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w I. Introduction 

1.1. Letp  be a prime number, ~ an algebraically closed field ofcharacteristicp and 
(~ a complete discrete valuation ring with residue field ~. In [3] Brou6 and ourself 
commenced the study of  a block b of  a finite group G from a new point of view, the 
hypothesis being no longer on the structure of  a defect group P ofb  but on the kind 
of embedding of  P in (9 Gb, namely on the so called "local structure" of b which 
was implicitely represented in [3] by the equivalent class of the Brauer category (see 
[1] for a formal definition). Precisely, assuming that for any subgroup Q of  P and 
any block f of CG(Q) associated with b, the quotient N ~ ( Q , f ) / C G ( Q )  of  the 
stabilizer of (Q, f )  in G by the centralizer of Q is a p-group, we determined (up to 
signs) the full matrix of  generalized decomposition numbers of  b, regardless the 
structure of P. 

1.2. In [9] we modified the notion of" loca l  structure" in order to enlarge its area 
of application to any interior G-algebra (actually, to any G-algebra) and in 
particular, to the full algebra of  (9-endomorphisms of  any (9 G-module: the "local 
structure" of  b was implicitely represented in [9] by the equivalent class of  the so 
called local category (see [11] for a formal definition), which is in general finer than 
the Brauer one. As in the (gG-module case; the concept of  "source" arises 
naturally in the new context, and the source of  the interior G-algebra (9 Gb - which 



78 L. Puig 

is an interior P-algebra - turns out to be a (the most?) powerful invariant of the 
block b (see for instance the introduction in [11]). 

1.3. The main purpose of this paper is to give the structure of the source algebras 
of the blocks considered in [3], but to be coherent with our approach in [9] we with 
state our hypothesis on b in terms of the local category: we will assume indeed that 
the quotient NG (Q6)/CG (Q) is a p-group for any local pointed group Qo on (9 Gb. 
This change of point of view does not change the blocks that we consider since in 
both cases 

(1.3.1) Brauer and local categories coincide. 

Actually, it would be not surprising that they coincide only in these blocks, as we 
explain in 1.9 below. 

1.4. Our main theorem shows in particular that for these blocks (see 1.8 below) 

(1.4.1) the (9-algebra (g Gb is isomorphic to a full matrix algebra over (g P, 

proving a conjecture stated by Brou6 in a lecture at Yale University in May 1978 
(when P is abelian, a proof  of (1.4.1) was already in [3]). But our result is more 
precise that (1.4.1) since it describes the source algebra as an interior P-algebra - 
not only as an (9-algebra - which allows us, for instance, to compute the 
generalized decomposition numbers of b (see (1.12.3) below). The first time we 
conjectured such a description was in the Midwest group theory seminar at 
Chicago University in April 1979. In June 198I, in an Oberwolfach meeting, we 
announced (and issued a preprint [I0] on) a complete proof of the main theorem 
below (provided that (9 was "big enough"), where we made use of a consequence 
of the main result in [3]. From that time the underlying ideas have been developed 
(see the introductions to Sects. 4 and 5) and the proof we present here takes 
advantage of a better understanding on what is going on (although the steps are 
essentially the same as in [10]). The main difference from [I0] is that here we do not 
need to quote [3], which allows us to supply a newproofof  the main result in [3]: 
actually we improve this result since we do not assume that (9 contains the group of 
I G Ip-roots of unity (see remark 1.14 below). 

1.5. In the sequel we will freely use notation and terminology introduced in 
Sect. 2. Consider (gG as interior G-algebra and set a = {b}, so that ~ is apoint of G 
on (9 G. Let Pr be a defect pointed group of G, and denote by 5: B ~ Res~ ((9 Gb) an 
embedded algebra associated with Pr (as a pointed group on (9 Gb). In this paper 
we will prove the following statement. 

1.6. Main theorem. With the notation above, the following two conditions on ~ are 
equivalent: 

(1.6.1) For any local pointed group Q6 on (gG such that Q6 c G,, the quotient 
NG(Q6)/C~(Q) is a p-group. 

(1.6.2) There is an @-simple P-algebra S such that B ~- SP as interior P-algebras. 

In that case, the P-algebra S is unique up to isomorphism and has a P-stable 
(9-basis which contains the unity as the unique P-fixed element. 
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1.7. In Sect. 3 we will prove by the so called "local methods" - which just involve 
induction arguments on the partially ordered set of local pointed groups on (9 Gb 
and the analogous statement to Sylow's theorem - that (1.6.1) is equivalent to each 
of the following conditions on ~: 

(1.7.1) For any b-Brauer pair (Q, f ) ,  the quotient NG(Q,f)/CG(Q) is a p-group. 

(1.7.2) For any localpointedgroup Q~ on (9 G such that Q~ c P7 andany element x 
of G such that (Q~)X c P~ we have x = zu where z ~ CG (Q) and u ~ P. 

The equivalence between (1.6.1) and (1.7.1) shows that the blocks considered in 
the main theorem above are exactly the nilpotent blocks in [3]. Condition (1.7.2) 
should be considered as the genuine definition of a nilpotent block (or block with 
nilpotent localstructure): it is the condition on ~ which plays an effective r61e in the 
proof of (1.6.2). On the other hand, this condition has several "local conse- 
quences" which are actually equivalent to (1.7.2), condition (1.6.1) being just one 
of them (which we have chosen to state the main theorem by evident historical 
reasons). 

1.8. Let us show now that (1.6.2) and the last statement in 1.6 imply (1.4.1). 
Indeed, they imply that rank~ (S) = 1 mod (p) and therefore that (see 6.2 below for 
a more detailed argument) 

(1.8.1) thereisauniquegrouphomomorphismQ:P~S*li f t ingtheactionofPonS 
such that det (Q (u)) = 1 for any u ~ P; in particular, there is a unique (9-algebra 
isomorphism SP ~ - S ( ~ ( g P  mapping su on so(u) | u for any s ~ S  and any u~P.  

g) 

Now (1.6.2) and (1.8.1) imply that B and therefore Ind , (B)  are isomorphic to full 
matrix algebras over (9 P; then, since there is a canonical embedding from (9 Gb to 
Ind,(B) (cf. [9], th. 3.4), (gGb is a full matrix algebra over (gP too. In [7] 
Okuyama and Tsushima proved that, i f P  is abelian, (1.4.1) implies (1.6.1) (notice 
that, if P is abelian, it suffices to prove that the inertial index of b is one to 
get (1.6.1)). It is not difficult to prove that (1.4.1) implies (1.6.1) whenever G is 
p-solvable. So, a question arises: is condition (1.4.1) on ~ always equivalent to 
conditions (1.6.1) and (1.6.2)? 

1.9. In particular, condition (1.4.1) on ~ implies that 

(1.9.1) the quotient (gGb/J((gGb) is a simple J(-algebra, 

but the converse is definitely not true: example 1.3 in [3] supplies a counter- 
example. However, it is not difficult to see that condition (1.7.1) on b implies 
condition (1.7.1) on f for any b l o c k f o f a n y  centralizer CG (Q) whenever ( Q , f )  is a 
b-Brauer pair (cf. [3], Th. 1.2.(4)); that is, if b is a nilpotent block, we have: 

(1.9.2) For any b-Brauer pair (Q , f ) ,  the quotient (gC~(Q)f/J((gCG(Q)f)  is a 
simple ,(-algebra. 

Conversely, it is probably true that condition (1.9.2) on b implies that b is a 
nilpotent block. Moreover, notice that (1.9.2) is equivalent to the following local 
condition on ~: 

(1.9.3) For any subgroup Q of P there is a unique 6~ ~ G ( Q )  such that Q~ c P~. 

Indeed, if ( Q , f )  is a b-Brauer pair, there is a unique point fl of Q.Co(Q) on 
(~G such that BrQ(fl)={BrQ(f)} (since BrQ(((gG)Q'cG(Q))=Z(((gG)(Q)) and 
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Z(((gG) (Q)) ~- Z ~  CG(Q) by [12], (2.9.2)); hence, ifR~ is a defect pointed group of 
Q.C6(Q)#, we have Qa c R e for any 6 ~ G ( Q  ) fulfilling 

(1.9.4) Br a ( f ) .  BrQ (d) = Br a (d) 

since (1.9.4) implies Qo= Q.Ca(Q)# and therefore, Re contains a Q.CG(Q)- 
conjugate of  Q~ (cf. [9], Th. 1.2); consequently, there is x E G such that (Q6)X = pr 
for any 6 ~ ~ (Q) fulfilling (1.9.4) (cf. [9], Yh. 1.2), and it suffices to apply [2], 
Th. 1.8 and [12], (2.9.2) and (2.10.1). Finally, notice that (1.9.3) and (1.3.1) are 
clearly equivalent. 

1.10. Assume now that (9 is a ring of  characteristic zero and denote by JU its 
quotient field. Then, assuming that 0~ fulfills conditions (1.7.2) and (1.6.2), with the 
last statements in 1.6 (which are actually easy consequences of(1.6.2), as we show 
in 7.5 below), we will show how to compute the full matrix of  generalized 
decomposition numbers of  the block b of  G over (9, and get the formulae giving the 
irreducible characters of  ,UGb in terms of  the family of  absolutely irreducible 
Brauer characters in any b l o c k f o f a n y  centralizer Ca (u) where (u, f )  runs over the 
set of  b-Brauer elements. 

1.11. First of all, notice that the uniqueness of S implies that tr (~ (u)) is a rational 
integer for any u~ P, where @: P ~  S* is the group homomorphism described in 
(1.8.1). Indeed, (9 is always an extension of a complete unramified discrete 
valuation ring (9' having the same residue field ,r (cf. [15], Ch. I, w 5, Th. 4); as 
b ~ (9' G, ~' = 7 n (9' G is a local point of  P on (9' G (cf. (2.13.1)), and Pr, is still a defect 
pointed group of  G~ on (9'G (cf. (2.13.1)), we may assume that B = (9 ( ~ B '  where 

g': B ' ~  Res~((9'Gb) is an embedded algebra associated with PT', and therefore 
that S = (9 ~ )  S' where S' is an (9'-simple P-algebra obtained from (1.6.2); in that 

O' 
case, we have @=id|  where @': P ~ ( S ' ) *  is the group homomorphism 
described in (1.8.1); but it is now clear that tr (@'(u)) is a rational integer for any 
u ~ P 1. Then, we have: 

(1.11.1) For any u ~ P, tr (@ (u) ) = o9 ( u) m~ (,) where o9 (u) ~ { 1, - 1 } and 6 (u) is the 
unique local point o f  (u> on (9 G such that (u>6(,) ~ P~. 

Indeed, the uniqueness of  6(u) follows already from (1.9.3); moreover, 
since P stabilizes an (9-basis of  S containing the unity, we have 
tr (@ (u)) z = dimt (S(<u))) ~ 0 for any u ~ P (cf. [12], (2.8.4)); but S((u>) is a simple 
~-algebra (cf. Cor. 5.8 below) and as (SP)(<u>)= S ( < u ) ) ( ~  Cp(u) (cf. (1.8.1), 

Prop. 5.6 below and [12], (2.9.2)), we have S((u) )~B((u>a( , ) )  (cf. (1.6.2)); 
consequently, we get tr (@ (u)) z = (m~(,)) z (cf. 2.6 below). 

1.12. On the other hand, if M is a simple ~,"fGb-module, we know that 
Resid | ~ (M) is a simple ~(~)B-module  (cf. [9], Cor. 3.5) and therefore, by (1.6.2) 

there is a simple ~ P - m o d u l e  N such that 

(1.12.1) Resin| ~(M) -~ V ( ~ N  

Another  proof  of  the inclusion tr (@ (P)) c Z can be obtained from the fact that P and therefore any 
cyclic subgroup of  P stabilizes an @-basis o f  S (a more detailed discussion on the function tr o @ w~ll 
appear in [14]) 
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where V is a projective indecomposable S-module and we identify B with S @ (9 P 
0 

(cf. (1.8.1) and [9], Prop. 2.1). Consequently, denoting by Z the character of M, 
by 2 the character of N and by i the element e(1) of ?, for any u e P  we have 
(cf. (1.11.1), (1.12.1) and [9], Th. 4.3) 

(1.12.2) Z~(u)(u)m~(,)=z(ui)=trv| 

Hence, denoting by U a set of representatives for the conjugacy classes of P, we 
get: 

(1.12.3) The full matrix of generalized decomposition numbers of  the block b of  G 
over C is (co (u) 2 (u)),~ v, a~ lrr~ (P)" 

Indeed, it follows from (1.7.2) and (1.9.3) that {u~(u)}.~v is a set of represent- 
atives for the G-conjugacy classes of local pointed elements in G~, and we know 
that the correspondence induced by (1.12.1) mapping Z on 2 is a bijection from 
Irr~r (G, b) onto Irr~ (P) (cf. [9], Prop. 2.1 and Car. 3.5); then (1.12.3) follows from 
(1.12.2) and [9], Car. 4.4. 

1,13. Finally, by (1.7.2) and (1.9.3), for any p-element u of G there is a bijection 
from EG((u), P) onto 5f~eGb((U)) mapping 6e  Ea((u ), P) on the unique local 
point 6 of (u)  on (gGb fulfilling (u~)~EPr and a ( u ) = u  ~ for some x e G  (i.e. 

= d(a(u))~-~), and we denote by ~0~ the irreducible Brauer character of Ca(u ) 
determined by d (cf. [12], (2.9.2) and (2.10.1)). Then, with the notation above, it 
follows from [9], for .  4.4 again and (1.12.3) above that: 

(1.13.1) For any p-element u of G and any p'-element s of Co(u ), 

z (us) = Y~ co (a(u))  ,~ (o (u)) ~ (s).  
~ EG ((u),  P) 

1.14. Remark. Although we assume that k is algebraically closed (whereas in [3] 
we just assumed that the field k was generated by the group of l G Iv,roots of unity), 
the interested reader will convince himself that our arguments extend easily to the 
case where k is just perfect and all the algebras we consider are "split" 
("d6ploy6es") in the sense developed in [8]. Moreover, the classical results on 
splitting fields show that all the algebras we consider in the proof of the main 
theorem are split whenever k contains the group of lG Iv,-roots of unity: indeed, in 
that case for any subgroup H of G the C-algebra C His split and it suffices to apply 
systematically the following fact: 

(1.14.1) Let k be a perfect fieM of  charaeteristic p, 0 a complete discrete valuation 
ring with residue fieM k and A a G-algebra over C. Assume that,for any local pointed 
group p~ on A, A ( P~) is a matrix algebra over k and k , rir e ( P~) is a split algebra. Then 
the algebra A a is split too. 

(We denote by k ,  Na(Pr) the twisted algebra associated with the central 
k*-extension Na(Pr) of Na(P~) defined by the action of Na(P~) on the simple 
k-algebra A (P~); see [12], 5.12 and 6.2 for a more detailed definition). 

This paper is divided in seven sections mostly devoted to prove the main 
theorem. Sects. 4 and 5 are significant exceptions: their contents have been 
developed in more general frames than needed here to provide handy references in 
forthcoming papers, avoiding tedious rewritings. 
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w 2. Notation and terminology 

2.1. The notation and terminology we need here are mostly contained in [9], in 
[11] and specially in [12] where we made a particular effort to be complete. There is 
no sense in repeating such an effort but we recall (rewrite) briefly all the necessary 
definitions and just comment with more detail some extra specific notation. 
Throughout the paper p is a prime number, k a field of characteristic p that we 
assume algebraically closed (except in Remark 1.14!) and (9 a complete discrete 
valuation ring with residue field k (we allow the case (9 = ~r 

2.2. All the (9-algebras we consider are associative with unity, and O-free of finite 
rank as (9-modules. An (9-algebra isomorphic to a finite direct product of full 
matrix algebras over (P is shortly called (9-semisimple, and @-simple if there 
is just one factor. If A is an (9-algebra, all the A-modules we consider here are 
(9-free of finite rank as (9-modules. We denote by A* the group of invertible 
elements of A, by A ~ the opposite (9-algebra, by ZA the center, by Aut(A) the 
group of automorphisms, by J(A) the Jacobson radical and by ~ (A) the set of 
A*-conjugacy classes of primitive idempotents of A. For any ~ s ~ (A), we denote 
by A (e) the simple factor of A associated with ~, by s~: A--.A (~) the canonical 
homomorphism and by A �9 c~. A the two sided ideal generated by e (cf. [9], p. 266), 
and we set dim~(A(~))=(m~) 2 and J(A .~. A)=J(A)c~A .c~. A. A decom- 
position of unity in A is a set I of pairwise orthogonal primitive idempotents of A 
such that ~ i = 1 ; notice that 

i e I  

(2.2.1) for any e s ~ ( A )  we have m== IIc~al. 

2.3. A homomorphism f:  A --* B between N-algebras is not required to be unitary, 
and we denote by f*:  A* ~ B *  the group homomorphism mapping a* cA* on 
f(a* - 1) + 1. If N is a B-module, Ress(N ) denotes f(1) �9 N endowed with the 
evident A-module structure. An exomorphism f from A to B is the set of 
homomorphisms obtained by composing a homomorphismf: A --+ B with all the 
inner automorphisms of A and B (cf. [9], Def. 3.1 or [11], p. 360); we denote by 
I~om (A, B) the set ofexomorphisms from A to B. We say tha t f s  IZIom (A, B) is an 
embedding if Ker ( f ) =  {0} and Im( f )= f (1 )Bf (1 ) .  If f :  A ~ B  is an @-algebra 
exomorphism, for any ~ ~ ~ (A) and any/~ e N (B) we set m (f)} = I J ~ fll where, 
choosing is e, J is a decomposition of unity inf( i)  Bf(i) (cf. [9], Def. 2.2); notice 
that, if ~: B ~  C is another (9-algebra exomorphism, 

(2.3.1) for any e e l ( A )  and any 7 ~ ( C )  we have 

Z 
2.4. Let G be a finite group. As usual we denote by I G I the order of G, by ZG the 
center, by ~ (G) the Frattini subgroup, by N o (H) and CG (H) the normalizer and 
the centralizer of a subgroup H of G, and by x y and [x, y] the elements y-  1 xy and 
x - l y - l x y  where x, yeG.  As above, an exomorphism ~: G--,H is the set of 
homomorphisms from G to H obtained by composing a group homomorphism ~: 
G--* Hwith all the inner automorphisms of G and H; we denote by IZIom (G, H) the 
set of exomorphisms from G to H. 
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2.5. A G-algebra A (over (_9) is an (9-algebra endowed with a group homo- 
morphism ~0: G-*Aut(A);  we usually write a x instead of ~o(x-1)(a). If H 
is a subgroup of G, A n denotes the unitary subalgebra of H-fixed ele- 
ments of A and, for any subgroup K of H, Try: A K ~ A  ~ denotes the relative 
trace map and A~ its image (cf. [9], p. 266). For any p-subgroup P of G we set 

A ( P ) =  A e / ( ~ A ~  +J ( (9 ) .A  ~) where Q runs over the set of proper subgroups 
/ / \ 

/ 

of P, and we denote by Bre: A e -* A (P) (or Br~ to avoid confusion) the canonical 
homomorphism. 

2.6. Let A be a G-algebra. A pointed group Ho on A is a pair formed by a subgroup 
H of G and an element fl o f ~  (A H) (cf. [9], Def. 1.1); we say that fl is a point of H on 
A, set A(Ho)= AH(fl) and denote by NG(H~) the stabilizer of fl in NG(H); if 
H = ( x )  we say that xp is a pointed element on A. Moreover, we set 
NA(H) = ~ ( A n ) .  If  K~ is a pointed group on A such that K c  H we write m~ 
insteed o fm (f)~ where f  is the inclusion map A H c A r (cf. 2.3); then, we say that 
K~ is contained in Hp, and write K~ c H~ (or y~eHp if K =  (y ) )  whenever m~ 4= 0. 
A pointed group P~ (or a point 7 of P) on A is local if Brp (7) + {0}; we denote by 
~Na(P)  the set of local points of P on A. A defect pointed group P~ of H~ is a 
maximal local pointed group on A such that P~ c H~ (cf. [9], Th. 1.2). 

2.7. An interior G-algebra A (over (9) is an (9-algebra endowed with a group 
homomorphism ~0: G-*A* (cf. [11], p. 359); we usually write x . a . y  instead of 
~9(x) atp(y); in particular, A becomes a G-algebra setting a ~ = x -  ~ �9 a .  x. If ~u: 
H-* G is a group homomorphism, we denote by Rest~(A ) the interior H-algebra 
defined by ~0 o ~u: H-*A*,  and we set Res~ (A) = Res~ (A) when H is a subgroup of 
G and ~, the inclusion map. If  B is a G-algebra, we denote by BG the interior G- 
algebra formed by the free B-module over G endowed with the distributive 
product fulfilling 

(bx) (cy) = bc x ~xy 

for any x, y ~ G and any b, c ~ B, and with the canonical map from G to BG. Notice 
that the tensor product of interior G-algebras has a structure of interior G-algebra 
fulflling x .  (a | b) �9 y = x �9 a .  y | x .  b �9 y, and that if A is an interior G-algebra 
then, denoting by e the unit element of G, 

(2.7.1) there is a unique interior G-algebra isomorphism AG ~ A ( ~  (gG mapping 
ae~AG on a |  

2.8. A homomorphism of interior G-algebras f :  A -* A' is an (9-algebra homomor- 
phism fulfillingf(x �9 a. y) = x .  f (a)  " y for any x, y ~ G and any a ~ A. As above, an 
exomorphism f'. A -*A' is the set of homomorphisms obtained composing a 
homomorphismf: A -* A' with all the inner automorphisms of A and A' (that is, 
induced by (AG) * and (Am)*); if ~,: H-*  G is a group homomorphism, we denote 
by Res t ( f )  the exomorphism of interior H-algebras from Rest~(A ) to Res~ (A') 
containing f (cf. [11], p. 360), and we set ResnG(f) = Rests(f) whenever H is a 
subgroup of G and ~, the inclusion map. We say that f i s  an embedding of interior 
G-algebras if Res~ (f)  is an embedding of (9-algebras; in this case, for any pointed 
group Hp on A, there is a unique pointed group Hp, on A' fulfillingf(fl) = fl', and 
we usually denote fl and fl' by the same letter. 
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2.9. Let H be a subgroup of G and B an interior H-algebra; the h~duced interior 
G-algebra Ind , (B)  is formed by the tensor product (gG(~B(~(gG endowed 
with the distributive product fulfilling ~n ~H 

(x|174174174174174 if y x ' e H  

for any x, y, x', y 'eG and any b, b'eB, and with the group homomorphism 
mapping x e G on ~ xy | 1 | y -  ~ where y runs over a set of representatives for 

Y 
G/H in G. Moreover, we denote by 

(2.9.1) a7~(B): B-~ Res~ Ind , (B)  

the canonical embedding determined by the interior H-algebra homomorphism 
mapping b e B on 1 | b | 1 (cf. [9], Def. 3.3 or [11], p. 360). Finally, if~: B-~ B' is 
an interior H-algebra exomorphism, we denote by 

(2.9.2) Ind~ (~): Ind~ (B) ~ Ind~ (B') 

the interior G-algebra exomorphism determined by the correspondence mapping 
x | 1 7 4  on x | 1 7 4  for any beB and any x, yeG; clearly, 

G G , (2.9.3) Res~ Ind~ (4)~ aT~ (B) = ~a (B)o 

which proves by the way that 2.9.2 does not depend on the choice ofg in ~ (cf. [12], 
(2.3.4) and (2A2.2)). 

2.10. Let A be an interior G-algebra. I f H  a is a pointed group on A, an embedded 
algebra (B, ~,) associated with H~ is a pair formed by an interior H-algebra B and an 
embedding g: B ~ Resg (A) such that g (1) e fl (cf. [11], 1.6); then, we have: 

(2.10.1) If/7: C~Res~(A)  is an interior H-algebra exomorphism such that 
h (1)j = h (1) = jh (1) for some j e r, there is a unique in terior H-algebra exomor- 
phism ~: C ~ B such that/7=oaof. 

Indeed assuming that g (1 )= j ,  it is clear that G induces an isomorphism 
B ~jAj  whereas Im (h)c jAj ,  which proves the existence of J~ the uniqueness 
follows from [12], (2.3.3) and (2.12.2). Usually we denote by (A a, f~) an embedded 
algebra associated with H a chosen once for ever, and still denote by fl the unique 
point of H on A a (cf. 2.8). 

2.11. Let H a and Kr be pointed groups on A; an A-fusion ~from K~ to Hp is a 
group exomorphism @: K ~  Hsuch that ~0 is injective and there is an exomorphism 
jz: At ~Resr  ) fulfilling 

(2.11.1) Res~(~) = Res~(~) o Resf (L)  

(cf. [11], Def. 2.5); we denote by F a (K~, Ho) the set of A-fusions from K~ to H a, and 
set FA (Ha) = FA(Ha, Ha). On the other hand, we denote by Ea(K~, Ha) the set of 

e I2iom (K, H) such that there is x e G fulfilling (K~) x c H a and (0 (y) = yX for any 
y e K  (cf. [11], Def. 2.t), and set EG(Ha).=E6(Ha,Ha); moreover, if A = (9, the 
trivial interior G-algebra, we set Eo (K, H) = Eo (K~, Ha) where y = { 1 ) = ft. 
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2.12. This paragraph is only needed in sections 4 and 5 for statements which do no 
concern the proof  of  the main theorem (and which are discussed there for the sake 
of completeness). A Y*-group is a group 0 endowed with an injective group 
homomorphism 0: ~r (cf.[12], 5.2). If A is an interior G-algebra, P~ a 
pointed p-group on A, NA~(P ) the subgroup of  b e A *  such that P .  b = b �9 P, 
RA, (P) the quotient NA~(P)/P" (1 + J(Ae~)), and E a subgroup of  F a (P~) then we 
denote by/~ ~ the ~f*-group formed by the subgroup of  (6, (~) e NA, (P) x E where 
is the image in RA, (P) of  b ~ NAy (P) fulfilling b �9 u = (p (u). b for any u ~ P, endowed 
with the injective group homomorphism mapping 2e , (*  on (2, id) where we 
identify ,(* with the image of (A~e) * in RA~(P); moreover, if E =  FA(P~) we set 
fra(P,) =/~r (cf. [12], 7.1). 

2.13. According 2.7 we denote by (9 G the group algebra of  G over (9, considered as 
an interior G-algebra. Notice that, as the canonical homomorphism (gG-+ Y G 
maps((gG) n onto (*fG) n for any subgroup H of G, 

(2.13.1) the canonical homomorphism (gG-+,eG induces a bijection between the 
sets of  pointed groups on (9 G and J(G which preserves inclusions and localness. 

A block of G is for us a primitive idempotent b of  Z(9 G; a b-Brauer pair is a pair 
(P, e) where P is a p-subgroup of  G fulfilling Bre(b ) 4= 0 (cf. 2.5) and e a block of  
C~ (P) such that Brp (be) 4: O, the normalizer NG (P, e) of  (P, e) being the stabilizer 
ofe in NG(P ) (cf. [2], Def. 1.6); if P =  (u )  we say that (u,e) is a b-Brauer element 
(cf. [2], Def. 2.1). 

2.14. Assume that (9 is of  characteristic zero and denote by ~f  its quotient field. 
We denote respectively by L~r(G) and L~(G) the Grothendieck rings of  the 
categories of  •G- and ~ G-modules (cf. [12], 2.4); recall that (cf. [16], w 16.1, Th. 33) 

(2.14.1) Brauer's decomposition homomorphism L~r (G) -+ Lt  (G) is surjective. 

If b is an idempotent of  Z(gG, we denote respectively by Irr~c(G,b) and 
Irr~ (G, b) the sets of  Frobenius and Brauer characters of  the simple S G b -  and 
6Gb-modules, where b is the image of  b in ~f G, and we simply write Irr,c (G) and 
Irrt(G) when b = 1. 

2.15. Let b be a block of G, so that e = {b} is a point of G on (gG, and choose a set U 
of representatives for the G-conjugacy classes of local pointed elements u0 on (9 G 
such that ue E G, (cf. 2.6). The full matrix of Brauer'sgeneralizeddecomposition num- 
bers of b is the matrix (Z6(U))z~I,~.(G b) u,e U where for any Z �9 Irr~r(G, b) and any 
u6 e U, choosing j e (f, we have X ~ (u) "'-- X (uj) (cf. [9], Cor. 4.4). Now the generalized 
Caftan integers of b may be defined by the equalities (cf. [16], w 

(2.15.1) c(uo,v,) = ~ Z6(u) z=(v) 
X e Irr x (G, b) 

Where uo and v, run over U; notice that (cf. [16], w and w 

(2.15.2) i f  u and v are not G-conjugate then c (u~, v=) = O, whereas if  u = v we have 
c (u~, u~) = rank~ (i(9 CG (u) l) where j e  6 and lE e. 
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Finally, if 2 and/z are Frobenius characters of •Gb-modules, we denote by 
(2,/a)G the usual scalar product; it is not difficult to check that, denoting by 
(c~ v~)) ..... ~ v the inverse (over Q) of the generalized Cartan matrix, we have 

(2.15.3) (2,/~)G = ~ c~ 2~(u)/t~(v). 
its, l)~E U 

w 3. Local control 

3.1. In this section we prove the equivalence between conditions (1.6.1), (1.7.1) 
and (1.7.2), and show a relationship between condition (1.7.2) and induction from 
P to G which plays a crucial r61e in proving that (1.6.1) implies (1.6.2) (see 
Corollary 4.23 and the proof of Proposition 7.2 below). Actually, this relationship 
was already stated (in a slightly different form) in [9], Prop. 3.9, but for the 
convenience of the reader we do not quote this result. From the point of view of 
our previous preprint [10], this section develops the contents of Sect. 2 and 
proposition7.1 in [10], although we will introduce here two slightly different 
notions of local control, in order to clarify the arguments. 

3.2. Let G be a finite group, H a subgroup of G and B an interior H-algebra (over 
C). We say that G is locally controlled by H on B if for any pair of local pointed 
groups Pr and Q6 on B we have 

(3.2.1) Fn (Q~, Pr) c~ E~ (Q, P) = E n (06, Pr). 

Notice that (3.2.1) is equivalent to the following equality over the interior 
G-algebra Ind,(B)  

(3.2.2) EG (Q~, P~) = En (Q~, P~) 

where, as usual, we identify Pr and Q~ with their images over Ind~ (B) through the 
canonical embedding aTn a (B)~  Res~ Ind~ (B) (cf. 2.8 and (2.9.1)); indeed, by [11], 
2.10 and Prop. 2.14, setting A = Ind, (B)  we have 

Fn(Qo,Pr)= FA(Q6,Pr) and FA(Q6,Pr)c~Ea(Q,P)= EG(Q6,P,. ) . 

3.3. The point is that equalities (3.2.2) are equivalent to easy formulae to compute 
the multiplicity algebras (cf. [12], 2.10) of local pointed groups on Ind~ (B) from 
the multiplicity algebras of local pointed groups on B. Precisely, let L~ be a pointed 
group on B; since 

(ResOrt Ind ' (B))  (L~) = "'"~ 

the canonical embedding aT~ (B): B ~  Res~ Ind,(B)  (cf. 2.9.1) induces a unique 
embedding of interior C~ (L)-algebras 

(3.3.1) ~(L, ) :  C~(L, ~Indt~(B) Indc.~L)(B(L~)) (L~) 
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such that the following diagram commutes (cf. [12], 2.12.3) 

CG(L) ~G Resc~tL~ (ell (L~)) R,~C~(L) I C~L) C~CL) "~ ndc~L)(B(L~)) ~ Resc~L ) (Indn(B) (L~)) 

(3.3.2) ~ I ~ I ( B ( L ~ ) ) ~  / 2 ~ ( B I ( L ~ )  

B (L~); 

indeed, the existence follows from [12], (2.12.3) and (2.14.2), and the uniqueness 
from [12], (2.3.4) and (2.12.2). Then, we have: 

3.4. Proposition. With the notation above, local pointed groups on Ind~ (B) are the 
G-conjugate of  local pointed groups on B. Moreover, the following conditions are 
equivalent." 

(3.4.1) The group G is locally controlled by H on B. 

(3.4.2) For any local pointed group P~ on B we have 

~na (p~): c~ cP) Indn a (B) (PT) Indc~w) (B(P~)) ~- 

Proof. Let Q0 be a local pointed group on Indan (B); as Try(1 | 1 | 1) is the unity 
of Ind~ (B), so (Tr~ (1 | 1 | 1)) is the unity of Ind/~ (B)(Q0); but 6 being local, we 
have 

(3.4.3) s 0 (TrGn (1 | 1 | 1)) = ~ se (x | 1 | x -  l) 
x ~ X  

where X is a set of representatives in G for the double cosets QyH such that 
Qr c H and so (y | 1 | y -  1) + 0 or equivalently s~, (1 @ 1 | i) + 0; in particular, 
(Q0) r is a local pointed group on B for any y e X, and the first statement follows 
from X + O. 

Assume now that Q0 is already a local pointed group on B. If  G is locally 
controlled by H in B, it follows from (3.2.2) that for any x ~ X there is h ~ H such 
that (Q0) x = (Qo) h and u x = u h for any u ~ Q (since (Q0) ~ is a local pointed group on 
B), and therefore we may assume that X c C~(Q) which implies clearly 

(3.4.4) ~ so(x| 1 |  -1) = c~o) Trc,(a  ) (so(1 | 1 | I)); 
x E X  

so, in this case e~(Q0) is an isomorphism (since it is a unitary embedding). 
Conversely, ifana(Q0) is an isomorphism, the equality (3.4.4) holds and therefore 
for any y ~ X we have QyH n CG (Q) + 0; so, if Pr is a local pointed group on B, 
an element of EG(Qo, P~) (over Indan(B)) and x an element of G such that 
(Qo) x ~ P~ and ~o(u) = u ~ for any u~ Q, we have x = zh where ze  CG(Q) and h ~ H, 
and therefore ff ~ En (Q0, Pr); consequently, (3.2.2) holds. 

3.5. Let A be an interior G-algebra, a a point of G on A and fl a point of H on A 
such that H a ~ G,. We say that G, is locally controlled by H a (or that H a is a control 
pointed subgroup ofG,) i f a  ~ Trg(A n "ft. A n) and, for any pair of local pointed 
groups p~ and Q0 on A contained in H a, we have 

(3.5.1) EG(Qo, Pr) = EH (Qo, P~). 
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In this case, there is a unique embedding (cf. [9], Prop. 3.6) 

(3.5.2) ~ :  A~ ~ Ind~(Ap) 

such that the following diagram commutes 

(3.5.3) Res/~ (A,) , Res~ Ind~ (Aa) 

f ~ A ~  (~(Aa) 

and in particular, G is locally controlled by H on A~ (since (3.5.1) remains true 
over Ind~ (Aa), after the usual identifications). Conversely, it is quite clear that if 
such an embedding exists and G is locally controlled by H on A~ then G~ is locally 
controlled by H a (cf.(3.2.2) and [9], Prop. 3.6). Moreover, the inclusion 

= Yr~(A n.  ft. A u) implies that Hp contains a defect pointed group of  G, (cf. [9], 
Th. 1.2) and this statement has the following partial converse, which provides a 
criterion on the existence of  control pointed subgroups of  G~. 

3.6. Lemma. Let A be an interior G-algebra, ~ a point of  G on A and Pt a defect 
pointed group of G~. I f  P c H there is fl ~ ~A (H) such that 

(3.6.1) P~ ~ Ht~ c G~ and c~ ~ Tr~(A n . / ? .  A~). 

Proof We may assume that e =  {1}. Set N=NG(P~)/P and M--NH(P~)/P; 
as A(P~){_contains the unity (cf.[9], Prop. 1.3), we have A(Pt )N= A(P~,)} 
and A (p~)M = A (Pt)~ = s~(A~), and therefore there is/~e ~A(H) such that 

(3.6.2) T r ~ ( s , ( A ~ ' f l  �9 An)) = A (P,)~; 

in particular, we have P~ = H~ and therefore, fl c Yr~(A P. 7A e) (since H~ c G~ 
and Pt is a maximal local pointed subgroup of  G~); but, for any a ~ A P" 7" AP, we 
have (cf. [9], Prop. 1.3) 

(3.6.3) Tr~ (s t (Trp n (a))) = Tr~ (s t (a)) = s t (Tr~ (Trp n (a))); 

so, by (3.6.2) and (3.6.3), we get st(Yr~(A n " f l 'An ) )=A(P~)  ~ and therefore, 
Tr~(A n.  ft. A n) = A~; consequently, fl fulfills condition (3.6.1). 

3.7. Proposition. Let A be an interior G-algebra, ~ a point of  G on A and P t a defect 
pointed group of G,. Assume that P ~ H and that, for any local pointed group Qo 
on A such that Q6 ~ P~ and any element x of  G such that (Q6)X ~ p~ we have x = zh 
where z ~ C o (Q) and h ~ H. Then there is fl ~ ~a ( H) such that P~ = H a ~ G, and G~ is 
locally controlled by H~. 

Proof Let fl be a point of  H on A fulfilling condition (3.6.1). As P~ is still a defect 
pointed group of  H~ (cf. [9], Th. 1.2), if Q~ and R, are local pointed groups on A 
contained in H~, there are elements h and k of H such that (Qo) h c Pt and 
(R,) k c Py; so, if ~ is an element of E G (R~, Q6) and x an element of  G such that 
(R~) x ~ Qo and ~0 (u) = u ~ for any u s R, we have (R,) ~h c P~ and by hypothesis, we 
get k - ~ x h  = zkl where z e Co(R) and l s  H; hence, x = zklh -~ and therefore, 

~ En (R~, Qa). Consequently, G, is locally controlled by H a . 
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Our last result states the announced equivalence between conditions (1.6.1), 
(1.7.1) and (1.7.2). Notice that, by Proposition 3.7, conditions (1.7.2) and (3.8.2) 
below are equivalent. 

3.8. Theorem. Let ~ = {b} be a point of G on CG and P~ a defect pointed group of 
G,. The following three conditions on ~ are equivalent." 

(3.8.1) For any local pointed subgroup Q~ of G~, Eo(Q6 ) is a p-group. 

(3.8.2) The pointed group G, is locally controlled by P~. 

(3.8.3) For any b-Brauer pair (Q,f ) ,  the quotient No(Q, f ) /Co(Q)  is a p-group. 

In order to prove theorem 3.8 we need the following two lemmas. Recall that, 
for any p-subgroup Q of  G, we have ((gG)(Q)~-yCo(Q) (cf. [12], (2.9.2)) and 
therefore any simple Y Co (Q)-module is associated with a local point of Q on (9 G 
(cf. [12], (2.10.1)). 

3,9. Lemma. Let Q~ be a local pointed group on CG such that Q.CG(Q) c H and 
V a simple I( ( CG (Q )/ZQ)-module associated with 3. There is a unique point fl of  H on 
C G such that Qo ~ H a, and then Qo is a defect pointedgroup o f H  a if and only if Visa 
projective module and En(Q~) is a if-group. 

Proof. Set A=(gG,  c = o . c o ( o ) ,  C = C / Q  and N=Nn(Q~)/Q; as A(Q~) 
~End~(V), we have A(Q~)e_~,f; so, on one hand we get s~(An)~-~f which 
pro~:es the uniqueness of fl (the existence being trivially true), and on the other 
hand we have A (Q~)~ = I En(Q~)I A (Q~)~; but Q~ is a defect pointed group o f H  a 
if and only if A (Q~)~ ~-~e (cf. [9], Prop. 1.3), and by Higman's criterion, V is 
projective if and only if A (Q~)C ___ ~f. 

3.10. Lemma. Let Q~ be a local pointed group on (9 G and R a p-subgroup of 
E~ (Qo). I f  H is the inverse image of R in N o (Qo), fl the point of H on (9 G such that 
Q~ c H a and R E a defect pointed group of H a, then H = R.Co(Q). 

Proof. First of all notice that Q~ c RE (since R, contains an H-conjugate of Q~). 
Now set L = R.Co(Q) and N =  NH(L ), and denote respectively by 2 and v the 
points of L and N on (gG such that R~ ~ L~ c N~ ~ H a (cf. Lemma 3.9), or 
equivalently Qo c La ~ N~; on one hand, as N normalizes Qo and L, N normalizes 
L~ and by Frattini's argument, we get N = L.NN (RE); on the other hand, R, is still 
a defect pointed group of  N~ and therefore E N (R,) is a p'-group (cf. Lemma 3.9). 
Consequently, NIL is both ap-group and ap'-group and therefore, N = L; but, as 
H/Q.Co(Q) ~- R, L is subnormal in H; hence, H = L. 

Proof of  Theorem 3.8. Assume that (3.8.1) holds; by Proposition 3.7, to prove 
statement (3.8.2) it suffices to prove that, if Qo is a local pointed group on (0 G such 
that Qn = p~ and x is an element of G such that Q~ c (Pr)~, we have x = uz where 
u~ p and z~ Co(Q). We argue by induction on t P : Q I ;  as No(e~)= P.Co(P) 
(cf. (3.8.1) and Lemma 3.9), we may assume that Q 4= P. Assume that H = No(Q~) 
and denote by fl the point of H on CG such that Q6 ~ H a (cf. Lemma 3.9); by 
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Lemma 3.10, if R, is a defect pointed group of Hp, we have H = R.CG(Q); but 
there are local pointed groups R~, and Rs on (gG such that (cf. [9], Cor. 1.5) 

(3.8.4) Qo .< R~, ~ P~ and Qo w: < RE",, c (p~)x; 

so, there are elements n' and n" of  Co(Q) such that 

(3.8.5) R~, c (R~)"' and R~',, ~ (Re)"" 

(since H a contains both R~, and R;',). Consequently, i f y  is an element of G such 
that R, c (P~)r, we have (cf. (3.8.5)) 

(3.8.6) R~, ~ (p~)yn' and R;',, c (P~)Y"" 

and by (3.8.4) and the induction hypothesis, we get yn'=u'z' and 
yn"x- l=  u"(z") x-I where u', u " e P  and z', z"e Co(Q) (since Co(Q) contains 
C~(R') and Co(R")); hence, x = u z  where u = ( u " ) - l u ' e P  and 
z = z' (n')- i n" (z")- 16 Co (Q). 

Assume that (3.8.2) holds and set A = (gG; as A(Q)~-,(Ca(Q), Bre( f )  is a 
primitive idempotent of ZA (Q) and there is 6 e ~ a  (Q) such that so ( f )  + 0 (and 
then, so ( f )  = 1). Assume that H = No (Q0) and denote by fl the point of H on (9 G 
such that Q0 c H a (cf. Lemma 3.9); as so(fl) + {0} and Bre(A n) c ZA (Q), we get 
Bre(fl) = {Bro(f)  } and therefore, if xeNG(Q,f) we have Q6x c H a too. Let R, 
be a defect pointed group of lip such that Q0~ ~ R~; on one hand we have Q0 ~ R~ 
too (since R, contains an H-conjugate of Q0), and on the other hand there 
is yeG such that (R,)Y c P~. Now P~ contains Q0, (Qo)r and (Q6)Xy, and by 
(3.8.2) and Proposition 3.7 we have y = z'u' and xy = z"u" where u', u " e / t  and 
z', z"eCG(Q); hence, x = (z'-l) x ~z"u"(u')-leCG(Q).P. Consequently, we get 
No (Q, f )  = Co (Q).Np (Q, f )  and therefore No (Q, f)/Co (Q) is a p-group. 

Finally, assume that (3.8.3) holds and let Q6 be a local pointed group on (gG 
such that Q0 c G~, or equivalently so (b) + 0; it is clear that there is a unique block 
f of Co (Q) such that so ( f )  4= 0; as so (b) = 1 = so ( f ) ,  (Q, f )  is a b-Brauer pair and 
the uniqueness of  f forces No (Q0) ~ Na (Q, f ) ,  so that EG (Q0) is a p-group. 

w 4. (~, ~)-covering exomorphisms 

4.1. Let G be a finite group. As we said in [10] the most important tool to prove the 
main theorem is a class of  exomorphisms of interior G-algebras that we name 
covering exomorphisms. This class allows us to lift pointed groups preserving 
multiplicities (see Proposition4.18 below), and is stable by induction from a 
subgroup H of G whenever G is locally controlled by H on the arrowhead interior 
H-algebra (see Corollary 4.23 below). By (3.8.2) the last statement applies when 
inducing a source interior P-algebra of a nilpotent block b of G from a defect 
group P of  b (see Proposition 7.2 below). 

4.2. The surprising fact which was not yet clear in [10] is that a slightly more 
general class of exomorphisms - named (~, PO-covering exomorphisms, where 
and ~ are suitable sets of  local pointed groups which are just empty in covering 
exomorphisms- plays a significant r61e in situations which have nothing to do with 
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our proof of  the main theorem (see example 4.24 below). Since the arguments to 
study (~, ~)-covering exomorphisms are essentially the same that we employed in 
[10] to study coverings, we think reasonable to develop already here the general 
notion, thus providing a useful reference. 

4.3. First of  all, it is handy to consider the C-algebra case (i.e. the case where 
G = { 1}). Let B and/~ be C-algebras and 4:/} ~ B an C-algebra exomorphism. We 
say that os is a covering exomorphism if B = Im (g) + J(B).  Then, we say that 4 is 
strict if moreover Ker(g) ~ J(B).  

4.4. Proposition. With the notation above, the following conditions on 4 are 
equivalen t: 

(4.4.1) The exomorphism 4: B ~  B is a covering. 

(4.4.2) Wehaveg(1)  = 1 a n d f o r a n y f l ~ ( B )  there i saun ique f i e ~ (B ) suc h  that 
g(fi) c fl and m~ = mp. 

(4.4.3) There is an injective map ~, *: ~ (B) ~ ~ (/~) such that, for  any fl ~ ~ (B), 
setting fl -= g*(fl) we have g(fl) = fl and m~ = ma. 

In that case if  fl6 ~ (B), fl dg Ker (g) is equivalent to fie hi1 (g*); in particular, 4 is 
strict if and only i f4*  is bijective. 

4.5. Remark. Notice that if f l E ~ ( B )  and f l ~ ( / ~ )  fulfill m(g~)~#O and 
mt~ = ma then g induces an isomorphism/~(/~) - B(fl) and for any/? e ~ (B), we 
have m (4)~' = JL ~'- 

Proof. If B = I m ( g ) + J ( B ) ,  g induces a surjective homomorphism 
B ~ B / J ( B )  ~ I~ B(fl), and therefore for a n y f l e ~  (B), B(fl.) is a simple factor 

#e@~B) 

of /}  which corresponds to some /~c~(/})  such that m(4) i ,=J~,~,  for any 
f l ' e~(B)  and m9 = m~; moreover, g(1) and 1 lift the unity of  B/J(B)  in B and 
therefore, g ( l ) =  1. 

Assume now that (4.4.2) holds. For any fle ~ (B) set 4"  (,8) = fi where fie r (/~) 
fulfills m (4)~, = J~ ~, for any fl 'e ~ (B) and m~ = mp; so 4" is a map from N (B) 
to ~ (/}) fulfilling g(~) ~ fl and m~ = m~ which shows that g* isinjective and that 
fle Im (g*) is equivalent to f i r  ker (g) for any/~ ~ ~ (/}) (since fl ~ Im (g*) implies 
m(4)~, = 0 for any f l ' e ~ ( B ) ) .  

Finally, assume that (4.4,3) holds. By Remark 4.5, g induces an isomorphism 
B~)~/~( /~)  where f l=g*( f l )  for any f l e ~ ( B ) ,  and therefore an isomorphism 
B/J(B) ~ 1~ B(/~); hence, B = Im(g) + J(B).  

/~lm(~*) 

4.6. Proposition. With the notation above, let B be an (9-algebra and ~: B--* B an 
6-algebra exomorphism. 

(4.6.1) I f  4 and h are covering exomorphisms then 4o~[ is also a covering 
exomorphism and (4 ~ ~)* = h* ~ 4". In particular, i f  two of  them are strict, the third 
ts strict too. 

(4.6.2) I f  ~, o ~ is a covering exomorphism then 4 is a covering exomorphism too. I f  
moreover 4 is strict then ~ is also a covering exomorphism. 
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Proof. If g and /7 are covering exomorphisms, they induce surjective homo- 
morphisms B ~ J ( B ) ~ B / J ( B ) ~ B / J ( B )  and therefore B = I m ( g o h ) + J ( B ) ;  
moreover, we have g (h (P)) = g (fl) c fl where fl ~ ~ (B), fl = ~* (fl) and 1~ =/7* (fl), 
which proves the equality (~o/7)* =/7* o~*. 

Clearly B = Im (g o h) + J(B) implies B = I m  (g) + J(B);  if moreover ~ is strict, 
g induces an isomorphism B/J(B) ~- B/J(B) which maps the image of  Im (h) onto 
the image of  Im(g o h), forcing/~ = Im(h) + J(/~). 

4.7. Proposition. With the notation above, let C and C be (f-algebras, ~: C ~ B and 
~: C ~ B  embeddings, and if: C ~  C a unitary C-algebra exomorphism such that 

o ~ = ~, o ~. If~, is a covering exomorphism then h is also a covering exomorphism, 
which is strict i f  ~, is so. 

4.8. Remark. I fg  and/7are covering exomorphism, the injective maps g* and/7* 
are clearly compatible with the injective maps ~ (C) ~ ~ (B) and ~ (C) --, ~ (B) 
induced respectively by Y and ~ (cf. 2.8). So, we may identify as usual ~ (C) and 

(C) with their respective images in ~ (B) and ~ (/~). 

Proof. Assume that eoh=go~.  As h is unitary, we have e (1)=g(~(1) )  and 
therefore, e( l )  Im(g) e(1) = e(Im(h)); but clearly e(1) J(B) e(1) = e(J(C)); con- 
sequently, B = Im (g) + J(B) implies C = Im (h) + J(C). Similarly, Ker (g) = J(/~) 
implies Ker(h) c J (~) .  

4.9. We are ready to discuss the interior G-algebra case. Let A be an interior G- 
algebra and ~ a set of  local pointed groups on A fulfilling the following condition 

(4.9.1) IfP~ ~ ~2 and Q~ is a loealpointedgroup on A such that (Q6)X ~ P7 for some 
x~G then Q ~ .  

For any subgroup H of G, we set 

(4.9.2) Ae n =  Z Try (  Ae" 7"Ae)  
P~ ~,~ 

where ~u is the set of  P~ ~ ~ such that P ~ H, and we denote by ff~ (H) the set of 
points fle ~A (H) such that fl r A ~: that is, if Q6 is a defect pointed group of H~, 
fl E 2 ~  (H) is equivalent to Q~ r ~ (cf. [9], Th. 1.2). Notice that ~n is a set of  local 
pointed groups on Res t (A)  fulfilling condition (4.9.1). For any p-subgroup P of 
G, we set 

(4.9.3) A(P)~ = Brp(Ae e) = ~ A ( P ) ' B r e ( 7 ) ' A ( P )  
y ~ ~e~ (p)- ~(p) 

and we denote by s (P) the intersection of  s (P) and ~ a  e (P). 

4.10. I f B  is an interior G-algebra and ~: B - ,  A an interior G-algebra embedding, 
it is clear that the set ~-  1 (~) of  local pointed groups P~ on B such that P~ ~ ~ fulfills 
Condition (4.9.1). Moreover,  for any subgroup H of G, setting ~3~ = ~-1(~)  we 
have 

(4.10.1) ~ p ( H ) = ~ n ( H ) n ~ ( H  ) and B ~ c e - X ( A n e ) c B ~ + J ( B t ~ ) .  
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Indeed, iffl ~ ~ (H) and Q6 is a defect pointed group of H a, we have fl ~ ~A ~ (H) if 
and only if Q6 ~ yd (cf. 4.9) or equivalently Q6 r ~0/, whereas we have fl ~ A g if and 
only if Q, ~ yd (cf. [9], Th. 1.2) or equivalently Q6 ~ ~ which is again equivalent to 
fl c B~ (cf. [9], Th. 1.2). 

4.11. Similarly, if H is a subgroup of G, B an interior H-algebra and 92t a set of 
local pointed groups on B fulfilling condition (4.9.1), the set ~Jt ~ of local pointed 
groups (p~)x on Ind~ (B) where P~ runs over 9Jr and x over G, fulfills condition 
(4.9.1) too. Notice that if G is locally controlled by H on B (cf. 3.2) then 
~J2 = aTn~ (B)- '  ((93l~)n) (cf. (2.9.1)). 

4.12. Let A be an interior G-algebra, ~ a set oftocal pointed groups on ,4 fulfilling 
condition (4.9.1), and f." ~] ~ A an interior G-algebra exomorphism. We say that f 
is (~, E)-eompatible if and only if, for any subgroup H of G, we have f(A~) c A~ n 
or equivalently, f induces an O-algebra exomorphism 

H . (4.12.1) f~.~. /~n/ft~--* An/A~ ; 

in that case, for any p-subgroup P of G, f~  ~ induces a Y-algebra exomorphism 

(4.12.2) f(P)~,~: A (P)/A (P)~ ~ A (P)/A (P)~. 

4.13. Proposition. With the notation above, the following conditions on f are 
equivalent: 

(4.13.1) The exomorphism f'. A--*A is (~, yd)-compatible. 

(4.13.2) For any P ~  and any subgroup Q of P we have BrQ(f(~)) = A(Q)~. 

(4.13.3) I f  P~6~, any local pointed group Q6 on A such that Q c P  and 
so(f(~)) 4: {0} belongs to Yd. 

Proof. If 37. . ~ ~ A  is (~, yd)-compatible, by (4.12.1) we have f(~) = A~ e = A~ 
and therefore, BrQ (f(~)) = A (Q)~ for any P~ ~ ~ and any subgroup Q of P. More- 
over, with the same notation, if BrQ(f(~)) = A(Q)~ and s6(f(~))) 4: {0} for 
O~5r we get so(A~) 4: {0} which implies Q6~ yd since ~ is local. 

Finally assume that (4.13.3) holds; to prove (4.13.1) it suffices to prove that if 
P ~  then f ( ~ ) = A ~ .  Choose i ' ~  and let T be a maximal P-stable abelian, 
~-semisimple subalgebra off({) A f({). I f j  is a primitive idempotent of T and Q 
the stabilizer of j in P, we know that j belongs to a local point 6 of Q on A 
(cf.[12], (2.9.3)); as so(f({))4: O, we have Qoeyd and so, Tr~(j)eA~. Conse- 
quently, we have T~'= A~ e and in particular, f ( 0  ~ A~. 

4.14. With the notation above, we say that f." A ~ A  is an (~,yd)-eovering 
exomorphism i f f  is (~, yd)-compatible and j ~ :  f~n / f l~An/At~  is a covering 
exomorphism of 6-algebras for any subgroup H of G; in that case, we denote by 

(4.14.1 ) ( f ~ ) * :  ~a  ~ (H) ~ ~ (H) 

the injective map mapping fl ~ ~ (n)  on fl ~ ~ (n)  such that f(fi)  ~ fl + An (cf. 
Prop. 4.4), and by 

(4.14.2) f (na ) :  A (Ho) ~ A (Ha) 
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the exoisomorphism induced by f~,e (cf. Remark 4.5). Moreover, we say that f is 
strict iff~. e is strict for any subgroup H of G or equivalently, if the maps (4.14.1) 
are bijective (cf. Prop. 4.4). Notice that .[ is always (0, ~)-compatible and is a 
(~, 52)-covering exomorphism if and only if is both (f3, 52)-compatible and a 
(0, 52)-covering exomorphism (cf. (4.6.2)); in particular, if ~ is the set of local 
pointed groups P~ on A such that f ( ~ ) c  A~ (which fulfills clearly condition 
(4.9.1)) thenf i s  a strict (~, 13)-covering exomorphism if and only if is an (0, 52)- 
covering exomorphism; so, the only interest in choosing ~ no empty is to be able to 
consider strict (9,, 52)-covering exomorphisms (see Remark 4.1 6 below). When 
and ~ are empty - the only case we need to prove the main theorem - we say 
covering instead of (O,O)-covering and write f ~ instead off0u0. First of all we 
generalize Propositions 4.6 and 4.7 to the new context. 

4.15. Proposition. With the notation above, let A be an interior G~lgebra, ~ a set of 
local pointed groups on ,~ fulfilIing condition (4.9.1), and g: A ~ A  an interior 
G-algebra exomorphism. 

(4.15.1) I f  l a n d  4 are respectively (~,52)- and (~,~)-covering exomorphisms 
then fo  4 is an (~, 52)-covering exomorphism and we have 

�9 , , ,  , 
, e) = (g~, ~) o (f~, ~) 

for any subgroup H of G. In particular, i f  two of  them are strict, the third is strict too. 

(4.15.2) I f  f o4  is an (~, 52)-covering exomorphism then f is an (0,58)-covering 
exomorphism. I f  moreover f is a strict (9., 52)-covering exomorphism then 4 is an 
(E, i~)-covering exomorphism. 

4.16. Remark. Statement (4.I5.2) is the main reason to consider strict (~, ~)- 
covering exomorphisms, and we will use this result as follows: if~ J ~ A is a strict 
(;2, ~)-covering exomorphism, A = (9 Gb where {b} = ~ is a point of G on C G and 
8 ~ (A) fulfills f(0~)c ~ (cf. (4.4.3)) then there is clearly a unique interior G- 
algebra exomorphism g: A ~ J  such that g(b)e8 which fulfills f o ~  = ida and 
therefore is a strict (2, ~)-covering exomorphism (see the proof of Proposition 7.2 
below). 

Proof. If all the exomorphismsjZ,, 4 and/7 = fo  4 are compatible, for any subgroup 
H of G we have the following commutative diagram 

~H 

AU/A~ h~.~ , AU/Ag 

A"/Ag 

and it suffices to apply Proposition 4.6. Moreover, if f and 4 are respectively 
(~, 52)- and (~, ~)-compatible,/7 is clearly (~, 52)~compatible. 

So, assume that/7 and f are respectively (2, 2)- and strict (~, ~)-covering 
exomorphisms; we will prove that 4 fulfills condition (4.13.3). Let P~ be an 
element of ~ and Q~ a local pointed group on J such that Q c P and Q~r 
as j7 is a strict (~,!~)-covering exomorphism, there is 6 ~ a ~ ( Q )  such that 
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f(~) c ~ and ma = m~ (cf. 4.14 and Prop. 4.4); moreover, as/~is an (~, .~)-covering 
exomorphism, there is g ~ ' }  (Q) such that f ( g (~ ) )~  5 and m~ = m~. Conse- 
quently, we get m~= m~ and m(g)] # 0 (cf. (2.3.1)), and therefore g induces an 
exoisomorphism A(Q3)~-A(Q~) mapping s~(~) on s~(g(~)); but, as P ~  and 
Q~ r ~, we have s~ (~) = {0} (el. (4.9.1)); consequently, s~ (g(~)) = {0}. 

4.17. Proposition. With the notation above, let B and B be interior G-algebras, ~: 
B ~ A  and ~: B ~ f t  interior G-algebra embeddings, and ~,: B ~ B  an interior 
G-algebra exomorphism such that Y o ~, = f o e; set 93~ = ~- ~ ( ~) and ~il = ~- ~ (~), 
and assume that 1 - g(1) ~ B~. I f  f is an ( ~, ~ )-covering exomorphism then fi, is an 
(~, 9Jl)-covering exomorphism which is strict if  f is so. 

Proof. If the exomorphisms jZand ~ are compatible, for any subgroup H of G we 
have the following commutative diagram 

f in/ f lu  fg~,~ ~ An/AU 

e~ ~, 

~H/~_I(A~H)_ ~g,t~ , Bn/e_~(AU ) 

~H 

where YU and ~ are the C-algebra embeddings induced respectively by ~ and ~, 
and ~H g~,~ is the O-algebra exomorphism induced by ~M g$~,~, which is a (strict) 
covering exomorphism if and only" ~n l fg~ ,~  is so (cf. (4.10.1)). Hence, in this case it 
suffices to apply Proposition 4.7. 

So, assume that f i s  (~, s we will prove that g fulfills condition 
(4.13.3). Let P~ be an element ofg)~ and Q~ a local pointed group on B such that 
Q c p and so (g(~)) 4: {0}; with the usual identifications, P~ belongs to ) (cf. 4.10) 
and therefore Qo belongs to s by (4.13.3) applied to .7; so, Q ~ X .  

The following proposition summarizes the lifting features of (~, ~)-covering 
exomorphisms. Statement (4.18.3) below is only considered here for the sake 
of completeness. Recall that if P~ is a local pointed group on A then NA,(P) is 
the subgroup of beA*  fulfilling b . P = P . b ,  NA~,(P) is the quotient 
Nj,(P)/P- (1 + J(Af)), and PA_(P~) is the Y*-group formed by the subgroup of 
(b,(~)eN~,(p) x Fa(P~) where b is the image in NA,(P ) of an element b of Na,(P) 
such that b.  u=rg(u),  b for any u~P, endowed with the injective group 
homomorphism mapping 2 e ~ * on (2, id) where we identify ,(* with the image of 
(A~)* in JV~,(p) (cf. 2.12). 

4.18. Proposition. With the notation above, assume that f is an (~, ~)-covering 
~omorphism. Let Hk and P~ be respectively pointed groups on A and A such that 
s ~ ( H )  and T e ~ ( P ) ,  and denote by ~ the point of  P on A such that f(~) c 7. 

(4.18.1) I f  P~ c H~ there is f l ~ ( H )  such that f ~  ) e f t .  

(4.18.2) l f  f( f l)  =fl for some f l~eA(H)  we have 

E~ (P~, H~) = Eo (P~,, Ha) and F~ (P,~, H~) c F A (P~, Ha). 
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In particular, P~ c H9 i f  and only i f  P~ c Hp, and then ..,~m~- = m a~. Moreover, P~ is a 
defect pointed group o f  H9 i f  and only i f  P~ is a defect pointed group of  H a . 

(4.18.3) I f  P is a p-group, there is a unique Y*-group homomorphism 
PA(P~)~ Fa(P~) mapping (6, (9) on (~, (9) where (9~ F~(P~), ~ is the image in N~ (P) 
o f b 6  A* such that b . u = ~o(u) . b~for any u~ P, and b is'the image in ~[A~(P) o)C the 
unique b ~ A~ such that f~ (b) = f~ (1)f(f~(b)) f~ (1), the representatives f~, f and f~ 
fulfilling s~ (f~(1)) = sr (f(f~(1))). 

4.19. Remark. Notice that, when P = H, the last equivalence in (4.18.2) states 
that P~ is local if and only if P .  is local. Moreover, in (4.18.3) our hypothesis insure 
clearly that ~ N,i~(P) and (~,'~) ~ F~i (P~), whereas we prove below that b ~ NA~(P) 
and (b, (9) ~ Fa (Pr). 

Proof  First of  all assume that P c H; then we have clearly (cf. (2.3.1)) 

(4.18.4) E m ~ , m ( ] ' ) ~ ' = m ( f ) ~ =  E m(f )r  

But i f ~ ' ~  (P) - ~ ( P )  we havef(~ ' )  ~ A P (cf. 4.12) and therefore, m(f)~" = 0; 
moreover, if  f l ' ~ A ( H  ) -~A ~(H) ,  any local pointed group Q~ on A such that 
Q~ = H a, belongs to s (cf. 4.9) and therefore, m~' = 0 (since a defect pointed group 
of  P~ does not belong to s On the other hand, it follows from proposition 4.4 
that m(f)~'=6~.~, for any ~ ' ~ ( P ) ,  and if f ~ ) = / ~  for some / ~ a e ( H )  
we get similarly m(,f)~,=~a,a, ,  whereas f l ~ f ( H ) - I m ( ( f ~ , ~ ) * ) i m p l i e s  
m(f )~ ,  = 0, for any fl ~ f ( H ) .  Hence, by (4.18.4) we have m~ = m ( f ) ~  and 
therefore, if P~ = H~ there is f l ~ A e ( H )  such that f ( f l )  ~ ft. 

Henceforth assume thatf(f l)  ~ fl for some fl ~ ~ f  (H). If  P = H, we get again 
from (4.18.4) m ~ = m ( f ) ~ = m ~  and in particular, P~ ~ H~ is equivalent to 
Pr ~- H a. So, for any x ~ G we have (P~)~ ~ H~ if and only if (P~)~ ~ H a (since 
? ~ a e ( P  ~) by (4.9.1)) and therefore, E~(P~, H~)= E~(P~,Ha). 

Now, to prove the inclusion Fa(P~,H~)~ Fa(P~,Ha) we may assume 
that IPI = IH] (cf.[ll],  2.11); then, if (9~F~(P~,H~) there is 6 ~ A *  such that 
(q (u). ~')~ = u" ] for any u ~ P, where [~/~ and ~ ~ (cf. [11], Prop. 2.12); moreover, 
by (4.14.1) we havef ( i )  = i + l where i~fl  and l is an idempotent of  A~ such that 
i l=O=l i ,  and therefore f ( j ) = j + f ( l )  ~ where a = f * ( & ) ~ A *  (cf. 2.3) and 
j = i a ~ ;  it follows easily that (~O(u) ' i )a=u' j  for any u e P  and therefore, 
(9 e Fa (Pr, H a) (cf. [11], Prop. 2.12). 

To prove (4.18.3) keep the notation above, assume that P is a p-group, H = P 
and [=f ,  and choose c6 1 + J(A P) such that iac = iai = aci (cf. [12], Lemma 6.3). 
If  f~(1) = fwe  may assume that f~ (/~) = [d = dt~ and if moreover f~(1) = i we get 
f~ (b) = iai = iac, which implies that b ~ A* and b- u = ~0 (u). b for any u ~ P; so, in 
this case b belongs to NA,(P) and has the same action as ~0 on the image of P in A*, 
which proves that (b-, (9) ~ Fa (Pr) (cf. [12], 7.1). But, if we modify our choices off~, f 
and f~, we have just to consider the unique element b' of  Ar such that 
f ~ ( b ' ) = i d a ( i + l ) d - ~ i  for some d~(AP) * fulfilling sr(ia)=s~(i),  and since 
i d a ( i + l ) d - ~ i  =iac id~%-~( i+l )d-~ i ,  we get b '=bb"  where b" is the unique 
element of  Ar such that fr(b") = id"~ e - ~ (i + l) d -  ~ i; finally, as 

s r (id a~ c- ' (i + 1) d -  ' i) = sr (id a~) sr (i) s r (d- ' i) = s~ ((id) ~c) s~ (d-  ~ i) = s~ (i) 

we obtain b-" = 1 and so, b-' = b. 
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O n the other hand, if fie 1 + J (A P) then a e 1 + J(A e) (cf. 2.3 and (4.14.2)) and 
therefore g =  1. Finally, if ~',/~', fi', a', c' and b' is another family fulfilling the 
conditions above (i.e. such that ~0-'r g'eA*,  gt'e4*, f~(b") = i~'=" (1'i, 
(~0'(u).f)~'=u.i" for any ueP,  a'=f*(gt'), c' e l  + J(Ae), ia'e'=ia'i=a'c'i ,  
b'sA~ and f~(b ' )=  ia'i)it is clear that f~(66 ' )= 6~'f and (~0(~0'(u)). t)~' = u. t ,  
whence bb'. u = ~0 (~0' (u))./~/;' for any u ~ P; then, if b" is the unique element of  A 
such that f~(b")= iaa'i, we have 

f~((bb')- i b") = i(a' c')- 1 i(ac)- 1 iaa' i = i(c')- l (c- x)"' i 

and therefore, (bb')-~b"e 1 + J(A~) whence b " =  b-b-'. The prove of  (4.13.3) is 
complete. 

Finally, it suffices to prove that : is local if and only if): is local. Indeed, in that 
case, ifPy is a defect pointed group of H# and Q~ is a local pointed group on A such 
that P~ c Q~ c tic#, Q~ does not belong to ~ and therefore setting 6 = ( f ~ ) * ( 6 )  
we have P~ ~ Q~ c H~ which implies P = Q; conversely, if P~ is a defect pointed 
group of / /#  and Q~ is a local pointed group on A such that P~ ~ Q~ ~ H~, there is 
6~.N~(Q) such that f ( d )  ~ 6, ~ is local and we have P~ ~ Q6 c Hr which implies 
again P = Q. 

If?) is not local there is a proper subgroup Q of P such that : e 4~  and therefore, 
f(:) ~ A~ which implies ~ c A~ (since m(f)~ oe 0). Conversely, if Q is a proper 
subgroup of  P such that ~ c A f2, it follows from (4.4.2), (4.12.1) and (4.20.1) below 
that 

(4.18.3) ) ,~Tr~( f ( ,4Q)+A~+J(AQ))  c f ( A ~ ) + A ~ + J ( A  e) 

and therefore, we get f(P~) (s~ (A f2)) = s~ (.f(A ~)) 4= {0} (cf. (4.14.2) and (4.18.3)), 
which implies s~(Aft ) = A (Py); so, : is not local. 

4.20. Lemma. With the notation above, i f  P is a subgroup of  G and Q a subnormal 
subgroup of  P, we have: 

(4.20.1) Tr~(J(AQ)) c J(A e) 

Proof. Arguing by induction on I P :  Q ] we may assume that Q is normal in P; in 
that case the (9-algebra A Q is P-stable and therefore, 

Tr~(J(AQ)) = AP ~ J ( A  Q) c J(Ae).  

It is clearly hopeless to get inclusion (4.20.1) without suitable hypothesis. 
However we have the following general result which will be useful in the proof  of  
Theorem (4.22) below. Recall that ifP~ is a pointed group on A, A p. 7" AP denotes 
the two-sided ideal of  A P generated by 7, and J(Al ' .7 �9 A P) the intersection 
J(A e) c~ A P �9 y. A" (cf. 2.2). 

4.21. Lemma. With the notation above, if P~ is a local pointed group on A and H 
a subgroup of G containing P, we have: 

(4.21.1) Try(J(  Ae" 7" Ae)) ~ J(AH) + ~ Trg(  AQ" fi" AQ) 
Q~ 

lt'here Q~ runs over the set of  local pointed groups on A such that Qz ~ P~. 
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Proof Let a be an element of J(Ae.  7 .A e) ands inceAH= ~ A H.f l .A n , 
Pe~A(H) 

set Trvn(a)= ~ b 0 where b ~ e A n . f l . A  n for any f le~A(H).  As 
IJSCA(H) 

s~ (Trp n(a)) = s~ (bp) for any fl ~ ~a (H), it suffices to prove that if fl ~ ~ (H) and 
s~(Tr~(a)) #: 0 then b~ sTr~(A e.  J .  A e) for some local pointed group Q0 on A 
such that Q0 ~ P~. Let fl be a point of H on A such that s~(Trg(a)) 40;  as 
Tr~(J(AF. 7 .AP)) is an ideal of A n, we have sp(Trne(J(AP. 7 �9 AP))= A(H~) 
and therefore, fl c T r ] ( J ( A e . 7  �9 AP)); hence, there is a defect pointed group 
Q0 of H~ such that Q0 cP~.  Then, on one hand we have 
b o e A n . f l  �9 A ~ c Tr~(A e. j .  AQ); on the other hand, setting N =  Nt~(P~)/P we 
have (cf. [9], Prop. 1.3) 

s,(13) ~ s,(Tr~ (J(A P. 7" AP))) = Tr~ (s,(J( AP" 7" AP))) = {0} 

and therefore P~ ~ Hp; so, Q0 4 = P~. 

The following theorem may be considered as the main result of this section. It 
shows that the notion of (~, ~)-covering exomorphism is essentially "local". 

4.22. Theorem. With the notation above, the following conditions on f are 
equivalent 

(4.22.1) The exomorphism f: 12t-oA is an (~., P~)-covering. 

(4.22.2) For any p-subgroup P of G we hayer(P) (.~ ( P)~) ~ A ( P )~ and the induced 
map f(P)~, a: fl (P)/ft (P)~ - ,  A (P)/A (P)~ is a covering exomorphism of  ~f-algebras. 

(4.22.3) For any local pointed group P~ on A such that P~ r P~ there is ~ ~ ~ (P) 
such that m~ = m~ and Brp(f(~)) = Brp(7) + A (P)~. 

(4.22.4) The exomorphism f: ft ~ A is (5~, ~)-compatible and, for any subgroup H 
of  G and any subgroup K of H, we have 

A~ c f ( ~ f )  + A~ + J(An) .  

In that case, f is strict if  and only if  f (P)~,e is strict for any p-subgroup P of G. 

Proof Iff." .4 -~A is an (~, !~)-covering exomorphism, for any p-subgroup P of 
G, f induces an exomorphism ~f | ~ ~: ~ | (ft P/ft ~) -o ~ | (A e/A ~) which is a 
covering exomorphism of k-algebras (cf. 4.14); hence, the exomorphisrn 
~f | (.,~e/flv) --*A (P)/A (P)e induced by f is a covering too and by (4.6.2), the 
exomorphism f(P)~.e: fI(P)/. ,~(P)~-~A(P)/A(P)e is also a covering of k- 
algebras. In that case, if f is strict then ~r | e is strict too, and by Propositions 

v . bijection from ~ ( P )  onto 5Y~(/)): 4.4 and 4.18, (~f| induces a 
consequently, (f(P)~, e)* is a bijection too for anyp-subgroup P of G. Conversely, 
assume that f(P)~, ~ is strict for any p-subgroup P of G; if H~ is a pointed 
group on A such t h a t / ~ e ~ ( H )  and Q~ is a defect pointed group of H~, we have 
Q~ r ~. and therefore, Bre (o ~) r ~ (Q)~; as f(Q)~. ~ is strict, there is J ~ ~ a  ~ (Q) 
such that f(/~) = 6 and m~ = m0 (cf. Prop. 4.4) and in particular, f induces an 
isomorphism A (Q~) ~- A (Q0) (cf. Remark 4.5) mapping s~ (fl) on so (f(fl)); so. 
so(f(fi)) 4: {0} and therefore, fl r Ag + Ker(f) .  Consequently, f~,e is strict for 
any subgroup H of G (cf. Prop. 4.4). 
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Assume that (4.22.2) holds. IfP~ is a local pointed group on A such that P~ 6 ~, 
Bre (y) is a point ofA (P) of multiplicity m s such that Brt'(y) r A (P)~; so, (4.22.3) 
follows from Proposition 4.4 applied to the ,(-algebra exomorphism f(P)~.e. 

Assume that (4.22.3) holds; first of all we will prove that f fulfills condition 
(4.13.3). Let P~ be an element of P- and Q6a local pointed group on A such that 
Q c P and Q~ r ~; by (4.22.3) there is ~ e ~ (Q) such that m~ = m~ and m (f)~ 4= 0; 
so, f induces an isomorphism .4(Q~)~-A(Q~) mapping s~())) on so(f(~)) 
(cf. Remark 4.5) and therefore so (f(~)) = {0} since Q~ r P~ (cf. (4.9.1)). 

To prove the inclusion A~ cf(A~) + Ag + J(An), we argue by induction on 
]Kl;asA K= ~ AK " e " AK, it suffices to prove that if e e ~ f ( K )  we have 

ee~a(K) 

(4.22.5) TrKU(A K- e-A K) c f ( / i~ )  + A~ + J(AU). 

Let P~ be a defect pointed group of K~; as P),$ ~ (cf. 4.9), there is ;~ e ~ (P) 
such that m~=my and Br~,(f(~)) ~ Brp(y)+A(P)~, which implies that 
s~(f(A v. ~./lt ')) -- A(P~) (cf. Remark4.5) and s~,(f(/lt" �9 ~. ,4P)) = {0} for any 
Y'~ s162 ~ (P) -- {Yl ; it follows easily that 

(4.22.6) A P . 7 . A P ~ f ( J t P . ~ . A P ) +  ~, J (AP.y 'AP)+A~+Ker(BrA);  

then, as A r ' e ' A K c T r ~ ( A t " 7 " A t ' ) ,  applying Tr~ to (4.22.6) we get (cf. 
Lemma 4.21) 

~H (4.22.7) Tr~(AK.e .A  K) = f ( A p ) + A ~ + J ( A n ) + Z A t d  
(2 

where Q runs over the set of proper subgroups of P; as A~ = A~ for any subgroup 
Q of K, (4.22.5) follows now from (4.22.7) and the induction hypothesis. 

Finally, (4.22.1) follows from (4.22.4) taking K =  H. 

4.23. Corollary. Let H be a subgroup of G, B and B interior H-algebras, ~11~ andfJl 
sets of local pointed groups on B and B respectively, fulfilling condition (4.9.1), and 
~: B ~ B an interior H-algebra exomorphism. Assume that G is locally eontrolled by 
H on B. Then Ind~ (g): Indan (/1) ~ Ind~ (B)/s an (fJl ~, ~J~a)-covering exomorphism 
if and only if ~: B ~ B is an (fJ~, gJO-covering exomorphism. In that case if ~ is strict 
then Indg(oa) is strict too. 

Proof With the notation above, we set A = Ind~n(B), A = Ind~n(/~), ~ = gj~o, 
8 = ~  and f =  Indg(g); moreover, we have ~R ~ aTn~(B)-~(~n) and as G is 
locally controlled by H on B, g.R = aT~n(B)-~(P.n). If f is an (~,~)-covering 
exomorphism, it is clear that Res t ( f )  is an (~n, :En)'covering exomorphism 
and that 1 - f ( 1 )  belongs to A~ (cf. (4.4.2) and (4.14); in particular, as 
l - f ( 1 ) = T r ~ ( l | 1 7 4  and A ~ c A ~ ,  we get 1 - g ( 1 ) e B ~  (cf. 
(4.10.1)); hence, it follows from Proposition 4.17 that ~ is an (~ ,  ~)-covering 
exomorphism. 

Assume now that ~ is an (~ ,  ~J~)-covering exomorphism; first of all we will 
prove that f fulfills condition (4.13.3). Let P~ be an element of ~. and Q~ a local 
pointed group on A such that Q ~ P and s~ (f(~))) # {0}; by 4.11 we may assume 
that p~ e 93~ (since we may replace P, and Q, by (p~)x and (Qo)~ for some x ~ G); so, 
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with the usual identifications, P~ becomes a local pointed group on/7 such that 
so(1 |  | 1) :# {0} and in particular, we get s0(! | 1 | 1) + 0; hence, with the 
usual identifications again, Q~ becomes a local pointed group on B such that 
s~(g(~,)) ~ {0} and therefore, Q~ ~fl)l (since ~ fulfills condition (4.13.3)). 

Secondly, we will prove that j7 fulfills condition (4.22.3). Let P~ be a local 
pointed group on A such that P~ ~ s by Proposition 3.4 we may assume that P~ is a 
local pointed group on B such that P~ ~ 9Jl; then, as ~ fulfills condition (4.22.3), 
there is ~ e ~ (P) such that 

m~(B) = m~(B) and Bre(g(~)) c Brp(7) + B ( P ) ~  ; 

in particular, g induces an isomorphism/7(P~) _-_ B(P.~) (cf. Remark 4.5). Hence, 
with the usual identifications, it follows from (3.4.2) that f induces also an 
isomorphism A (P~) g A (P~) (since a surjective homomorphism A (P~) -+ A (P~) 
is bijective) and in particular, we get m~(A)=m~(A) Moreover, as 
1 | 1 7 4  = A ( P ) ~ ,  with the usual identifications again, we get also 
Brp(.f(~))cBre(7)+A(P)~ and in particular, y ~ ( P )  (since f is (~,s 
compatible). 

Finally, assume furthermore that ~ is strict. By Theorem4.22 and Propo- 
sition 4.4, it suffices to prove that if P~ is a local pointed group on A such that 
P~ r ~ then there is 7 ~ L P ~ f  (P) such that f (~)  ~ 7; but, as above we may assume 
that P~ is a local pointed group on /7 such that P~r in that case, by 
Theorem 4.22 applied to g, there is 7 e ~ N n  ~ (P) such that g (p) ~ ~; then, with the 
usual identifications, we get f (~)  c 7 and 7 e ~ f  (P) since 9Jl = atria (B)-  ~ (~n). 

4.24. Example. Let M, P and Q be (2 G-modules and 

an exact sequence of  (9 G-module homomorphisms, and assume that P and Q are 
projective. Assume that A is the interior G-algebra End~(M), A the interior G- 
subalgebra of End~ (P) x End~ (Q) formed by the pairs (a, b) such that a o d = d o b, 
s and ~ the respective sets {lo}6~e~a) and {l~}~e(a),  and f: A-+A the 
homomorphism mapping (a, b) ~ A on the unique c ~ A such that c o e = e o a. Then 
it is quite clear that f is a strict (s s exomorphism. Actually, for any 
subgroup H of G, the exomorphism ]'~,e is surjective; but we are not able to prove 
that surjectivity would be preserved by induction under control, as in 
Corollary 4.13 above. 

The following example shows the covering situation considered in this paper (see 
proofs of  Propositions 6.10 and 7.2). 

4.25. Example. Assume that A is the interior G-algebra AG (cf. 2.7), s and ~ the 
empty sets, and f: A ~ A the homomorphism mapping ax on a �9 x for any a ~ A and 
any x ~ G. Then we claim that f is a covering exomorphism which is strict if G is a 
p-group. Indeed, the (9-algebra homomorphism A--+ A mapping a e A on ae 
where e is the unit element of  G is both a G-algebra homomorphism and a sectio~ 
off ,  and therefore we have f(A n) = A ~ for any subgroup H of G; moreover, it is 
clear that 

Ker ( f )  = ~ (9 (ax -  (a. x) e) 
a~A, x~G 
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and therefore if G is ap-group then Ker ( f )  c J ( ~ )  (cf. (2.7.1)) which implies that 
f i s  strict (cf. 4.14 and 4.3). 

w 5. Fusions in S | A 

5.1. The main result of  this section (see Theorem 5.3 below) provides a tool to 
prove that condition 1.6.2 implies condition 1.6.1 (or precisely, condition 1.7.2). 
Actually, the particular case needed here (see Proposition 6.10 below) could be 
easily handled in Sect. 6 by an argument adhoc, as we did in [10]. But we prefer to 
set this particular case in its general context, specially to provide a handy reference 
to study the extensions of  nilpotent blocks in [6]. 

5.2. Let P be a finite p-group, A an interior P-algebra and S an C-simple interior 
P-algebra having a P-stable C-basis which contains the unity. I fA = (2, the trivial 
interior P-algebra, we denote by 1 the unique (local) point of  any subgroup Q of P. 
The main purpose of  this section is to prove the following result (where statement 
(5.3.3) is discussed here for the sake of completeness). We write S @ A instead 
of S ( ~ A .  

0 

5.3. Theorem. With the notation above: 

(5.3.1) For any subgroup Q of P there is a bijection ~L~A(Q)~Sfl~s|  
mapping 6 ~ s ~A (Q ) on the unique local point S • 6 of  Q on S | A such that,for any 
j~6, there is j '  ~ S • 6fulfilling (1 |  = j '  =j ' (1  |  

(5.3.2) I f  Qo and R~ are local pointed groups on A, setting F= Fs(R s • 1, Qs • 1) we 
have 

Fa(R~, Qo) n F =  Fs|215 Qs• F. 

(5.3.3) I f  Qo is a local pointed group on A, setting E = F A (Q~) n F s (Qs • 1) there is a 
~*-group isomorphism E~ ~ s •  lifting the identity. 

5.4. Remark. In our applications of(5.3.2) (here and in [6]) we are able to prove 
independently that F contains both F A (R~, Qo) and Fs | A (Rs • Qs • ~). 

5.5 First of  all, we expose some "almost general" facts on tensor products of  
interior P-algebras: we restrict ourself to the case when at least one factor has a 
P-stable C-basis. Let A' be an interior P-algebra having a P-stable C-basis B'; our 
first result describes the local pointed groups on A | A' in terms of  the local 
pointed groups on A and A'. 

5.6. Proposition. With the notation above, for any subgroup Q of P there is a 
Y-algebra isomorphism 

(5.6.1) A ( Q ) |  A'(Q) ~- ( A G  A')(Q) 

mapping BrQ(a)@ BrQ(a') on BrQ(a|  In particular, there is a bijection 

(5.6.2) L~e~a (Q) • ~F~a, (O) ~ ~ a  | a, (Q) 
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mapping (d,d') on the unique local point 6 x 6 '  of  Q on A Q A '  such that 
BrQ(6) | BrQ(d') ~ BrQ(d x d') (up to identification through (5.6.1)), and then 
there are k-algebra isomorphisms 

(5.6.3) A (Qo) @ A' (Qo') ---- (A @ A') (Q0 • ~') 

mapping s o (a) @ s o, (a') on s o • o, (a | a'), and embeddings 

(5.6.4) g~ • 0': (A | A') 0 • 0' ~ A0 | A~, 

fulfilling (f~ | o go• o' = f~• 0,. 

Proof. As (A | A')~ contains A Q | (A')~ and A~ | (A') Q for any subgroup R of 
Q, the homomorphism A ~ | (A') Q ~ (A | A') (Q) mapping a | a' on BrQ (a | a') 
induces indeed a ~-algebra homomorphism 

(5.6.5) A (Q) | A' (Q) ~ (A | A') (Q) 

mapping BrQ (a) | BrQ (a') on BrQ (a | a'), and we will prove that this homomor- 
phism is bijective. 

For any subgroup R of Q, denote by (B') n the set of R-fixed elements of B' and 
by B~ a set of representatives for the orbits of R on B' (so (B') ~ = Bj0; as 
A | A' = @ A | b', it is easily checked that 

bEB" 

(A|  R =  (~) Tr~, (A"~ ' |  ') 
b'e B'~ 

(5.6.6) 

and therefore, we get 

(5.6.7) Trob,(ARb,| b ) 
b'~B~ 

where Qb, and Rb, are respectively the stabilizer of b'~B' in Q and R; now, it 
follows from (5.4.6) applied to Q that 

(5.6.8) BrQ( @~ A ~ 1 7 4 1 7 4  
\ b '  ~(B')O 

and from (5.6.7) that 

(5.6.9) ( (~  A~174174  ( ~  Ker(Br~) |  
b'~ (B') Q b' E (B') Q 

In particular, (5.6.8) and (5.6.9) applied to A = (9 prove that {BrQ(b')}b,~w,)~ is a 
~-basis of A'(Q); consequently, we get 

(5.6.10) 

0 (A~|174 ~- ( ~  A(Q) |174  
b, ~(B,)~ b'~(B')O 

Finally, as (5.6.5) maps BrQ(a)QBrQ(b') on BrQ(aQb') for any b'~(B') ~, it 
follows from (5.6.8), (5.6.9) and (5.6.10) that (5.6.5) is bijective. 

Moreover bijection (5.6.2) and isomorphisms (5.6.3) are easy consequences of 
(5.6.1). On the other hand, by (5.6.2) applied to the interior Q-algebras A0 and A~,, 
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6 x 5' is still a local point of  Q on A 6 |  and then (5.6.4) follows (cf. [12], 
(2.13.1)). 

5.7. It is clear that the multiplication induces an interior P-algebra isomorphism 

(5.7.1) S@ S O = Ende(S) 

and as P stabilizes an C-basis of  S containing the unity, there is a (unique) 
embedding from the trivial interior P-algebra (9 to S |  S ~ 

5.8. Corollary. With the notation above, for any subgroup Q of P, S(Q) is a simple 
,(-algebra and in particular, [ LP~ s (Q) [ = 1. 

Proof By (5.6.1) and (5.7.1) we have S ( Q ) |  S~162 but it is 
clear that S O (Q) = S(Q) ~ and as P stabilizes an C-basis of S, it is well-known that 
(Endo(S))(Q)~-End~(S(Q)) (cf.[12], (2.9.1)); consequently, S(Q) has to be 
simple (since S(Q) :~ {0}). 

We have only partial results both on the relationship between inclusions and on 
the relationship between fusions of  local pointed groups on A, A' and A | A'; but 
they are complete enough to prove Theorem 5.3. 

5.9. Proposition. With the notation above, let Q6, R~ be local pointed groups on A 
and Q6,, R~, local pointed groups on A'. 

(5.9.1) I f  R c Q we have m~•215 =memo, 6 6' In particular, i f  R~• e, a Q6• then 
R e c Q~ and R e, c Q6'. 

(5.9.2) I f  I R[ = I Qt we have 

FA(Re, Q6) ~FA, (Re,, Q6') a Fa| a,(R~• , Q6• 

Proof I f j e 5  a n d j ' e 6 ' ,  it follows from (5.6.4) that there i s j " e6  x 5' such that 
J"(j |  = j " = ( j |  but if R c Q ,  the isomorphism A(R, )QA' (Re ,  ) 
-~ (A | A')(R~ • ~,) (cf. (5.6.3)) maps se ( j ) |  s,,(j') on se x ,, ( j |  then it is clear 
thatm 6 •  6, 0' ---~ x ~,  = mg gnu, . 

Assume now that JR I= I QI and let ~ be an element of FA(R~,Q6) 
n F~, (Re,, Q6,); by definition (cf. [11], Def. 2.5), there are exomorphisms of  interior 
R-algebras 

(5.9.3) f~: A, ~ Rest(A6) and f~: A'~, - Re%(A~,) 

fulfilling 

(5.9.4) 

ReslR(f~) = Res~(f~)o Res~(f~) and Res~(fu) = Res~(f6,)o Res~(f~) .  

But it follows from (5.6.1) applied to A6 @ A'6, that 6 x 5' is the unique local point 
of Q on A~ | ; similarly, e x e' is the unique local point of  R on A, @A',,. 
Consequently, setting A" = A @ A', 5" = 5 x 5' and e" = e x c', the tensor product 
of the exomorphisms (5.9.3) induces an exomorphism 

(5.9.5) f~". A",,, =~ Res ~, (A"6,) 
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such that (cf. (5.6.4) and [12], (2.3.3)) 

(5.9.6) Res~o (go") of~' = (f~ |  ~,,.  

Now, it is easily checked from (5.6.4), (5.9.6) and (5.9.3) that the exomorphism 
(5.9.5) fulfills Res~ (~,,) = Res~ (~,,) o Res~ (f~'), whence ~ ~ Fa,, (R~,,, Oo"). 

5.10. Let Qo and Qo' be respectively local pointed groups on A and A', set 
A " = A |  6 " = 6 x 6 '  and E = F  a(Qo) c~F a,(Qo,), and denote by go,,: 
A~, ,~Ao|  the embedding (5.6.4). Our last result shows that the central 
extension/~0" of  E by Y* is the "sum" of  the central extensions/~0 and ~0, (cf. 2.12 
and [12], 7.1 and 5.9). 

5.11. Proposition. With the notation above, there is a unique ,(*-group 
isomorphism 

(5.11.1) ~-o. ~o, ~/~0" 

mapping (~i ,~) |  ~ o . ~ o '  on ( f t " ,O)~E  ~ where f ~ E ,  a and a' are 
respectively elements o f  A* and (A'~,)* fulfilling 

(5.11.2) for  any u 6 Q ,  a . u=~o(u) . a and a ' .  u=~p(u) . a', 

a" is the unique element o f  Ag,, such that 

(5.11.3) go" (a") = g0" (1) (a | a')go,, (1) 

and ~, gt' and gt" are respectively the images o f  a, a' and a" in NA~(Q), NA'~,, (Q) and 
NAg,,(Q). 

5.12. Remark.  Notice that (5.11.2) guarantees a e N a , ( Q  ) and a'eNA,~,(Q) 
(cf. 2.12) and we prove below that (5.11.3) implies a"~NA,~,,(Q). 

Proof. Set i=go,,(1); as (Ao| (cf. (5.6.3)) and, with the usual 
identification, 6" is the unique local point of Q on Ao | A~, (cf. (5.6.2)), we have 

so,, (i" | ~') = so,, (i) ; (5.11.4) 

hence, setting 

(5.11.5) 

it is clear 

d" = (i a| i +  (1 -- ia | (1 - i) 

that d " ~ l + J ( ( A o |  Q) and it is easily checked that 
i(a | a') d" = i(a | a') i = (a | a') d" i; in particular, a" is invertible and we have 

(5.11.6) (a") -1 = i(d") -1 ( a Q a ' )  -1 . 

Moreover, go,,(a" " u) = i ( a |  . u �9 i = i �9 ~o(u) �9 ( a |  = go,,(~o(u) �9 a") and 
therefore, a"" u = ~o (u) .  a" for any u ~ Q. Consequently, a" belongs to NA;, (Q) 
and has the same action as r on the image of Q in (A'~,,)*, which proves 
that (a" ,~)  is an element of/~o" (cf. 2.12). 

Notice first that ~i" does not depend on the choice of  go,, in go". Indeed, ifg'  e ~,, 
there is c"e((Ao|  * such that g'(b")  =go, (b")  c" for any b"~A'~,,; hence, if 
b"eA'~,, is such that g'(b")  = g ' ( l ) ( a |  g'(1) we get (cf. (5.11.6)) 

go" ((a")-  1 b") = i (d") -  1 (a | a ' ) -  1 ic" (a | a') (c")-  1 i = i (d") -  1 ( ic.)~ | ~, (c")- 1 i 
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but, as (A~ @ A~,) (Q~,,) = ~ (cf. (5.6.3)), we have so,, ((ic") a * a,) = so,, (ic"); conse- 
- " Q ~i" = 6 " .  quently, (a") lb" belongs to 1 + J((A~,,) ), whence 

Secondly, ifb and b' are respectively elements of  NA,(Q) and NA~, (Q) such that 
= 6 and 6' - . . . . .  = b ,  and b eAo,, is such that go, , (b")=i(b |  we claim that 

d"=  6". Indeed, we get (cf. (5.11.5)) 

go,,((a")-lb ") = i(d") -1 (i,| ~') ( a - l b |  

rt Q and therefore, it follows from (5.11.4) that (a")-~b " belongs to 1 +J((Ao,,) ), 
whence ~i" = 6". 

Consequently, there is a unique map/ t : /~  * / ~ ' ~ / ~ "  mapping (& ~) | (~', ~) on 
(d", ~); moreover, it is clear that/t maps 2. (~, 0) | (a', ~ ) on 2. (d", ~ ) for any 2 e ~ *, 
and induces the identity on E. So, it suffices to prove that /z is a group 
homomorphism. 

Let ~ be an element of  E, b and b' elements of A~' and (A~,)* fulfilling 5.11.2 with 
respect to ~u, e" the element (ib| (1 -- i  b| (l --i) of 1 +J((A~| ~) (cf. 
(5.11.5)), b" the unique element of A~,, such that g0" (b") = i(b | b') i (cf. (5.11.3)), 
and 6, 6' and 6" the respective images of b, b' and b" in N~,(Q), N~,(Q) and 
N~g, (Q), so that/~ maps (6, ~)  | (6', ~)  on (b", ~). Then it is clear that ab and a'b' 
fulfill (5.11.2) with respect to ~0 o ~,, and if c" is the unique element of Ag,, such that 
go,,(c") = i (ab|  it follows from (5.11.6) applied to a" and b" that 

go, , ( (a"b") -~c")=i (e") -~(b |  -~ (a |174  

= i(e") -~ (i(d,,)-~)~|174 
consequently, p maps ( ab ,~o~)  |  on ( 6 " , ~ o ~ )  and (a"b") -~c  " 
belongs to 1 + J((Ag,,) ~) whence 6" ~"-"" = b , hence, p is a group homomorphism. 

Pro| o f  Theorem 5.3. By corollary 5.8 we have LeNs(Q) = {a} and therefore, by 
5.6.2 there is a bijection 

(5.3.4) LeNa (Q) ~ LeNs | a (Q) 

mapping 6 s LPNA (Q) on a x 6, which is the unique local point of Q on S | A 
such that BrQ( i |  x6)  if i e a  and j~6;  hence, there is j ' ~ a  x 6  such 
that ( i | 1 7 4  and therefore, such that (l |  (l |  
Moreover, if k is a primitive idempotent of  (S |  A) Q such that BrQ(k)# 0 and 
(1 |  = k = k (1 |  it follows from (5.6.1) that Bre (k) is a conjugate of  some 
BrQ(INj) where l is a primitive idempotent of  S Q such that B r e ( / ) #  0, which 
implies I e a by corollary 5.8; consequently, BrQ (k) ~ BrQ (a x 6), whence k ~ a x 6. 

To prove (5.2.2) it suffices to prove the inclusion 

(5.3.5) F a (Re, Q~) n F c F s | A (Rs • Qs • ~); 

indeed, it follows from (5.3.5) applied to S |  and S O that 

(5.3.6) FS|215 Qs• ~ F  c Fso|174 (Rs•215 Qs•215 

(since Fso (Rso • 1, Qs o • 1) = F); but there is an embedding (9 ~ S o | S (cf. 5.7) and 
therefore we get an embedding 

(5.3.7) A ~ SO | S | A 
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mapping Qo on Qso|215 and R~ on Rso|215 ~, which implies (cf. [11], 2.14) 

(5.3.8) Fa(R~, Q~) = Fso|174 (Rso|215 Qso|215 

moreover, it is easy to check that 

(5.3.9) S ~ 1 7 6 1 7 4  and S ~ 1 7 6 1 7 4  

consequently, by (5.3.6), (5.3.8) and (5.3.9) we have 

(5.3.10) Fs|215 ~, Qs• F = FA(R~, Q~); 

now, (5.3.2) follows from (5.3.5) and (5.3.10). 
If  @ ~ FA (R,, Q~) m F w e  know (cf. [11], 2.11) that there is ~ ~ ~ a  (~0 (R)) such 

that (a (R)r c Qa and @ is the composition of  ~ ~ FA (R~, ~0 (R)~) (where ~u (u) = ~0 (u) 
for any u ~ R )  and the A-fusion defined by the inclusion ~o(R)r = Q~. Then, by 
(5.3.7) we have ~o(R)so|215 c Qso|215 too and therefore, by (5.3.9) and (5.9.1) 
applied to S | A and S ~ we get ~0 (R)s • ~ ~ Qs • ~ (notice that applying this result 
to the case A = (9 we get q~(R)s • ~ ~ Qs • , ,  which can be proved directly too). On 
the other hand, as @~F, it is easily checked that (J~Fs(Rs• 1, ~o(R)s• and 
therefore, by (5.3.4) and (5.9.2) applied to A and S, we get ~ F s | 2 1 5  
~o ( R )s • ~). Consequently, @ ~ F s | A ( R s • ~, Q s • ~) which proves (5.3.5). 

Finally, (5.3.3) follows from Proposition 5.11 applied to A and S, and from the 
fact that/~" ~ ~* x E if ~ N s ( Q )  = {cr} (cf. [13]). 

w 6. On the interior P-algebra SP 

6.1. Let P be a finite p-group and S an (9-simple P-algebra of  (9-rank prime to p, 
and denote by B the interior P-algebra SP associated with S (cf. 2.2). In this 
section we discuss on the special features of  B that we need to prove the main 
theorem. 

6.2. First of  all notice that, as Aut (S) _= S*/(9" (cf. [9], Prop. 2.3 or [12], (2.5.3)) 
and ~ is algebraically closed, any automorphism of S is induced by an element of 
S* of  determinant one. But, denoting by U the finite subgroup of  (9" of  order 
ranks(S),  Uis a cyclicp'-group and therefore, H 2 (P, U) = {0} = H 1 (P, U) (cf. [5], 
Ch. I, Th. 16.19). Consequently, the structural group homomorphism P ~ Aut (S) 
can be lifted to a unique group homomorphism @: P ~ S* such that det (@ (u)) --- 1 
for any u e P. Henceforth we consider S endowed with @ as an interior P-algebra, 
and we identify often B with S @ (gP through the canonical interior P-algebra 

isomorphism (2.7.1). The following statement is our main result on B. 

6.3. Theorem. Let B be an interior P-algebra and ~: B ~ B an interior P-algebra 
exomorphism. I f  B = Ira(g) + J (B)  then ~ is surjective. 

6.4. Remark. With the terminology introduced in w 4 the equality above says 
that r is an (9-algebra covering exomorphism (cf. 4.3). 

In order to prove the theorem we need the following three lemmas. 
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~i.5. Lemma. Let A and A be C-algebras and f:  J ~ A an C-algebra homomorphism. 
I f  A = I m  ( f )  + J(A)  z then f is surjective. 

Proof Arguing by induction on n we prove first that A = I m  ( f )  + J(A)"; we may 
assume that n __> 2 and J(A)  n- 1 = ( I m ( f ) ~  J(A)  n- 1)+ j(A)n; it follows that 

J(A)  n = ((Im ( f )  c~ J(A)) + J(A) 2) ((Im ( f )  c~ J(A)  n- 1) + j(A)n) 

= (Im ( f )  c~ J(A)") + J(A)" + 1 

and therefore, A = I m ( f )  + J(A)  n+ 1. But there is n such that J(A)  n ~ J(C) .A and 
then the lemma follows from Nakayama's  lemma. 

6.6. Lemma. Let A be an C-algebra such that A /J (A)  is a simple J(-algebra, and M 
an A-bimodule. Denote by [A, M] the C-submodule o f  M generated by the set o f  
elements a. m - m. a where a runs over A and m over M. I f  N is an A-subbimodule 
such that M = N + [A, M] then M = N. 

Proof. As [A, M/N] is the image of[A, M] in M/N,  we may assume that C = ~ and 
M is a simple A-bimodule; then there is an A-bimodule isomorphism M ~- A/J(A)  
and since A/J(A)  ~- End~ (V) where V is a ~f-vector space, the image of  [A, A/J(A)] 
in End~ (V) is contained in Ker(trv) ,  where trv: Ends (V)--.,( is the trace map, 
which proves that M ~e [A, M], and therefore, M = N. 

6.7. Lemma. The map P ~ B mapping u E P on 1 -- Q (u-1) u induces an S-bimodule 
isomorphism S @ (p/qb (p)) ~_ J(B) / (J(B)  2 + J (C) .  B). 

Z 

Proof. We may assume that (9 = ,f and identify B with S @ , ( P ;  so, we consider 

the map P - - * S ( ~ f P  mapping u e P  on 1 | ( 1 - u )  and since 1 - u ~ J ( ~ P ) ,  

1 | (1 - u) belongs to J S ~fP ; moreover, as 

1 - u u '  = (1 - u )  + (1 - u ' )  + (1 - u )  (1 - u ' )  

(,,)2 
for any u, u'~ P and J S ~P  = S ~ J(~cp)2, this map induces a Z-module 

~f 

homomorphism from P/q~(P) to J S ( ~ Y P  J S ( ~ , ( P  and therefore a 
S-bimodule homorphism ~ / J  ,, t / 

which is clearly surjective since J(~fP)= ~ ~r (1 - u )  and we have 
u~P 

Finally, denoting by U a subset of  P such that the image of  {1 - u } , ~ u  in 
J('~P)IJ(~fP) z is a ,(-basis, and by Q the subgroup of  P generated by U, we get 
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~ p  = s + j (Zp)2  and it follows from Lemma 6.5 that ~P  = ~(Q, whence P = Q; 
in particular, the image of U in P/q~(P) is a generator set; consequently 

dim~ ( , (@(p/qb(p) ) )  < dim~(J(~f P)/J(~. p)2) 
Z 

and therefore (6.7.1) is a bijective homomorphism. 

Proof of Theorem 6.3. By Nakayama's lemma we may assume that (9 = ~f, and by 
Lemma 6.5 it suffices to prove that J(B) = (Ira (g) n J(B)) -t- J(B) 2. Set C = I m  (g) 
and denote by X the image of any X c J(B) in J(B)/J(B)2; then J(B) has an 

evident structure of C-bimodule and C n J ( B )  is a C-subbimodule of J(B); 
as C/ (CnJ(B) )  ~- B/J(B) ~- S and J(B) annihilates J(B),  J(B) becomes an 
S-bimodule and C n  J(B) an S-subbimodule of  J(B);  so, by Lemma 6.6 it suffices 

to prove that J(B)  = C ~ J ( B )  + [S,J(B)]. 

By Lemma 6.7 there is an S-bimodule isomorphism S(~(P/q) (P))~-J(B)  
Z 

mapping s |  ~7 on s(1 -Q(u-1)u ) ,  where seS,  ueP  and ~ is the image of u in 
P/~b(P). But identifying again B with S ( ~ Y P  (cf. 6.2), it is easily checked that 

s 

[S, J(B)] = [S, S] (~(p/cp(p));  moreover, S = Af. 1 + [S, S] sincep does not divide 
Z 

dim~(S). Consequently, it suffices to prove that CAJ(B)-+-[S,J(B)] contains 

{1 - 
As B = C + J(B), a maximal (9-semisimple subalgebra of C is still maximal in 

B, and therefore there is neJ (B)  such that S l + " c  C (cf. [9], Cor. 2.4); in 
particular, ~ (u) l +, e C and therefore [Q (u), 1 + n] - ~ (u) - 1 u belongs to C c~ J(B) 
(since 1 - Q (u)-1 ueJ(B))  and so, Q (u) + J(B) = u + J(B); but it is easily checked 
that 

[Q (u),  1 + n] - 0 ( u ) - I  u = - a ( u ) -  1. (u) )  + (1 - ( u ) -  u);  

consequently, as a - Q (u)- 1. nQ (u) e IS, J(B)], the element 1 - Q (u)- 1 u belongs 

to C n J ( B )  + [S,J(B)] for any ueP. 

We know that B* acts transitively on the set of (9-simple subalgebras S' of B such 
that rank~(S ' )=rank~(S)  (cf. [9], Cor. 2.4) and the next result explicits a 
transversal in B* to the stabilizer of S. 

6.8. Proposition. Set W =  1 + ~ Ker(tr) (1 - Q(u)- 1 u) where tr: S ~  (9 denotes 
u~P 

the trace map. Then we have W c B* and for any maximal C-semisimple subalgebra 
S' of  B there is a unique we W such that S' = S ~. 

Proof. Let us identify B with S (~) (_9 P (cf. 6.2) and set J = ~ (9 (1 - u); as S and S' 
u~P 

are both maximal (9-semisimple subalgebras of B, there is beB* such that S' = S b 
(cf. [9], Cor. 2.4); but, as S | J i s  an ideal of B contained in J(B) and B/S | J_~ S, 
we have B * =  S*. (1 + S | J)  and therefore, we may assume that be  1 + S | J; 
moreover, as p does not divide ranko (S), we have S = (9 �9 Ker(tr) and so 

b =  1 + n + c = ( 1  + n )  (1 +(1 + n ) - l c )  
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where ne  1 | J and c~Ker(tr)  | J; finally, as 1 + n centralizes S and (I + n)-  
belongs to 1 + 1 | J, we get S' = S 1 +m where m = (1 + n)-  t ceKer( t r )  | J. 

On the other hand, as Aut (S) _= S*/(9 * (cf. [12], (2.5.3)), the stabilizer of S in 
B* is the product of S* by the centralizer, namely the subgroup S* @ ((gP)* 
= S*(1 + 1 | J) of  B*; hence, if S 1 +m= S ~ +,,' where m, m ' e K e r ( t r ) |  J, then 
(1 + m') (1 + m)-  ~ s 1 + 1 N J since the image of  (1 + m') (1 + m)-  ~ in B/S  N J is 
the unity, and therefore there is n e 1 | J such that 

1 + m ' =  (l + n )  (1 + m ) =  1 + n + m + n m ,  

whence n = m ' - m -  nm; but m, m' and nm belong to Ker ( t r ) |  J, whereas 
n e I | J; consequently, n = 0 and m ' =  m. 

6.9. Corollary. The group (Be) * acts transitively on the set of  P-stable maximal 
(P-simple subalgebras of  B. In particular, i f  S' is a P-algebra such that B ~ S' P as 
interior P-algebras, we have S _~ S' as P-algebras. 

Proof With the notation of  Proposition 6.8, if S' is a P-stable maximal O-simple 
subalgebra of B, there is a unique w e W such that S'  = S~; but it is clear that P 
stabilizes W (since @ is unique); consequently, P fixes w. 

The last result of this section describes the fusions of  local pointed groups on B, 
when S has a P-stable (9-basis, which is the main tool to prove (in Sect. 7) that 
condition (1.6.2) implies condition (1.6.1). Although we will apply Theorem 5.3, a 
more direct proof  of  that result could certainly be obtained from Proposition 6.8 
above. 

6.10. Proposition. Assume that P stabilizes an (9-basis of  S and let Q~ and R~ be 
local pointed groups on B. Then FB(R~, Qo)= Ep(R, Q). 

Proof. As p does not divide ranko(S), P fixes at least one element in a P-stable 
(9-basis of  S and therefore, S(P)  ~ {0} (cf. [12], (2.8.4)); it follows easily that P 
stabilizes an (9-basis of  S which contains the unity (see 7.5 below for a more 
detailed argument). Hence, by 6.2 and Theorem 5.3 we have 

F~e(R~', Qo') c~ F =  FB(R ~, Q~) n F 

where F =  Fs(R s x 1, Qs • 1) and 6', e' are respectively the local points of  Q, R on 
(0 p corresponding to 6, e through the canonical bijection (5.3.1). But on one hand, 
it is clear that ~ p ( Q )  = {6'} and ~ o e ( R )  = {e'}, and therefore (cf. [11], 2.10 
and Th. 3.1) 

Fep(R~,, Qa.) = Ee(R~,, Qa,) = Ep(R, Q) c F. 

On the other hand, it follows from example 4.25 and Proposition 4.18 that 
FB(R~, Q~) = F. Consequently, Ep(R, Q) = Fn(R~, Qo). 

w Proof of the main theorem 

7.1. Let G be a finite group, ~ = {b} a point of  G on OG and P~ a defect pointed 
group of G,; denote by Y: B ~ Resv ~ ((9 Gb) an embedded algebra associated with 
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P~ (as a pointed group on (gGb). The key step in our proof of the main theorem is 
the following result (which is itself a consequence of that theorem). 

7.2. Proposition. Assume that B has an C-simple factor S of O-rank prime top, and 
consider S endowed with the interior P-algebra structure indueed by B. I f  G~ is locally 
controlled by Pr then there is a unique interior P-algebra exoisomorphism 
B ~ s @ ( g P .  

@ 

Proof. Denote by/~ the interior P-algebra B @ C P  ~- BP (cf. (2.7.1)) and by ~: 

/~ ~ B the interior P-algebra exomorphism determined by the homomorphism g 
mapping b | u on b for any b e B and any u e P; it follows from example 4.25 that 
is a strict covering exomorphism. 

Set A = Indv G (B), aT= aT~ (B), J = Indv G (/}), a~= aT~ ~ (/~), f =  Ind~ (~) and 
C = 0 Gb. As G, is locally controlled by P~, G is locally controlled by P on B (cf. 
3.5) and therefore,f: A ~ A is a strict covering exomorphism too (cf. Cor. 4.23). 
But it follows from [9], Th. 3.4 that there is a unique embedding 6: C --* A such that 
the following diagram commutes 

(7.2.1) 

Res~(E) 
Rest(C) ~ Rest(A) 

B 

and, as usual, we identify G~ and Pr with the corresponding pointed groups on A; 
then 6: C ~  A and a~: B ~  Rest(A) are respectively embedded algebras associated 
with G~ and Pr (cf. 2.10). Consequently, there are ~eNz(G) and ~E~x(P) such 
thatf(0~) c a andf(p) c ~ (cf. 4.14), and it follows from Proposition 4.18 that P~ is 
a defect pointed group of Ga; moreover, the following commutative diagram (cf. 
(2.9.3)) 

Rest(f) 
Res~ (/i) , ReseG(A) 

#. 

(7.2.2) ~ ~7 / 
/ g 

B , B  

shows that a~: / ~  Rest(A) is an embedded algebra associated with P~. 
Let ~: C--* A be an embedded algebra associated with G~. On one hand, as 

P~ c G~, there is a unique embedding ~: /~ ~ Res~ (C) such that the following 
diagram commutes (cf. [11], 1.8 and 1.9) 

(7.2.3) 

Res~(~) 
Res~ (~) , Res~ (A) 

eT 
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On the other hand, asf(~(1))~u, there is a unique exomorphism/~: C - ,  C such 
that the following diagram commutes (cf. (2.10.1)) 

,i , A  

(7.2.4) 

fi 
C , C  

Now, it follows from (7.2.1), (7.2.2), (7.2.3) and the restriction of (7.2.4) to P tha t  
the following diagram commutes (cf. [12], (2.3.3) and (2.12.2)) 

(7.2.5) 

Res~ (kT) 
Res~ (C) , Res~ (C) 

/~ ,B  

Arguing as in Remark 4.16, the structural homomorphism G~C'*  induces 
clearly a unique interior G-algebra exomorphism/7': C-* C such that ~'o ~' = ffdc, 
and by Proposition 4.15, l~" is a strict covering exomorphism too, fulfilling 
h'(7) c p (cf. (7.2.5) and (4.15.1)); so, h'(e(1))ep and there is again a unique 
exomorphism ~': B-~/Y such that the following diagram commutes (cf. (2.10.1)) 

(7.2.6) 

Res~ (/~') 
Res~ (C) * Res t (d )  

e 
g' 

B ,/~ 

hence, by Proposition 4.15 again, ~' is also a strict covering exomorphism (and we 
get easily from/~o r = id c and [12] (2.3.3) and (2.12.2), that g o~ '=  idB). 

Let S be an (p-simple factor of B of (P-rank prime to p, and #: B-~S the 
canonical exomorphism (recall that we consider S as an interior P-algebra in 
such a way that s is an interior P-algebra exomorphism). Set S = S@(PP ~ SP 
(cf. (2.7.1)) and 7= s174  idle; that is, 7: B ~  S is a surjective interior P-algebra 
exomorphism. So, the composition Resf(~og'): Res f (B)~Res f (S)  is an 
(<algebra covering exomorphism and tharefore, it follows from Theorem 6.3 
that Res~(~og') is surjective. Consequently, to prove that sog. B ~ $  
is an exoisomorphism of interior P-algebras, it suffices to prove now that 
rank0 (B) ~- rank~ (~). 

Let V be a projective indecomposable S-module; clearly, V@(PP is an 

indecomposable S-module (cf. [9], Prop. 2.1) and all the simple factors of a 

J~ are isomorphic to ~f@V. As gog' 
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is surjective, R e s ~ o g , ( V @ ( g P ) i s  an indecomposable B-module fulfilling the 

same condition: all the simple factors of a Jordan-H61der sequence of 

Y(~Res~o~,(V@(gP)~ are isomorphic to Y (~)Re%~.g, ( V ) ; ~  moreover, it is clear 

thattherestrictionofRes~og,(V@(gP)to(gPthroughthestructuralhomomor- 

phism P ~ B *  is a projective CP-module. Hence, by Lemma7.3 below, 

Re%~o~,(V@(gP)isaprojectiveB-moduletooandbyLemma7.4below, wehave 

~ ( B )  = {3} and ranks(B) = m~lPI ranks(V) = ranko(S ) 

(since B(6) --- ~f @ S  and therefore, m o = ranko(V) ). 

Finally, by Corollary 6.9, any automorphism of  S as interior P-algebra is an 
inner one. 

7.3. Lemma. With the notation above, let N be a B-module and assume that 
the restriction of N through the structural homomorphism P ~ B *  is a projective 
C P-module. Then N is a projective B-module. 

Proof. Set M =  I n d , ( N )  and A = Inde~ clearly M is an A-module and the 
restriction of M through the structural homomorphism G ~ A* is a projective (_9 G- 
module. But it follows from [9], Th. 3.4 that there is a unique embedding ?: 
(9 Gb ~ A such that aT~ (B) = Rese ~ (?) o Y (cf. (7.2. I)). Consequently, c (b)" M is a 
projective (9 Gb-module (since it is a direct summand of M as (9 G-module) and 
therefore, Rese (c (b) "M) is a projective B-module; but, as c o e is a representative 
for aTe~ we have Rese(c(b) 'M)= Rescoe (M)-  N as B-modules. 

7.4. Lemma. With the notation above, let N be a projective indecomposable 
B-module and assume that all the simple factors of a Jordan-H6lder sequence of 
~ ( ~ N  are isomorphic. Then ~ ( B )  = {3} and ranko(B) = m0 rank~(N ). 

Proof Let 6 be the point of  B such that N ~ B i  where ie6; i f j  is a primitive 
idempotent of B, we have jBi ~= {0} if and only if Bj ~- Bi as B-modules (since 
jBi ~- Homn (Bj, Bi)); hence, i ff is  an idempotent of  B with multiplicity m0 on 6 and 
zero everywhere else (cf. (2.2.1)), we have (1 - f ) B f =  {0}; but identifying B with 
its image through e, we get (1 - f ) ( 9  Gf= (1 - f ) B f =  {0} and therefore, we have 
also {0} = f ( g G ( 1 - f ) = f B ( 1 - f )  since the Cartan matrix is symmetric (cf. 
(2.15.1) and (2.15.2)); consequently, f belongs to ZB and as ZB c B e, we get f =  1 
(cf. 2.20). So, ~ ( B ) =  {3} and r anko(B)=  m~ ranke(N)(cf .  (2.2.1)). 

7.5. Henceforth we prove the main theorem. Assume first that (1.6.2) holds. 
Then, as rank~ (B)/f P I = lEG (Pr)I mod (p) (cf. [12], Prop. 14.6), p does not divide 
ranks(S) (cf. [12], 14.5) and the uniqueness of  S follows now from Corollary 6.9. 
As P stabilizes by conjugation an C-basis of  (9 G and B is a direct summand of 6 6 
as (9 P-module, P stabilizes by conjugation an C-basis o fB  (cf. [12], (2.8.5)); but we 
have B ~ SP = @ Su and therefore S is still a direct summand orB as (9 P-module; 

lt~P 
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so, P stabilizes an C-basis W of S (cf. [12], (2.8.5)). In particular, (1.6.1) follows 
now from Proposition 6.10 and [11], Cor. 3.6 applied to P~. Moreover, the set 
{wu}w~ve.,,~p is a P-stable C-basis of  SP and therefore (cf. [12], (2.8.4)), 

d im,(B(P))  = I W n  SPJ IZPr 

which implies that (cf. [12], (2.8.4) and (14.5.1)) 

W ~  S P = {w} and S(P)  = Y.Brp(w); 

in particular, if 1 = ~ 2w, w' where 2,~.,~r then 2w~C* and therefore we may 
w,~w 

replace w by the unity, getting a P-stable C-basis of S which contains the unity as 
the unique P-fixed element. 

7.6. From now on we assume that (1.6.1) holds. Then, by Theorem 3.8, G~ is 
locally controlled by Pr and in particular, [E a (P~)I = 1. If  I is a decomposition 
of the unity in B (cf. 2.2) then B = O B i  and for any i~L Bi becomes a projective 

i 6 l  

0P-module by left multiplication (since it is a direct summand of CG as (gP- 
modules), whence IPF divides rankr Hence, as ranke(B)/rPI = 1 rood(p), 
there is @ ~ ( B )  such that p does not divide m6 (cf. (2.2.1)). So, assuming 
that (9 = Y it follows from Proposition 7.2 that B~-B(c~)@s  In general, 

it is quite clear that the respective images g = {b-} and ~7 of  c~ and 7 in ,(G 
are respectively points of  G and P on ~r G, that P~ is a defect pointed group of  G~, 
that I | g: Y (~)B-~ Rese G (~ Gb) is an embedded algebra associated with P~ (as a 

pointed group on [G6)  and that G~ is locally controlled by P~ (cf. (2.13.1)). 
Consequently, arguing as above, it follows from Proposition 7.2 that there is an 
interior P-algebra isomorphism 

(7.6.1) ~ ( ~ B  --- S ( ~ , ~ P  

where ~ =  B(6). Notice that (7.6.1) implies already that (1.9.1) and therefore 
(1.9.2) and (1.9.3) hold (cf. [9], Cor. 3.5); in particular (cf. [9], Def. 2.5), 

(7.6.2) we have I r r t ( G , b ) =  {~0} and p does not divide ~o(i) where i=  e(1). 

7.7. With the notation above, assume that: 

(7.7.1) There is an C-simple interior P-algebra S which has a P-stable (9-basis W 
and fulfills t((~) S ~- S as interior P-algebras. 

Then we claim that B _~ SP as interior P-algebras, proving (1.6.2). Indeed, by 
(2.7.1) and (7.6.1) we have SP - ~ (~)B, and the set {WU}w~W,~e is an C-basis of  

0 
SP stable by both left and right P-multiplication; so, the isomorphism B ~- SP 
follows from the Lemma below applied to the interior P-algebra SP. 

7.8. Lemma. With the notation above, let B' be an interior P-algebra having an 
Ecbasis W'  stable by both left and right P-multiplication. I f  ~ ( ~ B  ~ ~ ( ~ B '  
then B ~ B' as interior P-algebras. ~ 
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Proof. Set B = , ( @ B  and B ' = Y @ B ' .  It is clear that the set 
0 d~ 

{x | w' | is an (9-basis of  IndeG(B ') stable by both left and right 
P-multiplication; consequently, IndeG(B') p maps onto Ind~(B') e and therefore, 
Ind~(B') ~ maps onto Ind~(B') G too (since Ind~(B' )~  Thus, if 
B ~ B' then the embedding 

~eGb- ~ Ind , (B)  -~ Inde~(/~'), 

obtained from the unique embedding 6: C G b ~ I n d ~ ( B )  fulfilling aTg(B) 
= Rest (6)og (cf. 7.2.1 and [9], Th. 3.4), can be lifted to an embedding 

f'. (gGb --* Inde~(B ') 

since the primitive idempotent T=f (b )  of Inde ~ (B,)G can be lifted to a primitive 
idempotent i of Ind~ (B') G (and we se t f (xb)  = x, i for any x e G); in that case, the 
idempotentsf(e(1))  and 1 | 1 | 1 ofInd~ (B') e are both primitive and conjugate 
(since the respective images in Ind~(/~') ~" are so) and therefore, the embedded 
algebras 

Res~(j z)oe: B ~  Res~Inde~(B ') and aTg(B'): B ' ~  Res~IndeG(B ') 

are associated with the same point of P on Ind~ (B'), whence B ~ B' as interior 
P-algebras (cf. [11], 1.6). 

7.9. If we assume that the characteristic of  (9 is the same as Y, there is a ring 
homomorphism ~ --* (9 which is a section of the canonical map (9 ~ ~f (cf. [15], Ch. 

II, w Th. 2), and therefore we have ~e (~) ((9 ( r  S') -" S; so, in this case condition 

(7.7.1) is fulfilled setting S = (9 @ g, and (1.6.2) follows from 7.7. But even when C 

is of  characteristic zero, since the isomorphism (7.6.1) implies that P stabilizes a ~f- 
basis of  S(cf. 7.5), it is not excluded that condition (7.7.1) could be proved directly: 
for instance, i fP  is abelian, condition (7.7.1) follows from Dade's classification of 
endo-permutation modules over abelian p-groups (cf. [4], p. 318). Anyway it 
suffices now to prove (1.6.2) in characteristic zero. 

7.10. Henceforth we assume that (9 is of  characteristic zero and denote by ~ its 
quotient field. As p does not divide dim~(B/J(B))  (cf. (7.6.1)), there is an 
absolutely irreducible character X of G associated with b such that p does not 
divide X (i) where i = e (1) e 7 (cf. (2.14.1 ) and (7.6.2)). First of  all we claim that (cf. 
2.15): 

(7.10.1) For any local pointed element uo on (gGb we have IxO(u)l = 1. 

Indeed, we may assume that u6sP~ and as (1.9.3) holds (cf. (7.6.1)), we get 
X (ui) = m$ X ~ (u) (cf. [9], Th. 4.3); but it is clear that X (ui) = X ( i )mod J((9) which 
implies X (ui) ~ (9 * (since X (i) r J((9)); consequently, X ~ (u) e (9 * and in particular, 
we get 

(7.10.2) 1 < I-I IxOl~)(u)l 2 
uEP 
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where ~ B ( < u > ) =  {@(u)} for any ueP, since this product is a strictly positive 
rational integer (cf. [5], Ch. V, Th. 13.1). On the other hand, as ,( is algebraically 
closed and (1.9.2) holds, the generalized Cartan integers c (u~, v,) (cf. (2.15.1)) can 
be computed from (7.6.1) (cf. (2.15.2)), and assuming that uoeP~ we get 
c(u~,v~) = I Cp(u)l fiu~,vo by (5.6.1) and Corollary 5.8; consequently, it is easily 
checked from (1.9.3), (2.15.3) and (3.8.2) that 

1 
(7.10.3) I = 0f, X)G -- ~p~ ~ I,~")(u)l 2. 

u~P 

Statement (7.10.1) follows now from the well-known theorem about the 
arithmetical and geometrical means (this argument was already employed in the 
proof of Lemma 3.8 in [3]). 

7.11. Now it suffices to prove that, for a suitable choice of Z, there is an 
(gGb-module M such that Z is afforded by 9g@M. Indeed, by (7.6.2) and 

@ 

(7.10.1) we have Z (s) = ~0 (s) for any p'-element s of G (cf. [9], Cor. 4.4) and there- 
fore, ~e@M is a simple ~fGb-module (cf. [16], w consequently, ~r maps 

/ N 

onto End~ (A @ M ) a n d  therefore, (gGb maps onto End~(M)by  Nakayama's  
\ ly / 

Lemma; then S -- End~ (i. M)  is an (9-simple factor of  B of  (9-rank prime to p (cf. 
(7.6.2)), and Proposition 7.2 applies. 

7.12. Let oU' and ~ "  be respectively the extensions o f ~  generated by the groups 
of p- and ]G ]p-roots of unity, and denote by (9' and (_9" the corresponding valuation 
rings. As ,( is still the residue field of (9' and (9", it is quite clear (cf. (2.13.1)) that 

= {b} is still a point of  G on (9' G and (9" G, that we have 7 c Y' ~ ?" where Y' and 
7" are respectively points of  P on (9' G and (9" G, that P~, and P~,, are respectively 
defect pointed groups of G, on (9'G and (9" G, that Y: B---*Res~((gGb) induces 
embedded algebras 

(9'@B~Res~((9'Gb) and (9"@B~Res~((9"Gb) 

associated respectively with P~, and P~,, (as pointed groups on (9' Gb and (9" Gb), 
and that G, is locally controlled by P~, and P~,,. 

7.13. As ~e is algebraically closed, X contains already the group of roots of  unity 
of order prime top (cf. [16], Ch. II, w Prop. 8), and therefore oul" is a splitting field 
for G (cf. [5], Ch. V, Th. 9.11); hence, there is an (9" Gb-module M" such tha tx  is 
afforded by o U " @  M". It follows now from 7.11 and Proposition 7.2 applied to 

", G and b that there is an (9"-simple interior P-algebra S" such that 
(c ,, @ B ~ S" @ (_9" P as interior P-algebras, and we may assume that, denoting 

by Q": p ~ (S")* the structural homomorphism, we have det(@" (u))= 1 for any 
uep (cf. (2.7.1) and 6.2). So, paragraphs 1.10 to 1.13 apply to (9", G and b; in 
particular, we have a bijection from Irr,, ,  (G, b) onto Irr,, ,  (P) induced by (1.12.1 ) 
and it is quite clear (cf. (1.12.3)) we may assume that our choice ofz  corresponds to 
the trivial character of  P (i. e. to 2 = 1). In this case, by (1.13.1 ) all the values of;( lie 
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in ~ (actually in (9) and it suffices to prove that the Schur index sx-(Z) ofx  over 
is one (cf. 7.11 and [5], Ch. V, Th. 14.13). 

7.14. First of  all we claim that sx, 00 = 1. Indeed, it is clear that dim~, (~ff") is a 
power o f p  and therefore, sx, (Z) is a power o fp  too (cf. [5], Ch. V, Th. 14.11); but 
Brauer's decomposition homomorphism L~c,(G)-~L~(G) being surjective (cf. 
(2.14.1)), there is X'~ I rrx,  (G, b) mapping on a linear character 2' of  P such that 
2 ' (P)  c ~r and fulfilling s~ , (Z ' )=  1; that is, Z' still belongs to Irr#,(G, b) and 
therefore there is an (9' Gb-module M'  such that X' is afforded by JU' (~) M'. As 

X' (s) = ~0 (s) for any p'-element s of  G (cf. (1.13.1)), it follows again from 7.11 and 
Proposition 7.2 now applied to (9', G and b that there is an (9'-simple interior 
P-algebra S' such that (9' (~)B -~ S' (~) (9' P as interior P-algebras, and we may 

assume again that, denoting by ~': P ~ (S')* the structural homomorphism, we 
have det (Q' (u)) = 1 for any u~P (cf. (2.7.1) and 6.2). Hence, paragraphs 1.10 to 
1.13 still apply to (9', G and b and in particular, Z has to be the inverse image of  the 
trivial character of  P by the bijection from Irrx, (G, b) onto Irrx, (P) induced by 
(1.12.1) (cf. (1.13.1)), proving sjc,(Z) = 1. 

7.15. Finally we claim that sx(z)  = 1. Indeed, on one hand sjc(Z) divides now 
dim# (o~ff') (cf. [5], Ch. V, Th. 14.11). On the other hand, if 2 ~ Irrx, (P) - {1 } then 

(P) generates o~ff' over J~ff (since, if the image of  u ~ P by the representation map is 
an element of  orderp of  the center of the image of  P, 2 (u)/2 (1) is a primitive p-root 
of  unity), and therefore any orbit of  Gal (sC', J~ff) over Irr~r, (G, b) - {Z} is regular 
(cf. (1.13.1)). Consequently, the surjectivity of Brauer's decomposition homomor- 
phism L~c(G)~L~(G)  (cf. (2.14.1)) forces sx(z)  to be one (cf. [5], Ch. V, Th. 
14.13). 
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