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1. Introduction

In this paper, we consider equations of the form: dx/dt=f(t,x), where t is a
real number, x is a point in R? f is of class C' and periodic in t of period 1.
We assume that there is a closed set of R? homeomorphic to a closed disk and
invariant under the Poincaré transformation. It is known that this condition is
satisfled by many dissipative systems as Duffing’s equation. See for example
[6].

The purpose of this paper is to discuss the relation between the number
and the manner of linking of periodic solutions. Our main theorem, Theo-
rem 1, states that the equation has periodic solutions of every integer period if
there are three periodic solutions of period 1 which are attractor or repeller
and link together in a certain kind of complex manner.

On the number of periodic solutions of general dissipative systems, the
following results are known. The number of periodic solutions of every integer
period is divisible by twice the period if all periodic solutions are hyperbolic
(Levinson [3], Massera [4]), and is finite if f is real analytic in x and the trace
of the Jacobian matrix of f is negative (Nakajima and Seifert [5]).

Our theorem is derived from Theorem 2 in Sect. 3. There we define a
polynomial which describes how given periodic solutions and others link
together, and in particular gives an information about the number of periodic
solutions.

We prove Theorem 2 in Sect. 4, 5 and Theorem | in Sect. 6. In Sect. 7, a
detailed estimation for the number of periodic solutions of period 1 is given.

2. Theorem 1

Consider the following differential system:

dx

2.1) -

=f(t,x) teR, xeR2%
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We assume throughout the paper that

(22) 1) f(t,x) is an R%-valued function of class C*.

2) f(t,x) is periodic in t of period 1, that is, f(t+ 1, x)=/(t, x).

3) There exists a solution x=¢(t;t,,x,) of the equation defined on
— o0 <t< oo with any initial condition (z,,x,)eR x R2.

Defining a C'-diffeomorphism T: RZ2—-R?, called the Poincaré transformation,
by T(x)=¢(1;0,x), xeR?, we also assume that

(2.3) there exists a closed set K of R? satisfying that K is homeomorphic to a
closed disk and T(K)=K.

Definition 1. Let p be a natural number. A continuous curve x: R—»R? is p-
periodic if it satisfies for every teR and every natural number g <p that
x(t+p)=x@) and x{t+q)=+x(1).

A solution x(t) of (2.1) is p-periodic if it is a p-periodic curve, and is periodic if
it is p-periodic for some natural number p.
Clearly we have by the uniqueness of solution:

Proposition 1. Let x(t) be a solution of (2.1). Then it is p-periodic if and only if
x(0) is a periodic point of T of minimal period p.

Let ¢;,¢;,...,c, be periodic solutions of (2.1) and p a natural number. We
assume the following conditions in Theorem 1.

(24) There exist disjoint closed sets K,,...,K, of K homeomorphic to
a closed disk and satisfying the followings for i=1,...,n

cl0)ekK,,
TP(K)cK; or THK)oK, if ci(p)=c)0),
TP(K,) and K, have no intersection if ¢,(p) =+ c;(0).

Here, T?=To...o T (p-times). Set K'=K — U IntK,, where Int denotes

interior. A p-periodic solution is hyperbolic if x(0 ) is a hyperbolic fixed point of
TP,

(2.5) If x(2) is a p-periodic solution of (2.1) with x(0)eK’, then it is hyperbolic
and x(0) is not on the boundary of K'.

Remark. The assumption (2.4) is satisfied if the periodic solutions are hyper-
bolic attractor or repeller.

Now let ¢;,c, and ¢4 be distinct 1-periodic solutions of (2.1). We express
topological complexity of these solutions as a series of two letters a,b and their
inverses. Let

0 —1
a=c)-a 0, en=(] e
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Then, since e,(t) and e,(f) are linearly independent, there is a unique u(t)
= (u, (1), u,(t)) in R? such that

ca(t) = cq(t)=u () e, (1) +uy(t) €,(0).

It is trivial that u()=%=(0,0),(1, 0). Therefore u(t) is a 1-periodic curve in X =R?
—{(0,0),(1,0)}. We now define a conjugate class [¢,, c,, c;] of the fundamental
group 7,(X,(1/2,0)) as follows. Choose a curve v(t) (0=t=1) from (1/2,0) to
u(0) and consider the closed curve which passes the point v(3t) at 05t <1/3,
u(3t—1) at 1/3<t<2/3 and v(3—3¢t) at 2/3<t=<1, that is, the closed curve
which starts (1/2,0), follows v to u(0), then runs along u(¢) (0<t=<1) and retrace
v back to (1/2,0). Then clearly the conjugate class of the class of this closed
curve dose not depend on the choice of v. We denote it by [¢,;,¢c,,c;]. As is
well known, the fundamental group is a free group of rank 2 on generators a
and b, which are defined as the classes of closed curves circling (0,0) and (1,0)
once in a counterclockwise direction respectively. See Fig. 1. Then clearly

[cl’ CZ’ C3] = [aj:]a [bj] or 0(17 J)a

where [ ] denotes conjugate class, j is an integer, I=(i,,..., i), J=(,.-.,j2)
are sequences of non-zero integers of length d and

o(I,Jy=[a'* bt a2 b2 ., aiebi].
For example, if ¢, ¢, and ¢, are link together as in Fig. 2, then

[ey, €2, 51 =0((2), (1) =[a® b].
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Theorem 1. Assume the conditions (2.2), (2.3). Let c,,c, and ¢y be 1-periodic
solutions of (2.1) such that [c,,c,,cs]=0(l,J), where I and J are sequences of
non-zero integers of the same length with

(LD+,1,...,1), (=1, —1,...,—1).

Let p be a natural number and let c,,c,,c, satisfy (2.4). Then the number of p-
periodic solutions passing a point in K’ at t=0 is not smaller than p*. Moreover,
it is not smaller than p-2P~1 if (2.5) is also satisfied.

3. Theorem 2

In this section, we consider the general case where no assumptions are made
on the number and period of the given periodic solutions. In the previous
section, where the number is three and the period is one, the type of link of
periodic solutions is expressed as an element of the free group of rank two. In
the general case, it is expressed as a “braid”, as we see in the following.

A continuous map from the unit interval [0, 1] to a topological space X is
a path in X. A path c is a loop if the initial point ¢(0) and the terminal point
¢(1) coincide. This point is called the base point of c.

Let n be a natural number. Define an open set V, of R*" by

V,={(xq,...,x,)Ix;€R?, x, % x; if i+j}.
Let Z, denote the symmetric group of degree n and act on V, by

7(x,, ...,x,,)z(x,(l), ...,x,(n)),

where 7eX,, (x,,...,x,)€V,. We denote by V,/%, the quotient space by the
above action of 2, and by =:V,—»V,/2, the projection. The fundamental
group 7(V,/X,) is called the braid group and its element a braid. In the
following, we denote by B, the braid group =,(V,/2,,e), where e
=7((1,0),...,(n 0)).

Let ¢, c,, ..., c, be periodic solutions satisfying that

(3.1) for any i=1,...,n and any integer m, there is a natural number j with
1 <j<n such that ¢(t+m)=c,(1), teR.

This means that any periodic solution, which is obtained from ¢; by simply
translating time by m, also belongs to the set of periodic solutions. Therefore,
the loop n(c,(t),...,c,(¢)) in V,/Z, determines an element of the braid group
7,(V,/Z,). Hence the type of link of periodic solutions is expressed as a braid.
The group structure of the braid group is known as follows. Let B;, be the
finitely generated group with generators ¢/, ...,0,_, and defining relations

(3.2) ojd=d}a, if li—jlz2, 1<i, j<n—1,

’ ;e r ot : . _
6:0,,,0:=0;,,0;0;,,, if 1Sign-2
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Define a path [; in V, by

(3.3) L) =((1,0),...,(i—1,0), I} (t), I}(¢), (i+2,0), ..., (n,0))

where
Hoy=@G+t, —t—t)'"), 2=+ 1—t,(t—t?)?).

Then nol; is a loop in V,/Z,. Denote the class of this loop in the braid group
B, by o,. Then it is known [1, Theorem 1.8] that the homomorphism sending
g; to o, is an isomorphism from B} to B,.

Now assume that n>3. Let A denote the ring Z[a,,a;%,...,a,,a, '] of
integer polynomials in the g;s and their inverses. Let v: B,—»Z, be the homo-
morphism which carries o, to the transposition of i and i+ 1. We say that two
elements ¢ and ¢’ in B, are equivalent if there is an « in the kernel of v such
that ¢’=0"' oo Denote the set of all equivalence classes of B, by B,. Then a
map A: B,— A is defined in the following way. Let GL(n— L, A) be the group of
all invertible matrices of size n—1 whose entries are elements of A, Let X, act
on A by

(3.4 T4, =d,

and on GL(n—1, 4) by t(4;))=(t 4;)). Set

[N )

et

[
olo s oo

0

_an—l

where i=2,...,n—2, I, is the identity matrix of size k. Then it is easy to see
that the formula
(3.5 B(o) =S,

13

B(6 a)=B(¢")(v(¢') B(e)) o,0'€B,

i=1,...,n—1,

implies that B(e)=1I, B(c~!)=v(c)B(s)~!, where e is the unit element, and
hence defines a mapB: B,—»GL(n—1, 1) uniquely. Define a homomorphism
inv, from A to the subring A, consisting of all t-invariant elements under the
action (3.4), where te2,, by

v (a,)=0a;0.q .- Q-1

where s is the cardinal number of the orbit of t at i, {t*()ju is an integer}. We
now define 4: B,— A by

A(o)= —inv,,(trace B(c)).
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It is easily shown that B(a='oa)=B(c) for every ceB,, acKerv. Hence 4
induces a map from B;, to A denoted by the same letter A.

Remark. The representation of B, obtained from B by replacing every a; by one
symbol t coincides with the reduced Burau representation given in [I,
Lemma 3.11.1].

For distinct periodic solutions ¢ and ¢/, define an integer d(c,¢’) as the
degree of the loop in R?2—{0}: c(qt)—c(qt), where g is the least common
multiple of the periods of ¢ and ¢'.

Now assume that C={c,,...,c,} is a set of periodic solutions of (2.1)
satisfying (3.1) in the remainder of the section.

Definition 2. For a sequence of integers I=(i,,...,i,)eZ", a periodic solution ¢
of (2.1) is of degree I, if d(c,c,)=i, for k=1,...,n.
Let X, act on Z" by

Ty s b)) =gays v os bogmy)

and for teX, denote by Z"(1) the subgroup of all t-invariant elements of Z".
Define 7.€Z, by T(c(0)=c,.;(0). Let p be a natural number. We define a
subset Z'(p) of Z" as follows. For a divisor g of p, let n, ,: Z">Z" be the
homomorphism defined by

nq.5(€) ={p;, D)/ (P, D) €;,

where ¢,=(0,...,0,1,0,...,0) (i-th component=1), p, is the period of ¢, and ( , )
denotes least common multiple. Then clearly #, (Z"(18)) = Z"(x{) = Z"(z7). We
define Z"(p) as the set of all elements I of Z"*(z2) which do not belong to the
image 7, (Z"(z%)) for every divisor g of p with g<p. Note that Z"(1)=Z"(z.).

Now define an element A(C,p) of A as follows. Define a loop C’ in V,/2, by
C'(t)=n(c,(t),...,c,(t)) and choose a path v in V, from (c¢,(0),...,¢,(0) to
((1,0),...,(n,0)). Then (rov)"'C'(nov) is a loop in V,/X, based at e
=7((1,0),...,(n0)). Denote by o, the class in B, of this loop and let A(C,p)
=A(C,), where C, denotes the element of B, represented by af. It follows from
the equality Im[n, : n,(V,)->B,]=Kerv that C, and hence 4(C,p) do not de-
pend on the choice of the path v. Let r,(C, p) denote the coefficient of the term
ai ... dirof A(C,p), thatis A(C,p)= ) r/(C,p)d} ...a>.

IeZn

Theorem 2. Assume (2.2), (2.3). Let p be a natural number and C={c,,...,c,} a
set of periodic solutions of (2.1) with n23 satisfying (2.4), (3.1). Then, for every
IeZ"(p) with r(C,p)=+0, there exists a p-periodic solution of degree I which
passes K’ at t=0. The number of such p-periodic solutions is not smaller than the
absolute value of r;(C,p), if the assumption (2.5) is added.

As an immediate consequence, we have

Corollary. Under the same assumptions as in Theorem 2, the number of p-periodic
solutions, passing K’ at t=0, is not smaller than p times the number of elements
I of Z"(p) with r(C,p)=*0. It is not smaller than ) [r(C,p) if (2.5) is also
assumed. TeZ"(p)
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Remark. When n=1,2, the type of link of given periodic solutions does not
affect the number of other perlodlc solutions. When n=1, it is clear since B, is
the trivial group. For any seB,, a C'-map f is easily constructed so that the
Eq. (2.1) has only three periodic solutions and that the braid of two of those
periodic solutions is equal to .

The proof of Theorem 2 depends heavily on Proposition 2, which is con-
cerned with fixed points of continuous maps, in the next section.

4. Fixed points

We assume that n23. Let L be a topological space homeomorphic to a n-times
punctured disk. Let x, be a point in L and a,,...,u, be a free basis of the
fundamental group n,(L,x,). Denote by b, the homology class in H(L;Z)
determined by o;. Let p be the homomorphism from B, to the group of all
automorphisms of 7, (L, x,) defined by

(4.1) plo)o)=oo, o' j=i
= j=i+1

For ze2,, let inv,:Z">Z" and inv.:H (L;Z)-H,(L;Z) be the homomor-
phisms defined by

4.2) inv ( z epy, v (b)= 2 by

where s is the cardinal number of the set {t*())lueZ}, ¢;=(0,...,1,...,0) (i-th
component = 1).

A path » in a topological space X defines a homomorphism v, from
7, (X, 2(0)) to 7, (X, v(1)) by

(4.3) v ([[wl)=[v""wol,

where w is a loop in X based at v(0), —1 denotes inverse path, v='wuv is the
product of the paths v—', w and o.

Let S: L—L be a continuous map with the image S(L) compact, v a path in
L from x, to S(x,) and ¢ an element of B,. For IeZ", define an integer r; by

A(o)=) r ai
Proposition 2. Assume that
(4.4) Sy =0,0p(0): m (L, Xo) =7, (L, S(xo)).

If I is an element of Z"(v(c)) with r;+0, then the map S has a fixed point in L
such that

(4.5) for any path h in L from x, to the fixed point, the equality
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n

inv,,[h~ ' o(Seh)]= ) ib,

k=1

holds.
-Moreover, there exist at least |r,| fixed points in L satisfying (4.5), provided that

(4.6) S has no fixed points on the boundary of L and all fixed points are
hyperbolic.

Proof. Let t=v(g). We fix I,€Z"(z). Let 6: n (L, x,)—H,(L; Z) be the Hurewicz
homomorphism. Then, for every natural number r, there is a finite regular
covering space p,: L,—L such that

4.7) Py (L, y) =071 Crb,b,—b ,li=1,...,n),

for every point y in the inverse image of x, under p,, where { > denotes
generated subgroup. Let n' be the rank of the free abelian group Z"(r). Then
the covering is r"-sheeted. Fix a point y, with p,(y,) =x,. Let J be an element of Z"
satisfying —inv,(J)=1,. By (4.4), S,(b)=b,;, so the subgroup H =0""{rb,,b,
—bgli=1,...,n> of n,(L, x,) is invariant under S, . Therefore, there is a unique
lift S,: L,—L, of S such that S,(y,)=(«’ v)(1), where o =o' ... &/ and (o’ v) is
the lift of the path o’ v with the initial point y,. S, sends yeL, to the terminal
point of the lift from y, of &’ v(Sop,ol), where ! is a path from y, to y.

Lemma 1. Let r be a sufficiently large number. If the Lefschetz number A(S,) is
not zero, then there is a fixed point of S satisfying (4.5) for 1,. The number of
such fixed points is not smaller than |A(S,)|/R if (4.6) is satisfied, where R=r".

Proof. Since S(L) is compact, S,(L,) is contained in a compact deformation
retract of L,. Therefore if A(S,)=0, then the Lefschetz fixed point theorem [2,
Chap. VII, Prop. 6.6] implies the existence of a fixed point y, of §, in L,. Let
x,=p,(y,). Then every point in the inverse image of x, is a fixed point of §,.
This is because the covering transformation group of p, acts transitively on
each fiber of p, and S, commutes with any covering transformation. Let & be a
path as in (4.5) and K a lift of h with W'(0)=y,. Then since p,(h'(1))=x,, the
definition of S, implies that h'~*(a’v)(S,oh’) is a loop in L,. Hence the
homology class [h~" o’ vo(Soh)]=[h"'v(Soh)]+[a’] belongs to {rb,b,—b,>.
From this

inv,[h~to(Soh)] = —inv [a’]= Y i0b, modulo{rb,),
k=1
where (i, ...,i0)=1,. Therefore Lemma 2 below completes the proof of the first
half of the lemma.
We prove the second assertion. By the Lefschetz fixed point theorem, A(S,)
=Y ind,S,, where summation takes over all fixed points of S, and ind, S, is the

ﬁxgd point index of S, at y. By [6, Prop. 5], if § satisfies (4.6), then ind S, =1
or —1. Therefore, the second assertion holds from the fact shown before that,
for a fixed point y of §,, every element in the fiber over p,(y) is also a fixed
point. q.e.d.

re
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Lemma 2. For 1€Z(7), let F; be the set of all fixed points of S satisfying (4.5).
Then F, is empty, if the norm |[1|| of I is sufficiently large.

Proof. Suppose the conclusion does not hold. Then there are sequences x(n),
I(n), n=1,2,..., of elements of L and Z"(r) respectively with x(n)eF;,, and
[ I(n)| = o0 if n—o0. Since {x(n)} are contained in the compact set S(L), we can
assume that the sequence {x(n)} has the limit point x(o0) in L. Choose a path
h from x, to the fixed point x(oc) and let I(o0)=(i}, ..., 1) satisfy inv_[h~'v(S

oh)]= Y i, b,. Then x(c0)eFy,, because inv,=inv.oS, on H (L;Z). It is clear
k=1

that if I'eZ"(r) and there is a point in F,, sufficiently near to x(oo), then I’

=I(c0). This implies that I(n)=1I(co) for n sufficiently large and leads to the

contradiction. q.e.d.

Since A(S,)=1—trace[S,.: H,(L,; Q)—H (L,; Q)], to prove the proposition,
we must compute the trace of S,.. Let V,=H,/[H,,H,], where [ , ] denotes
commutator subgroup, and A,=A/(aj—1,a,—a,,i=1,...,n), where () is gen-
erated ideal. Then V, is a A,-module by a[a]=[e;a0 '], acH, Since
plo)(H,)=H,, p(o) induces a A,-homomorphism p,:V,—»V, For the sake of
simplicity, we use the same symbol g; for the image of a; under the projection
A—A, and let a'=al ...dreA or A, for I€Z". The following diagram clearly
commutes.

H(L:;Z) — "> H(L;Z) «—— H(L;Z)

Sx
Hr —_ pr*nl(Lr’Sr(yO)) AP H

@7 0)s "
This and (4.4) implies the following commutative diagram.

Srx

H,(L,;Z) —— H,(L,;

1.7

vV _ V

r r

.Z)

where a’ denotes the scalar multiplication. Thus it suffices to consider the A,-
homomorphism a’ p, for the computation of trace S,..
Let W,=®4A,e,; be the free A,-module generated by symbols e

l<i<j=nand §,: WV, be a A,-homomorphism defined by
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4.3) B.e; y=[o, o0y ! oy 1.

Let ¢ ;=([] (@ —1)e;,; and W/, W, be the submodules of W, generated by
k*i,j
€ i i=1,...,n—1), & (1=<i<j<n) respectively.
Let V,'=V/B.(W), V> =B, (W)/B.(W,), V,>=p,(W,) and, for i=1,2 and 3, pi:
V!>V be the A,-homomorphism induced from p,: V.- V,. Then we have

(4.9) V,=V'@V’eV}, p=p'@pl®p;.
Lemma 3. |trace[p, ®14: V,'®Q-V,'®Q] <n.
~1

Proof. Clearly the A,-module ¥, is generated by p,(e; ), [«f], [oa 31,07
=1,...,n, Therefore it follows from the equality [of] —[of ] =r[o; 07, ] modulo
B,(W,) that the (1,®Q)-module V,®Q is generated by f,(e; ;) and [«f]. Hence
the Q-vector space V,'®Q has a basis [of],i=1,...,n Since p,} [ef]=[c], p;
® 14 is identified with 7: Q"—Q". Therefore the lemma holds. q.e.d.

Lemma 4. There is a positive number M independent of r such that |trace(p?
® lo)l < MR/r, where R=r".

Proof. Define a homomorphism C, from B, to the group of all A,automor-
phisms of W, by

Clodle, )= —ae i=k j=k+1
=, i=k+1,j¥k
=€ ik j=k+1

=(l—-a)e, i +ew i=k j*k+1
=(@;—1)e 1 +e ik+1, j=k

=e;; otherwise.

A straightforward calculation shows that §,o C,(¢)=p,°8,.
For a linear mapA:V -V, where V is a Q-vector space with a basis
vy,...,0, and a norm

m
Y s
i=1

let [[4]; be the operator norm of A. Then it is easy to see that the absolute
value of any eigenvalue of A is not greater than ||A|l, and that

m
= Z Is;l, s;€Q,
Toi=1

}|AJ|1=max{z ]aijl:j=1,...,m},
i=1

where a;; is the matrix representation of 4. The former fact implies that, for a
subspace W of V invariant under A,

(4.10) ftrace A'| £ [ A, dim V/W
where A": V/W-V/W is induced from 4.
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It is easy to verify that [C(0)®14l, is smaller than a constant inde-
pendent of r for suitable bases of W.® Q. On the other hand, it is verified that
there is a number N independent of r such that dim(W,/Z® Q)< NR/r, where

Z is the kernel of W,L B.(W,)— V2, in the following way. Let
=(oy o000 ot o ) (o o 0 o e,

Then clearly o;;, o5 0,; 1s the unit element of H,. This implies that

(@;,—1) B,(e; ) —(a;— D) B,(e; )+ (a,—1) B,(e; )=0 in V.

Hence f,(¢; ;)= Z B¢ . 1) holds and so B(W))=p(W,"). Therefore W,'=Z

and d1m(W/Z®Q)<d1m(W/W”®Q) The latter does not exceed
(n—2)n(n—1) R/2r, since

dim((4,/4,( ] (4—-1)@Q)<(n—2)R/r.

k*¥i,j

Hence the required estimation holds.

Since p}® 14 is identified with the linear map on W,/Z®Q induced from
C,(0)®1y, by replacing VW, 4 with W,,Z,C,(6)®@1¢, (4.10) and the above
inequalities prove the lemma. q.e.d.

Let @A, e; be the free A,-module with a free basis e, i=1,...,n—1 and let
B,:®A,e,~4DA, e, be a A,-homomorphism defined by

(4.11) B(e)= ) bje,

where b;; is the image of the (i,j)}-component of the matrix B(s) under the
projection A—A,.

Lemma 5. There is a number M' independent of r such that
|trace(a’ p} ® 1¢) —trace(a’ B,® 1o)| <M'R/r.
Proof. Define a surjective 4,-homomorphism
7, @A, e

by y,(e)=P8e; ;. )- Then calculation shows ploy,=y,0B,. Since x(L,)=Ry(L)
=R(1—n), where y is the Euler number, we get dim(,(W)®Q)=dim(V,®Q)
—n=(n—1)R+1—n. Using this and the facts shown in the proof of Lemma 4,
we have

dim(f,(W,)® Q)=dim(8,(W)® Q)

(W,
dim(B,(W,)® Q) —dim(W,/W,"® Q)
(n

>
>(n—1)(R—1)—(n—2)n(n—1)R/2r.
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Therefore
dim(Kery, ® Q)=dim(@ 4, ¢, ® Q) — dim(8,(¥,)® Q)
Sm—-1){1+n(n—2)R/2r).

Using this and the fact that |a’B,® loll; are bounded to the above, we can
complete the proof by the inequality

|trace(@’ B,|ker,, ® 1) S 0" B,® 14|, dim(Kery,®Q). q.ed.
By Lemma 3, 4, 5 and (4.9), we see

4.12) ltrace(a’ B,®1¢) + A(S,)|
=|trace(a’ B,® 1o) —trace(a’ p,® 1) + 1
<M"R/r
for a number M" independent of ». Now let r be sufficiently large. Since B, is
the A,-homomorphism on the free A,-module, trace(a’ B,® 1) is divisible by R.

Also, A(S,) is divisible by R, because S can be deformed to satisfy (4.6). Hence
(4.12) implies

(4.13) A(S,)= —trace(a’ B,® 14).
Let trace B(g)= Y rja’. Then
IeZn
(4.14) trace(a’ B,® 1)
=Y rjtrace[d’ ' ®14: 4,8Q-4,8Q].
TeZn

Since a’*’=1 in 4, if and only if all components of inv (I +J)=inv I -1, are
divisible by r, noticing that r is sufficiently large, we get

rytrace(a’’ ®19)=0 if inv, I+1,,
=riR if inv I=1,.
Therefore (4.13), (4.14) imply that

AS)=-( ) rpR=r R

inv.I=1Ig

This and Lemma 1 complete the proof of the proposition.

5. Proof of Theorem 2

We first prove the theorem in the case of p=1. Assume (2.2), (2.3). Let C
={c,,...,c,} be a set of periodic solutions of (2.1) satisfying (2.4) and (3.1).
Assume n=3. Let

X=R%—{c,(0),...,c,(0)}.
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Choose a point x; in X ({0} xR) such that ¢(z;0,x)¢K for 0=<t<1. This is
possible because K is compact. Fix an orientation preserving homeomorphism
y: R?>R? isotopic to the identity such that (c,(0))=(,0) for i=1,...,n and
Y(xy)=x5. Such homeomorphism clearly exists. For i=1,...,n, let d; be a loop
in X based at x;, which follows the straight line from xj, to very near (i, 0), then
circle it once in a counterclockwise direction and retrace the same line back to
xy. Denote by B; the class of the loop ¥~ 'od, in n,(X,x,). Then B,,..., B, gives
a basis of the free group n,(X, xp). Let p’ be the homomorphism from B, to the
group of all automorphisms of 7, (X, x;) defined by

(GRY) p'(a)(B)=5; BBt i=i,
=B, j=i, i+ 1.

Let u(t)=¢(t; 0,xp). Since s is isotopic to the identity, the braid ¢, equals,
after a suitable choice of v in the definition of it, to the class of
a((c(t),...,¥(c,(1)). Noticing this fact, we have

Lemma 1. T, =u,0p'(g.): n,(X,xp)—m, (X, T(xp)).

Proof. For a real number ¢, define a C'-diffeomorphism @,: R3—>R? by &,(s, x)
=(t+s, ¢(t +s5; 5,x)). Then this difffomorphism preserves the open set

Y=R?>—J {{t, c(t)|lteR}.
For k=0,1, defines a homotopy equivalence i,: X —Y by i(x)=(k,x). Since i,
oT=¢@ 0i, we have
(5.2) T, =i7} @ odp,: (X, xp)—m (X, T(xp)).

Define uy(t)=@,(0, xy), u,(t)=(t, xy). These are paths in Y. Then the following is
clear:

(5.3) D, =g, T, (Y,(0,xp)) =7 (Y, (1, T(xp))).

From (5.2), (5.3) and the fact the the paths u,(i,ou) and u, are homotopic with
end points held fixed, we have

_-_1 . _—.__1 . s
(5.4) T, =iy, otg,olp, =i, o(ijou),ouy olg,

-1 . . .1 .

=iy oijou) ol ol oty olp,

— ._1 o

=u ol ol ol

In the following, we show that iT,}ou;, ciy, =p'(d).
For a path w=(w,,...,w,) in V, such that the image w,([0,1]) dose not
contain x; for any i=1,...,n, let

Y0 =[0,1x R = | {(t, w0t <1},
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define a path u(w) in Y(w) by u(w)(t)=(t,x,) and define i(w,k): R?
—{w,(0),...,w,(0)} = Y(w) by i(w, k}(x)=(k,x) for k=0, 1. Then it is easy to see
by (3.3) that for k=1,...,n—1.
i, 1);1 °u(lk)*° i(l, 0)*([dj]) =[d, dk+ vy 1] i=k,
=[d;] j¥k k+1.

Since ¢, ;=1[d,;], this implies that for k=1,...,n—1,
(5.5 (e )=(i(l, Do)y oully, o (il, 0)o),.

Express o as o.=0}! ... 0%, where &,,...,g,=1, —1, and let o(k)=07, I(k)=L*

I=I(1)...I(d). Define a path v, in Y()) by v,(6)=((k—1+0)d,x,) and define
Je: X=Y() by j . (x)=(k—1)/d, ¥(x)). Then (5.5) implies that
,OI(O'(]())=(]';(+ 1);1°Uk*°jk*’

Therefore we get

(5.6) ploc)=p'(a(d))... p'(c(1))

=(as 1)y o0 001) 0 14

=(as 1)y LouDyod 4
If we can show that there is a homeomorphism ¥ from Yn([0,1] xR?) to Y(J)
such that j, and j,,, are homotopic to ¥oi, and ¥oi, respectively and ¥ou,
=u(l), then (5.6) implies that

P’(Gc) = ll_*l ° l[l*— ! ° u(l)*o W*o iO*

=if oW o(Wouy),o ¥, oiy,

=i1_*10u1*0i0*.
This and (5.4) prove the lemma. The homeomorphism ¥ is constructed as
follows. Let H,=(H},...k, H) be a homotopy of class C' in V, between ! and
(Yocy, ..., oo,y With H(k)=((1,0),...,(n,0)), k=0,1. By means of a par-

tition of unity, we can construct a C*-map F: R x [0, 1] x R*—>R? such that for
every (¢,s)eR x[0,1]

. d .
F(t, s, Hi(s)) = Hi(s),

F(t,5,x5)=0.
Let T' be the Poincaré transformation of the time dependent equation on

[0,1] xR2:
dx/dt =F(t,s, x),

ds/dt =0.

Then the restriction of T'o(id xy) to YN([0,1]x R?) gives the desired ho-
meomorphism ¥. g.e.d.

Let L=K —{c,(0),...,¢,(0)}.
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Lemma 2. There is a continuous map S: L— L which coincides with T throughout

K’ and has no fixed points on U IntL,;, where L,=K,—{c,(0)}, and whose image
S(L) is compact.

Proof. For i=1,...,n, choose a homeomorphism ¢,: K;~»D? where D?
— {xeR?|x| <1}, with ¢,(c;(0))=(0,0). Define . by T(¢,(0)) =¢,.;(0).

For i with t.(i)#i or T(K;)>K,, define T;: L,—»Lby

T(x)=T(d: " (@:(x)/ | $:x)).

Next assume that i satisfies t.(/)=i and T(K;,)PK;. Then (2.4) implies that
T(K)<K;. Then it is clear that there is a continuous map ¢&;: S! x (0, 1]—R?
—{0}, where S is the boundary of D?, such that for any xeS!

Silx, 1)= ¢ Tog; (x)
Eilx, )% O<t<1,
I€:(x, t)lél/t 1251,
=1/t 0<t<1/2.
Define &;: D*—{0}»D*—{0} by &(x)= x| &(x/lxl, |x[) and T: L>Lby T,
=¢; 1o liod;.
T; has no fixed points on IntL; by (2.4) in the former case, by the property
of & in the latter case. Since ¢,(Int K;)=Int D? by the invariance theorem of

domain and T;=T on K'nK,, the map S: L—L defined by S=T on K’ and §
=T, on L, is well defined and continuous. Also, clearly the image of S is

i

compact, so we obtain the required map. q.e.d.
Choose a point x,eK’ and a path w in R*— | ) Int K, from x, to x;. Since
i=1
L and X are homotopy equivalent, there is a path v in L from x, to S(x,)
=T(x,) such that

(5.7) The paths v and wu(Tow)~" are fixed end-point homotopic.

Define a;=(w,oi,)~"B;, where i: L-»X is the inclusion. Then, the homomor-
phism p from B, to the group of all automorphisms of = (L, x,) defined by
(4.1) satisfies

(58) plo)=(w,0i) o p'(0)ow,ol,.
Lemma 3. S, =v,op(oo): 7 (L, xo)=m (L, S(x)).
Proof. From the following commutative diagram:
3 (L x0) = 7y (L, S(xo)) <=7, (L, xo)
1, (X, Xo) == 7, (X, T(xo)) >, (X, x)
JW* (Tow),y Wy

, Ty ' Uy r
n3(X, xp) —— (X, T(xp)) —— m1(X, xj).
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we see that S, =v,o(w,ci) tou 'oT ow oi, . Therefore by Lemma 1 and
(5.8), we complete the proof. g.e.d.

By the above lemma and Proposition 2, in order to prove the theorem in
the case of p=1, it suffices to show the following.

Lemma 4. Let I=(i,,...,i,)eZ"(z(). If x,€L is a fixed point of S satisfying (4.5),
where o =g, then the 1-periodic solution ¢(t; 0, x,) is of degree 1.

Proof. Let Z be the quotient space Y/(s,x)~(s+1, x), n;: Y—Z the projection
and iy,=mzoi,=n,0i,: X>Z. Let c(t)=n,4(P,(0, x,)), h a path as in (4.5) and d
=izo(w~'h). Since two paths in Y (igo(h=' w)uy(i, o To(w='h)) and &,(0, x,)
are fixed end point homotopic, (5.7) implies that
(59)  e~mzollio (h= wugliy o To (w1 W) =d~(nz0uq)ize To(w™"h)
~(d™Hmzoug) (izou 1) d) (izo (h™ wu(Tow) ™" (To h)))
~(@d ™ Hrzoug)izou™ ) d)(izo (h™" v(To h))),

where ~ means fixed end point homotopic. Therefore, since S and Tj, are
homotopic with x, and x, fixed, the homology class of ¢ satisfies

[cl=[(nzoug)(izou™ )] +iznlh~ ' v(Soh)].

If we denote by b,eH,(Z:Z) the homology class of the loop ,{t,x}), then
clearly by=[(nzouy)(izou"')]. Hence the following lemma completes the
proof.

Lemma 5. Let ¢ be a loop in Z. If [¢]=bo+iz| ). jkbk), then inv, (j, ..., Jj,)
=1

=(d(c, ¢y), ..., d(c, ¢,)), where b, =i [o,] and the 1-periodic curve ¢’ satisfies c(t)

=7,(t,c'(t)) for 05t <1.

Proof. Fix 1£k=n. Let B, ={t}(k})|seZ}, then the cardinal number of this set is

the period p, of ¢,. Let

Y'=R3~ |} {(t,c,(0)|1€R}, Z, = Y'/(s, x)~(s+ 1, %)

jePx

and Z,=Y'/(s,x)~(s+p,,x). Let =n,:Y'—Z be the projection, i
=Tzelyoi,: X—Z, for e=1,2, and n': Z,—Z, the projection. Then 7’ is a p,-
fold regular covering map. By the Alexander duality and the exact sequence of
homology group for the pair (S* xR?, Z,), we have that

H,(Z,;Z) is a free abelian group of rank 2 with basis by, b,
and by the similar way we have that
H,(Z,;Z) is a free abelian group of rank p, +1 with basis by, b} jeR,

where by, by are the classes of 7y, (¢, x{), 7z,(Pt, X0), by=iz%by, b} =i, 4b;. Let
d(t)=nz (t (), do(1) =75, (pt, ' (pt). If the assumption of the lemma is

satisfied, then clearly [d,]=bp+ | Y. js) b,. Since n'od,=d,...d, (p, times), the

Py
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loop d, is invariant under the covering transformation 7, (s, x)—7; (s+1, x)
and 7, by =p, by, 7, b} =b,, we obtain

(3.10) [dy]=bs+( ) j)(Y by).
sePy tePy

Let Z,=R*—{(t, ¢, (t)lteR}/(s,x)~(s+p;,x) and ¥:Z,—S! x(R*—{0}) be a
homeomorphism induced from (s,x)—(s/p,, x—c(s). Let i':Z,—>Z, be the
inclusion. Then the homology class (¥-i'), [d,] is equal to the class of the loop
(6, (Pet) = c(prt)) in S!x(R?—{0}). Therefore if we identify H,(S'x(R?
—{0}); Z) with Z? canonically, then (Pei),[d,]1=(1,d(c',¢,)). On the other
hand, (5.10) implies that (¥oi'),[d,]=(1, Y j). Thus the lemma is
proved. q.e.d. sePi

Now we prove the theorem when p2=2. Define a C'-map f,:R’>-R? by
fo&x)=pf(pt,x).

Then the periodic system
(5.11) dx/dt=ft,x)

satisfies (2.2), (2.3). Clearly x(f) is a solution of (2.1) if and only if x(pt) is a
solution of (5.11). Thus, for k=1,...n,c(t)=c(pt) is a periodic solution of
(5.11) of period (p,p,)/p where ( , ) denotes least common multiple. Since
Theorem 2 is proved before when p=1, applying it to the system (5.11) and the
set of periodic solutions C,={c},...,c,}, we see that, for every element I of
Z"(zf) with r(C,, 1) (=r,(C,p))*0, there is a 1-periodic solution ¢’ of (5.11)
passing K’ at t =0 with

d(¢, ci)=deg(c((p, p) 1) — (P, PO 1)

== lk
for k=1,...,n, where c(t)=c'(t/p).
Suppose that ¢ is g-periodic, where g <p is a divisor of p, then
deg(c((p, p) ) — (P, P 1)
=((p, P/, pi)) deg(c((g, p,) ) — ¢, (9, D) 1)
=((p, p)/(@, P d(c, c,).

This implies that I=n, (d(c,c,),...,d(c,c,)), so Ien, (Z"(z%)). Hence if TeZ"(p),
then c is p-periodic. Thus the theorem is proved for p=2.

6. Proof of Theorem 1

By the corollary of Theorem 2, it suffices to show that

N,zp and Y |r(C,p)|=N,z2""",

IeZ"(p)

where N, is the number of IeZ"(p) with r;(C, p)=+0.
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We can assume without loss of generality that
¢, ()=(1,0), c;()=(3,0) forevery teR.

For, choose a parametrized diffeomorphism ¢,: R?—R? periodic in ¢ of period
1 with ¢,(c,;())=(1,0), ¢,(c;5(t))=(3,0). Then the verification of Theorem 1 for
the Eq. (2.1) and the l-periodic solutions ¢,,¢,, ¢5 is equivalent to that for the
periodic system on R?, for which ¢,(x(t)) is a solution so long as x(t) is a
solution of (2.1), and the 1-periodic solutions (1,0), ¢,(c,(1)),(3,0), because

[Cl, CZa C3] = [(1, 0)’ ¢t(c2(t))7 (3a 0)]
Clearly we have, setting I =(i,,...,i;), J =01, .--,jy),

Lemma 1. The equivalence class Cf in B, of the braid o% contains the braid
(o Bt .. ofe piyP where a =02, B=05.

For integers i and m, let
m—1
P(i,m)= ) (a;a))’ m>0
5=0

= — Z (ajaz)_s m<0,
s=1

Qi,my=(a;a,)", R=ay(1—a,)(1—a3),

where j=1 for i odd, j=3 for i even.

For a natural number k, let P(k) denote the polynomial ring
[X,,....X,, Y,,.... 1}, Z]. For s=1,...,k define a group homomorphism
F,: P(k)— P(k), where P(k) is considered as an abelian group, by

FX(DYU)ZY)=X(I—e,_,—e) Y +e)Z""
if i, ;>0,i;>0 and [>0,

=0 otherwise,

where I,JeZ¥ | is an integer, X(I)=X... Xk Y()=Y/'... i etc, ¢
=(0,...,0,1,0,...,0) (i-th component=1) and i,, e, mean i, e, respectively. The
following is clear.

6.1) FoF,=F,oF, ss=1,..,k,
E(WW')=WF,(W') if W contains no symbols X _ , X,.
Define @: P(k)x A%**1 5 A by
DV, Ay, Ao )=V(A1, s A1)
For M =(m,,...,m)eZ* define &,,: P(k)— A by
¢M(V)=¢(Vap(1am1)’ ’P(k’ mk)5 Q(laml)a sy Q(ka mk)7 R)
Let Wy =@ po(1+F,)o(1+ Fy)o...o(1+F): P(k)—A.
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Lemma 2. If o=o™ f™ .. o™ '™ where M=(m,,...,m)eZ*, then B(o)

equals to
(Q(l, my) VX, .. Xy zv) (I1=a)¥PulX,... X, , A ))
a,(1—a 3)Q(1,m1) Pu(X,... X, Z¥)  ¥,(X, ---Xka/z) ’

where k' =k/2 —1.
Proof. Since

o1, m) (1—a,) P(1,m)

Bl )= (az(l ~ay)Q.m) P2,n)  P(1,m) PR, mR+0Q(2, ">)

for integers n,m and B(o)=B(«™ " f™)... B(«™ ™), this lemma is proved by
induction on k with the aid of the following formulas.

lIIM(‘XYS‘)(S+I"')(tzu)
=V,(X,... X, ,Z""Y)0(t,m)+ P (X,...X,_, Z*")P(t,m)R
if t—s is odd,
= V(X X, 2" D0 m)+ Pyl(X,... X, Z*) P(t,m,)

if t—s is even,

where 1<s<t<k and u=(t-s+1)2 if t—s is odd, u=(t—s)2 if t—s is
even. g.e.d.

In the following, let k=2pd, k' =pd and M =(K,...,K) (p times), where K
=(i1,/1,125J25---5ig.Jg)- By Lemma 1 and 2, we have

Lemma 3. A(C,p)= —(@yo(l + Fy)o(1 + Fy)o...o(1 + E) (X, ... X, Z¥)

For G=(g,,...,g)€Z’ and s=1,....d, let G,=(g,,,...,84:81>--- &) Then
0(G,H)=0(G,,H) for G,HeZ®. It is clear that the following conditions are
equivalent.

l) [CI,CZ,C3]=O'(I,J).

i) [es,¢5,¢1]1=0(J, 1))

iii) [e;(—1), (=), es(=0)]=a(l’, J}),
where I' =(—1i,, ..., —i;), J'=(—jy, ..., —j;). Therefore, the verification of Theo-
rem 1 in the case of [¢,,¢,,¢5]=0(l,J) is equivalent to that in the case of
Lers e csl=0(,J), 6(J, 1, ), a(J,, 1) or a(I,,J., ). Thus for the proof of the
theorem, it suffices to consider only the following four cases.

I) |ij>1 and |j,|>1 for some s and t.

Il) i,=1,j,>0fors=1,...,d and j,>1 for some ¢.

Iy i, >0, []|——1f0r s=1,...,d and j, <0 for some t.

Iv) []l—lfors— dandl>0 i, <0 for some t,u.

For a subset I' of Z3 and i=Y rya'eA, where a'=d}...ay, let I'(})

=) na

Ier
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Case 1) Define y: A—Z by
yO rpa'y=max{i,—i, —is|r; %0}, y(0)=0.

Then y(A(C,p))=k" and (@, (F(V))<y(P\(V)) for VeP(k), s=1,....,k with
F(V)=#0. Hence if we set

r={IeZ3i,—i, —i,=k'}.
then Lemma 3 implies that
—TAC,p)=T(Py(X, ... X, Z¥) =d Pp(X ... X ;).

Therefore, setting
d
u=(Y min{is,O})p+1,I”=Fm{i1-——u},
=1

we get I'(A(C,p))=va|ay®(X,X,... X,,)F, where v,w are integers with v <0,
Since @(X,X, ... X,,)? has at least p terms by the assumption and I = Z>(p),
we get N,=p. Also N, =p2? is easily verified. Hence the theorem is proved.

To prove the other cases, we need several preparations. Let é: A—>Z be
defined by

5 rra"y=max{i |r; 0}, 6(0)=0.

Then &(A(C,p))= ( i max{is,(}}) p. Let A={i,=6(A(C,p))}. Define subsets

s=1
Q,i=1,...,5 of {1,...,k} by

Q, ={s: odd with m__,,m >0},
Q,={s: odd with m,_, <0,m >0},
Q,={s: even with m;_ ,m__, <0},
Q,={s: even with m,_, <0, m__ >0},
Q,={s: even with m,_, >0, m,_  <0}.
Let
Q=0 0Q,uQ,uQ,.

Then 8@, (FAW)) < (P, (W)) for any s¢Q, WeP(k). Therefore if we set V=
—X,...X, Z¥, then
AAC, p) =A@y (1 + Fy)o...o(1+E) (V)
=A@p(J] A +E) (V)

sef2

where || means composition of maps. This, (6.1) and the fact that FoF,, (V)
=0 implies that
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(62) AAC,p)=42y( [] (+F) ][] A+E+F_)()

sefRju; uef2y

=—A@y([] I+FX,_1 X.2) [ (X,_,X,2)

sefy te23

’ l—l (1+Fu+Fu—1)(Xu—2Xu—1XuZ) H XUZ))

uef2y velds

Case II). Since Q,,Q, and Q. are empty,

(6.3) — A(A(C, p) =(a, a))" ﬂ( 3= 1) P2s,j)+ 1)

d
u=k'+ Z(js—l))p—l and TI'={i,=u}.
=1
Then by (6.3),

(TﬁA)(A(C,p))=F(A(A(C p)
=dy asay ¥ la;— 1) "N (vay +wla;— 1)),
where v,w are non-negative multiples of p with v+w<0. Since I'nd<Z>(p)
and k'=Zp by the assumption, N,=p, nggp?* for p=1. Hence the proof is
completed.
Case I11). Since Q,, Q5,4 are empty, by (6.2) we get
—A(A(C,p)=a} as az(aay—a; + 1),

where u, v, w and x are multiples of p with x>0. Let I'={u} x{v+1} xZ.
Then I'=Z3(p) and

—T(A(C, p))=xa" ay* @+ (1 — a1,
Therefore, forp=1,N,=2 x> pand N, = x2*~ ! 2 p2?~'. Thus we complete the proof.
Case 1V). By (6.2), we get
TA(A(C, p)=ai a3 a3(a; — 1) (a3 — a, a5)(as — 1 —a, a,),

where u, v, w, x, y are multiples of p with x>0, y=0. Let I'={u} x {v4+1} x Z.
Then I' = Z3(p) and

+T(AC, p))=a" a5t ay T (ay — 1P~ (x(a; — 1)+ y as).

Therefore, for p21, N, zx+yzp, N, =zp2P~ ! Thus the proof is completed.
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7. 1-periodic Solutions

In this section, we give a sharper estimation for the number of 1-periodic
solutions. The following result is the best estimation which is obtained by our
method.

Proposition 3. Assume (2.2), (2.3). Let c,, ¢, and c, be 1-periodic solutions of (2.1)
satisfying (2.4) for p=1. Then the number of 1-periodic solutions, passing K' at t
=0, is not smaller than

3mln|+Im|+|n|=3  if [cq,cy,c5]=[a"b"],mn>0,
Jmlnf+mi+|nj+1  if [c,,c,,c3)=[a"b"],mn<0,
2 if [ey,c,,¢5]1=[a™] or [b™],

where m,n are non-zero integers, [ | denotes conjugate class.
Proof. If [¢,,c,,c5]=[a™b"], then by Lemma 3 in Sect. 6
—A(C,1)=P(1,m) P2, )R+ Q(1, m)+ Q(2, n).

Hence the straightforward calculation proves the proposition. q.e.d.
For example, if [c,,c,,c5]=[a®b] (see Fig. 2.), then

2 42 2 2
—A(C,1)=aja3sa,—~a,a5a;+a,a,a,+a, a;—a, d,+a,.

Hence, there are at least six 1-periodic solutions of degree (2,2,1), (1,2,1),
(1,2,0), (1,1,1), (1,1,0), (0,1,0), other than ¢,, ¢, and c,. Also if [cy,¢c,,c;5]
=q'%%p19° then there are at least 30,197 1-periodic solutions other than
¢y, ¢, and cj.
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