulfills
Condition (4.9.1). Moreover, for any subgroup H of G, setting M = ~“1(2) we
have

@.10.1) PR(H)=Py(H)nPL(H) and BEce '(4¥)c BE+J(BY).
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Indeed, if fe Z5(H) and Q, is a defect pointed group of H,, we have fe 2 (H) if
and only if Q;¢ £ (cf. 4.9) or equivalently Q, ¢ M, whereas we have f = AH if and
only if Q;€ £ (cf. [9], Th. 1.2) or equivalently Q,e 9 which is again equivalent to
p< BE (cf.[9], Th.1.2).

4.11. Similarly, if H is a subgroup of G, B an interior H-algebra and 9 a set of
local pointed groups on B fulfilling condition (4.9.1), the set M of local pointed
groups (P,)* on Ind§ (B) where P, runs over M and x over G, fulfills condition
(4.9.1) too. Notice that if G is locally controlled by H on B (cf.3.2) then
M=dG(B) (M%) (cf. (2.9.1)).

4.12. Let A be aninterior G-algebra, & a set of local pointed groups on A fulfilling
condition (4.9.1), and f A — A an interior G-algebra exomorphism. We say that f
is (&, 8)-compatible if and only if, for any subgroup H of G, we have f(A¥) = 4¥
or equivalently, f induces an (¢-algebra exomorphism

4.12.1) fHy AMAH - 4%/ 48,
in that case, for any p-subgroup P of G, fF , induces a #-algebra exomorphism
(4.122) J(P)s e A(P)A(P)s— A(P)/A(P)e.

4.13. Propesition. With the notation above, the following conditions on f are
equivalent:

(4.13.1)  The exomorphism f* A— A is (£, 8)-compatible.
(4.13.2) For any Pve,@ and any subgroup Q of P we have Bry(f(9)) = A(Q)sq.

4.133) If P7Eﬁ, any local pointed group Qs on A such that Q < P and
55(f($)) % {0} belongs to 2.

Proof. If f* A— A is (2, 2)-compatible, by (4.12.1) we have f(§) < 45 < 42
and therefore, Bry (f (7)) = A(Q), for any P, & and any subgroup Q of P. More-
over, with the same notation, if BrQ(f(y)) < A(Q), and s,(f($)) + {0} for
e s ,(Q), we get s5(42) + {0} which implies Q;¢ £ since d is local.

Fmally assume that (4.13.3) holds; to prove (4.13.1) it suffices to prove that if
P, then f(§) < A5. Choose ie7 and let T be a maximal P-stable abelian.
o -semisimple subalgebra of f(i) Af (). If j is a primitive idempotent of T'and Q
the stabilizer of j in P, we know that j belongs to a local point & of Q on A
(f.[12], (2.9.3)); as s,,(f(z))#O we have Q;e £ and so, Trg(j)e A%. Conse-
quently, we have T7 < AL and in particular, f(/)e A5.

4.14. With the notat}on above, we say that f:AA-»A is an (&, £)- covering
exomorphism if ' is (£, £)-compatible and f#,: A#/A¥ - A¥/A% is a covering
€xomorphism of (-algebras for any subgroup H of G; in that case, we denote by

(“4.14.1) (JE)* 23(H)->PL(H)

the injective map mapping fe 22 (H) on fe P} (H Y such that f(f) = B+ A% (cf.
Prop. 4.4), and by

4.14.2) J(Hy): A(Hp) = A(H,)
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the exoisomorphism induced by f,{" ¢ (cf. Remark 4.5). Moreover, we say that [ is
strict if fH 4 is strict for any subgroup H of G or equivalently, if the maps (4.14.1)
are bljectlve (cf. Prop. 4.4). Notice that f is always (, £)-compatible and is a
(8, §)-covering exomorphism if and only if is both (£, £)-compatible and a
(0, 8)-covering exomorphism (cf. (4.6.2)); in particular, if € is the set of local
pointed groups P; on A such that f(§) c AL (which fulfills clearly condition
(4.9.1)) then fis a Stl‘lCt (2, 8)-covering exomorphlsm if and only if is an (§, £)-
covering exomorphism; so, the only interest in choosing £ no empty is to be able to
consider strict (8, £)-covering exomorphisms (see Remark 4.16 below). When ¢
and £ are empty — the only case we need to prove the main theorem we say
covering instead of (0, 9)-covering and write /¥ instead of f. First of all we
generalize Propositions 4.6 and 4.7 to the new context.

4.15. Proposition. With the notation above, let A be an interior G- algebra, Qasetof
local pointed groups on ) Sfulfilling condition (4.9.1), and g A— A an interior
G-algebra exomorphism.

4151 If f and § are respectively (&, 8)- and (2 Q)-covering exomorphisms
then fo g is an (2 )-covering exomorphism and we have

(fo2)f ) =@E (3"
for any subgroup H of G. In particular, if two of them are strict, the third is strict too.

(4.15.2) If fog is an (ﬁ L)-covering exomorphism then £ is an (9, £)-covering
exomorphzsm If moreover f is a strict (L, 8)-covering exomorphism then § is an
(Q 2)-covering exomorphism.

4.16. Remark. Statement (4.15.2) is the main reason to consider strict (8, £)-
covering exomorphisms, and we will use this result as follows: if f: A— Ais astrict
&, - covering exomorphism, 4 = 0 Gb where {b} = o is a point of G on ¢ G and
de?(4) fulfills (@) < a (cf. (4.4.3)) then there is clearly a unique interior G-
algebra exomorphism ¢ A— A such that g(b)ed which fulfills fog =1d, and
therefore is a strict (£, &)-covering exomorphism (see the proof of Proposition 7.2
below).

Proof. If all the exomorphisms f, § and / = f° § are compatible, for any subgroup
H of G we have the following commutative diagram

3 £ [;ﬂ o
AT 48 2 4l

by

APIAE

and it sufﬁces to apply Proposition 4.6. Moreover if fand § are respectively
(2, £)- and (53 E)-compatlble ki is clearly (2 E) -compatible.

So, assume that /4 and f are respectively (53 £)- and strict (&, £)-covering
exomorphisms; we will prove that ¢ fulfills condition (4.13.3). Let P; be af
element of € and Q5 a local pomted group on A such that Q < P and Q;¢Q
as f is a strict (2, 8)-covering exomorphism, there is de25(Q) such thal
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f (0) = d and mz = my; (cf. 4.14 and Prop. 4.4); moreover, as Fis an (53 £)-covering
exomorphism, there is Se WQ(Q) such that f (g(5)) < ¢ and mj; = m;. Conse-
quently, we get mg = m; and m(g); # 0 (cf. (2.3.1)), and therefore ¢ induces an
exmsomorphxsm A(Q,;) ~ A(Q;) mapping s3(7) on s3(g(5)); but, as P; e & and
Q5¢B we have 53(5) = {0} (cf. (4.9.1)); consequently, 5;(g(3)) = {0}.

4.17. Proposition. With the notation above, let B and B be interior G-algebras, é:

B—A and é: B— A interior G-algebra embeddings, and §: BB an interior
G-algebra exomorphism such that &o§ = f oe: set M=6"1(2) and M=26""1(2),

and assume that 1 —g(1)e BG. If [ is an (L, 53) -covering exomorphism then § is an
(M, M)-covering exomorphism which is strict if [ is so.

Proof. If the exomorphisms fand § are compatible, for any subgroup H of G we
have the following commutative diagram

E’”/é‘%(ﬁg’) ——  BHje"1(4Y)

APH/ HhH ggx.m H H
BU/BE "2, piHigH

where & e ¥ and ¢¥ are the 0-algebra embeddings induced respectlvely by é and &,
and g¥ , is the ¢-algebra exomorphlsm induced by gw, m», Which is a (strict)
covering exomorphism if and only if § gm g 18 80 (cf. (4.10.1)). Hence, in this case it
suffices to apply Proposition 4.7.

So, assume that f'is (&, £)- -compatible; we will prove that ¢ fulfills condition
(4.13.3). Let P, be an element of 9t and Q; a local pointed group on B such that
Q< Pands, (g(y)) # {0} ; with the usual identifications, P; belongs to 2 (cf. 4.10)
and therefore Q; belongs to £ by (4.13.3) applied to f so Qs;cM.

The following proposition summarizes the lifting features of (&, £)-covering
exomorphisms. Statement (4.18.3) below is only considered here for the sake
of completeness. Recall that if P, is a local pointed group on A then N, (P) is
the subgroup of beA¥ fulﬁllmg b-P=P-b, N,(P) is the quotlent

N, (P)/P-(1+ J(4DY), and E, (P,) is the é’*-group formed by the subgroup of
b fp)eN [(P) x FA(Py) where b is the image in N, (P) of an element b of N, (P)
such that p -y = @) b for any ueP, endowed with the IIIJCCUVC group
homomorphlsm mapping A€ £* on (4, id) where we identify #* with the image of
(47)*in N, (P) (cf.2.12).

4.18. Proposition. With the notation above, assume that f is an (8, 9)-covering
exomorphism. Let Hy and P, be respecttuely pointed groups on A and A such that
Pez(H) andyeg’A (P), and denote by § the point of P on A such that f(7) < y.

(4.18.1) If P; < Hy there is fe 2§ (H) such that £ () < .
(4.182) 1f £(B) = B for some Be P L(H) we have
Eg(P;, Hy)=Eg(P,,H,) and Fi(P,,Hz) < F,(P,, Hy).
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In particular, P; = Hj if and only if P, = Hy, and then mg = mﬁ,’ . Moreover, P;is a
defect pointed group of Hj if and only if P, is a defect pointed group of Hy.

(4.18.3) If P is a p-group, there is a unique £ *.group homomorphism
Fy (P;) > F,(P,) mapping (6,¢) on (b, ¢) where g F; (P5), b is the image in N; (P)
ofbeA* such that b - u=o(u) - b for any uc P, and b is the image in NA (P) ofthe
unique beA such that f,(b) =f,(1) f (ﬁ,(b)) 1, (1), the representatives fy, Sfand f,
Julfilling s (fy(l))~—s S/

4.19. Remark. Notice that, when P = H, the last equivalence in (4.18.2) states
that P;islocalif and only if P, is local. Moreover, in (4.18.3) our hypothesis insure
clearly that be N; 1, (P)and (&, (o) eF; (P;), whereas we prove below that be N, (P)
and (b, go)eFA(Py)

Proof. First of all assume that P < H; then we have clearly (cf. (2.3.1))
(4.18.4) Y mbm(DH =m(Hf= Y m(Pbmb.

7 eP(P) B Py (H)
Butif §'e 2;(P) — 22 (P)wehave f(5") = AL (cf. 4.12) and therefore, m(f)Z' =0
moreover, if /e ?,(H)— 2} (H), any local pointed group Q; on 4 such that
Qs = Hy belongs to £ (cf. 4.9) and therefore, mf "= 0 (since a defect pointed group
of P, does not belong to £). On the other hand, it follows from proposition 4.4
that m(f)] =9; , for any § 7'e?£(P), and if f(B) = p for some e P} (H)
we get 51m11arly m(f )5 —5,, g» Whereas fe?f(H)—Im( ﬂf o)¥) implies
m(f)8 =0, for any f'e2(H). Hence, by (4.18.4) we have m? =m(f)! and
therefore 1f P; « Hp there is fe 2 (H) such that f(ﬁ) cB.

Henceforth assume that f(§) < B for some fe 2.2 (H). If P c H, we get again
from (4.18.4) mf=m(f)?=m? and in particular, P, = H; is equivalent to
P,c Hy. So, for any xe G we have (P,)* < Hy if and only if (P,)* < Hy (since
y eg’A (P") by (4.9.1)) and therefore, Eq(P;, Hp) = Eg(P,, Hy).

Now, to prove the inclusion F;(P;, Hz) < F,(P,, H ,,) we may assume
that | P|=|H| (cf.[11], 2.11); then, if gaeFA(P Hj) there is de A* such that
(p(u)- )i =u- jfor any ue P, where iep and]ey (cf. [11], Prop. 2.12); moreover,
by (4.14.1) we have f(i) = i + | where i f and / is an idempotent of A¥ such that
il=0=1i, and therefore f(j)=j+ f(I)* where a=f*(@)ecA* (cf. 2.3) and
j=i%y; it follows easily that (¢p(u)-i)*=u-j for any ue P and therefore,
@e F,(P,, Hy) (cf.[11], Prop. 2.12).

To prove (4.18.3) keep the notation above, assume that P is a p-group, H = P
and { = j, and choose ce 1 +J (4*) such that iac = iai = aci (cf. [12], Lemma 6.3).
If £,(1) ={ we may assume that 5 (b) = id = ai, and if moreover f,(1) =i we get
1, (b) = iai = iac, which implies that bed¥and b-u=¢(u)-bfor any ue P; so, in
this case b belongs to N, (P) and has the same action as ¢ on the image of Pin A3,
which proves that (b, (o)eF 4 (P,)(cf.[12], 7.1). But, if we modify our choices of jf,,f
and f;, we have just to con51der the unique element b’ of A, such thal
L= zda(z+ Nd~'i for some de(AP)* fulfilling s,(i%) =s (z) and since
ida(i+0)d™'i =iacid*c™1(i+1)d~'i, we get b’ =bb" where b” is the unique
element of 4, such that f,(b") = id*c ‘1(1+I)d 1 finally, as

s, (idc™ i+ 1) d™ i) = s, (id™) 5, () 5,(d™ i) = 5, (id)) s,(d" 1) = 5, (i)
we obtain 5” =1 and so, b’ =b.
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On the other hand, ifde 1 + J(A) thenae1 + J(4P) (cf. 2.3 and (4.14.2)) and
therefore b= 1. Finally, if ¢', ', d’, @', ¢’ and b’ is another family fulfilling the
conditions above (i.e. such that ¢'e F;(Py), 5’612;", a'eA*, fy(l;’)=fd'=d’f,
(0 (w-1)* =u-1 for any ueP, a'=f*(@'), c'el +J(A4?), ia'c'=idi=a'c'i,
b'ed, and f,(b') = ia'i) it is clear that f;(bb')=dd'i and (p(¢p'(W)- ¥ =u-1,
whence b6’ - u = ¢ (¢’ (1)) - bb’ for any ue P; then, if b” is the unique element of A,
such that f,(b") = iaa’i, we have

LUOHY B =i(d' ¢y Vilae) iad'i=i(c¢") " (e )i

and therefore, (bb')™'b"e1 + J(A}) whence b" =bb'. The prove of (4.13.3) is
complete.

Finally, it suffices to prove that 7 is local if and only if y is local. Indeed, in that
case, if P; is a defect pointed group of H; and Q, is a local pointed group on A such
that P, = Q; = Hy, O, does not belong to £ and therefore setting 0 = (fg%g)*(é)
we have P; < Q5 < Hj which implies P = Q; conversely, if P, is a defect pointed
group of Hyand Qj; is a local pointed group on A4 such that P; < Q; < Hp, there is
02 (Q) such that f(d) = d, d is local and we have P, = Q; = H, which implies
again P= Q.

If §isnotlocal there is a proper subgroup Q of Psuch that je /ig and therefore,
f(§) © A which implies y = 4§ (since m(f)? =+ 0). Conversely, if Q is a proper
subgroup of Psuch that y = 4§, it follows from (4.4.2), (4.12.1) and (4.20.1) below
that

(4.18.3) y < Trh(f(AD) + AZ+ J(A9)) < f(AD) + AR+ J(4P)

and therefore, we get f(P,)(s;(45)) = 5,(f(A5)) + {0} (cf. (4.14.2) and (4.18.3)),
which implies s,(45) = 4 (P;); so, § is not local.

4.20. Lemma. With the notation above, if P is a subgroup of G and Q a subnormal
subgroup of P, we have:

(4.20.1) Tr5(J(42)) < J(4")

Proof. Arguing by induction on | P: Q| we may assume that Q is normal in P; in
that case the (-algebra 42 is P-stable and therefore,

Trh(J(A9) = A7 A J(42) < J(4").

It is clearly hopeless to get inclusion (4.20.1) without suitable hypothesis.
However we have the following general result which will be useful in the proof of
Theorem (4.22) below. Recall that if P, isapointed groupon 4, 4" - y - A” denotes
the two-sided ideal of AP generated by y, and J(AF-y- AP) the intersection
JAPYA AP -y 4P (cf.2.2).

421. Lemma. With the notation above, if P, is a local pointed group on A and H
a subgroup of G containing P, we have:

(4.21.1) TrE(J(AP -y AP) c J(AT)+ Y Trg(42-6- 49)
2

Where Q, runs over the set of local pointed groups on A such that Q; & P,.
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Proof. Let a be an element of J(4”-y- AF) and since 4¥= 5 A% -p- A"
BeZ(H)

set Trp(a)= Y by where byed? -f-A" for any pe?,(H). As
BeZ?,(H)

sﬂ(TrP (@) = s4(by) for any Be?,(H), it suffices to prove that if fe #,(H) and
55 (Trg (a)) + 0 then bye Trg (42 6 - A2) for some local pointed group Q; on 4
such that Q; & P,. Let § be a point of H on A such that s,(Tr} (a)) % 0; as
Trd(J(4F -y AP)) is an ideal of A", we have sﬂ(TrP (J(AP -y - AP) = A(H))
and therefore B TrE(J(AP - y - AP)); hence, there is a defect pointed group
Q; of H; such that Q,cP, Then, on one hand we have
byed” - B- AT = Trg(42-0- 49); on the other hand, setting N = Ny (P,)/P we
have (cf.[9], Prop. 1.3)

5,(B) = 5, (TrE (J(AT -y - ATY)) = Trf (5,(J (47 - y - A7) = {0}
and therefore P, ¢ Hy; so, Q; =+ P,.

The following theorem may be considered as the main result of this section. It
shows that the notion of (&, 2)-covering exomorphism is essentially “local”.

4.22. Theorem. With the notation above, the following conditions on f are
equivalent

(4.22.1) The exomorphism f: A— A is an (8, )-covering.

(4.22.2)  For any p-subgroup P of G we have f(P)(A(P)s) < A(P)g and the induced
mapf(P)Q, Y A(P)/A(P)a — A(P)/A(P)g is a covering exomorphism of £-algebras.

(4.22.3) For any local pointed group P, on A such that P,¢ R there is je P 2P
such that my=m, and Brp(f(7)) < Brp(y) + A(P)e.

(4.22.4) The exomorphism f: A — A is (8, 8)-compatible and, for any subgroup H
of G and any subgroup K of H, we have

A = fAR) + AZ +T(47).
In that case, [ is strict if and only if f(P)z,¢ is strict for any p-subgroup P of G.

Proof. If f: A— A is an (8, £)-covering exomorphism, for any p-subgroup P of
G, fmduces an exomorphism £ ® ff o: £ ® (A7/AL) — £ ® (47/AL) which is 2
covering exomorphism of k-algebras (cf.4.14); hence, the exomorphism
£AQ(A"/AL) —» A(P)/A(P), induced by f'is a covering too and by (4.6.2), the
exomorphism f'(P)2 o A(P)/A(P)q —»A(P)/A(P)Q is also a covering of k-
algebras. In that case, if f'is strict then £ ® 7% o is strict too, and by Propositions
4.4 and 4.18, (;é@ig’ ¢)* induces a bijection from LZ£(P) onto L2L(P):
consequently, (f(P)z, 2)* is a bijection too for any p-subgroup P of G. Conversely.
assume that f(P)g  is strict for any p-subgroup P of G; if Hjis a pointed
group on A such that fe 2 £ (H) and Q; is a defect pomted group of Hy, we have
Q3¢ L and therefore, Bry(0) ¢ A(Q)s; as F(Q)s, ¢ is strict, there is J& E’g’f(Q
such that f (5) < ¢ and m; =m, (cf. Prop.4.4) and in particular, f induces an
isomorphism A(Q;) = A(Q;) (cf. Remark 4.5) mapping s3() on s(;( 1(B)); so-
s;(f(B)) * {0} and therefore, f & AE + Ker(f). Consequently, f; o is strict for
any subgroup H of G (cf. Prop.4.4).
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Assume that (4.22.2) holds. If P, is a local pointed group on A such that P, ¢ &,
Brp(y) is a point of A (£) of multiplicity »z, such that Brp(y) ¢ 4 (P)g; 50, (4.22.3)
follows from Proposition 4.4 applied to the #-algebra exomorphism f(P)z .

Assume that (4.22.3) holds; first of all we will prove that f fulfills condition
(4.13.3). Let P, be an element of € and Q; a local pointed group on 4 such that
0 c Pand Q,¢ £; by (4.22.3) thereis d e 2 £ (Q) such that mz = mzand m ()3 + 0;
so, f induces an isomorphism A(Q;) = A(Q;) mapping s;(5) on s;(f(%)
(cf. Remark 4.5) and therefore 5,( /(7)) = {0} since Q; & P; (cf. (4.9.1)).

To prove the inclusion 4% < f(A#)+ A% + J(4™), we argue by induction on
IKl;as AX= Y A%-¢- A¥ it suffices to prove that if ee 2 (K) we have

eeP4(K)

(4.22.5) Tr(AX - ¢- AX) € f(AE) + AT + J(47).

Let P, be a defect pointed group of K,; as P,¢ & (cf.4.9), there is FeP2(P)
such that m;=m, and Brp(f(§)) < Brp(y)+ A(P)e, which implies that
5,(f(4¥ -5 - AT))= A(P,) (cf. Remark4.5) and s, (f(A" -7 - A7) = {0} for any
Ve FPL(P)— {y}; it follows easily that

(4226) ATy AP cf(AP-5- AP+ Y J(AP-y AP)+ AL+ Ker(Brf);

Ve £FLP)

then, as AX-¢- AX = TrK(4F -y - A?), applying Tr¥ to (4.22.6) we get (cf.
Lemma 4.21)

(4.22.7) Trif (4% ¢ A%) < f(AF) + AE+ J(4") + Y 4]
Q

where Q runs over the set of proper subgroups of P; as /ig < A¥ for any subgroup
0 of K, (4.22.5) follows now from (4.22.7) and the induction hypothesis.
Finally, (4.22.1) follows from (4.22.4) taking K= H.

4.23. Corollary. Let H be a subgroup of G, B and B interior H-algebras, M and M
sets of local pointed groups on B and B respectively, fulfilling condition (4.9.1), and
§: B— B an interior H-algebra exomorphism. Assume that G is locally controlled by
Hon B. ThenInd$ (§): Ind$ (8) - Ind % (B) is an (IS, MC)-covering exomorphism
if and only if §: B— B is an (IR, M)-covering exomorphism. In that case if § is strict
then Ind$ (§) is strict too.

Proof. With the notation above, we set 4 =Ind$(B), 4 =Ind§(B), € =MC,
=M and f=1Ind(g); moreover, we have M = d5(B) '(¥,) and as G is
locally controlled by H on B, M=dS(B)~'(gy). If f is an (2, £)-covering
exomorphism, it is clear that Res$(f) is an (8y, 84)-covering exomorphism
and that 1 —f(1) belongs to AS (cf. (4.4.2) and (4.14); in particular, as
- f)=Tr$1®(1—g(1)®1) and ASc AY we get 1—g(1)eBE (cf.
(4.10.1)); hence, it follows from Proposition 4.17 that § is an (M, t)-covering
Cxomorphism.

Assume now that & is an (91, M)-covering exomorphism; first of all we will
Prove that f fulfills condition (4.13.3). Let P, be an element of € and Q; a local
Pointed group on 4 such that Q < P and 5;(f(§)) # {0}; by 4.11 we may assume
that P, e 9N (since we may replace P;and Q; by (P;)* and (Q,)* for some x € G); so,
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with the usual identifications, P, becomes a local pointed group on B such that
55(1®g(H)®1) % {0} and in particular, we get s;,(1 ® 1® 1) % 0; hence, with the
usual identifications again, Q; becomes a local pointed group on B such that
55(g($)) # {0} and therefore, Q;e M (since ¢ fulfills condition (4.13.3)).

Secondly, we will prove that f fulfills condition (4.22.3). Let P, be a local
pointed group on 4 such that P, ¢ £; by Proposition 3.4 we may assume that P, isa
local pointed group on B such that P,¢9; then, as g fulfills condition (4.22.3),
there is e 25 (P) such that

my(B)=m,(B) and  Brp(g(?)) < Brp() + B(P)m;

in particular, g induces an isomorphism E’(P?) =~ B(P,) (cf. Remark 4.5). Hence,
with the usual identifications, it follows from (3.4.2) that f induces also an
1somorphxsm A(P )~ A(P,) (since a surjective homomorphism A(Py) -~ A(P,)
is bijective) and in partlcular we get m, (A) m,(A) Moreover, as
1® B(P)gyy ®1 < A(P)g, with the usual 1dent1ﬁcatlons again, we get also
Brp(f()) « Brp(y) + A(P)g and in particular, yeJ}(P) (since f is (2, 9)-
compatible).

Finally, assume furthermore that g is strict. By Theorem4.22 and Propo-
sition 4.4, it suffices to prove that if P, is a local pointed group on A such that
P¢ { then there is ye 2 (P) such that () = 7; but, as above we may assume
that P; is a local pointed group on B such that PA¢§1R in that case, by
Theorem 4.22 applied to g, there is ye 23" (P) such that g(7) < y; then, with the
usual identifications, we get f() = y and ye L2 (P) since M =d§(B) ™' (8y)-

4.24, Example. Let M, P and Q be ¢ G-modules and
0 A p S M—0

an exact sequence of (0 G-module homomorphisms, and assume that P and Q are
projective. Assume that A is the interior G- algebrd End, (M), A4 the interior G-
subalgebra of End, (P) x End,(Q) formed by the pairs (, b) such thataod =d- b,
L and @ the respective sets {15}sep 0y and {13}5c5 1), and f: A— A the
homomorphism mapping (¢, b) € A on the unique c € A4 such that coe = e o a. Then
it is quite clear that [ is a strict (2, 2)- covermg exomorphism. Actually, for any
subgroup H of G, the exomorphism ]g I8 surjective; but we are not able to prove
that surjectivity would be preserved by induction under control, as in
Corollary 4.13 above.

The following example shows the covering situation considered in this paper (sce
proofs of Propositions 6.10 and 7.2).

4.25. Example. Assume that A is the interior G-algebra AG (cf.2.7), £ and & the
empty sets, and f: A — 4 the homomorphism mapping ax ona - x forany a € 4 and
any x € G. Then we claim that fis a covering exomorphism which is strict if G isa
p-group. Indeed, the @-algebra homomorphism A4 — .4 mapping ac 4 on &
where e is the unit element of G is both a G-algebra homomorphism and a section
of f, and therefore we have f(4") = 4" for any subgroup H of G; moreover, it is

clear that
Ker(f)= Y O(ax—(a-x)e)

acA, xeG
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and therefore if G is a p-group then Ker () < J(A) (cf. (2.7.1)) which implies that
fis strict (cf. 4.14 and 4.3).

§5. Fusions in S® A

5.1. The main result of this section (see Theorem 5.3 below) provides a tool to
prove that condition 1.6.2 implies condition 1.6.1 (or precisely, condition 1.7.2).
Actually, the particular case needed here (see Proposition 6.10 below) could be
easily handled in Sect. 6 by an argument ad hoc, as we did in [10]. But we prefer to
set this particular case in its general context, specially to provide a handy reference
to study the extensions of nilpotent blocks in [6].

5.2. Let P be a finite p-group, 4 an interior P-algebra and S an @-simple interior
P-algebra having a P-stable (¢-basis which contains the unity. If 4 = @, the trivial
interior P-algebra, we denote by 1 the unique (local) point of any subgroup Q of P.
The main purpose of this section is to prove the following result (where statement
(5.3.3) is discussed here for the sake of completeness). We write S® A instead

of S® 4.
@

5.3. Theorem. With the notation above:

(5.3.1) For any subgroup Q of P there is a bijection LP(Q)—> FPsg 4(Q)
mapping d € £2,(Q) on the unique local point S x 6 of Q on S® A such that, for any
JEO, there is j'e S x & fulfilling 1 ®j)j =j =j{(1®j).

(5.3.2) If Qs and R, are local pointed groups on A, setting F= Fs(Rgy 1, Qsx1) we

have

Fi(R,, Qs) N F=Fsg 4(Rsx,, Osxs) N F.
(5.33) IfQjisa local pointed group on A, setting E = F,(Q5) N Fs(Qs ) thereisa
£*-group isomorphism E° = ES*? lifting the identity.

5.4. Remark. In our applications of (5.3.2) (here and in [6]) we are able to prove
independently that F contains both F,(R,, Q;) and Fyg 4(Rgx,: @sxs)-

5.5 First of all, we expose some ‘“‘almost general” facts on tensor products of
Interior P-algebras: we restrict ourself to the case when at least one factor has a
P-stable O-basis. Let A’ be an interior P-algebra having a P-stable O-basis B’; our
first result describes the local pointed groups on A ® A’ in terms of the local
Pointed groups on 4 and A’

3.6. Proposition. With the notation above, for any subgroup Q of P there is a
#-algebra isomorphism

(5.6.1) AQ)@A(Q)=(4®4)(Q)
Mmapping Bry, (a) ® Bry(a’) on Bry(a®a'). In particular, there is a bijection
(5.6.2) LP(O)x LP(Q) > L P04 (0)
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mapping (0,0') on the unique local point 6x90' of Q on ARA" such that
Bry(0) ® Bro(6') = Bry(dx9') (up to identification through (5.6.1)), and then
there are k-algebra isomorphisms

(5.6.3) A(Q5)® A'(Qs) (AR AN (Qsx5)
mapping s;(a) R 55.(a’) on 55 5(a® a'), and embeddings
(5.6.4) Zsxs (AR A)sxy > A;@ A5

Sulfilling (]7‘; ®./7:5') °Zsxs =J7¢; X3+

Proof. As(A® A% contains A2® (4')% and 4% ® (4')¢ for any subgroup R of
Q, the homomorphism 42 ® (4')¢ - (4 ® A')(Q) mapping a ® @’ on Bry(a®a')
induces indeed a #£-algebra homomorphism

(5.6.5) A(Q)®A(Q) > (4®A4)(Q)

mapping Bry(a) ® Bry(a’) on Bry(e®a’), and we will prove that this homomor-
phism is bijective.

For any subgroup R of Q, denote by (B")* the set of R-fixed elements of B’ and
by By a set of representatives for the orbits of R on B’ (so (B')® = By); as
A®A' =P AQV, it is easily checked that

beB’
(5.6.6) (AR ANE = P Trg, (A* ®b)
be By
and therefore, we get
(56.7) A® AN = @ Tr$, (4% ®b)
b'eBy

where 0, and R, are respectively the stabilizer of 5’ B’ in Q and R; now, it
follows from (5.4.6) applied to Q that

(5.6.8) BrQ< @ AQ®b’> =(A®A4)(Q)
b'e(B)?
and from (5.6.7) that
(5.6.9) <b’<(_?)9 AQ®b’> nKer(Brg®*) =b'((—{2)0 Ker(Bry)®b'.

In particular, (5.6.8) and (5.6.9) applied to 4 = @ prove that {Bry(b')}yc(pye 152
£-basis of 4'(Q); consequently, we get

(5.6.10)
@ (A2®bKer(Brg)®@b)x @D A(Q)®@Bry(h)=A(Q)®A4'(Q).
be(B)? be(8)?

Finally, as (5.6.5) maps Bry(a) ® Bry(b') on Bry(a®¥') for any b'e(B)% it
follows from (5.6.8), (5.6.9) and (5.6.10) that (5.6.5) is bijective.

Moreover bijection (5.6.2) and isomorphisms (5.6.3) are easy consequences of
(5.6.1). On the other hand, by (5.6.2) applied to the interior Q-algebras 4;and Ay
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dx ¢ is still a local point of Q on 4;® A} and then (5.6.4) follows (cf.[12],
(2.13.1)).

5.7. Itis clear that the multiplication induces an interior P-algebra isomorphism
(5.7.1) S® S° = End,(S)

and as P stabilizes an @-basis of § containing the unity, there is a (unique)
embedding from the trivial interior P-algebra @ to S® S°.

5.8. Corollary. With the notation above, for any subgroup Q of P, S(Q) is a simple
£-algebra and in particular, | £ P(Q)| = 1.

Proof. By (5.6.1) and (5.7.1) we have S(Q)® S°(Q) = (End,(S5))(Q); but it is
clear that S°(Q) = S(Q)° and as P stabilizes an (-basis of S, it is well-known that
(End,(S)(Q) = End(S(Q)) (cf.[12], (2.9.1)); consequently, S(Q) has to be
simple (since S(Q) % {0}).

We have only partial results both on the relationship between inclusions and on
the relationship between fusions of local pointed groups on 4, 4’ and A ® A4'; but
they are complete enough to prove Theorem 5.3.

5.9. Proposition. With the notation above, let Q;5, R, be local pointed groups on A
and Q5. , R, local pointed groups on A'.

(59.1) If R<= Q we have m?;% <m?m?. In particular, if R, ., < Qs then
Re < Q6 and Ra' < Qé’ .

(39.2) If |R|=1Q| we have

Fi(R,Qs)NEy(Ry,Q0s) © Fyga(Ryxers Osxsr)

Proof. If je d and j' €6/, it follows from (5.6.4) that there is j”€d x &' such that
J'G®j) =j"=((®j)j"; but if Rc @, the isomorphism A(R,)® A'(R,)
(AR AY(R, ) (cf. (5.6.3)) maps s,(j) ® s, (j') on s, (j®j'); then it is clear
that m?% <mém? .

Assume now that |R|=|Q| and let ¢ be an element of F,(R,,Q;)
NE; (R, , Qs); by definition (cf. [11], Def. 2.5), there are exomorphisms of interior
R-algebras

(3.9.3) fp: A, =Res,(4;) and  f;: A, ~Res,(45)
fulfilling
(5.9.4)
Resf(f) =Res?(f;) o Resf(f,) and  Res¥(f)=Resf(f;)o Resf ().

B}lt it follows from (5.6.1) applied to 4, ® A} that 6 x 8’ is the unique local point
of O on 4, ® A} ; similarly, ¢ x ¢’ is the unique local point of R on 4, ® A, .
Cpnsequently, setting A" = A® A’, 6" =0 x ¢’ and &¢” = ¢ x ¢/, the tensor product
ol the exomorphisms (5.9.3) induces an exomorphism

(59.5) fo: Al =Res, (45
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such that (cf. (5.6.4) and [12], (2.3.3))

(5.9.6) Res, (85) o fy = ([, ®F) &
Now, it is easily checked from (5.6.4), (5.9.6) and (5.9.3) that the exomorphism
(5.9.5) fulfills Res®(f.) = Res®(f;) o Res¥(f,), whence ge F,.(R,., Qs).

5.10. Let Q; and Q, be respectively local pointed groups on 4 and A4’, set
A"=AR A, 6"=0x06" and E=FE,(Q;) NnF;(Qs), and denote by g,
Aj— A;&® A5 the embedding (5.6.4). Our last result shows that the central
extension £%" of E by £* is the “‘sum” of the central extensions £° and £%' (cf. 2.12
and {12], 7.1 and 5.9).

5.11. Proposition. With the notation above, there is a unique £%*-group
isomorphism

(5.11.1) B« EY ~ B

mapping (4,§)®(a@',¢) €E°+E® on (a",3)eEY where GeE, a and a' are
respectively elements of A¥ and (As)* fulfilling

(5.11.2) foranyueQ,a-u=¢u)-aanda -u=¢p)-a,

a” is the unique element of Aj. such that

(5.11.3) 2@ =gy (1) (@®a") gz (1)

and ‘z,Qi "and a" are respectively the images of a, ' and a” in Ny (Q), Ny, (Q) and
Ny (Q).

5.12. Remark. Notice that (5.11.2) guarantees ae N, (Q) and a’eNy (Q)
(cf. 2.12) and we prove below that (5.11.3) implies a”€ Ny, (Q).

Proof. Set i=g;.(1); as (4;® A5)(Qs) = £ (cf. (5.6.3)) and, with the usual
identification, §” is the unique local point of Q on A4; ® 45 (cf. (5.6.2)), we have

(5.11.4) 55 (190 9) =55 (D) ;
hence, setting
(5.11.5) d’=@@*®")i+(1—-i*®")Y(1 —1i)

it is clear that d"el+J((4;®4;)?) and it is easily checked that
i@®ad)d" =i(a®a’)i =(@®a’)d"i; in particular, a” is invertible and we have

(5.11.6) (@) '=i(d) a®a) .

Moreover, g5 (a" - u) =i(a®a)-u-i=i- o) - (a®a)i=gy (p(u)-a") and
therefore, a” - u= @ (u) - a” for any ue Q. Consequently, a” belongs to NA;N(Q)
and has the same action as ¢ on the image of Q in (A45.)*, which proves
that (@”, @) is an element of £%" (cf. 2.12).

Notice first that @” does not depend on the choice of g;- in g, . Indeed, if g’ € €5
there is ¢ ((4;® Aj)2)* such that g’ (b") = g, (b")"" for any b” e A}.; hence, i
b"e A}. is such that g’ (b") =g’ (1)(a®a’) g'(1) we get (cf. (5.11.6))

g (@)71) = i(d) " @®a) tic" @@a) (") i =id") iy ()
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but, as (4, ® A5)(Qs) = £ (cf. (5.6.3)), we have sz ((ic")*®*) = s;.(ic"); conse-
quently, (a”)” 4" belongs to 1 + J((A4})?), whence a" = b".

Secondly, if b and b’ are respectively elements of N4, (Q) and N, (Q) such that
d=b and a'=b", and b"e 4}. is such that g, (b") =i(b®b')i, we claim that
d"=b". Indeed, we get (cf. (5.11.5))

gy ((@)™'b") =i(d") "1 (i*®) (a”'b® () b)i

and therefore, it follows from (5.11.4) that (a")"'4" belongs to 1+ J((43)9),
whence @"=b5".

Consequently, there is a unique map u: 2 * E¥ —» E* mapping (4, §) ® (@', §) on
(@",¢); moreover, it is clear that y maps 4, (@, ) ® (@', §) on 1.(@", §) forany Ae £*,
and induces the identity on E. So, it suffices to prove that u is a group
homomorphism,

Let i be an element of E, b and 5’ elements of A} and (4}.)* fulfilling 5.11.2 with
respect to y, ¢’ the element (i*®%)i+ (1 —i®®¥) (1 —i) of 1 4+ J((4;® 4})?) (cf.
{5.11.5)), b” the unique element of 45, such that g,.(b") =i(b®b')i (cf. (5.11.3)),
and b, b’ and " the respective images of b, b’ and b" in N, (Q), N, (Q) and
N4 (Q), so that ymaps (5, ) ® (b', W) on (5", 7). Then it is clear that ab and a' b’
fulfill (5.11.2) with respect to ¢ © y, and if ¢” is the unique element of A;. such that
g5 (c") =i(ab®a'b')i, it follows from (5.11.6) applied to a” and b” that

g ((@'b") ') =i(e") ' (b®b)i[d) ! (a®a) i@ ®a'b )i
— i(e//)—- 1 (l-(d//)— 1)b®b’ (l-ab®a’b’)l~;
consequently, u maps (ab,@°{) ®(a@'b’,Fow) on (¢”,¢cy) and (a”b") 'c”
belongs to 1 + J((A4}.)?) whence ¢” = a” b”; hence, u is a group homomorphism.

Proof of Theorem 5.3. By corollary 5.8 we have ¥ %5(Q) = {¢} and therefore, by
5.6.2 there is a bijection

(5.3.4) L24(Q) =L P50 4(Q)

mapping §e £ 2,(Q) on g x J, which is the unique local point of Q on S® 4
such that Bry(i®j)eBry(o x d) if ieo and jed; hence, there is j'ea x J such
that (i®j)j =j = (i®/) and therefore, such that (1®j)j =j = (1®})).
Moreover, if k is a primitive idempotent of (S® 4)¢ such that Bry (k) + 0 and
(1®j)k =k =k(1®}), it follows from (5.6.1) that Br, (k) is a conjugate of some
Bro(/®) where I is a primitive idempotent of S such that Bry(/) %0, which
implies /e ¢ by corollary 5.8; consequently, Bry(k)eBry(o x d), whence ke o x 4.
To prove (5.2.2) it suffices to prove the inclusion

(5.3.5) Fy(R,, ) " F < Fyg 4(Rsxes @)
indeed, it follows from (5.3.5) applied to S® 4 and S° that

(536) FS@A(RSXeﬂsté) NnFc FS"@S@A (RSx(Sxe)a QSX(SX6))

(since Fgo(Ryo 1, Qg0x,) = F); but there is an embedding ¢ > S°® S (cf. 5.7) and
therefore we get an embedding '

(537) 4-5°®S®4
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mapping Qs on Qgogsxs and R, on Rgogsx,, Which implies (cf.[11], 2.14)
(5.3.8) Fy(R,,05)=Fsogsea (Rsogsxer Oso@sxa)s

moreover, it is easy to check that

(539 S°x(Sxd)=S°®SxJd and S°x(Sxe)=S°®Sxe;
consequently, by (5.3.6), (5.3.8) and (5.3.9) we have

(5.3.10) Fsg a(Rsxes Osxs) D F = Fi(R,, 05);

now, (5.3.2) follows from (5.3.5) and (5.3.10).

If e F,(R,, Q;) n F we know (cf. [11], 2.11) that there is ye L2, (p(R)) such
that ¢ (R), © @, and § is the composition of {7 € F, (R,, 9(R),) (where y (1) = ¢ (1)
for any ue R) and the A-fusion defined by the inclusion ¢(R), = Q5. Then, by
(5.3.7) we have ¢(R)s gs5x, < Qse@sxs t00 and therefore, by (5.3.9) and (5.9.1)
applied to S® A4 and S°, we get ¢ (R)sx, = Qg (notice that applying this result
to the case 4 = 0 we get (R)g; = Ogx, Which can be proved directly too). On
the other hand, as geF, it is easily checked that e Fg(Rg.,, #(R)sx1) and
therefore, by (5.3.4) and (5.9.2) applied to 4 and S, we get e Fg 4 (Rsx,
@(R)s,). Consequently, §€ Fsg 4 (Rsx.; @sxs) Which proves (5.3.5).

Finally, (5.3.3) follows from Proposition 5.11 applied to 4 and S, and from the
fact that E° = £* x E if Z5(Q) = {a} (cf.[13]).

§ 6. On the interior P-algebra SP

6.1. Let P be a finite p-group and S an O-simple P-algebra of O-rank prime to p,
and denote by B the interior P-algebra SP associated with S (cf.2.2). In this
section we discuss on the special features of B that we need to prove the main
theorem.

6.2. First of all notice that, as Aut(S) = S*/0* (cf.[9], Prop. 2.3 or [12], (2.5.3))
and # is algebraically closed, any automorphism of S is induced by an element of
S* of determinant one. But, denoting by U the finite subgroup of @* of order
rank,(S), Uis acyclic p’-group and therefore, H? (P, U) = {0} = H' (P, U) (cf. [5},
Ch.1, Th. 16.19). Consequently, the structural group homomorphism P — Aut(S)
can be lifted to a unique group homomorphism g: P— S* such that det (¢ () =1
for any u e P. Henceforth we consider S endowed with g as an interior P-algebra,
and we identify often B with S(X) O P through the canonical interior P-algebra

0
isomorphism (2.7.1). The following statement is our main result on B.

6.3. Theorem. Let B be an interior P-algebra and g: B— B an interior P-algebra
exomorphism. If B=1m(g) + J(B) then g is surjective.

6.4. Remark. With the terminology introduced in §4 the equality above says
that & is an @-algebra covering exomorphism (cf. 4.3).

In order to prove the theorem we need the following three lemmas.
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6.5. Lemma. Let A and A be O-algebras andf: A — A an O-algebra homomorphism.
If A=1m(f)+ J(A)* then [ is surjective.

Proof. Arguing by induction on n we prove first that 4 = Im(f) + J(4)"; we may
assume that n2>2 and J(4)" "' =(Im(f) nJ(A)" ) + J(A)"; it follows that
J(A)" = (Im(£)nJ(A)) + J(4)*) (Im ("I ()" 1)+ J(4)")
=(Im(f)nJ(A") +J (4"
and therefore, 4 = Im (f) + J(4)"**. But there is n such that J(4)" < J(¢).4 and

then the lemma follows from Nakayama’s lemma.

6.6. Lemma. Let A be an O-algebra such that A]J(A) is a simple #-algebra, and M
an A-bimodule. Denote by [A, M) the O-submodule of M generated by the set of
elements a.m — m. a where a runs over A and m over M. If N is an A-subbimodule
such that M = N+ [A, M] then M = N.

Proof. As[A, M/N]isthe image of [4, M]in M/N, we may assume that ¢ = £ and
M is a simple 4-bimodule; then there is an 4-bimodule isomorphism M = A/J(A)
and since 4/J(A4) = End ,(V) where V is a £-vector space, the image of [4, 4/J(A4)]
in End (V) is contained in Ker(tr; ), where try,: End, (V) — £ is the trace map,
which proves that M = [4, M], and therefore, M = N.

6.7. Lemma. The map P— Bmappingue Pon1— g(u™ ') u induces an S-bimodule
isomorphism S (X)(P/®(P)) = J(B)/(J(B)*+ J(0)- B).
Z

Proof. We may assume that ¢ = £ and identify B with S (X) £ P; so, we consider
£

the map P—SX)#P mapping ucP on 1® (1 —u) and since 1 —ueJ(£P),
£
1 ® (1 - u) belongs to J (S@»é’ P); MOreover, as
£

l—uw/=1-w)+(1—-u)+{1~-w)(1 —u)

2
for any u,u’'e P and J<S®/€P> = S@J(A’P)Z, this map induces a Z-module
£ £

2
homomorphism from P/@®(P) to J (S X4 P) / J <S®/€ P> and therefore a
S-bimodule homorphism g *

6.7.1) SQZQ(P/(P(P)) - J(S@(P)/J(SC){()%P)Z

which is clearly surjective since J(£P) = Y’ £(1 —u) and we have

J(S@4P> / J (S@A’P)zu; S@(J(,fp)/J(,fP)z).

Finally, denoting by U a subset of P such that the image of {1 —u},.y in
J(£P)/J(£ P)? is a £-basis, and by Q the subgroup of P generated by U, we get
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£P=£Q+ J(£P)? and it follows from Lemma 6.5 that £ P = £#Q, whence P = Q,
in particular, the image of U in P/@(P) is a generator set; consequently

dim (4@ (PIO(P)) 5 dim JUPYIEPY)
YA

and therefore (6.7.1) is a bijective homomorphism.

Proof of Theorem 6.3. By Nakayama’s lemma we may assume that ¢ = £, and by
Lemma 6.5 it suffices to prove that J(B) = (Im(g) n J(B)) + J(B)*. Set C = Im(g)
and denote by X the image of any X = J(B) in J(B)/J(B)?; then J(B) has an
evident structure of C-bimodule and CJ(B) is a C-subbimodule of J(B);
as C/(CnJ(B))=B/J(B)=S and J(B) annihilates J(B), J(B) becomes an
S-bimodule and € n J(B) an S-subbimodule of J(B); so, by Lemma 6.6 it suffices
to prove that J(B) =CnJ(B) +[S, J(B)].

By Lemma 6.7 there is an S-bimodule isomorphism S X)(P/®(P)) = J(B)
z

mapping s ® # on s(1 —o(u~')u), where seS, ue P and # is the image of u in
P/®(P). But identifying again B with S(X)£P (cf. 6.2), it is easily checked that

N £
[S,J(B)]=I[S, S] @ (P/®(P)); moreover, S = £ - 1 +[S, §]since p does not divide

z

dim,(S). Consequently, it suffices to prove that CnJ(B) +[S, J(B)] contains
{1—e@ Hu}uep.

As B= C + J(B), a maximal ¢-semisimple subalgebra of C is still maximal in
B, and therefore there is neJ(B) such that S'*" < C (cf. [9], Cor. 2.4); in
particular, ¢ (u)! *"e C and therefore [g (1), 1 + n} — ¢ ()~ ' u belongs to C N J(B)
(since 1 — ¢ (u) ' ueJ(B))and so, ¢ (u) + J(B) = u + J(B); but it is easily checked
that

le@.1+n—o@) 'u=@F—oW ' ne)+1—e@ " u);

consequently, as 71— g (1)~ !-ng(u)e[S, J(B)], the element 1 — ¢ (1)~ ' u belongs
to CnJ(B)+[S,J(B)] for any ueP.

We know that B* acts transitively on the set of ¢-simple subalgebras S’ of B such
that rank,(S") =ranky(S) (cf. [9], Cor. 2.4) and the next result explicits a
transversal in B* to the stabilizer of S.

6.8. Proposition. Set W=1+ ) Ker(tr) (1 — ¢ (u)™ ' u) where tr: S— O denotes

ueP
the trace map. Then we have W < B* and for any maximal O-semisimple subalgebra

S’ of B there is a unique we W such that S’ = S".
Proof. Letusidentify Bwith SO P(cf. 6.2)andsetJ= Y O(1 —u);asSand S’
[

ueP

are both maximal 0-semisimple subalgebras of B, there is be B* such that $' = S ’
(cf. [9], Cor. 2.4); but, as S ® Jis an ideal of B contained in J(B) and B/S ® J = 5,
we have B* = S*. (1 + S® J) and therefore, we may assume that bel +S® J;
moreover, as p does not divide rank,(S), we have S = ¢ @ Ker(tr) and so

b=1+n+c=0+nd+A+nm 1o
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where ne1 ® J and ceKer(tr) ® J; finally, as 1 + » centralizes S and (1 +n) !
belongs to 1 +1® J, we get ' = S'*™ where m= (1 +n) ' ceKer(tr) ® J.

On the other hand, as Aut(S) = S*/0* (cf. [12], (2.5.3)), the stabilizer of S'in
B* is the product of $* by the centralizer, namely the subgroup S* ® (0 P)*
=S8*(1+1®J) of B*; hence, if S'*™ = S'*™ where m, m "eKer(tr) ® J, then
(1+m)(1+m) 'el +1® J since the image of (1 +m )(1 +m)~'in B/S® Jis
the unity, and therefore there is ne1 ® J such that

T+m'=(1+n A +m)=14+n+m+nm,

whence n=m'—m —nmm; but m, m’ and nm belong to Ker(tr) ® J, whereas
nel ® J; consequently, n=0 and m' = m.

6.9. Corollary. The group (B)* acts transitively on the set of P-stable maximal
O-simple subalgebras of B. In particular, if S’ is a P-algebra such that B= S’ P as
interior P-algebras, we have S~ 8§’ as P-algebras.

Proof. With the notation of Proposition 6.8, if S’ is a P-stable maximal ¢-simple
subalgebra of B, there is a unique we W such that S’ = S™; but it is clear that P
stabilizes W (since ¢ is unique); consequently, P fixes w.

The last result of this section describes the fusions of local pointed groups on B,
when S has a P-stable (-basis, which is the main tool to prove (in Sect. 7) that
condition (1.6.2) implies condition (1.6.1). Although we will apply Theorem 5.3, a
more direct proof of that result could certainly be obtained from Proposition 6.8
above.

6.10. Proposition. Assume that P stabilizes an O-basis of S and let Q5 and R, be
local pointed groups on B. Then Fy(R,, Q;) = Ep(R, Q).

Proof. As p does not divide rank,(S), P fixes at least one element in a P-stable
O-basis of S and therefore, S(P) + {0} (cf. [12], (2.8.4)); it follows easily that P
stabilizes an (-basis of S which contains the unity (see 7.5 below for a more
detailed argument). Hence, by 6.2 and Theorem 5.3 we have

F@P(Ra’, Qé') NnF= FB(Rea Qé) NF

where F= Fg(Rg, , Qsx,) and &', & are respectively the local points of Q, R on
¢ P corresponding to 6, ¢ through the canonical bijection (5.3.1). But on one hand,
itis clear that £2,,(Q) = {6’} and L2 (R) = {¢'}, and therefore (cf. [11], 2.10
and Th. 3.1)

Fop(Ry, Q5) = Ep(Ry, Q5) = Ep(R,Q) = F.

On the other hand, it follows from example 4.25 and Proposition 4.18 that
Fy(R,,Q;) = F. Consequently, Ep(R, Q) = Fy(R,, 0;).
§7. Proof of the main theorem

7.1 Let G be a finite group, o= {b} a point of G on O G and P, a defect pointed
8roup of G; denote by &: B— Res$ (0 Gb) an embedded algebra associated with
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P, (as a pointed group on 0 Gb). The key step in our proof of the main theorem is
the following result (which is itself a consequence of that theorem).

7.2. Proposition. Assume that B has an O-simple factor S of O-rank prime to p, and
consider S endowed with the interior P-algebra structure induced by B. If G, is locally
controlled by P, then there is a unique interior P-algebra exoisomorphism

B=S®OP.

Proof. Denote by B the interior P-algebra B ®(9 P~ BP (cf. (2.7.1)) and by ¢

B - B the interior P-algebra exomorphism detgrmined by the homomorphism g
mapping b ® uon b for any be Band any u€ P; it follows from example 4.25 that g
is a strict covering exomorphism.

Set 4=Ind$(B), d=dS(B), A=Ind$(B), d=d$(B), f=1Ind$(%) and
C = 0Gb. As G, is locally controlled by P,, G is locally controlled by P on B (cf.
3.5) and therefore, f: A — A is a strict covermg exomorphism too (cf. Cor. 4.23).
But it follows from [9], Th. 3.4 that there is a unique embedding é: C — A4 such that
the following diagram commutes

Resé(C) - —F O, Res§(4)

(7.2.1) : a
B

and, as usual, we identify G, and P, with the corresponding pointed groups on 4;
then& C—Aand d: B— Resg(A) are respectively embedded algebras associated
with G, and P, (cf. 2.10). Consequently, there are de2;(G) and je2P;(P) such
thatf (o‘z) cu and f () = y(cf. 4.14), and it follows from Proposition 4.18 that P; s
a defect pointed group of G,; moreover, the following commutative diagram (cf.
(2.9.3))

. Resg(f)
Res$(A4) ikt Res$(A4)

(1.22) j J

~

B B

shows that d: B—Res$(4) is an embedded algebra associated with P;.

Let & € — A be an embedded algebra associated with G;. On one hand as
P; < G, there is a unique embedding é: B-Res§(6) such that the following
diagram commutes (cf. [11], 1.8 and 1.9)

N Res$(3)

Res$(A4)
(7.2.3)
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On the other hand, as f(¢(1))ea, there is a unique exomorphism #: € — C such
that the following diagram commutes (cf. (2.10.1))

7

—— A

A
(1.2.4) 3 [ ] :
i

C———C
Now, it follows from (7.2.1), (7.2.2), (7.2.3) and the restriction of (7.2.4) to P that
the following diagram commutes (cf. [12], (2.3.3) and (2.12.2))

N Resé(h)
Res§ (C) ——————— Res$(C)

(7.2.5) 5 1 4

Q.

B B

Arguing as in Remark 4.16, the structural homomorphism G — C* induces
clearly a unique interior G-algebra exomorphism /': C— C such that A i = iz'ic,
and by Proposition 4.15, i’ is a strict covering exomorphism too, fulfilling
W (y) <y (cf. (7.2.5) and (4.15.1)); so, A'(e(1))e7 and there is again a unique

exomorphism g': B— B such that the following diagram commutes (cf. (2.10.1))

Res$(h)

Res$ (C) Res$(€)
(7.2.6) ; ;
B ¢ B

hence, by Proposition 4. 15 again, g’ is also a strict covering exomorphism (and we
get easily from /oA’ =1d. and [12] (2.3.3) and (2.12.2), that §o §" = idp).

Let S be an @-simple factor of B of @-rank prime to p, and §: B— S the
canonical exomorphism (recall that we consider S as an interior P-algebra in
such a way that § is an interior P-algebra exomorphism). Set §=SX) O P = SP
(cf. 2.7.1)) and §=5® i?im,; that is, §: E—»S: is a surjective interiog P-algebra
exomorphism. So, the composition Res}(5-5’): Res?(B)—Resi(S) is an
(-algebra covering exomorphism and tharefore, it follows from Theorem 6.3
that Resf(5-g’) is surjective. Consequently, to prove that §¢§: B—S
18 an exoisomorphism of interior P-algebras, it suffices to prove now that
rank, (B) = rank, (S).

Let ¥ be a projective indecomposable S-module; clearly, V®(9P i1s an
. i ]
indecomposable $-module (cf. [9], Prop. 2.1) and all the simple factors of a
Jordan-Holder sequence of £ (%) <V® (DP) are isomorphic to £X) V. As §og’
[ [ 0
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is surjective, Res;, (V@(OP) is an indecomposable B-module fulfilling the
0
same condition: all the simple factors of a Jordan-Holder sequence of
£ Res;. (V@@P) are isomorphic to # X)Res;. . (V); moreover, it is clear
0 4 [
that the restriction of Res;, <V® O P) to @ P through the structural homomor-
Y

phism P—B* is a projective (¢ P-module. Hence, by Lemma 7.3 below,

Res;. (V@ (9P> is a projective B-module too and by Lemma 7.4 below, we have
Y

P(B)=1{6} and rank,(B)=m,|P| rank,(V) = rank,(3)

(since B(6) = £ (X)S and therefore, m, = rank, (V).

[4 ~
Finally, by Corollary 6.9, any automorphism of S as interior P-algebra is an
inner one.

7.3. Lemma. With the notation above, let N be a B-module and assume that
the restriction of N through the structural homomorphism P — B* is a projective
O P-module. Then N is a projective B-module.

Proof. Set M =Ind%(N) and 4 = Ind$(B); clearly M is an A-module and the
restriction of M through the structural homomorphism G — 4* is a projective 0 G-
module. But it follows from [9], Th. 3.4 that there is a unique embedding ¢:
O Gb — A such that dS(B) = Res§(¢) - & (cf. (7.2.1)). Consequently, ¢(b)- M isa
projective ¢ Gb-module (since it is a direct summand of M as ¢ G-module) and
therefore, Res, (c(b) - M) is a projective B-module; but, as co e is a representative
for dS(B), we have Res,(c(b)- M) = Res,.,(M)= N as B-modules.

7.4. Lemma. With the notation above, let N be a projective indecomposable
B-module and assume that all the simple factors of a Jordan-Hélder sequence of
£X)N are isomorphic. Then #(B) = {3} and rank,(B) = m;rank,(N).

[

Proof. Let 6 be the point of B such that N =~ Bi where ied; if j is a primitive
idempotent of B, we have jBi+ {0} if and only if Bj~ Bi as B-modules (since
JBi ~ Homy (Bj, Bi)); hence, if fis an idempotent of B with multiplicity 2, on § and
zero everywhere else (cf. (2.2.1)), we have (1 — f) Bf = {0}; but identifying B with
its image through e, we get (1 —f) 0 Gf = (1 —f) Bf = {0} and therefore, we have
also {0} =f0G(1 —f)=fB(1—f) since the Cartan matrix is symmetric (cf
(2.15.1) and (2.15.2)); consequently, f belongs to ZB and as ZB < BF, we get f=1
(cf. 2.20). So, 2(B) = {4} and rank,(B) = msrank,(N) (cf. (2.2.1)).

7.5. Henceforth we prove the main theorem. Assume first that (1.6.2) holds.
Then, as rank,(B)/| P| = | E¢(P,)| mod (p) (cf. [12], Prop. 14.6), p does not divide
rank, (S) (cf. [12], 14.5) and the uniqueness of S follows now from Corollary 6.9-
As P stabilizes by conjugation an ¢-basis of ¢ G and B s a direct summand of € G
as 0 P-module, P stabilizes by conjugation an (0-basis of B (cf. [12], (2.8.5)); but w¢
have B> SP = (P) Suand therefore Sis still a direct summand of B as ¢ P-modulé;

ueP
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so, P stabilizes an (@-basis W of S (cf. [12], (2.8.5)). In particular, (1.6.1) follows
now from Proposition 6.10 and [11], Cor. 3.6 applied to P,. Moreover, the set
{wit} yew,uep 18 @ P-stable O-basis of SP and therefore (cf. [12], (2.8.4)),

dim,(B(P)) = |Wn S*[|ZP]|
which implies that (cf. [12], (2.8.4) and (14.5.1))
WnSP={w} and S§(P)=£.Brp(w);

in particular, if 1= Y A, w" where 1,,€0 then 1,e0* and therefore we may
weW

replace w by the unity, getting a P-stable @-basis of S which contains the unity as

the unique P-fixed element.

7.6. From now on we assume that (1.6.1) holds. Then, by Theorem 3.8, G, is

locally controlled by P, and in particular, | Eg(P,)| = 1. If I is a decomposition

of the unity in B (cf. 2.2) then B = P Bi and for any i€, Bi becomes a projective
iel

0 P-module by left multiplication (since it is a direct summand of G as ¢ P-

modules), whence | P| divides rank,(Bi). Hence, as rank,(B)/| P| =1mod(p),

there is de#(B) such that p does not divide m; (cf. (2.2.1)). So, assuming

that 0 = £ it follows from Proposition 7.2 that BgB(6)®r€ P. In general,

£
it is quite clear that the respective images @ = {b} and 7 of « and y in 4G
are respectively points of G and P on £G, that P, is a defect pointed group of G,
that 1 ® &: £ (X) B— Res§ (£Gb) is an embedded algebra associated with P; (as a

4 —
pointed group on £Gb) and that Gj is locally controlled by Py (cf. (2.13.1)).
Consequently, arguing as above, it follows from Proposition 7.2 that there is an
interior P-algebra isomorphism

(1.6.1) AQB=SR4LP
4 £
where §= B(6). Notice that (7.6.1) implies already that (1.9.1) and therefore
(1.9.2) and (1.9.3) hold (cf. [9], Cor. 3.5); in particular (cf. [9], Def. 2.5),
(7.6.2)  we have Irr,(G,b) = {9} and p does not divide ¢ (i) where i =e(1).
7.7. With the notation above, assume that:
(1.7.1)  There is an O-simple interior P-algebra S which has a P-stable O-basis W
and fulfills #(X)S = S as interior P-algebras.
o
Then we claim that B= SP as interior P-algebras, proving (1.6.2). Indeed, by
(2.7.1) and (7.6.1) we have SP = £ (X) B, and the set {wu} .y ,cp is an O-basis of

¢
SP stable by both left and right P-multiplication; so, the isomorphism B =~ SP
follows from the Lemma below applied to the interior P-algebra SP.

8. Lemma. With the notation above, let B' be an interior P-algebra having an
C-basis W' stable by both left and right P-multiplication. If £ QB=£X) B’
then B~ B’ qs interior P-algebras. ¢ ¢
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Proof. Set B=£@Q)B and B =£)B. It is clear that the set

x®w® y}x,yeG,w’e(:V’ is an (-basis of fndg(B’) stable by both left and right
P-multiplication; consequently, Ind$ (B’)F maps onto Ind§(B')? and therefore,
Ind§(B)¢ maps onto Ind$(B')¢ too (since Ind$(B')¢ = Ind§(B')§). Thus, if
B = B’ then the embedding

7 4GB - IndS(B)~1nd¢(B),

obtained from the unique embedding & OGb—Ind$(B) fulfilling dS(B)
= Res§(¢)¢é (cf. 7.2.1 and [9], Th. 3.4), can be lifted to an embedding

7 ©0Gb - Ind$(B")

since the primitive idempotent i = f(b) of Ind$(B")¢ can be lifted to a primitive
idempotent i of IndS$ (B")¢ (and we set f(xb) = x, i for any xe G); in that case, the
idempotents f(e(1)) and 1 ® 1 ® 1 of Ind§ (B’)? are both primitive and conjugate
(since the respective images in Ind$(B’)’ are so) and therefore, the embedded
algebras

Res$(f)oé: B— Res$Ind$(B) and dS(B'): B’ - Res$Ind§(B)

are associated with the same point of P on Ind$(B’), whence B= B’ as interior
P-algebras (cf. [11], 1.6).

7.9. If we assume that the characteristic of ¢ is the same as #, there is a ring
homomorphism £ — (0 which is a section of the canonical map ¢ — # (cf. [15], Ch.

I1, §4, Th. 2), and therefore we have £ (X) <(9 X §) ~ S so, in this case condition
[ £
(7.7.1) is fulfilled setting S = 0 (X) S, and (1.6.2) follows from 7.7. But even when (0

is of characteristic zero, since thé isomorphism (7.6.1) implies that P stabilizes a £-
basis of S(cf. 7.5), itis not excluded that condition (7.7.1) could be proved directly:
for instance, if P is abelian, condition (7.7.1) follows from Dade’s classification of
endo-permutation modules over abelian p-groups (cf. [4], p. 318). Anyway it
suffices now to prove (1.6.2) in characteristic zero.

7.10. Henceforth we assume that ¢ is of characteristic zero and denote by " its
quotient field. As p does not divide dim,(B/J(B)) (cf. (7.6.1)), there is an
absolutely irreducible character y of G associated with b such that p does not
divide y (i) where i = e(1)ey (cf. (2.14.1) and (7.6.2)). First of all we claim that (cf.
2.15):

(7.10.1)  For any local pointed element u; on OGb we have |x°(u)| =1.

Indeed, we may assume that u;e P, and as (1.9.3) holds (cf. (7.6.1)), we get
x i) = m3 x° (u) (cf. [9], Th. 4.3); but it is clear that y (ui) = y (/) mod J(O) which
implies y (ui)e O* (since y (/)¢ J(0)); consequently, ¥°(u)e 0* and in particular,
we get

(7.10.2) 1T w2

ueP
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where LP({u)) = {d(u)} for any ue P, since this product is a strictly positive
rational integer (cf. [5], Ch. V, Th. 13.1). On the other hand, as £ is algebraically
closed and (1.9.2) holds, the generalized Cartan integers ¢ (us, v,) (cf. (2.15.1)) can
be computed from (7.6.1) (cf. (2.15.2)), and assuming that w;eP, we get
c(us,v,) = Cp(u)| d,, ,, by (5.6.1) and Corollary 5.8; consequently, it is easily
checked from (1.9.3), (2.15.3) and (3.8.2) that

1
(7.10.3) 1= 6= V3l 2 0wy 2.

ucP
Statement (7.10.1) follows now from the well-known theorem about the
arithmetical and geometrical means (this argument was already employed in the
proof of Lemma 3.8 in [3]).

7.11. Now it suffices to prove that, for a suitable choice of y, there is an
0Gb-module M such that y is afforded by # () M. Indeed, by (7.6.2) and
[

(7.10.1) we have y(s) = ¢ (s) for any p’-element s of G (cf. [9], Cor. 4.4) and there-
fore, £ ®M is a simple #Gb-module (cf. [16], §15.2); consequently, £Gb maps

[

onto End, (;f @M) and therefore, @ Gb maps onto End,(M) by Nakayama’s

4
Lemma; then S = End, (i- M) is an ¢-simple factor of B of (-rank prime to p (cf.
(7.6.2)), and Proposition 7.2 applies.

7.12. Let 5" and 4" " be respectively the extensions of 7~ generated by the groups
of p-and | G| -roots of unity, and denote by ¢’ and ¢’ the corresponding valuation
rings. As £ is still the residue field of ¢’ and ¢, it is quite clear (cf. (2.13.1)) that
a={b}isstill a point of G on @' G and " G, that we have y = y' = y” where y’ and
y" are respectively points of P on ¢’ G and 0" G, that P,. and P,. are respectively
defect pointed groups of G, on @' G and 0" G, that é&: B—Res$ (0 Gb) induces
embedded algebras

0'QB—Res$(0'Gh) and 0" (X)B— Resf (0" Gb)
[ [y

associated respectively with P, and P,. (as pointed groups on @' Gb and ¢ Gb),
and that G, is locally controlled by P, and P,..

7.13. As £ is algebraically closed, & contains already the group of roots of unity
of order prime to p (cf. [16], Ch. IL, §4, Prop. 8), and therefore #" is a splitting field
for G (cf. [5], Ch. V, Th. 9.11); hence, there is an 0" Gb-module M" such that y is
afforded by o¢” &) M". It follows now from 7.11 and Proposition 7.2 applied to

™

(U]
C G and b that there is an ("-simple interior P-algebra S” such that
¢ ®B xS @(9" P as interior P-algebras, and we may assume that, denoting
o 7

0
byg" P —(S”)* the structural homomorphism, we have det(¢” (1)) =1 for any
“EP. (cf. (2.7.1) and 6.2). So, paragraphs 1.10 to 1.13 apply to ©”, G and b; in
Particular, we have a bijection from Irr. (G, b) onto Irr .. (P) induced by (1.12.1)
and Itis quite clear (cf. (1.12.3)) we may assume that our choice of y corresponds to
the trivia] character of P (i.e.to A =1).In thiscase, by (1.13.1) all the values of y lie
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in ¢ (actually in ©0) and it suffices to prove that the Schur index s, (y) of y over &
is one (cf. 7.11 and [5], Ch. V, Th. 14.13).

7.14, First of all we claim that s, (y) = 1. Indeed, it is clear that dim,,. (#")is a

power of p and therefore, s, (x) is a power of p too (cf. [5], Ch. V, Th. 14.11); but

Brauer’s decomposition homomorphism L, .(G)—L,(G) being surjective (cf.

(2.14.1)), there is y'elrry. (G, b) mapping on a linear character 4" of P such that

A(P) c A7, and fulfilling s, (') = 1; that is, y" still belongs to Irr,. (G, b) and

therefore there is an ¢’ Gb-module M’ such that ' is afforded by " (X) M'. As
&

x' () = @(s) for any p'-element s of G (cf. (1.13.1)), it follows again from 7.11 and

Proposition 7.2 now applied to (', G and b that there is an ¢'-simple interior

P-algebra S’ such that ¢’ (X)B=~ S’ (X)0' P as interior P-algebras, and we may
o [V

assume again that, denoting by ¢': P—(S')* the structural homomorphism, we
have det (o' (1)) =1 for any ue P (cf. (2.7.1) and 6.2). Hence, paragraphs 1.10 to
1.13 still apply to ¢, G and b and in particular, y has to be the inverse image of the
trivial character of P by the bijection from Irr,. (G, b) onto Irr,. (P) induced by
(1.12.1) (cf. (1.13.1)), proving s,.(y) = 1.

7.15. Finally we claim that s, (y) = 1. Indeed, on one hand s, (y) divides now
dim,, (') (cf. [5], Ch. V, Th. 14.11). On the other hand, if A€lrr,. (P) — {1} then
¢ (P) generates "' over A" (since, if the image of ue P by the representation map is
an element of order p of the center of the image of P, A(1)/A(1) is a primitive p-root
of unity), and therefore any orbit of Gal(#"', #") over Irr,. (G, b) — {x} is regular
(cf. (1.13.1)). Consequently, the surjectivity of Brauer’s decomposition homomor-
phism L, (G)—L,(G) (cf. (2.14.1)) forces s, (¢) to be one (cf. [5], Ch. V, Th.
14.13).
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