Die Breite des 4 + (11, 4 MeV)-Zustandes von ⁸Be aus ⁷Li(d, n) 2α

G. HOFMANN* und D. KAMKE

Institut für Experimentalphysik der Ruhr-Universität Bochum

Eingegangen am 21. März 1969

The Width of the 4 + (11.4 MeV) Level of ⁸Be from ⁷Li (d, n) 2α

With the reaction ${}^{7}\text{Li}+d \rightarrow n+{}^{8}\text{Be} \rightarrow n+2\alpha$ the location and width of the ${}^{8}\text{Be}(4,+)$ level is redetermined. While the location at 11.4 ± 0.05 MeV is found in agreement with known values, the width is found to be only $\Gamma=2.8 \pm 0.2$ MeV thereby disagreeing with data from α - α -scattering but being close to a recent determination from the reaction ${}^{10}\text{B}(d, \alpha){}^{8}\text{Be}$ ($\Gamma=2.6$ MeV). — No indication for participation of an excited state of ${}^{5}\text{He}$ in the simultaneously possible reaction via ${}^{5}\text{He}$ is found.

1. Einleitung

Über die Breite des bei 11,4 MeV gelegenen zweiten angeregten Zustandes von ⁸Be liegen folgende Angaben vor:

1. In der Zusammenstellung von LAURITSEN und AJZENBERG-SELOVE¹ wird auf Grund von α - α -Streudaten und auf Grund der Messungen an Kernreaktionen eine Breite von etwa 7 MeV angegeben.

2. Eine neuere Analyse der α - α -Streudaten von KERMODE² resultiert in einer Halbwertsbreite von $\Gamma \sim 4,3$ MeV.

3. Koinzidenzmessungen von CAVAIGNAC⁴ an der Reaktion ¹⁰B(d, α) ⁸Be ergeben eine Breite von $\Gamma \sim 4$ MeV, und eine Messung der Reaktion ⁹Be (³He, α)⁸Be von CADEAU et al.³ ergibt eine Breite von $\Gamma \sim 2,6$ MeV.

Es ist daher wünschenswert, mit einer weiteren Reaktion die Daten des 2. angeregten Zustandes von ⁸Be zu messen.

^{*} Jetzt Deutsches Elektronen-Synchrotron DESY, Hamburg.

^{1.} LAURITSEN, T., and F. AJZENBERG-SELOVE: Nucl. Phys. 78, 1 (1966).

^{2.} KERMODE, M. W.: Phys. Letters 25 B 183 (1967).

^{3.} CADEAU, M., D. DIDIER, B. DUCHEMIN, J. P. LAUGIER, G. MOUILHAYRAT, F. PERRAULT, J. SUDAROVICH, et P. THOUVENIN: NUOVO Cimento 50B 161 (1967).

^{4.} CAVAIGNAC, J. F.: Thèse, Grenoble 1967.

2. Die Reaktion

Zur Bestimmung der Niveaubreite wurde die Reaktion

$$^{7}\text{Li} + d \rightarrow n + ^{8}\text{Be} \rightarrow n + \alpha + \alpha$$

herangezogen. Dieser Zerfall ist hinsichtlich des gestellten Problems geeignet, da das Teilchen der ersten Reaktionsstufe, das Neutron, sich bezüglich der Ladung und der Masse von den Reaktionsprodukten der zweiten Zerfallstufe, den Alphateilchen, unterscheidet. Dadurch wird die Möglichkeit der Fehlinterpretation durch "Geister" ausgeschlossen, die bei gleichen Reaktionsproduktionen auftreten können⁵. Das (4+)-Niveau von ⁸Be wird durch diese Reaktion erreicht, da verschiedene Autoren^{6, 7} die entsprechenden Neutronengruppen nachweisen, und auch die Winkelverteilung der Neutronen für einige Energien gemessen wurde⁸.

Der Zwischenkern ⁸Be wird teilweise durch direkte Reaktion mit l=1 erreicht^{9, 10}. Wird der Compoundkern ⁹Be erzeugt, so kann die Reaktion wie folgt ablaufen:

$$Li + d \rightarrow {}^{9}Be^{*}$$

$${}^{9}Be^{*} \rightarrow \alpha_{11} + {}^{5}He \qquad Q_{0} = +14,164 \text{ MeV}$$

$${}^{5}He \rightarrow \alpha_{12} + n \qquad Q_{1} = + 0,958 \text{ MeV} \qquad (1)$$

$${}^{\prime}\text{Be}^{*} \rightarrow n + {}^{*}\text{Be} \qquad Q_{0} = +15,028 \text{ MeV} \\ {}^{*}\text{Be} \rightarrow \alpha_{21} + \alpha_{22} \qquad Q_{1} = + 0,094 \text{ MeV}$$
(2)

$${}^{9}\text{Be}^* \rightarrow n + \alpha_1 + \alpha_2 \qquad \qquad Q_0 = +15,122 \text{ MeV}$$
(3)

Der hier besonders interessierenden Reaktion (2) überlagern sich die Ausgangskanäle (1) (Kaskadenzerfall über ⁵He) und (3) (direkter Dreiteilchenzerfall), die auch jeweils ein Neutron und zwei Alphateilchen im Endzustand aufweisen.

Ein Einzelspektrum kann daher folgende Teilchengruppen enthalten:

- a) Teilchen aus dem Kaskadenzerfall über ⁵He
 - aa im Grundzustand,
 - ab in einem angeregten Zustand.

^{5.} BARKER, F. C., and P. B. TREACY: Nucl. Phys. 38, 33 (1962).

^{6.} JUNA, J., P. HORVÁTH, and K. KONEČNÝ: Czech. J. Phys. 10, 715 (1960).

^{7.} WHITEHEAD, W. D.: Phys. Rev. 79, 393 (1950).

JUNA, J., and K. KONEČNÝ: Proceedings of the Conference on Nuclear Reactions, Rossendorf, 1966, S. 195.

^{9.} TRUMPY, B., T. GROTDAL, and A. GRAUE: Nature (Lond.) 170, 1118 (1952).

^{10.} KERR, R. G.: Bull. Am. Phys. Soc. 12, 33 (1967).

Fig. 1. Rechtwinkliges Dalitz-Diagramm der Reaktion $^{7}\text{Li} + d \rightarrow \alpha + \alpha + n$. Die Linien des $p_{1/2}$ -Zustandes in ⁵He sind für eine Anregungsenergie von $E_{\text{exc}} = 5$ MeV berechnet

- b) Teilchen aus dem Kaskadenzerfall über ⁸Be im
 - ba Grundzustand (0+),
 - bb ersten angeregten Zustand (2+),
 - bc zweiten angeregten Zustand (4+),
 - bd 16,63 MeV Zustand, und in höheren Zuständen.
- c) Teilchen aus dem Dreiteilchenzerfall.

Die Reaktionen (1)–(3) wurden schon verschiedentlich mit Hilfe von Koinzidenzmessungen untersucht^{11–16}. In diesem Experiment werden α - α -Koinzidenzen mit Oberflächensperrschichtzählern registriert.

Fig. 1 zeigt ein rechtwinkeliges Dalitz-Diagramm der Reaktion ${}^{7}\text{Li}+d \rightarrow n+\alpha+\alpha$. Die Linien des Kaskadenzerfalls über den Grund-

- 11. VALKOVIC, V., W. R. JACKSON, Y. S. CHEN, S. T. EMERSON, and G. C. PHILLIPS: Nucl. Phys. A 96, 241 (1967).
- 12. MILONE, C., and R. POTENZA: Nucl. Phys. 84, 25 (1966).
- 13. ASSIMAKOPOULOS, P. A., N. H. GANGAS, and S. KOSSIONIDES: Nucl. Phys. 81, 305 (1966).
- 14. ASSIMAKOPOULOS, P. A., N. H. GANGAS, S. KOSSIONIDES, and N. DEMOCRITUS: Phys. Letters 19, 316 (1965).
- 15. JONES, C. M., J. K. BAIR, C. H. JOHNSON, H. B. WILLARD, and M. REEVES: Rev. Mod. Phys. 37, 437 (1965).
- 16. JEREMIE, H., PH. MARTIN, and A. CALAMAND: Nucl. Phys. A105, 689 (1967).

449

zustand von ⁵He und angeregten Zustand (5 MeV) und über den Grundzustand (0+) und die angeregten Zustände (2+ und 4+) von ⁸Be sind für eine Einschußenergie $E_d=1,2$ MeV berechnet. ε sind reduzierte Energien im Schwerpunktsystem (SS). Sie sind definiert durch e/e_{max} , wobei e_{max} gleich der maximalen kinetischen Energie eines Teilchens ist, die es erhält, wenn die beiden anderen sich mit gleicher Geschwindigkeit und entgegengesetzt zum betrachteten Teilchen bewegen.

Koinzidenzen aus dem (4+)-Niveau in ⁸Be sind für eine Zählerstellung von ϑ_{12} um 160° im Schwerpunktsystem (SS) zu erwarten. In diesem Gebiet verhalten sich die anderen Ausgangskanäle folgendermaßen:

- *aa* Die Koinzidenzen, die dem Grundzustand von ⁵He entsprechen, können nur für Winkelstellungen $\vartheta_{12} > 170^{\circ}$ registriert werden.
- *ab* Ein angeregter (p 1/2)-Zustand in ⁵He wird zwischen 2 und 5 MeV vermutet ^{1, 13, 14, 17}. Ein Zerfall über dieses Niveau läßt 4 Orte erhöhter Koinzidenzrate erwarten. Für eine Winkelstellung von $\vartheta_{12} = 160^{\circ}$ und eine Anregungsenergie von 5 MeV sind diese Punkte in Fig. 1 mit den Buchstaben *a*, *b*, *c* und *d* gekennzeichnet.
- ba Der Grundzustand von ⁸Be ist für $\vartheta_{12} = 160^{\circ}$ kinematisch nicht erreichbar.
- bb Der Beitrag des (2+)-Niveaus liegt im niederenergetischen Teil des Spektrums und wird durch Schwellendiskriminatoren abgeschnitten.
- bc Die Messungen wurden bei Einschußenergie $E_d < 2$ MeV durchgeführt, bei der keine Niveaus über 16 MeV in ⁸Be angeregt werden können.
 - c Messungen bei einem Schwerpunktswinkel $\vartheta_{12} = 135^{\circ}$ (s. Fig. 1) ergeben den Anteil des Dreiteilchenzerfalls mit statistischem Spektrum, der dann rechnerisch berücksichtigt werden kann.

3. Experimenteller Aufbau

Die Deuteronen wurden von einem 4 MeV van de Graaff-Beschleuniger (HVEC^{*}) mit einer Energieunschärfe von $\Delta E/E < 0.4\%$ und einer Stromstärke von maximal 100 nA geliefert. Der Brennfleck auf dem Target hatte eine Fläche von 2 mm². Die Targetkammer ist in¹⁸ beschrieben. Die Zählerhalterungen sind an zwei großen Aluminiumdeckeln montiert, die um eine horizontale Achse, die senkrecht zum

^{*} Physikalisches Institut der Universität Marburg.

^{17.} FESSENDEN, P., and D. R. MAXSON: Phys. Rev. 133, B71 (1964).

^{18.} DEHNHARD, D., and P. KRAMER: Nucl. Instr. Methods 26, 337 (1964).

Strahl steht, um 360° drehbar sind. Die Oberflächensperrschichtzähler (ORTEC, 6 k $\Omega \cdot$ cm, 400 µm empfindliche Schichtdicke bei einer angelegten Spannung von 140 V) liegen in einer Ebene, die den Strahl enthält. Die Winkelungenauigkeit wurde durch runde Blenden auf ±1° beschränkt. Die energieproportionalen Impulse wurden verstärkt und in Koinzidenz von einem zweiparametrigen Impulshöhenanalysator (TMC 64 × 64 Kanäle) bei einer Koinzidenzauflösezeit von $2\tau = 50$ ns analysiert. Das Target, auf Kohlenstoff-Folie aufgedampftes ⁷Li (99,99%) hatte insgesamt eine Dicke von 0,2 MeV für 4 MeV Alphateilchen (erhalten aus der Linienverschiebung einer α-Quelle).

4. Experimentelle Ergebnisse

Die Messungen wurden bei $E_d = 0.98$; 1,2; 1,4 und 1,6 MeV durchgeführt. Fig. 2 zeigt ein typisches Spektrum bei $E_d = 1,2$ MeV bei einer Zählerstellung von $\theta = 70^{\circ}$.

Für die Koinzidenzmessungen wurden die elastischen Streulinien ${}^{12}C$ $(d, d){}^{12}C$ durch Schwellendiskriminatoren abgeschnitten. Daher konnten auch keine Koinzidenzen aus dem ersten angeregten Niveau in ⁸Be gemessen werden.

Es wurden aus Gründen der vereinfachten Auswertung symmetrische Zählerstellungen bevorzugt mit $\vartheta_{12} = 160^\circ$. Dann hat man noch zwei Möglichkeiten der Zähleraufstellung im Laborsystem: Aufstellung der Zähler in Rückwärts- oder Vorwärtsrichtung. Für die Aufstellung in

Fig. 2. Teilchenspektrum eines ⁷Li-Targets auf C-Folie

Fig. 3. Koinzidenzspektrum der Reaktion ⁷Li+ $d \rightarrow \alpha + \alpha + n$ bei $E_d = 0.98$ MeV, $\theta_x = \theta_y = 73.3^{\circ}$

Rückwärtsrichtung wird dann im L-System $\theta_{12} = 180^\circ$, so daß α -Teilchen der Reaktion ⁷Li($d, p\beta$) $\alpha\alpha$ stören ¹². Daher wurden die Zähler schließlich in Vorwärtsrichtung mit $\theta_{12} \simeq 140^\circ$ aufgestellt.

Eine Messung bei 1 MeV und einer Winkelstellung entsprechend $\vartheta_{12} = 135^{\circ}$ ergab, daß der Anteil des Dreiteilchenzerfalls unbeobachtbar klein ist. Es ergab sich keine Struktur über dem normalen zufälligen Untergrund.

Fig. 3 zeigt das typische Koinzidenzspektrum für die Messungen bei einer Deuteronenenergie $E_d = 0.98$ MeV und bei symmetrischer Zählerstellung in Vorwärtsrichtung, $\theta_1 = \theta_2 = 73.3^\circ$. Die Meßzeit betrug 15 h. Die Zählraten sind infolge des geringen Wirkungsquerschnitts mäßig.

5. Interpretation der Meßergebnisse

Die Koinzidenzmessung bei $\vartheta_{12} = 160^{\circ}$ (Fig. 3) zeigt zwei Maxima. Ausgehend vom Kanal $(k_x, k_y) = (50, 10)$ steigt die Rate bis zu einem Maximum bei (53, 35), geht über einen Sattel in das zweite Maximum bei (37, 54) und fällt wieder zu kleinen Werten bei (10, 48) ab.

Die Punkte a und d aus Fig. 1 entsprechen in Fig. 3 den Orten:

1. Bei einer Anregungsenergie von 2 MeV

$$(k_x, k_y) = (52, 19),$$

 $(k_x, k_y) = (20, 53).$

30 Z. Physik, Bd. 224

2. Bei einer Anregungsenergie von 5 MeV

$$(k_x, k_y) = (40, 5),$$

 $(k_x, k_y) = (5,41).$

Zwischen diesen Orten erreicht die Zählrate kein Maximum, sondern geht ohne Schwankungen gegen Null. Wir schließen daraus, daß bei der Zählerstellung von 160° im SS und Energien von 1 MeV $\leq E_d \leq 1,6$ MeV der Zerfall nicht über einen angeregten Zustand in ⁵He erfolgt.

Die Koinzidenzrate kann also nur vom Zerfall über ⁸Be herrühren. Auf dieser Basis wurde die weitere Auswertung zur Berechnung von Lage und Breite des (4+)-Niveaus ausgeführt.

Eine Bemerkung ist noch zu den *n*- α -Koinzidenzmessungen zu machen. Die *n*- α -Winkelkorrelation für den Zerfall über ⁵He (p 1/2) muß isotrop sein. *n*- α -Korrelationsmessungen¹⁶ bei $E_d = 0,18$ MeV ergeben jedoch eine starke Anisotropie. Wir schlagen vor, für die Anisotropie den Zerfall über das (4+)-Niveau in ⁸Be verantwortlich zu machen.

6. Auswertung

a) Die Energie-Kanal-Beziehung

Das Meßergebnis liegt als zweiparametriges Spektrum (Fig. 3) für feste Winkel θ_1 , ϕ_1 , θ_2 , ϕ_2 vor und enthält die Koinzidenzrate im Laborsystem in Abhängigkeit von den Kanalnummern der beiden Achsen k_x und k_y :

$$N_{L} = N_{L}(k_{x}, k_{y}), \quad 1 \le k_{x}, \ k_{y} \le 64$$
(4)

Zunächst wird die Energie-Kanalbeziehung berechnet. Bezüglich jeder Achse werden aus den Einzelspektren die Lage k_i , $0.5 \le k_i \le 64.5$ der Linien aus Zweiteilchenreaktionen (Fig. 2) abgelesen. Die Energie E_i einer solchen Linie läßt sich mit Hilfe der Zweiteilchenkinematik sehr genau berechnen, so daß man *n* Zahlenpaare E_i , k_i , i=1...n für *n* Linien erhält. Aus Fig. 2 geht hervor, daß bei diesen Spektren 5 Linien herangezogen werden konnten. Da keine Folie vor den Zählern verwendet wurde, konnte eine gut lineare Beziehung zwischen Kanal-Nummer und Energie erwartet werden

$$k_i = a E_i + b \,. \tag{5}$$

Die Lage k_i der Linien ist aber nur ungenau bestimmbar, die abgelesenen Werte sind Näherungswerte für die wahrscheinlichsten \overline{k}_i . Man trachtet, durch Ausgleich eine Funktion $\overline{k}_i(E)$ zu bekommen, für die die Summe der Fehlerquadrate

$$\sum_{i=1}^{n} \left(\overline{k}_i(E_i) - k_i \right)^2$$

452

Fig. 4. Geschwindigkeitsdiagramm

minimal wird. Die so erhaltenen $\overline{k}_i(E_i)$ sind dann die wahrscheinlichsten Orte der Linien auf den Achsen. Man erhält damit die Energie-Kanal-Beziehung

$$E(k) = A \cdot k + B, \tag{6}$$

woraus auch die Energieunschärfe ΔE pro Kanal folgt

$$\Delta E = |E(k) - E(k+1)|.$$
(7)

b) Zusammenhang zwischen Zählrate und Anregungsquerschnitt

Die Zählrate (4) läßt sich bei bekannter Energie-Kanal-Beziehung umschreiben in

$$N_L = N_L(E_x, \Delta E_x, E_y, \Delta E_y), \qquad (8)$$

wobei ΔE_x und ΔE_y als von der Verstärkung abhängige Parameter zu betrachten sind. Die Kinematik einer Reaktion mit drei Teilchen im Ausgangskanal hängt von 5 Variablen ab. Wir wählen den Satz E_1 , θ_1 , E_2 , θ_2 , Φ_1 , der ein verallgemeinertes Raumwinkelelement

$$d\Omega = dE_1 d(\cos \theta_1) dE_2 d(\cos \theta_2) d\Phi_1$$

definiert. Darin sind $d(\cos \theta)$ und $d\Phi$ durch die Zähleröffnungswinkel bestimmt. Das Teilchen Nr. 3 ist das Neutron, seine kinematischen Daten folgen aus E_1 , E_2 , θ_1 , Φ_1 und θ_2 . Fig. 4 enthält zur Erläuterung das Geschwindigkeitsdiagramm der Reaktion. Im hier zu behandelnden Fall ist es eben und enthält die Strahlrichtung. Im Schwerpunktsystem, in welchem der Zwischenkern ⁹Be in Ruhe ist, hat man die Energien e'_1 , e'_2 , und die Winkel ϑ'_1 , φ'_1 , ϑ'_2 , φ'_2 , wobei aber $\varphi'_1 = \Phi_1$, $\varphi'_2 = \Phi_2$. Die Umrechnung der Zählrate (bzw. auch des Wirkungsquerschnitts) erfolgt mit der Funktionaldeterminante

$$D' = \frac{\partial(E_1, \cos\theta_1, E_2, \cos\theta_2, \Phi_1)}{\partial(e'_1, \cos\theta'_1, e'_2, \cos\theta'_2, \varphi'_1)},$$
(9)

so daß

$$N'(e'_1, e'_2, \Delta e'_1, \Delta e'_2) = D' \cdot N_L(E_1, E_2, \Delta E_1, \Delta E_2).$$

Der letzte Teil der Umrechnung hat zum Ziel, die innere Energie des 2α -Teilchen-Systems, d.h. des Kerns ⁸Be einzuführen. Das geschieht durch Einführung von Relativkoordinaten bzw. -Impulsen¹⁹, etwa in der Form (das dritte Teilchen ist das Neutron)

$$P = P'_{1} + P'_{2} + P'_{3} = 0,$$

$$P_{3-12} = \mu_{3-12} \left(\frac{P'_{3}}{m_{3}} - \frac{P'_{1} + P'_{2}}{m_{1}m_{2}} \right) = -(P'_{1} + P'_{2}) = P'_{3},$$

$$P_{12} = \mu_{12} \left(\frac{P'_{2}}{m_{2}} - \frac{P'_{1}}{m_{1}} \right),$$
(10)

wobei μ die reduzierten Massen der Teilsysteme sind. Die im Schwerpunktsystem konstante Gesamtenergie ist damit

$$e = \frac{P_1'^2}{2m_1} + \frac{P_2'^2}{2m_2} + \frac{P_3'^2}{2m_3} = \frac{P_{12}^2}{2\mu_{12}} + \frac{P_{3-12}^2}{2\mu_{3-12}}.$$
 (11)

Das entsprechende Koordinatensystem wird physikalisch so interpretiert: es handelt sich um ein System, in welchem der ⁸Be-Kern ruht. Dann ist nämlich $P_1 = -P_2$ und damit $P_{12} = -P_1$, also die Energie des ⁸Be-(oder 2 α -) Systems

$$\frac{P_1^2}{2m_1} + \frac{P_2^2}{2m_2} = \frac{P_1^2}{2} \frac{1}{\mu_{12}} = \frac{P_{12}^2}{2\mu_{12}}.$$
(12)

Es ist also die Größe $P_{12}^2/2\mu_{12}$ die von uns gesuchte Energievariable, und für sie gilt

$$\frac{P_{12}^2}{2\mu_{12}} = e_1 + e_2 = Q_2 + E_{\text{exc}}, \qquad (13)$$

wobei Q_2 der Q-Wert des Grundzustandes von ⁸Be gegenüber dem Zerfall in 2 α -Teilchen ist und E_{exc} die Anregungsenergie des ⁸Be-Kernes ist,

DEHNHARD, D., D. KAMKE, and P. KRAMER: Phys. Letters 3, 52 (1962); -OHLSEN, G. G.: Nucl. Instr. Methods 37, 240 (1965).

über den die Reaktion als Stufenreaktion abläuft. ϑ_1 ist der Stufenwinkel (vgl. Fig. 4). Die Transformation in dieses Koordinatensystem erfolgt mit den Formeln (hier ist natürlich $m_1 = m_2 = m_{\alpha}$ einzusetzen)

$$\frac{P_{12}^2}{2\mu_{12}} = \mu_{12} \left(\frac{e_2'}{m_2} + \frac{e_1'}{m_1} - 2 \frac{\sqrt{e_1' e_2'}}{\sqrt{m_1 m_2}} \cos(\vartheta_1' + \vartheta_2') \right), \qquad (14)$$

$$\frac{P_3^2}{2m_3} = \frac{m_3}{\mu_{3-12}} \left(e - \frac{P_{12}^2}{2\mu_{12}} \right) = \frac{m_3}{\mu_{3-12}} \frac{P_{3-12}^2}{2\mu_{3-12}}.$$
 (15)

Die nächst wichtige Variable ist der Stufenwinkel ϑ_1 . Für ihn gilt

$$P_{12} \cdot P_{3-12} \cos \vartheta_1 = -\mu_{12} \left[\left(P_1' P_2' \cos(\vartheta_1' + \vartheta_2') \left(\frac{1}{m_2} - \frac{1}{m_1} \right) + 2(e_2' - e_1') \right] \right].$$

Hier entfällt wegen $m_1 = m_2$ der erste Term, und da P_{12} und P_{3-12} vollständig durch die gestrichenen Größen ausgedrückt werden können, ist

$$\cos\vartheta_1 = \cos\vartheta_1(e_1', e_2', \vartheta_1', \vartheta_2') \tag{16}$$

bekannt. Als letzte wesentliche Größe braucht man noch den Winkel des ⁹Be-Kerns im S-System. Aus Fig. 4 liest man mit dem Sinussatz eine Beziehung ab, die auf den Ausdruck führt

$$\cos \vartheta_{\mathbf{B}\mathbf{e}} = \cos \vartheta_{\mathbf{B}\mathbf{e}}(e_1', e_2', \vartheta_1', \vartheta_2'). \tag{17}$$

Man kann demnach die ganze Funktionaldeterminante angeben

$$D = \frac{\partial(E_1, \cos\theta_1, E_2, \cos\theta_2, \Phi_1)}{\partial(e_1', \cos\theta_1', e_2', \cos\theta_2', \varphi_1')} \cdot \frac{\partial(e_1', \cos\theta_1', e_2', \cos\theta_2', \varphi_1')}{\partial(E_{\text{exc}}, \cos\theta_1, \cos\theta_{\text{Re}}, \varphi_{\text{Re}}, \varphi_1)}.$$
(18)

Da das Impuls- und Geschwindigkeitsdiagramm hier, gegeben durch die Aufstellung der Teilchen-Detektoren, eben ist, bleiben als einzige Variable $E_{\rm exc}$, ϑ_1 und $\vartheta_{\rm Be}$ übrig. *D* wird für jeden Punkt des Dalitz-Diagramms mit einem Rechenprogramm ausgerechnet, und damit ist schließlich

$$\dot{N}_{S} = D \cdot \dot{N}_{L}$$

bekannt. Man erhält also in \dot{N}_s die Zerfallsrate des ⁸Be-Kerns in Abhängigkeit von der Anregungsenergie.

Es bleibt noch die Abhängigkeit von ϑ_1 und ϑ_{Be} zu diskutieren. Fig. 5 enthält zur Erläuterung eine Skizze, die für eine feste Zerfalls-Ebene im S-System zu denken ist. Die stark ausgezogene Kurve ist die durch $\theta_1 + \theta_2 =$ konst. ausgewählte Ellipse. – Das Koordinatensystem, das den

Fig. 5. Dalitz-Diagramm mit Stufenwinkel ϑ_1 und Winkel zwischen den beiden α -Zählern $(\vartheta'_1 + \vartheta'_2)$

Stufenwinkel abzulesen erlaubt, ist eine Ellipsenschar, in der die großen Achsen senkrecht auf Seite 3 stehen. Speziell die $\vartheta_1 = 90^\circ$ -Ellipse ist entartet zum Lot auf 3. Der Bereich längs der Kurve mit $\theta_1 + \theta_2 =$ konst. entspricht also einer gewissen Variation des Stufenwinkels. Insoweit als die Winkelverteilung des Zerfalls von ⁸Be relativ zur Bewegungsrichtung dieses Kerns eine Rolle spielt, erhält man eine Dichtemodulation der Koinzidenzen längs der Meßkurve. Schließlich ist mit Vorgabe des Stufenwinkels und beider Teilchenenergien auch 9_{Be} gegeben, wovon die Winkelverteilung der ersten Reaktionsstufe abhängt. Die experimentelle Anordnung wurde so gewählt, daß der Winkel zwischen den beiden Detektoren bei 140° lag. Wenn nun der Stufenwinkel $\vartheta_1 = 90^\circ$ ist, dann ist eine mögliche Geschwindigkeitskonfiguration diejenige, die zu $\vartheta_{Be} = 0^{\circ}$ gehört. Der auszuwertende Bereich (ein Teil der Meßkurve in Fig. 5) umfaßt eine gewisse Variation von ϑ_1 um 90° und eine gewisse Variation von ϑ_{Be} um 0°. Die Dichtemodulation der Koinzidenzrate längs des uns interessierenden Ellipsenbogens im Dalitz-Diagramm wird durch die Niveaubreite des 4,+-Niveaus und durch die Winkelkorrelationsfunktion bestimmt.

c) Abtrennung der Winkelkorrelationsfunktion (WKF)

Die WKF kann man aus KAMKE²⁰ entnehmen zu

$$W(\boldsymbol{R}_0, \boldsymbol{R}_1, \boldsymbol{R}_2') = \operatorname{konst} \sum_i K_i \operatorname{Re}[RR'^*] \operatorname{Re}[S(\boldsymbol{R}_0, \boldsymbol{R}_1, \boldsymbol{R}_2')].$$

Darin ist R_0 die Richtung (Eulersche Winkel) der einfallenden Strahlung, R_1 die der ersten, R'_2 der zweiten ausfallenden Strahlung (letztere relativ

^{20.} KAMKE, D.: Z. Physik 156, 621 (1959); — DEHNHARD, D., D. KAMKE, and P. KRAMER: Ann. der Physik (VII) 14, 201 (1964).

zur Be-, bzw. *n*-Richtung). Die Koeffizienten K_i sind Produkte aus Clebsch-Gordan-, Racah- und 9*j*-Koffizienten, R und R' die Reaktionsamplituden. Ferner ist

$$S(\mathbf{R}_0, \mathbf{R}_1, \mathbf{R}_2') = \sum_{n_0, n_1, n_2} (k_1 n_1 k_2 n_2 | k_0 n_0) D_{n_0 0}^{k_0^*}(\mathbf{R}_0) D_{n_1 0}^{k_1}(\mathbf{R}_1) D_{n_2 0}^{k_2}(\mathbf{R}_2').$$

Man legt die Quantisierungsachse in die Richtung R_0 , woraus $n_0 = 0$ folgt. Ferner ist $R_1 = (0, \vartheta_{Be}, 0)$ und $R'_2 = (\pi, \vartheta_1, 0)$ einzusetzen. Das führt auf $(n_1 = -n_2 = n, n \text{ gerade})$

$$\operatorname{Re}[S] = \sum_{n \text{ gerade}}^{\operatorname{Min}(k_1, k_2)} (k_1 n k_2 - n | k_0 0) \left| \left/ \frac{4\pi}{2k_0 + 1} \right| \left| \frac{(k_1 - |n|)!}{(k_1 + |n|)!} \right| \right.$$

$$\left. \cdot P_{k_1}^n(\cos \vartheta_{\mathrm{Be}}) \left| \frac{(k_2 - |n|)!}{(k_2 + |n|)!} \right| P_{k_2}^n(\cos \vartheta_1) \right.$$
(19)

Die zugeordneten Kugelfunktionen P_k^n enthalten als Faktor $(1 - \cos^2 \vartheta)^{n/2}$, sind also gleich 0, wenn $\cos \vartheta = \pm 1$. Das ist von Bedeutung für $P_{k_1}^n$ ($\cos \vartheta_{Be}$). $\vartheta_{Be} = 0^\circ$ ergibt genau die Zählrate auf der 45°-Geraden im Dalitz-Diagramm (Fig. 3). Sie wird hier nicht zu Null gemessen, also kann nur n=0 angenommen werden und (19) vereinfacht sich zu

$$\operatorname{Re}[S] = (k_1 0 k_2 0 | k_0 0) \left| \sqrt{\frac{4\pi}{2k_0 + 1}} P_{k_1}(\cos \vartheta_{\mathrm{Be}}) P_{k_2}(\cos \vartheta_1). \right|$$
(20)

Die WKF ist also ein Doppelprodukt aus Kugelfunktionen. Der Wertebereich der Indizes k ist bestimmt durch Bahndrehimpulse und die Spins der beteiligten Kerne, nämlich

$$\begin{split} |l_0 - l'_0| &\leq k_0 \leq l_0 + l'_0, \\ |l_1 - l'_1| &\leq k_1 \leq l_1 + l'_1, \\ |l_2 - l'_2| &\leq k_1 \leq l_1 + l'_2, \end{split} \quad \begin{aligned} |b - b'| &\leq k_0 \leq b + b', \\ |c - c'| &\leq k_2 \leq c + c', \end{aligned}$$

wobei b der Spin des Compoundkerns ⁹Be ist und c derjenige des Zwischenkerns ⁸Be. Eindeutig ist im hier interessierenden Fall c=c'=4, also $0 \le k_2 \le 8$. Werte von $l_2=4$ sind indessen unwahrscheinlich wegen der Höhe der Zentrifugalschwelle. Man kann sich wohl auf $l_2=0,2$ beschränken, also $k_2=0, 2, 4$. Über b ist nicht viel bekannt: Niveaus bei 17,28 und 17,48 MeV, die mit 0,8 und 1,0 MeV Deuteronen erreicht werden, führten auf b=5/2 und 7/2 sowie $l_0=0$ und 1. Wir können in unserem Energiebereich wohl davon ausgehen, daß s- und p-Deuteronen sich an der Reaktion beteiligen, was auf $k_0=0$ und 2 führt. Mehr ist aus der Literatur kaum zu entnehmen. Auf der anderen Seite muß man bedenken, daß das Anregungs-Energieintervall, das meßtechnisch erfaßt

457

wird (0,5 MeV) immer Winkel im Bereich von $\Delta \vartheta_1 = 15^\circ$ zuläßt, also eine gewisse Mittelung über die WKF enthält. Wir glauben daher, daß es sinnvoll ist, die Winkelabhängigkeit der WKF überhaupt zu vernachlässigen.

d) Bestimmung der Niveaubreite von ${}^{8}Be(4,+)$

Mit der in c) erläuterten Vernachlässigung der Winkelabhängigkeit der Winkelkorrelationsfunktion ist die Abhängigkeit der Koinzidenzrate von der Anregungsenergie durch die ein-Niveau-Breit-Wigner-Formel beschreibbar.

Der Gesamtwirkungsquerschnitt für die Bildung des Zwischenkerns im Zustand λ' in einem isolierten Niveau, das nur mit einer bestimmten Drehimpulskonfiguration erreicht wird, beträgt nach LANE und THOMAS²¹

$$\sigma(n, \lambda'(E_{\text{exc}})) = \pi \lambda_n^2 \cdot \frac{\Gamma_{n, l} \Gamma_{\lambda'}}{(E_{\text{exc}} - E_{\text{res}})^2 + (\Gamma/2)^2}.$$
 (21)

wobei $E_{\rm res}$ die Resonanzenergie des Niveaus ist. Damit wird die Koinzidenzrate für jede Einschußenergie

$$\dot{N}_{\rm S}(E_{\rm exc}, \Delta E_{\rm exc}) = \frac{1}{A} \frac{1}{(E_{\rm exc} - E_{\rm res})^2 + (\Gamma/2)^2}.$$
 (22)

Setzt man

$$y = (\dot{N}_{S})^{-1},$$

$$x = (E_{exc} - E_{res})^{2},$$

$$a = A,$$

$$b = A \cdot (\Gamma/2)^{2},$$

$$y = a x + b.$$
(23)

so erhält man aus (22)

Für festes E_{res} ist x als Funktion von E_{exc} bestimmt. y ist über \dot{N}_s mit dem Meßfehler behaftet. Durch linearen Ausgleich nach der Methode der kleinsten Fehlerquadrate lassen sich die Parameter a und b anpassen und ihre Fehler bestimmen. Damit ist auch

$$\Gamma = 2\sqrt{b/a}$$

mit dem nach dem Fehlerfortpflanzungsgesetz berechenbaren Fehler $\Delta\Gamma$ bestimmt.

Wird dieser Ausgleich für verschiedene Werte von E_{res} durchgeführt, so ist derjenige Ausgleich der beste, für den der Fehler $\Delta\Gamma$ minimal wird.

^{21.} LANE, A. M., and R. G. THOMAS: Rev. Mod. Phys. 30, 334 (1958).

					<u> </u>			
E_d/MeV	0,985	0,985	1,20	1,20	1,40	1,59		
θ_1	72,0	73,3	51,0	71,0	71,0	71,3		
θ_2	71,5	73,3	94,0	70,5	70,5	71,3		
$E_{\rm exc}/{ m MeV}$	\dot{N}_L im rechten Ast							
8,25	133	22	16	86	100	73		
8,75	204	27	35	145	157	101		
9,25	314	45	36	292	265	121		
9,75	393	106	67	330	385	197		
10,25	502	144	107	576	518	298		
10,75	895	251	170	1040	773	450		
11,25	856	379	204	962	1108	670		
11,75	665	438	<u>-</u>		1164	968		
12,25		468				1000		
12,75						827		
$E_{\rm exc}/{ m MeV}$	\dot{N}_L im linken Ast							
8,25	60	25	8	110	93	76		
8,75	92	23	20	159	129	120		
9,25	182	56	28	313	189	175		
9,75	266	77	39	381	300	310		
10,25	522	133	49	429	449	350		
10,75	760	247	98	1070	617	560		
11,25	954	390	130	914	1029	580		
11,75	831	458		-	1314	830		
12,25		466		_	_	943		
12,75		-	-	-		873		

Tabelle 1. Rohdaten der zur Auswertung benutzten Messungen

	Tab	Tabelle 2. Die gemittelten Halbwertsbreiten					
E _{res} /MeV	Г/MeV	ΔΓ/MeV	E _{res} /MeV	Г/MeV	ΔΓ/MeV		
10,5	2,52	0,25	11,5	2,86	0,14		
10,6	2,37	0,23	11,6	2,87	0,15		
10,7	2,36	0,18	11,7	2,88	0,16		
10,8	2,41	0,16	11,8	2,94	0,15		
10,9	2,46	0,14	11,9	3,04	0,14		
11,0	2,52	0,20	12,0	3,14	0,14		
11,1	2,59	0,20	12,1	3,27	0,14		
11,2	2,67	0,17	12,2	3,39	0,16		
11,3	2,78	0,14	12,2	3,49	0,17		
11,4	2,83	0,13	12,4	3,58	0,19		

Wie aus Fig. 1 und 3 ersichtlich, können zur Auswertung zwei Äste der Koinzidenzraten-Verteilung benutzt werden, die symmetrisch zur 45°-Gerade im E_x , E_y -Diagramm liegen. Tabelle 1 enthält die Rohdaten, die zur Auswertung dieser beiden Äste benutzt werden. Tabelle 2 schließlich enthält für alle Meßwerte die Folge der E_{exe} -Werte und der dazu ermittelten Γ und $\Delta\Gamma$ -Werte. Sie zeigen, daß der kleinste Fehler in $\Delta\Gamma$

459

460 G. HOFMANN und D. KAMKE: Die Breite des 4+(11,4 MeV)-Zustandes

bei $E_{exc} = 11,4$ MeV erreicht wird, d.h.

$$E_{\text{exc}} = (11, 4 \pm 0, 05) \text{ MeV},$$

$$\Gamma = (2, 8 \pm 0, 2) \text{ MeV}.$$
(24)

Da das Minimum von $\Delta\Gamma$ nicht sehr ausgeprägt ist, haben wir das Ergebnis der Rechnung gerundet zu der Angabe (24).

Zusammenfassung

Die Reaktion ⁷Li+ $d \rightarrow \alpha + \alpha + n$ verläuft für Deuteronenenergien zwischen 1 und 1,6 MeV und bei einem Winkel im SS zwischen den beiden α -Teilchen von 160° ausschließlich über den Zwischenkern ⁸Be. Nach ausführlichen Ausgleichs- und Fehlerrechnungen ergab sich eine optimale Anpassung der Meßergebnisse mit $E_{\rm res} = 11,4$ MeV und $\Gamma = 2,8$ MeV als Daten des (4+)-Niveaus in ⁸Be.

Die statistischen Fehler betragen $\Delta E_{\rm res} = \pm 0.05$ MeV und $\Delta \Gamma = \pm 0.2$ MeV.

Die ermittelte Halbwertsbreite Γ liegt unter dem aus α - α -Streudaten ermittelten Wert $\Gamma_{\alpha\alpha}$.

Eine systematische Abweichung der Halbwertsbreite Γ von $\Gamma_{\alpha\alpha}$ wurde bereits für das (2+)-Niveau in ⁸Be beobachtet²². Man schloß daraus, daß die Anwesenheit des dritten Teilchens die Lebensdauer des ⁸Be-Kerns verlängert.

Wir danken Herrn Prof. W. WALCHER für die uns in Marburg gebotenen Arbeitsmöglichkeiten. Der TMC 2-Parameter-Speicher konnte mit Mitteln des Bundes-Ministeriums für Wissenschaftliche Forschung beschaftt werden.

Dipl.-Phys. G. HOFMANN Prof. Dr. D. KAMKE Institut für Experimentalphysik der Ruhr-Universität Bochum 4630 Bochum, Buscheystraße

^{22.} BERKOWITZ, E. H.: Nucl. Phys. 60, 555 (1964).