Table 5. Comparison of some kinetic and thermodynamic parameters for $[Fe(5-Brphen)_{3}]^{2+}$, $[Fe(5-Brphch.)_{3}]^{3+}$ and 5-Brphen with those for other substituted 1,10-phenanthrolines and their iron(II) and iron(III) tris-complexes

Thermodynamic				Kinetic lron(II)			lron(III)	
Ligand	Ligand pK_a	Complex $\log \beta_3$	$[Fe(LL)3]2+/3+$	$10^4 k_{\text{aq}} (308.2)^{\text{g}}$ $0.54 M H_2SO_4$	k_{OH} – (298 K) ^h) $I = 0.243 M$ (NaOH/NaCl)	k_{CN} (308.2) ⁱ) $I = 0.5 M (KCN/KCl)$	$10^4 k_{\text{ag}} (307.5 \text{ K})^{\text{j}}$ 1.09 M H ₂ SO ₄	
$5-\text{NO}_2$ phen	3.57^{a}	17.8^{a}	1.25^{e}	23	0.094	0.51	200	
5-Clphen	4.26^{a}	19.7^{a}	1.12^{e}	12	0.052	0.10	22	
5-Brphen	4.20^{k}		1.12^{e}	8.6	0.057	0.11	6.4	
phen	4.96^{a}	$21.2^{\rm c}$	1.06^{e}	3.8	0.011	0.034	1.2	
4,7-Me ₂ phen 5.94 ^{b)}		23.1^{d}	0.87^{\dagger}	1.1	0.007	ca. 0.006	0.13	

a) Ref. 21(b) ref. 22; c) ref. 23; d) ref. 24; e) ref. 25; f) ref. 26; g) see⁻¹, ref. 13; h) mol dm⁻³s⁻¹, ref. 16; i) mol dm⁻³s⁻¹, ref. 17; i) s⁻¹, ref. 6 ; k) ref. 27.

(4) See pp. 51 and 78 of ref. 3.

- (5) F. P. Dwyer and E. C. Gyarfas, J. Am. Chem. Soc., 74, 4699 (1952); J. E. Dickens, F. Basolo and H. M. Neumann, ibid., 79, 1286 (1957).
- (6) J. Burgess and R. I. Haines, J. Inorg. Nucl. Chem., 39, 1705 $(1977).$
- (7) E. R. Gardner, F. M. Mekhail, and J. Burgess, Internat. J. Chem. Kinetics, 6, 133 (1974)
- (8) T. S. Lee, I. M. Kolthoff and D. L. Leussing, J. Am. Chem. Soc., 70, 2348, 3596 (1948)
- (9) L. Seiden, F. Basolo and H. M. Neumann, J. Am. Chem. Soc., 81, 3809 (1959).
- (10) J. Burgess and R. H. Prince, J. Chem. Soc., 6061 (1965).
- (11) J. Burgess and M. V. Twigg, Transition Met. Chem., 3, 88 $(1978).$
- (12) V. V. S. E. Dutt and H. A. Mottola, Analyt. Chem., 49, 319 $(1977).$
- (13) J. Burgess and R. H. Prince, J. Chem. Soc., 5752 (1963).
- (14) M. J. Blandamer and J. Burgess, Chem. Soc. Rev., 4, 55 (1975).
- (15) D. W. Margerum and L. P. Morgenthaler, J. Am. Chem. Soc., 84, 706 (1962).
- (16) J. Burgess and R. H. Prince, J. Chem. Soc., 4697 (1965).
- (17) J. Burgess, Inorg. Chim. Acta, 5, 133 (1971).
- (18) R. D. Gillard, Inorg. Chim. Acta, 11, L21 (1974); Coord. Chem. Rev., 16, 67 (1975).
- (19) J. E. Dickens, F. Basolo and H. M. Neumann, J. Am. Chem. Soc., 79, 1286 (1957).
- (20) R. D. Gillard, L. A. P. Kane-Maguire and P. A. Williams, J. Chem. Soc. Dalton Trans., 1792 (1977).
- (21) C. J. Hawkins, H. Duewell and W. F. Pickering, Analyt. Chim. Acta, 25, 257 (1961).
- (22) M. Yasada, K. Sone, and K. Yamasaki, J. Phys. Chem., 60, 1667 (1956)
- (23) H. Irving and D. H. Mellor, J. Chem. Soc., 1962, 5222.
- (24) D. A. Brisbin and W. A. E. McBryde, Can. J. Chem., 41, 1132 (1963)
- (25) In $1F H_2SO_4$, see p. 42 of ref. 3.
- (26) A. I. Vogel, Quantitative Inorganic Analysis, 3rd Edit., Longmans, London, 1961, p. 101.
- (27) C. V. Banks and R. I. Bystroff, J. Am. Chem. Soc., 81, 6153 $(1959).$

TMC 77/138

Some Complexes of Rhodium and Iridium with 2-(Di-t-butylphosphinomethyl)-1-methoxy-4-methylbenzene*

H. David Empsall, Peter N. Heys, and Bernard L. Shaw**

Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT, U.K.

(Received January 5th, 1978)

Summary

The new tertiary phosphine

t-Bu₂ (2-MeO-5-MeC₆H₃CH₂)P, L, was prepared by the base treatment of the phosphonium salt, LHTT, which was in turn

prepared from t-Bu₂PH, 2-MeO-5-MeC₆H₃CH₂Cl and sodium iodide. This phosphine, L, reacts with various chloro-rhodium and -iridium species without O-demethylation. This contrasts with the behaviour of t-Bu₂PC₆H₄OMe-2 which demethylates readily on similar treatment to give chelate complexes. The completely different behaviour between this new 2-methoxybenzylphosphine, L, and the 2-anisylphosphine, t-Bu₂PC₆H₄OMe-2, is explained in terms of steric effects.

No reprints are available.

^{**} To whom all correspondence should be addressed.

H. D. Empsall, P. N. Heys and B. L. Shaw

Introduction

We have shown that tertiary 2-anisylphosphines generate some unusual chemistry when reacted with platinum metal salts. This is especially so when the other groups on phosphorus are bulky, e.g. t-Bu or Ph. Thus with phosphines such as 2-MeOC₆H₄PR₂^(1, 2), 2,6-(MeO)₂C₆H₃PR₂ or 2,3-(MeO)₂C₆H₃PR₂⁽³⁾ (R = t-Bu or Ph), O-metallation (with loss of the methyl group) commonly occurs to give a chelate ring of type (1) $(M = metal)$,

but in nonpolar solvents C-metallation can occur preferentially to give a six-membered chelate ring of type $(2)^{(1)}$. Using chelate rings of type (1) we have stabilized unusual valency states such as iridium(II)⁽²⁾ and rhodium(II)⁽⁴⁾, (the iridium(II) complexes take up dioxygen reversibly) and also stabilized five-coordinate iridium(III) hydrides which showed some unusual properties^(2, 3). It therefore seemed of interest to study the behaviour of an analogous 2-methoxybenzylphosphine towards platinum metals. If a similar demethylation occurred then a six-membered chelate ring would form.

Results and Discussion

We chose to study the new tertiary phosphine 2-(di-t-butyl-phosphinomethyl)-1-methoxy-4-methylbenzene $L(3)$ which we readily prepared by treating the known 2-chloromethyl-1-methoxy-4-methylbenzene with di-t-butylphosphine and sodium iodide and subsequent treatment of the resultant phosphonium iodide with base (see Experimental and Table 1 for characterizing data).

We have shown previously that di-t-butyl-2-methoxyphenylphosphine does not react readily with rhodium trichloride in propan-2-ol (or ethanol) at room temperature and when the mixture is heated demethylation occurs to give the P- and O-bonded chelate complex $\hat{R}h(t-Bu_2P_{C_6}H_4O_2)^{(4)}$. In contrast, the new ligand, $L(3)$, reacts readily with an ethanolic solution of rhodium trichloride to give an emerald green crystalline material which we formulate as the rhodium(II) species trans-RhCl₂L₂. The ¹H n.m.r. spectrum of this complex in deuteriochloroform is very broad, in agreement with its being paramagnetic and the microanalytical and molecular weight data (Table 2) are in agreement with the formulation. A band (at 349 cm⁻¹) with a shoulder (at 342 cm⁻¹) is assignable to $\nu(Rh-Cl)$: this band is very strong and at a value typical of a trans-Cl-Rh-Cl moiety. The electronic absorption spectrum of this green complex in benzene solution shows λ_{max} values at 587 and 321 nm with ϵ = 286 and 8090 1 mol^{-1} cm⁻¹, respectively. When a propan-2-ol solution of rhodium trichloride was heated under reflux for 2 h with L

Ń

Complex	Yield	Colour	M.p. (ຶ)	Found Calcd.)%			M.W.
	(%)				н	Hal	
<i>trans</i> -RhCl ₂ L ₂ ^{a)}	79	green	$201 - 107^{b}$	55.4(55.6)	7.95(7.95)	9.6(9.65)	710(734)
RhHCl ₂ L ₂	72	green	$183 - 189b$	55.35(55.5)	8.05(8.1)	9.5(9.65)	
trans-RhCl(CO) L_2	75	yellow	$218 - 221$	56.8(56.8)	8.1(8.05)	5.25(4.9)	
$Rh2Cl2(CO)2L2$	63	yellow	$214 - 216$	47.85(48.4)	6.45(6.55)	7.95(8.15)	857(894)
1rH ₂ ClL ₂	68	orange	$190 - 194^{b}$	51.1(51.65)	7.5(7.5)	4.6(4.5)	817(790)
IrH ₂ Cl(CO)L ₂	82	white	$242 - 244^{b}$	50.95(51.35)	7.25(7.4)	4.3(4.35)	843(818)
IrH ₂ Cl(MeNC)L ₂	93	white	$190 - 192^{b}$	51.55(52.0)	7.7(7.65)		831(832)
<i>trans-IrCI(CO)</i> L_2	58	vellow	$246 - 249^{b}$	51.45(51.5)	7.45(7.15)	4.4(4.35)	801(816)

Table 2. Yield, colour, m.p., analytical and molecular weight data for the rhodium and iridium complexes

a) $L = t-Bu_2(2-MeO-5-MeC_6H_3CH_2)P_1^{(b)}$ Dec.

(4 mole per Rh atom) the green crystalline five-coordinate rhodium(III) hydride, $RhHCl₂L₂$ (4), was obtained. This formulation follows from the microanalytical data (Table 2) the $¹H$ n.m.r. spectrum, which shows a high field doublet</sup> of triplet hydride resonance at -29.8δ , ²J (PH) = 12.9, ¹J (RhH) = 31.6 Hz and a t-butyl triplet resonance showing mutually *trans-phosphorus* nuclei; the 31 p n.m.r, spectrum which shows a 1:1 doublet at 55.2 δ , ¹ J (RhP) = 95 Hz; and the i.r. spectrum, which shows a weak band due to $\nu(Rh-H)$ (at 1939 cm⁻¹), the remainder of the spectrum being virtually identical to that of *trans-RhCl2L2* discussed above. We could find no evidence of complexes in which demethylation had occurred which contrasts with the behaviour of $t-Bu_2PC_6H_4OMe-2$ which, as mentioned above reacts with rhodium trichloride to give the bis-chelate complex

 $\overline{Rh(t-Bu_2PC_6H_4O^{-2})_2}$ ⁽⁴⁾, possibly contaminated with a little \overline{R} hH(t-Bu₂PC₆H₄O-2)₂. When carbon monoxide was bubbled through a benzene solution of this red five-coordinate rhodium(III) hydride, $RhHCl₂L₂$ (4), the solution became pale yellow almost immediately and the pale yellow rhodium(1) complex, *trans-RhCl(CO)L2* was isolated readily from the solution. The ¹H n.m.r. spectrum shows a 'virtually coupled' $1:2:1$ triplet resonance at 1.48δ J(PH) = 12.7 Hz but the 31p n.m.r, spectrum at *ca.* 300 K shows a broad resonance at *ca.* 53 8, indicative of relatively slow rotation around the rhodium-phosphorus bonds since at 233 K a doublet resonance at $60.6 \delta^{-1} J(RhP) = 120$ Hz and an ABX pattern, $\delta_A = 39.75$, $\delta_B = 62.2$ p.p.m., 2 J_{AB} = 318, $\overline{1}$ J(RhP_A) = 120 Hz, $\overline{1}$ J(RhP_B) = 120 Hz with approximate intensity ratios of 1 : 1 indicates the presence of two rotamers (5), and either (6) or (7) ($M = Rh$). Strong interaction between the t-butyl groups and the chlorine or carbonyl ligands lead to high energy barriers to rotation⁽⁵⁾. One rotamer, (6) or (7), is for some reason present in only small (and undetected) amount.

When the phosphine, L, (2.2 mole equivalents per Rh atom) is added to a yellow solution of the binuclear chlorocarbonyl $Rh_2Cl_2(CO)_4$ and the mixture is heated under reflux for 1 h the *trans-RhCl(CO)L2* complex, described above, is not formed in significant quantities. Somewhat

surprisingly, only one phosphine per rhodium atom is taken up and the binuclear $Rh_2Cl_2(CO)_2L_2$ complex, with bridging chlorines, is formed. Presumably steric hindrance greatly reduces the rate of incorporation of a second mole of phosphine per rhodium atom. The microanalytical and molecular weight data (Table 2) shows the complex to be binuclear and in the $¹H$ n.m.r. spectrum the t-butyl hydrogens resonate</sup> as a doublet at 1.37 δ , $3J(PH) = 13.7$ Hz. The $31P$ n.m.r. spectrum shows a doublet resonance at 80.0δ with $J(RhP) = 174$ Hz.

When a suspension of iridium trichloride in propan-2-ol was heated with the ligand (4 mole equivalents per iridium atom) and the resultant green slurry heated under reflux, a dark orange solution formed over 2 days. From this solution a five-coordinate iridium(III) dihydride IrClH₂L₂ was isolated as orange crystals. The formulation follows from the microanalytical data (Table 2) and the i.r. and n.m.r, data (Table 1). The i.r. spectrum shows a band at 273 cm^{-1} due to $\nu(Ir\text{-}Cl)$ and a band at 2300 cm⁻¹ due to $\nu(Ir\text{-}H)$. The ¹H n.m.r. hydride resonance occurs at -32.6 δ , ²J(PH) = 13 Hz and the virtually coupled 1:2:1 triplet pattern of the t-butyl hydrogens (Table 1) indicates mutually *trans-phos*phines. In fact the ligand L behaves very similarly to t-Bu₂PPh towards iridium chloride and the complex IrH₂Cl(t-Bu₂PPh)₂ has very similar i.r. and n.m.r. parameters⁽⁶⁾. We thus formulate IrClH₂L₂ as the trigonal bipyramidal structure (8).

The somewhat less bulky phosphines t-Bu₂PR ($R = Me$, Et, n-Pr) with iridium trichtoride in propan-2-ol preferentially give 5-coordinate monohydrides $IrHCl₂(t-Bu₂PR)₂⁽⁷⁾$ and presumably the formation of dihydrides from t-Bu2PPh or L is a consequence of the greater steric bulk and therefore a greater relief of steric strain on replacing a second chlorine by hydrogen. As expected, IrH₂ClL₂ reacts rapidly with carbon monoxide to give the white complex $(9, Q = CO)$ in a very similar manner to $IrH₂Cl(t-Bu₂PPh)₂$. For this complex, the very low value of 254 cm⁻¹ for $\nu(\text{Ir-Cl})$ is indicative of CI *trans* to H and the two values of v(Ir-H) 2360 and 2135 cm⁻¹ and the value of $\nu(CO)$ at 1955 cm⁻¹ are in agreement with this structure. The hydride resonances in the ¹H n.m.r. spectra occur at -8.75 *(trans-CO)* and -20.85δ (trans-Cl) both doublets of triplets. Both the benzylic hydro-

gens and the t-butyl hydrogens resonate as 'virtually coupled' doublets of 1 : 2 : 1 triplets indicating mutually *trans* and strongly coupled phosphorus nuclei with no plane of symmetry through the phosphorus-iridium bonds. An analogous complex IrH₂Cl(MeNC) L_2 was prepared from methyl isocyanide and $IrH₂ClL₂$ and given an analogous configuration $(9, Q = MeNC)$.

We have reported previously that when t -Bu₂PC₆H₄OMe-2 is added to a solution prepared by passing carbon monoxide through a boiling 2-methoxyethanol solution of sodium chloroiridate demethylation occurs and the yellow iridium(l) complex $Ir(CO)(t-Bu₂PC₆H₄O)(t-Bu₂PC₆H₄OH-2)$ is formed which, in air, gives the blood-red iridium(ll) complex $\sqrt{\frac{I_r(t-Bu_2PC_6H_4O}{2}}$ and, subsequently, other complexes⁽⁸⁾. It was clearly therefore of interest to study the action of our new 2-methoxybenzylphosphine, L, on a similarly carbonylated solution of sodium chloroiridate. However, in this case demethylation did not occur and the pale yellow complex *trans-lrCl(CO)L2* was isolated readily. This formulation follows from the microanalytical, i.r. and ${}^{1}H$ n.m.r. data (Tables). The proton decoupled $31P$ n.m.r. spectrum at *ca.* 300 K shows a broad ill-defined resonance at *ca.* 45 6 whilst at 233 K an AB-pattern; $\delta_A = 50.0$, $\delta_B = 21.6$ p.p.m. $J(AB) = 307$ Hz, and a singlet resonance at 49.0 δ are observed in the approximate intensity ratios of 1 : 1. We suggest that as with the analogous rhodium complex the two conformers present are (5) and either (6) or (7) ($M = Ir$). Thus in no instance did we observe demethylation of the ligand t-Bu₂(2-MeO-5-MeC₆H₃CH₂)P, L, by rhodium or iridium although, as reported, demethylation was the commonly observed reaction with t-Bu₂PC₆H₄OMe-2. We offer the following explanation for this difference in behaviour. Whereas in the case of t -Bu₂PC₆H₄OMe-2 complexed to an OC-Ir-CI moiety, restricted rotation around the Ir-P and aryl-P bonds due to the bulky t-butyl groups will lead to a preferred conformation in which the ether oxygen is held in close proximity to the metal-chlorine bond, as shown in *(10)* this will not be the case with the ligand (L). The extra

methylene group between the arene ring and the phosphorus donor atom allows the 2-methoxyphenyl group to point away from the metal, as shown in *(11).* With t-Bu₂PC₀H₄OMe-2 therefore O-metallation with loss of methyl chloride relieves the steric strain and occurs readily but with the ligand (L) complex formation can and does occur without demethylation.

Experimental

The apparatus and general techniques used in this work were the same as in other recent publications from this laboratory $^{(2)}$.

$[t-Bu₂(2-MeO-5-MeC₆H₃CH₂)PH]⁺I$

A solution of t-Bu₂PH (6.75 g, 46 mmol) in Me₂CO (10 cm^3) was added to a mixture of Nal $(7.0 \text{ g}, 51 \text{ mmol})$ and 2-MeO-5-Me $C_6H_3CH_2Cl$ (7.9 g, 46 mmol) in Me₂CO (30 cm^3) at room temperature. The product precipitated as white microcrystals, m.p. $206-208^{\circ}$ (dec); precipitation was complete after 2 h. Yield 19.7 g, 45 mmol, 98% (Found: C, 49.75 ; H, 7.25 . C₁₇H₃₀IOP calcd.: C, 50.0 ; H, 7.4%).

t-Bu2(2-MeO-5-MeC6H3CH z)P (L)

A mixture of the above phosphonium salt (9.54 g, 23.4 mmol) in MeOH (20 cm³) and KOH (2.62 g, 46.8 mmol) in degassed H_2O (15 cm³) was shaken for 5 min. The product was extracted with $Et₂O$ under $N₂$ and isolated by distillation as a colourless liquid, b.p. $100-103^{\circ}/0.003$ mmHg. Yield 5.58 g, 19.8 mmol, 85%.

trans-RhCl2 L2

The ligand (0.72 g, 2.55 mmol) was added to a solution of hydrated rhodium trichloride (0.166 g, 0.64 mmol) in EtOH (20 cm^3) and the resultant mixture was shaken for 20 h. This gave the required product (0.37 g, 0.50 mmol, *79%)* as green prisms.

$RbHCl₂L₂$

The ligand (1.23 g, 4.37 mmol) was added to a solution of hydrated rhodium trichloride (0.285 g, 1.09 mmol) in $H₂O$ (1 cm^3) and propan-2-ol (10 cm^3) and the resultant red slurry heated under reflux for 2 h. The solution was then cooled to room temperature, giving the required product as green prisms (0.57 g, 0.78 mmol, 72%).

trans-RbCl(CO)L2

Carbon monoxide was bubbled through a solution of RhHCl₂L₂ (0.36 g, 0.49 mmol) in C₆H₆ (30 cm³). The solution, which rapidly became pale yellow, was then evaporated under reduced pressure to give the required product (0.27 g, 0.37 mmol, 75%) as yellow prisms from C_6H_6 : MeOH.

$Rb_2Cl_2(CO)_2L_2$

Carbon monoxide was bubbled through a solution of hydrated rhodium trichloridc (0.44 g, 1.68 mmol) in EtOH (10 cm^3) at 60 $^{\circ}$ for 3 h. The resultant pale yellow solution containing rhodium chlorocarbonyl was treated with the phosphine, L (1.03 g, 3.68 mmol) and the resultant mixture heated under reflux for 1 h, and then cooled to give the binuclear species (0.47 g, 0.52 mmol, 63%) as yellow prisms.

IrH2CIL2

The ligand, *L,* (1.07 g, 3.8 mmol) was added to a suspension of hydrated iridium trichloride (0.34 g, 0.94 mmol) in

QVerlag Chemic, GmbH, D-6940 Weinheim, 1978

propan-2-ol (10 cm^3). The resultant green slurry was heated under reflux for 50 h to give a dark orange solution from which the required product $(0.51 \text{ g}, 0.64 \text{ mmol}, 68\%)$ separated as orange prisms on cooling.

IrH2 CI(CO)L2

Carbon monoxide was bubbled through a solution of IrH₂ClL₂ (0.22 g, 0.28 mmol) in C₆H₆ (10 cm³) until it turned pale yellow *(ca.* 1 min). The required product was isolated by evaporation and recrystallization from C_6H_6 : MeOH. It formed white prisms (0.185 g, 0.23 mmol, 82%).

lrH2 CI (Me NC) L 2

Methyl isocyanide (0.09 g, 2.2 mmol) was added to a solution of $IrH₂Cl_{L₂}$ (0.176 g, 0.22 mmol) in $C₆H₆$ (10 cm³). The resultant colourless solution was evaporated under reduced pressure and the residue recrystallized from C_6H_6 : MeOH to give the required product (0.17 g, 0.21 mmol, 93%) as white prisms.

trans-lrCl(CO)L2

Carbon monoxide was bubbled through a refluxing solution of sodium chloroiridate $(0.70 g, 1.36 mmol)$ in 2-methoxyethanol (15 cm³) for 3 h. The resultant pale

yellow solution was cooled and the ligand, L, (0.84 g, 3.0 mmol) added. The resultant solution was then heated under reflux for 1 h and cooled to $ca. -15^\circ$ giving the required product (0.65 g, 0.79 mmol, 58%) as yellow plates.

Acknowledgements

We thank Johnson Matthey Ltd for the generous loan of rhodium trichloride and Imperial Chemical Industries Ltd for a Fellowship (to H.D.E.).

References

- (I) C. F. Jones, B. L. Shaw andB. L. Turtle, J. *Cbem Soc. Dalton Trans.,* 992 (1974).
- (2) H. D. Empsall, E. M. Hyde and B. L. Shaw, J. *Chem. Soc. Dalton Trans.,* 1690 (1975).
- (3) H. D. EmpsalI, P. N. Heys, W. S. McDonald, M. C. Norton and B. L. Shaw, *J. Chem. Soc. Dalton Trans.,* in press.
- (4) H. D. Empsall, E. M. Hyde, C. E. Jones and /3. L. Shaw, J. *Chem. Soc. Dalton Trans.,* 1980 (1974).
- (5) B. E. Mann, C. Masters, B. L. Shaw and R. E. Stainbank, J. *Cbem. Soc. Chem. Cornmun.,* 1103 (1971).
- (6) H. D. Empsall, E.M. Hyde, E. Mentzer, B. L. Shaw andM. F. Uttley, J. *Chem. Soc. Dalton Trans.,* 664 (1972).
- (7) C. Masters, B. L. Shaw and R. E. Stainbank, J. *Chem. Soc. Dalton Trans.* 664 (1972).
- (8) R. Mason, K. M. Thomas, H. D. Empsall, S. R. Fletcher, P. N. Heys, E. M. Hyde, C. E. Jones and B. L. Shaw, J. *Chem. Soe. Ct)ent. Commun.,* 612 (1974),

TMC 78/5

Zinc(lI), Cadmium(II) and Mercury(II) Halide Pyrrolidine-2-selone Complexes':

Francesco **A. Devillanova and Gaetano Verani****

Istituto Chimico Policattedra, Via Ospedale 72, 09100 Cagliari, Italy

(Received February 17th, 1978)

Summary

Reaction of zinc(ll), cadmium(ll) and mercury(II) halides with *pyrrolidine-2-selone* yields complexes of general formula ML_2X_2 (X = Cl, Br or I) which are monomeric, tetrahedral and Se-bonded to the metals. The comparison of their i.r.

spectra with the spectrum of the free ligand confirms that the band at 1005 cm⁻¹ in pyrrolidine-2-selone arises predominantly from the C=Se stretching vibration. The metalhalogen absorptions above 200 cm^{- I} are identified.

Introduction

Recently⁽¹⁾, we reported zinc(II), cadmium(II) and mercury(ll) halide complexes containing pyrrolidine-2-thione

This work was supported by the National Research Council (C.N.R.) of Italy.

^{**} Author to whom all correspondence should be directed.