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1. Introduction 

In this paper, we consider equations of the form: dx/dt=f(t,x), where t is a 
real number, x is a point in R 2, f is of class C 1 and periodic in t of period 1. 
We assume that there is a closed set of R 2 homeomorphic to a closed disk and 
invariant under the Poincar6 transformation. It is known that this condition is 
satisfied by many dissipative systems as Duffing's equation. See for example 
[6]. 

The purpose of this paper is to discuss the relation between the number 
and the manner of linking of periodic solutions. Our main theorem, Theo- 
rem 1, states that the equation has periodic solutions of every integer period if 
there are three periodic solutions of period 1 which are attractor or repeller 
and link together in a certain kind of complex manner. 

On the number of periodic solutions of general dissipative systems, the 
following results are known. The number of periodic solutions of every integer 
period is divisible by twice the period if all periodic solutions are hyperbolic 
(Levinson [3], Massera [4]), and is finite i f f  is real analytic in x and the trace 
of the Jacobian matrix o f f  is negative (Nakajima and Seifert [5]). 

Our theorem is derived from Theorem 2 in Sect. 3. There we define a 
polynomial which describes how given periodic solutions and others link 
together, and in particular gives an information about the number of periodic 
solutions. 

We prove Theorem 2 in Sect. 4, 5 and Theorem 1 in Sect. 6. In Sect. 7, a 
detailed estimation for the number of periodic solutions of period 1 is given. 

2. Theorem 1 

Consider the following differential system: 

dx 
(2.1) dt - f ( t ,  x) t~R, x~R 2. 
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We assume th roughout  the paper  that  

(2.2) 1) f(t ,  x) is an R2-valued function of class C 1. 

2) f(t ,  x) is periodic in t of  per iod 1, that  is, f ( t  + 1, x) =f(t ,  x). 
3) There exists a solution x=qb(t;to,xo) of the equat ion defined on 

- o o  < t <  oo with any initial condi t ion (to,X0)eR x R 2. 

Defining a Cl -d i f feomorphism T: R 2 ~ R  2, called the PoincarO transformation, 
by T(x) = ~b(1 ; 0, x), x ~ R  2, we also assume that  

(2.3) there exists a closed set K of R 2 satisfying that  K is h o m e o m o r p h i c  to a 
closed disk and  T(K) ~ K. 

Definition 1. Let p be a natural  number .  A cont inuous  curve x: R ~ R  2 is p- 
periodic if it satisfies for every t~R and every natural  n u m b e r  q < p  that  

x(t+p)=x(t)  and x(t+q)#x(t) .  

A solut ion x(t) of (2.1) is p-periodic if it is a p-periodic curve, and is periodic if 
it is p-periodic for some natural  number  p. 

Clearly we have by the uniqueness of  solution: 

Proposit ion 1. Let x(t) be a solution of (2.1). Then it is p-periodic if and only if 
x(O) is a periodic point of T of minimal period p. 

Let q , c  2 .... ,c n be periodic solutions of  (2.1) and p a natural  number .  We 
assume the following condit ions in Theo rem 1. 

(2.4) There exist disjoint closed sets K 1 . . . .  , K  n of  K h o m e o m o r p h i c  to 
a closed disk and satisfying the followings for i - -1 , . . . ,  n: 

c i ( O ) e K i ,  

TP(Ki)cgl  or r P ( g i ) ~ g i  if q(p)=ci(O), 

TP(Ki) and K i have no intersection if c~(p) # ci(O ). 

Here,  T P = T  . . . . .  T (p-times). Set K ' = K - @  IntK~,  where Int  denotes 
i = 1  

interior. A p-periodic solut ion is hyperbolic if x(0) is a hyperbol ic  fixed point  of  
r p . 

(2.5) If  x(t) is a p-periodic solut ion of (2.1) with x(O)eK', then it is hyperbol ic  
and x(0) is not  on the bounda ry  of K'. 

Remark. The assumpt ion  (2.4) is satisfied if the periodic solutions are hyper-  
bolic a t t rac tor  or repeller. 

N o w  let Cl,C 2 and c 3 be distinct 1-periodic solutions of  (2.1). We express 
topological  complexi ty  of these solutions as a series of  two letters a, b and their 
inverses. Let  



(0,0) 

Fig. 1 

a b 

Fig. 2 

Number and Linking of Periodic Solutions 321 

Then, since e~(t) and ez(t ) are linearly independent ,  there is a unique u(t) 
=(Ul(t),Uz(t)) in R 2 such that  

c2(t ) -  cl( t  ) = ul( t  ) el(t) + u2(t) e2(t). 

It is trivial that  u(t) # (0, 0), (1, 0). Therefore  u(t) is a 1-periodic curve in X = R  z 
-{ (0 ,  0), (1, 0)}. We now define a conjugate class [cl ,  c:,  c3] of  the fundamenta l  
g roup  7t ~ (X, (1/2, 0)) as follows. Choose  a curve v(t) ( 0 < t < l )  from (1/2,0) to 
u(0) and consider the closed curve which passes the point  v(3t) at 0_<t < 1/3, 
u(3 t -  1) at 1/3 < t < 2/3 and v ( 3 -  3 t) at 2/3 < t < 1, that  is, the closed curve 
which starts (1/2,0), follows v to u(0), then runs along u(t) ( O < t <  1) and retrace 
v back  to (1/2,0). Then clearly the conjugate  class of the class of  this closed 
curve dose not  depend on the choice of  v. We denote it by [c~ ,c : ,c3] .  As is 
well known, the fundamenta l  group is a free group  of rank  2 on  generators  a 
and b, which are defined as the classes of  closed curves circling (0,0) and (1,0) 
once in a counterclockwise direction respectively. See Fig. 1. Then  clearly 

[cl,c2,c3] = Fat], [b J] or  a ( I , J ) ,  

where [ ] denotes conjugate class, j is an integer, l = ( i l , . . . , i d ) ,  J=(J l , . . . , Jd )  
are sequences of non-zero  integers of length d and 

a(I, J) = [ail b ~' a i2 b J2... a i" lfld]. 

For  example,  if cl, c 2 and c 3 are link together  as in Fig. 2, then 

[cl ,  c2, Ca] = a((2), (1))= [a 2 b]. 
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Theorem 1. Assume the conditions (2.2), (2.3). Let Cl,C 2 and c 3 be 1-periodic 
solutions of (2.1) such that [Cl,C2,C3]=a(I,J), where I and J are sequences of 
non-zero integers of the same length with 

(I ,J)+(1,  1 . . . .  ,1), ( - 1 ,  - 1  . . . .  , - 1 ) .  

Let p be a natural number and let cl, c2,c 3 satisfy (2.4). Then the number of p- 
periodic solutions passing a point in K' at t = 0 is not smaller than p2. Moreover, 
it is not smaller than p. 2 p-1 if(2.5) is also satisfied. 

3. Theorem 2 

In this section, we consider the general case where no assumptions are made 
on the number and period of the given periodic solutions, in the previous 
section, where the number is three and the period is one, the type of link of 
periodic solutions is expressed as an element of the free group of rank two. In 
the general case, it is expressed as a "braid", as we see in the following. 

A continuous map from the unit interval I-0, 1] to a topological space X is 
a path in X. A path c is a loop if the initial point c(0) and the terminal point 
c(1) coincide. This point is called the base point of c. 

Let n be a natural number. Define an open set V, of R 2n by 

Vn= {(x1, . . . ,Xn)]XiER 2, Xi@ X j if i+j}. 

Let 2;. denote the symmetric group of degree n and act on V. by 

r(X 1 . . . .  , Xn )=  (Xz(1) . . . .  , Xz(n)), 

where rEX,, (x~ . . . .  ,x,)eV,. We denote by V~/X, the quotient space by the 
above action of X, and by 7t: V,--+V,/X, the projection. The fundamental 
group rcl(V,/X,) is called the braid group and its element a braid. In the 
following, we denote by B, the braid group rtl(V,/X,,e), where e 
= g((1, 0) . . . .  , (n, 0)). 

Let cl, c2, ..., c, be periodic solutions satisfying that 

(3.1) for any i=  1 . . . .  ,n and any integer m, there is a natural number j with 
1 < j < n  such that ci(t+m)=c~(t), teR.  

This means that any periodic solution, which is obtained from c i by simply 
translating time by m, also belongs to the set of periodic solutions. Therefore, 
the loop rC(Cl(t),...,c,(t)) in V,/Z. determines an element of the braid group 
rq(V,/2~,). Hence the type of link of periodic solutions is expressed as a braid. 

The group structure of the braid group is known as follows. Let B',' be the 
finitely generated group with generators a',, . . . ,a' ,_ 1 and defining relations 

(3.2) tr'itr~=a~tr'~ if ] i - j l > 2 ,  l <i, j < n - 1 ,  

a'ia'i+la'i=a'i+lalG'i+l if l < i < n - - 2 .  
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Define a pa th  I i in V, by 

(3.3) li(t ) = ((1, O) . . . . .  (i - 1, 0), l~ (t), 12(t), (i + 2, O) . . . .  , (n, 0)) 

where 
l~ (t) --(i + t, - ( t  - -  t 2 ) 1 / 2 ) ,  1 2 ( t )  = (i ~- 1 - -  [ ,  ( [  - -  t2) l/z). 

Then ~ o l; is a loop in V,/Z, .  Denote  the class of  this loop in the braid group 
B, by a i. Then it is known El, Theorem 1.8] that  the h o m o m o r p h i s m  sending 
a' i to ~i is an i somorphism from B~,' to Bn. 

NOW assume that  n > 3 .  Let  A denote the ring Z [ a l , a ~ l , . . . , a , , a ~  ~] of  
integer polynomials  in the a}s and their inverses. Let  v: B , ~ X n  be the homo-  
morph i sm  which carries ~ to the t ransposi t ion of  i and i +  1. We say that  two 
elements a and 0' in B, are equivalent  if there is an ~ in the kernel of  v such 
that  o-' = ~ -  1 (7 ~. Denote  the set of  all equivalence classes of  B,  by B',. Then  a 
m a p  A: B',-~A is defined in the following way. Let  G L ( n - 1 ,  A) be the group  of 
all invertible matr ices of  size n - 1  whose entries are elements of  A. Let Z,  act 
on A by 

(3.4) z.  a i = a~(o, 

and on G L ( n - 1 ,  A) by z(21j)=(z2i2). Set 

/ -  a I 1 0 i]~' 
0 1 

S ~ =  0 In 3 
S i=  

Sn-- 1 (io  1 o o ) 
an - 1 - -  an - 1 

{ 0 o) 
1i 2 I 0 0 

I 0 a i - -  a i 0 , 

0 

where i = 2 , . . . , n - 2 ,  I k is the identity matr ix  of  size k. Then  it is easy to see 
that  the formula  

(3.5) B(cri) = S i i = 1 , . . . ,  n - 1, 

B(a a') = B(a') (v(a') B(a)) a, a 'EB  n 

implies that  B ( e ) = I ,  B ( a - 1 ) = v ( a ) B ( a )  -1,  where e is the unit  element, and 
hence defines a m a p B : B , - . G L ( n - I , A )  uniquely. Define a h o m o m o r p h i s m  
inv~ from A to the subring A t consisting of all z- invariant  elements under  the 
act ion (3.4), where ZeZn, by 

inv~(al) = a i a~(i) . . .  a,~- ,(i), 

where s is the cardinal  number  of  the orbit  of z at i, {z'(i)l u is an integer}. We 
now define A: B n ~ A  by 

A(cr) -- - invv(~)(trace B(~r)). 
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It  is easily shown that  B (~ - lo -00=B(o  ") for every a e B , ,  e e K e r v .  Hence  A 
induces a m a p  from B', to A denoted by the same letter A. 

Remark. The representat ion of B, obta ined f rom B by replacing every a i by one 
symbol  t coincides with the reduced Burau representa t ion given in [-1, 
L e m m a  3.11.1]. 

For  distinct periodic solutions c and c', define an integer d(c,c') as the 
degree of the loop in R 2 - { 0 } :  c(qt)-c '(qt) ,  where q is the least c o m m o n  
mult iple  of  the periods of  c and c'. 

N o w  assume that  C={c  1 . . . .  ,c,} is a set of  periodic solutions of (2.1) 
satisfying (3.1) in the remainder  of  the section. 

Definition 2. For  a sequence of integers I = ( i  1 . . . .  , i,)~Z", a periodic solution c 
of  (2.1) is of  degree I, if d(c, Ck) = i k for k = 1, .. . ,  n. 

Let 22 act o n Z " b y  

z(i I . . . .  , i,)= (i~1), ..., i~(,)) 

and for z e S ,  denote  by Z"(v) the subgroup  of all z- invariant  elements of  Z". 
Define ZceS . by T(ci(O))=c~c{i)(O ). Let p be a natural  number .  We define a 
subset  Z"(p) of Z" as follows. Fo r  a divisor q of  p, let tlq.p: Z"-*Z"  be the 
h o m o m o r p h i s m  defined by 

rlq, p(ei) = ((Pi, P)/(Pl, q)) ei, 

where e~=(0 . . . . .  0, 1,0 . . . .  ,0) (i-th c o m p o n e n t = l ) ,  Pi is the per iod of cl and ( , ) 
denotes  least c o m m o n  multiple. Then  clearly ttq ,p(Z"(z})) c Z"(z}) c Z"(z~). We 
define Z"(p) as the set of all elements I of  Z"(z~) which do not belong to the 
image qq, p(Z"(z})) for every divisor q of  p with q <p .  Note  that  Z"(1)=Z"(zc) .  

Now define an element A(C,p) of A as follows. Define a loop C' in V,/S, by 
C'(t)=n(cl(t),. . . ,c,(t)) and choose a pa th  v in V, f rom (c1(0) . . . .  ,c,(0)) to 
((1, 0), . . ., (n, 0)). Then  (rcov)-lC'(rcov) is a loop in V,/S, based at e 
=n((1,0) , . . . , (n ,0)) .  Deno te  by cr c the class in B, of  this loop and let A(C,p) 
=A(Cp),  where Cp denotes the element  of  B', represented by a~. It follows f rom 
the equality Im[n . :n~ (V , )+B , ]=Kerv  that  Cp and hence A(C,p) do not de- 
pend  on the choice of  the pa th  v. Let  r t (C,p)  denote  the coefficient of the te rm 

�9 i n  a'~' ... a~"of A(C,p), that  is A(C,p)= ~ r,(C,p)a]' ... a, .  
l e Z "  

Theorem 2. Assume (2.2), (2.3). Let p be a natural number and C = {c x . . . .  , c,} a 
set of periodic solutions of (2.1) with n>=3 satisfying (2.4), (3.1). Then, for every 
I~Z"(p) with rt(C,p):t=O , there exists a p-periodic solution of degree I which 
passes K' at t = O. The number of such p-periodic solutions is not smaller than the 
absolute value of r i (C , p), if the assumption (2.5) is added. 

As an immedia te  consequence,  we have 

CorolLary. Under the same assumptions as in Theorem 2, the number of p-periodic 
solutions, passing K' at t = 0 ,  is not smaller than p times the number of elements 
I of Z"(p) with rl(C,p)~O. It is not smaller than ~ [rx(C,p)[ /f  (2.5) is also 
assumed, i~ z,tp) 



Number and Linking of Periodic Solutions 325 

Remark�9 When n =  1,2, the type of link of given periodic solutions does not 
affect the number of other periodic solutions. When n = 1, it is clear since B 1 is 
the trivial group. For any aeB2,  a Cl -map f is easily constructed so that the 
Eq. (2.1) has only three periodic solutions and that the braid of two of those 
periodic solutions is equal to a. 

The proof of Theorem 2 depends heavily on Proposition 2, which is con- 
cerned with fixed points of continuous maps, in the next section�9 

4. Fixed points 

We assume that n > 3. Let L be a topological space homeomorphic  to a n-times 
punctured disk. Let x o be a point in L and % .. . .  ,~, be a free basis of the 
fundamental group 7q(L, xo). Denote by b i the homology class in H I ( L ; Z )  
determined by e~. Let p be the homomorphism from B, to the group of all 
automorphisms of rq(L, Xo) defined by 

(4.1) P(ai) (~j)= el ~i+ 1 ~/- 

= ( Z  i 

~ j  

1 j = i  

j = i + l  

j+i ,  i+1.  

For z~X., let inv~:Z"~Z"  and i n v , : H I ( L ; Z ) ~ H I ( L ; Z  ) be the homomor-  
phisms defined by 

s - -1  s - 1  

(4.2) inv,(el) = ~ e,k(1), inv,(bi)= ~ brk(i), 
k = 0  k = O  

where s is the cardinal number of the set {~u(i)lu~Z}, e l=(0 , . . . ,1  . . . . .  0) (i-th 
component  = 1). 

A path v in a topological space X defines a homomorphism v, from 
~I(X, v(0)) to 7~l(X,v(1)) by 

(4.3) v,([w]) = [v -  1 w v], 

where w is a loop in X based at v(0), - 1  denotes inverse path, v - l w  v is the 
product of the paths v-1, w and v. 

Let S: L ~ L  be a continuous map with the image S(L) compact, v a path in 
L from x 0 to S(xo) and a an element of B,. For I~Z",  define an integer r~ by 

A(a) = ~, r, ai,' ... a~. 

Proposition 2. Assume that 

(4.4) S,  = v, op(a): ~z 1 (L, Xo)-~xl (L, S(xo)). 

I f  I is an element of Z"(v(a)) with ri4:0 , then the mapS has a fixed point in L 
such that 

(4.5) for any path h in L from x o to the fixed point, the equality 
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invvt~)[h - I  v(Soh)] = ~ ikb k 
k=l 

holds. 

�9 Moreover, there exist at least [re] f ixed  points in L satisfying (4.5), provided that 

(4.6) S has no f ixed  points on the boundary of L and all f ixed points are 
hyperbolic. 

Proof  Let z=v(a) .  We fix IoeZ"(r). Let 0: nl(L,  xo) -*Hl(L;  Z) be the Hurewicz 
homomorphism. Then, for every natural number r, there is a finite regular 
covering space Pr: L r ~ L  such that 

(4.7) Pr*( n l(Lr, Y)) = O- a (r  bi, b i - b~ti)[i = 1 . . . .  , n), 

fo'r every point y in the inverse image of x 0 under p~, where ( ) denotes 
generated subgroup. Let n' be the rank of the free abelian group Z"(z). Then 
the covering is r"'-sheeted. Fix a point Y0 with Pr(Yo) = Xo. Let J be an element of Z" 
satisfying - inv,(J) = I o. By (4.4), S,(bi) = b~(i) , so the subgroup H r = O- 1 (r  bi, b i 
-b~o[ i=  1 . . . . .  n) of nl(L, xo) is invariant under S, .  Therefore, there is a unique 
lift S,:Lr--*L r of S such that S,(yo)=(aJv)'(1), where e J=a~  ... c~, j" and (eSv)' is 
the lift of the path as v with the initial point Y0- S, sends yeL~ to the terminal 
point of the lift from Yo of ~Jv(Soprol), where l is a path from Yo to y. 

Lemma 1. Let r be a sufficiently large number. I f  the Lefschetz number A(Sr) is 
not zero, then there is a f ixed point of  S satisfying (4.5)for I o. The number of  
such f ixed  points is not smaller than [A(S,)[/R /f (4.6) is satisfied, where R = r"'. 

Proof  Since S(L) is compact, S,(L~) is contained in a compact deformation 
retract of L,. Therefore if A(S,)+O, then the Lefschetz fixed point theorem [2, 
Chap. VII, Prop. 6.6] implies the existence of a fixed point y~ of S, in Lr. Let 
x l =P~(Y0. Then every point in the inverse image of x~ is a fixed point of S~. 
This is because the covering transformation group of p~ acts transitively on 
each fiber of pr and S~ commutes with any covering transformation. Let h be a 
path as in (4.5) and h' a lift of h with h '(0)=y o. Then since p~(h'(1))=x~, the 
definition of S~ implies that h'-~(~Jv)'(S~oh ') is a loop in Lr. Hence the 
homology class [ h - l c d v ( S o h ) ] = [ h - a v ( S o h ) ] + [ e  J] belongs to (rb~,b~-b~(o). 
From this 

1 .o bk modulo (r  b i )  , inv,[h-  v (Soh)]=- inv~[~ f l ]=  /_, 1 k 
k = l  

where (i~ .o �9 , t , )=Io .  Therefore Lemma 2 below completes the proof of the first 
half of the lemma. 

We prove the second assertion. By the Lefschetz fixed point theorem, A(S~) 
= y~ indy S,, where summation takes over all fixed points of S, and indy Sr is the 

Y 

fixed point index of Sr at y. By [6, Prop. 5], if S satisfies (4.6), then indyS, = 1 
or - 1 .  Therefore, the second assertion holds from the fact shown before that, 
for a fixed point y of S,, every element in the fiber over p~(y) is also a fixed 
point, q.e.d. 
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Lemma 2. For IeZ"(z), let F I be the set of all fixed points of S satisfying (4.5). 
Then F I is empty, if the norm IIIII of I is sufficiently large. 

Proof Suppose the conclusion does not hold. Then there are sequences x(n), 
I(n), n = l , 2  . . . .  , of elements of L and Z"(z) respectively with x(n)eF1t,) and 
]lI(n)ll-,oo if n~oo.  Since {x(n)} are contained in the compact set S(L), we can 
assume that the sequence {x(n)} has the limit point x(oo) in L. Choose a path 
h from x o to the fixed point x ( ~ )  and let I(oo)=(i],  ...,i',) satisfy inv~[h-lv(S 

oh)] = ~ ikb k. Then x(oo)sFt(oo), because inv =inv~oS, on Hi(L; Z). It is clear 
k = l  

that if I'~Z"(z) and there is a point in F r sufficiently near to x(oo), then I' 
= I ( ~ ) .  This implies that I(n)=I(oo) for n sufficiently large and leads to the 
contradiction, q.e.d. 

Since A(Sr)= 1- t race[S t , :  HI(L~; Q)--*HI(Lr; Q)], to prove the proposition, 
we must compute the trace of S~,. Let V~=Hr/[H~,Hr], where [ , ] denotes 
commutator subgroup, and A r = A/(a~- l, a i -  a,(i) i = 1,..., n), where ( ) is gen- 
erated ideal. Then V~ is a A~-module by ai[~]=[~iee71], ~eH~. Since 
p(a)(H~)cHr, p(e) induces a Ar-homomorphism p~: V~-,V,. For the sake of 
simplicity, we use the same symbol a~ for the image of a~ under the projection 
A ~ A  r and let a1=a'l ~ i~ �9 ... a. cA or A r for I~Z  ". The following diagram clearly 
commutes. 

St* id 
Ht(Lr; Z) ~ H t ( L ;  Z) , H~(L~; Z) 

nl(Lr,yo) , nl(Lr,S,(Yo) ) , nt(Lr,yo) 

Hr s, Hr" ' P'*nx(L"Sr(Y~ '(~Jv), 

This and (4.4) implies the following commutative diagram. 

HI(Lr; Z) 

v~ 

~r* 
, HI(Lr;  Z) 

ad pr 

where a J denotes the scalar multiplication. Thus it suffices to consider the A r- 
homomorphism a J Pr for the computation of trace St,. 

Let W~=@Arei, j be the free A~-module generated by symbols ei,j, 
1 < i < j < n  and fir: W~V~ be a Ar-homomorphism defined by 
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(4.8) flr(ei,j) = [ei 0:i c~i- 1 0:71]. 

Let e'i,j= ( l~ (ak--1))ei,~ and Wr',W }' be the submodules of ~ generated by 
k * i , j  

e'i,~+ 10 = 1 . . . . .  n -  1), e'ci(1 < i< j<n)  respectively. 
Let V~*= V~/fl,(I/V~), V~z=fl~(W~)/fl,(VV~'), Vr3----~/~r(Wr t) and, for i=1 ,2  and 3, pi: 

V,~--+ V} be the Ar-homomorphism induced from Pr: Vg"~V~. Then we have 

_ _  1 2 3 (4.9) Vr ~--- Vrl @ Vr2~) Vr 3, P, -Pr@P~@P, .  

Lemma 3. [trace[p 1@1o: V,I| V~ 1 | <n. 

Proof Clearly the A,-module V~ is generated by fl,(ei.j), [a~], [0:ie~})],i,j 
= 1 . . . .  , n, Therefore it follows from the equality [a~]-  [c~(i)] = r[el e~}] modulo 
fl,(W,) that the (A,| V,| is generated by fl,(ei,j) and [0:~]. Hence 
the Q-vector space v~ I |  has a basis [~ i ] , l -1 , . . . , n .  " 1 , _ ~ " -  Since p~ [0:i] -- [cq(i)], p, 
| 1Q is identified with z: Q"~Q".  Therefore the lemma holds, q.e.d. 

Lemma 4. There is a positive number M independent of r such that Itrace(p z 
@ 1Q)[ <MR~r, where R =r"'. 

Proof Define a homomorphism C, from B, to the group of all A,-automor- 
phisms of ~ by 

Cr(ak) (ei, j) = -- a keg, k + ~ i = k, j = k + 1 

=ekO i = k +  l , j ~ k  

= e i ,  k i=t:k, j = k  + l 

=(1--a,i) ek,k+l +ek+l,i  i = k , j : 4 : k + l  

=(ai--1)ek,k+l+ei,k+ 1 i : t : k + l , j = k  

~- ei ,  j otherwise. 

A straightforward calculation shows that fl~o C~(a)=p~oflr. 
For a linear map A: V-.V, where V is a Q-vector space with a basis 

v l , . . . , v  m and a norm 

Y, sivi = [si{, slsQ, 
i=1  1 i= l 

let I[AH t be the operator norm of A. Then it is easy to see that the absolute 
value of any eigenvalue of A is not greater than J[AII~ and that 

IIAllx-=max laijt: j =  l , . . . , m  , 
ki= 1 

where ai~ is the matrix representation of A. The former fact implies that, for a 
subspace W of V invariant under A, 

(4.10) [trace A'{ < [[A f[, dim V/W 

where A': V / W ~  V/W is induced from A. 
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It is easy to verify that IIC~(a)| is smaller than a constant inde- 
pendent of r for suitable bases of I/V~| On the other hand, it is verified that 
there is a number N independent of r such that d i m ( W j Z |  where 

Z is the kernel of W~ ~" , fi,(W,)-, V~ 2, in the following way. Let 

%~ =(~i ~j ~k ~;  ~ ~;  1 ~? 1) (~ ~k ~71 ~; 1)eHr" 

Then clearly ~ijk ~k~j ~kl is the unit element of H r. This implies that 

(a i - 1) fir(e~, k)-  ( a j -  1) fir(ei,k)+ (a k -- 1) flr(ei, fl = 0 in V~. 

j - 1  

Hence flr(e'i,j)= ~ flr(ek,k+l) holds and so flr(W/)=flr(Wr"). Therefore W / ' c Z  
k=i  

and d i m ( W r / Z | 1 7 4  ). The latter does not exceed 
( n -  2) n(n - 1) R/2r, since 

dim ((A j A  ~( [ I  (ak -- 1))) | Q) < (n - 2) R/r. 
k~-i , j  

Hence the required estimation holds. 
Since p~| 1 o is identified with the linear map on W , / Z |  induced from 

C,(a) |  o, by replacing V,W,A with I/Vr,Z, Cr(o-)| (4.10) and the above 
inequalities prove the lemma, q.e.d. 

Let @ d  r e i be the free dr-module with a free basis % i=  1 .. . .  , n - 1  and let 
Br:@d r e i - ~ d  ~ e i be a dr-homomorphism defined by 

n--1 

(4.11) B~(ei)= ~ b~iej, 
j=l 

where b~j is the image of the (i,j)-component of the matrix B(a) under the 
projection A o A  r. 

Lemma 5. There is a number M' independent of r such that 

itrace(a J p3 | lo ) _  trace(aJB~| IQ)I < M'R/r. 

Proof Define a surjective A;homomorphism 

7r: @Arei--+Vr 3 

by 7~(ei)=fl,(e'~,~+l). Then calculation shows p~OTr=TroB ~. Since z(L,.)=Rx(L) 
= R ( 1 - n ) ,  where Z is the Euler number, we get dim(fl,(l/V,)|174 
- n = ( n - 1 ) R +  1 - n .  Using this and the facts shown in the proof of Lemma 4, 
we have 

dim(fl~(l/V/) | Q) = dim(fir(W}' ) | Q) 

> dim (fl~(W~) | Q) - dim ( W~/W/' | Q) 

> ( n -  1 ) ( R -  1 ) - ( n - 2 )  n ( n -  1) R/2r. 
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Therefore 

dim (Ker 7r | Q) = dim (@ A r e~ | Q) - dim (fl~(W/) | Q) 

< (n - 1)(1 + n(n - 2) R/Zr). 

Using this and the fact that [laSBrQloH1 are bounded to the above, we can 
complete the proof by the inequality 

Itrace(aJB~lKer~r| 1Q)[ <: HaJBr| 1QLII dim(Ker 7r| q.e.d. 

By Lemma 3, 4, 5 and (4.9), we see 

(4.12) ] t r a c e ( a S B ,  | 1Q) -I- A(Sr)  ] 

= J trace(a J B r | 1Q) - -  trace(a J p, | 1Q) + I I 

< M"R/r 

for a number M" independent of r. Now let r be sufficiently large. Since B~ is 
the Ar-homomorphism on the free At-module , trace(aSB~| 1Q) is divisible by R. 
Also, A(S~) is divisible by R, because S can be deformed to satisfy (4.6). Hence 
(4.12) implies 

(4.13) A(Sr) = - trace(a J B~ | 1Q). 

Let trace B(a)= ~ r)a I. Then 
I~Z n 

(4.14) trace(aJBr| lo) 

= ~ r~trace[a~+J| lo: A r | 1 7 4  
leZ ~ 

Since at+J= 1 in d r if and only if all components of invf l+J)=inv~I-I  o are 
divisible by r, noticing that r is sufficiently large, we get 

r'ttrace(aI+S| if inv~I ~Io ,  

=r'iR if i nv~I=I  0. 

Therefore (4.13), (4.14) imply that 

A ( S r ) = - (  ~ r'x)R=r, oR. 
inv~I = Io 

This and Lemma 1 complete the proof of the proposition. 

5. Proof of  Theorem 2 

We first prove the theorem in the case of p = l .  Assume (2.2), (2.3). Let C 
={c~ .. . . .  c,} be a set of periodic solutions of (2.1) satisfying (2.4) and (3.1). 
Assume n > 3. Let 

X = R 2 - { c , ( 0 )  . . . .  ,c.(0)}. 
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Choose a point x~ in Xc~({0} xR)  such that 4)(t;O,x'o)q~K for 0 < t < l .  This is 
possible because K is compact. Fix an orientation preserving homeomorphism 
~t:RZ--*R 2 isotopic to the identity such that q~(q(0))=(i,0) for i= l , . . . , n  and 
~(x~)=x~. Such homeomorphism clearly exists. For i=  1 .. . .  , n, let d i be a loop 
in X based at x~ which follows the straight line from x~ to very near (i,0), then 
circle it once in a counterclockwise direction and retrace the same line back to 
x~. Denote by fli  the class of the loop I]l-lodl in nl(X,x'o). Then ill ,- .- ,ft ,  gives 
a basis of the free group nl(X,x'o). Let p' be the homomorphism from B, to the 
group of all automorphisms of nl(X, X'o)defined by 

(5.1) p'(ai)(fij)=fiifli+lfli -1 j=i,  

=fii j = i + l ,  

=flj j=~:i ,  i+ l. 

Let u(t)=(a(t; O,x'o). Since ~ is isotopic to the identity, the braid a c equals, 
after a suitable choice of v in the definition of it, to the class of 
n(~(cl(t), ..., ~b(c,(t))). Noticing this fact, we have 

Lemma 1. T. = u . o p  (ac). nl(X, xo) nl(X, T(x'o)). 

Proof For a real number t, define a Cl-diffeomorphism q~t: R3~R3 by cPt(s,x ) 
=(t  +s, ~b(t + s; s, x)). Then this diffeomorphism preserves the open set 

Y = R  3 - U {(t, q(t))[t~R}. 
i=n 

For k=0,  1, defines a homotopy equivalence ik: X - ~ Y  by ik(X)=(k,x ). Since i 1 
o T = ~ l o i  o we have 

(5.2) T. = i1-, 1o 4 ,  ,o  io," 7C, (X, Xo)--~-Tt" 1 (X, T(x'o) ). 

Define Uo(t)=ePt(O,x'o),ul(t)=(t,X'o). These are paths in Y. Then the following is 
clear: 

_ . t . . _ . 1 .  (5.3) ~ b l , - u 0 , .  nl(Y,(0,x0)) nl(Y,(1, T(x'o))). 

From (5.2), (5.3) and the fact the the paths ul(ilou) and u o are homotopic with 
end points held fixed, we have 

(5.4) T, -'1,-.-10Uo,Oto,. =i~,lo(il ou),oul,oio, 

l l , l~176176176176 
--~U, Oil-,l oUl,Oio,. 

In the following, we show that i l ,  x OUl.oio. =p'(ac). 
For a path w=(wl , . . . ,w, )  in V, such that the image w/([0, 1]) dose not 

contain x~ for any i=  1 . . . . .  n, let 

Y(w) = I-0,13 x R e - ~) {(t, wi(t))10 < t < 1}, 
i=n 
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define a pa th  u(w) in Y(w) by u(w)(t)=(t,X'o) and define i(w,k): R E 
- { Wl (0  ) . . . .  ,w,(O)}--*Y(w) by i (w ,k ) (x )=(k ,x )  for k = 0 ,  1. Then it is easy to see 
by (3.3) that  for k = 1, . . . ,  n -  1. 

i(lk, 1) ,~ou(lk) ,oi( l~,O),([dj])=[dkdk+ldf  ~] j = k ,  

= [dR] j = k + 1, 

= [ d j ]  j # k ,  k + l .  

Since t ) ,  flj = [d j], this implies that  for k = 1,. . . ,  n - 1 ,  

(5.5) P'(ak) = (i(Ik, 1)o ~ ) ,  ~ o U(lk) * o (i(lk, O)o ~) , .  

- ~' ~ where e I . . . .  8 a = l  , - 1 ,  and  let a(k)=a~2, l(k)=l~2, Express a c as a c - a i ,  . . .  ( T i a  , 

l=l(1) . . . l (d) .  Define a path  v k in Y(1) by Vk( t )=( (k - l+t ) /d ,x 'o )  and define 
Jk: X ~ Y(l) by jk(X)=((k - l)/d, O(x)). Then  (5.5) implies that  

p'(a( k)) =(Jk+ 1), :  ~176 

Therefore we get 

(5.6) p'(~c) = p'(~(d)) ... p'(~(1)) 
=(J~+ O ,  ~ o(vd . . . . .  v , ) , o j~ ,  

= (Jd+ 1)* 1~ U(1)* ~  

If  we can show that  there is a h o m e o m o r p h i s m  T from Y~([0,  1] x R 2) to  Y(l) 
such tha t  j l  and j a+l are homotop ic  to To i  0 and To i l  respectively and Tou  1 
= u(/), then (5.6) implies that  

p'(ac) = i; ,  ~ o T , '  o u(1),o 71,o io, 

= i~lo T ~  lo(ToUx),O T ,  Oio, 

=i~:  ou l ,o io , .  

This and  (5.4) prove the lemma.  The  h o m e o m o r p h i s m  T is constructed as 
follows. Let Ht=(H] ,  .. .k, HT) be a h o m o t o p y  of class C 1 in V, between 1 and 
(~0oc 1 . . . .  ,Ooc,)[[o, ll with H,(k)=((1 ,0)  . . . . .  (n,0)), k = 0 , 1 .  By means  of  a par-  
ti t ion of unity, we can construct  a C l - m a p  F:  R x [0, 1] x R 2 ~ R  2 such that  for 
every ( t , s )eR • [0, 1] 

F(t,s,H~(s)) d i =dtH,(s ) ,  

F(t, s, x'o) = O. 

Let T' be the Poincar6 t rans format ion  of the t ime dependent  equat ion  on 
[0 ,  1]  x R 2 : 

dx/dt  =F(t,  s, x), 

ds/dt = O. 

Then the restriction of T ' o ( i d x  ~) to Yc~([0,1] x R 2) gives the desired ho- 
m e o m o r p h i s m  T. q.e.d. 

Let  L = K - {c1(0), ..., cn(O)}. 
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Lemma 2. There is a continuous map S: L ~ L which coincides with T throughout 

K'  and has no f ixed  points on @ IntLi, where L i = K i - { q ( O ) }  , and whose image 
S(L) is compact, i= 1 

Proof  For i=1  . . . . .  n, choose a homeomorphism dpi :Ki~D 2, where D 2 

= {xeR2]]x] < 1}, with (ai(ci(O)) =(0, 0). Define z c by T(ci(0)) = c~c(i~(O). 

For i with Zc(i)#:i or T(KI )2KI ,  define T/: L i ~ L  by 

T/(x) = T(~b F 1((~ i(X)/41 ~)i(X)l[ ))' 

Next assume that i satisfies Zc(i)=i and T ( K ~ ) ~ K  v Then (2.4) implies that 
T ( K I ) c K  ,. Then it is clear that there is a continuous map ~,: S 1 • 1]---*R 2 
-{0}, where S' is the boundary of D 2, such that for any x ~ S  ~ 

r 1) = ~b~o To ~b~-'(x) 

~,(x,t)4:x 0 < t < l ,  

]~(x , t )]<l / t  1 / 2 < t < l ,  

= l / t  0<t<l/2. 

Define ~',:D2--{O}--+D2--{O} by ~'i(x)=[lx[] ~,(x/llx[I, Ilxll) and T i : L , + L  by T i 
t 

= 4 V '  ~ ~-, ~ 4 , .  
T~ has no fixed points on IntL~ by (2.4) in the former case, by the property 

of ~, in the latter case. Since ~b,(IntK~)=IntD 2 by the invariance theorem of 
domain and T~=Ton K'c~K,,  the map S: L-~Ldefined by S = T o n  K' and S 
= T  i on L~ is well defined and continuous. Also, clearly the image of S is 
compact, so we obtain the required map. q.e.d. 

Choose a point xo~K'  and a path w in R 2 -  0 IntK,  from x o to x; .  Since 
i=1 

L and X are homotopy equivalent, there is a path v in L from x 0 to S(xo) 
= T(xo) such that 

(5.7) The paths v and wu(To w ) - '  are fixed end-point homotopic. 

Define c~=(w.o i . ) -~f l j ,  where i: L ~ X  is the inclusion. Then, the homomor- 
phism p from B, to the group of all automorphisms of n,(L,  xo) defined by 
(4.1) satisfies 

(5.8) p ( a )  = (W, o i , ) - 1  o p'(O')o W, o i,. 

Lemma 3. S ,  = v,  o p(ac): n ,  (L, Xo)~n  , (L, S(xo) ). 

Proof  From the following commutative diagram: 

nl(L, xo) s, - ~ n l (L ,S(xo)  ) ~ "* .rq(L,  xo) 

nx(X,  xo) T. n l ( X  ' T(xo)) ~ ~. , n , ( X ,  Xo) 

7~1(X, Xo ) T. __ 7r l ( X ,  Xo). , , n l ( X , T ( x ' o ) )  , "* 
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we see that S,  = v ,  o(w, o i,) -1 o u ,  lo T, o w, o i,. Therefore by Lemma 1 and 
(5.8), we complete the proof, q.e.d. 

By the above lemma and Proposition 2, in order to prove the theorem in 
the case of p = 1, it suffices to show the following. 

Lemma 4. Let  I = ( i  I . . . . .  in)eZa(zc). I f  x I e L  is a f i x e d  point of  S satisfying (4.5), 
where tr=trc, then the 1-periodic solution q~(t; O, xl )  is o f  degree I. 

Proof  Let Z be the quotient space Y / ( s , x ) ~ ( s +  1, x), rCz: Y--*Z the projection 
and iz=~Zz o io=~zO i l : X - ~ Z .  Let c(t)=~z(4~fi0, xl)), h a path as in (4.5) and d 
= i z o ( w - l h ) .  Since two paths in Y ( i o o ( h - l w ) ) u o ( i l o T o ( w - l h ) )  and ~t(0, Xl) 
are fixed end point homotopic, (5.7) implies that 

(5.9) c ~ Z z o ( ( i o o ( h  -1 w))uo(i I o To(w -1 h)))=d-l(ZCzOUo)iz o To(w -1 h) 

(d-  l Oz z o Uo)(i z o u -  1) d)(i z o (h - 1 wu(To w) -  1 (To h))) 

(d - l(~z z o Uo)(i z o u - 1) d) (i z o (h-1 v(ro h))), 

where ~ means fixed end point homotopic. Therefore, since S and TIL are 
homotopic with x o and xt fixed, the homology class of c satisfies 

[c] = [(~z o Uo) (i z o u - 1)] + iz * [h -  1 v(S o h)]. 

If we denote by b o e H l ( Z ' Z )  the homology class of the loop ~z(t,X'o), then 
clearly bo=[(rCzOUo)(izou-1)]. Hence the following lemma completes the 
proof. 

Lemma 5. Let  c be a loop in Z. I f  [ c ] = b o + i z ,  , then inv~c(jl , . . . , j ,  ) 

=(d(c', c1) . . . .  , d(c', c,)), where bk=i , [ ek ]  and the 1-periodic curve c' satisfies c(t) 
=~Zz(t , c'(t)) for  0_<t_<l. 

Proof  Fix 1 <_k<-n. Let Pk = {z~(k)lseZ}, then the cardinal number of this set is 
the period Pk of c k. Let 

Y' = R 3 -  U {(t, cj( t)[ teR},  Z I = Y'/(s, x ) ~ ( s +  1, x) 
jEPk 

and Z 2=Y'/(s,x),-~(s+pk,x). Let nz,: Y ' - * Z ,  be the projection, iz, 
--gzdroi0: X ~ Z ,  for e=1,2,  and 7z': ZE-- .Z 1 the projection. Then ~' is a Pk- 
fold regular covering map. By the Alexander duality and the exact sequence of 
homology group for the pair (S 1 x R e, Z1) , we have that 

H~(Z~ ; Z) is a free abelian group of rank 2 with basis b~, b~,, 

and by the similar way we have that 

H 1 (Z 2 ; Z) is a free abelian group of rank Pk + 1 with basis b~, b~ j e P  k, 

t t !  t t " t !  " where be, b o are the classes of rCz~(, Xo), rCz~(Pkt, X'O), bk=Zz,,bk, b s =lz~,b s. Let 
dl(t)=~z~(t ,c ' ( t)) ,  d21t)=~z~(Pkt, c'(Pkt)). If the assumption of the lemma is 

satisfied, then clearly [ d , ] = b o +  , ;~  ![~J~} b~. Since rc'od2 =d  1 . . .d 1 (Pk times), the 
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loop d 2 is invariant  under  the covering t rans format ion  nz2(S ,X)~nz~(s+l ,x  ) 
t ! t t  ~l 

and n,  bo=Pkbo, n' , b~ = b k, we obtain  

(5.10) [d2] = b ~ + (  ~ j ,)(  Z b','). 
S e P k  t ~ P k  

Let Z 3 = (R 3 - {(t, ck(t)lt~R})/(s , x) ~(s + Pk, X) and hg: Z 3 ~ S  1 • (R 2 -  {0}) be a 
h o m e o m o r p h i s m  induced f rom (S,X)--~(S/Pk, X--Ck(S)). Let i ' : Z 2 ~ Z  3 be the 
inclusion. Then the homology  class (~Uo i'). [-dE ] is equal to the class of  the loop 
(t,c'(pkt)--Ck(Pkt)) in $ 1 •  Therefore  if we identify H I ( S I •  2 
- { 0 } ) ; Z )  with Z 2 canonically, then (q~oi').[d2]=(1,d(c',ck)). On the other 

hand,  (5.10) implies that  (~~ ~Js) .  Thus the l emma  is 
proved, q.e.d, s~Pk 

Now we prove  the theorem when p > 2 .  Define a Cl-map fp: R a o R  2 by 
fp(t, x) =pf (p  t, x). 
Then  the periodic system 

(5.11) dx/dt =fp(t, x) 

satisfies (2.2), (2.3). Clearly x(t) is a solut ion of (2.1) if and only if x(p t) is a 
solut ion of (5.11). Thus, for k = l  . . . .  n,C'k(t)=Ck(Pt) is a periodic solution of 
(5.11) of  per iod (P, Pk)/P where ( , )  denotes  least c o m m o n  multiple. Since 
Theorem 2 is proved before when p =  l, applying it to the system (5.11) and the 
set of periodic solutions Cp={C'~ . . . .  ,c',}, we see that, for every element I of 
Z"(z~) with ri(Cp, 1) (=rl(C,p))+O, there is a 1-periodic solut ion c' of  (5.11) 
passing K '  at t = 0 with 

d(c', Ck) = deg (c((p, Pk) t) - Ck((p , Pk) t) 

= i k 

for k = 1 . . . .  , n, where c(t)=c'(t/p). 
Suppose that  c is q-periodic, where q < p is a divisor of  p, then 

deg (c((p, Pk) t) -- Ck((p , Pk) t)) 

= ((P, Pk)/(q, Pk)) deg (c((q, Pk) t) -- Ck((q , Pk) t)) 

= ((P, Pk)/(q, Pk)) d(c, Ck). 

This implies that  I=~q,p(d(c, cO, ...,d(c,c,)), so le~q,p(Z"(z~)). Hence  if I~Z"(p),  
then c is p-periodic. Thus the theorem is proved  for p > 2. 

6. Proof of  Theorem 1 

By the corollary of  Theorem 2, it suffices to show that  

Np>=p and ~ ]rt(C,p)]=Np>=2 p-l ,  
I E Z n ( p )  

where Np is the number  of  IsZ"(p) with r1(C,p)~O. 
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We can assume without  loss of generality that 

cl (t) = (1, 0), c3( t )=(3,0  ) for every t~R. 

For, choose a parametr ized diffeomorphism q~t: R 2 ~ R 2  periodic in t of  period 
1 with qS,(cl (t)) = (1, 0), qSt(c3(t))=(3,0 ). Then  the verification of Theorem 1 for 
the Eq. (2.1) and the 1-periodic solutions cl, c2, c 3 is equivalent to that for the 
periodic system on  R 2, for which (ot(x(t)) is a solution so long as x(t) is a 
solution of (2.1), and the 1-periodic solutions (1, 0), ~b,(cz(t)), (3, 0), because 

[C1, C2, C33 = [(1, 0), ~bt(C2(t)), (3, 0)] .  

Clearly we have, setting 1=(i l ,  ..., id), J=(J l  . . . .  ,J,), 

Lemma 1. The equivalence class C~ in B', of the braid a~ contains the braid 
(~i, flj~ ... c~i~ fljd)p, where co=cry, f l = a  2. 

For  integers i and m, let 

m--1 
P(i ,m)= ~ (aja2) s m > 0  

s=0 
-m 

= -  ~ (aja2) -s m < 0 ,  
s=l  

Q(i,m)=(aja2)",  R = a2(1 - al) (1 - a z ) ,  

where j = 1 for i odd, j = 3 for i even. 
Fo r  a natural  number  k, let P(k) denote the polynomial  ring 

Z [ X 1 , . . . , X k ,  Y 1 . . . . .  Yk, Z].  For  s = l  . . . .  ,k define a group homomorph i sm 
F~: P(k)~P(k) ,  where P(k) is considered as an abelian group, by 

Fs(X(I ) V(J) Z')  = X ( I  - e s 1 - e~) Y(J + es) Z'  -1 

if i s_1>0,  i~>0 and />0 ,  

= 0 otherwise, 

where I, JEZ*, l is an integer, X ( I ) = X i l ' . . . X ~  ~, Y ( J ) = Y ~ ' . . .  Y~  etc., el 
=(0  . . . .  ,0, 1, 0 . . . .  ,0) (i-th component  = 1) and i0, e o mean  ik, e k respectively. The 
following is clear. 

(6.1) F~oF~,=Fs, oFs s , s ' = l , . . . , k ,  

F~(WW')= WF~(W') if W contains no symbols X~_I, X~. 

Define r P(k) x AZk+ I---~ A by 

r 21 . . . .  ,22k+ 1) = V(21,.. . ,  22k+1). 

For  M = ( m  1 . . . .  ,mk)~Z k, define ibM: P(k)--*A by 

q~M(V) = ~b(V, P(1, ml) . . . . .  P(k, mk), Q(1, mO, ..., Q(k, mk), R). 

Let 7JM =~bMo(1 +F2)o(1 +F3) . . . . .  (1 +FR): P ( k ) ~ A .  
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L e m m a  2. I f  a = ~"~ [3"~... ~"~- 1 fl,,~, where 
equals to 

Q(1, ml) ~PM(X 2 ... X k_ 1 Zk') 
a2(1 - a3) Q(1, rn,) tPM(X2 ... X k Z k') 

where k' = k/2 - 1. 

Proof Since 

M = ( m x , . . .  ,mk)~Z k, then 

(1 - a O  ~ ( X ~  ... X,,_~ Zk')'~ 

ItlM( X 1 ... S k Z k/ 2) ] 
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B(~) 

(Q(1, m) (1 - a , ) P ( 1 ,  m) ) 
B(c~ fl") = \az(1-a3)Q(1,m)P(2,  n ) P(1,m)P(2, n)R +Q(2, n) 

for integers n,m and B(cr)=B(c~ . . . .  fl"~)... B(~ m' fl"~), this l emma  is proved by 
induct ion on k with the aid of  the following formulas.  

~'~(x~x~+ ~ . . . x , z " )  

_ Z" - l )p ( t ,  mt)R =~PM(Xs . . .X ,_zZ"- I )Q( t ,  mt)+ ~PM(Xs...Xt ~ 

if t - -s  is odd, 

= cPM(X~... X~_ 2 Z" -  1) Q(t, mr) + LPM(X~... X ,_  1 Z") P(t, mr) 

if t - s  is even, 

where l < s < t < k  and u = ( t - s + l ) / 2  if t - s  is odd, u = ( t - s ) / 2  if t - s  is 
even. q.e.d. 

In  the following, let k = 2 p d ,  k ' = p d  and M = ( K , . . . , K )  (p times), where K 
=(i l , j l  , i2,j2 , . . . ,  ia,ja ). By L e m m a  1 and 2, we have 

L e m m a  3. a(C ,p )=  --(OMO(1 +F1)o(1 +F2) . . . . .  (1 +Fk))(X ~ ... XkZk'). 

For  G = ( g  1 . . . . .  ga)eZ d and s = l , . . . , d ,  let Gs=(g~+ 1 . . . .  ,ge,gx,. . . ,gs).  Then 
a(G,H)=a(G~,Hs) for G, H E Z  a. It is clear that  the following condit ions are 
equivalent.  

i) [Ca,C2,C3]=~y(I,J). 

ii) [c3,c2,cl]=(7(J, 11). 
iii) [c 1( - t), e 2 ( -  t), e3( - t)] = a(I ' ,  J[), 

where I ' =  ( - i  d . . . .  , - i 0 ,  J '  = ( - J e , . . . , - J 0 .  Therefore,  the verification of Theo-  
rem 1 in the case of [c l , c2 , c3]=a( I , J  ) is equivalent  to that  in the case of 
[cl,Cz, C3]=a(Is, Js), a(J~,I~+x) , a(J~,I') or a(I's,J~+l). Thus for the p roof  of  the 
theorem, it suffices to consider only the following four cases. 

I) [i~l>l and [Jt[ > 1  for some s and t. 
II) i x = 1,j~ > 0 for s = 1, . . . ,  d and Jt > 1 for some t. 
III)  i s>0  , [j~l=l for s = l  . . . .  ,d  and j r < 0  for some t. 
IV) LJ~[ = 1 for s = 1, ..., d and  i t > 0, i, < 0 for some t, u. 

For  a subset  F of  Z 3 and 2 = ~ r l a ~ e A ,  where at=a]l . . .a~,  let F(2) 
= 2 rl at" 
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Case I )  Define ~: A ~ Z  by 

~(~ r t a l) = max {i2 - -  il - -  i3]r l =I= 0}, 

Then 7(A(C,p))=k'  and 7(CbM(F,(V)))<V(4)M(V)) for 
Fs(V)#O. Hence if we set 

F = { leZ3l iz  - i 1 - i 3 = k'}. 

then Lemma 3 implies that 

- F(A( C, p)) = F(~M(x~ . . .  x~ z~')) = ak2 ' q~M(XI... X 2d) p. 

Therefore, setting 

.=t) 
1 
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~(o) =0. 

V~P(k), s=  1,. . . ,  k with 

Let 

f21 ={s:  odd with m~_2,ms>0 }, 

~'~2= {S: odd with ms_2 <0, ms>0}, 

D3={s:  even with m~_l,m~+ 1 <0}, 

0 4 =  {s: even with m~_ 1 <0,  m~+~ >0}, 

f2 s = {s: even with m s_ 1 >0, ms+ 1 <0}. 

O = O ~ O E W O 3 u O 4 .  

Then 6(#M(F~(W)))<6(q)M(W)) for any sr W~P(k). Therefore if we set V= 
- X 1 ... Xk Zk', then 

A(A(C,p))=A(qbM((1 + F1) . . . . .  (1 + Fk)(V)) 

= A (~M((I-I (1 + Fs) ) (V))), 
s~f2 

where [-I means composition of maps. This, (6.1) and the fact that F~oFs+I(V) 
= 0 implies that 

Then 6(A(C,p))= max{is, Q } p. Let A = { i l = f i ( A ( C , p ) )  }. Define subsets 
s 

Di, i = l  , . . . ,5,  of {1,...,k} by 

we get F'(A(C, p))= v a~ a ~ M ( X 2 X 4 . . .  X 2 d )  p, where v, w are integers with v < 0. 
Since q~M(X2X4 ... Xzd) v has at least p terms by the assumption and F ' c z a ( p ) ,  
we get Nv>p.  Also N~>p2 p is easily verified. Hence the theorem is proved. 

To prove the other cases, we need several preparations. Let 6: A--*Z be 
defined by 

6(~rra~)=max{i l [r i+O},  6(0) =0. 



Number and Linking of Periodic Solutions 339 

(6.2) A(A(C,p))=A(crpM( ~I ( l+Fs )  I~  (I+Fu+Fu-1)(V))) 
s~12l u.Q3 ue~2 

=--A(OM(lq ( I+F~)(Xs- ,XsZ)  I~ ( X , - 1 X ,  Z) 
scf21 tel23 

1-I ( I + F u + F , - 1 ) ( X . - 2 X , - I X . Z )  I~ XvZ)). 
UE~2 lYE'5 

Case II).  Since ~22, 0 3 and f25 are empty,  

d 
(6.3) - A(A( C, p)) = (a 1 a2) k' H ((a3 - 1) P(2s, js) + 1) p. 

s= l  

Then by (6.3), 

(F ~A) (A( C, p)) = F( A(A( C, p))) 

k' u a,-k', w(a 3 -  1)), =al 32 3 (a3--1)k'-l(va3 + 

where v,w are non-negat ive  multiples of  p with v + w < 0 .  Since F~A=Z3(p)  
and k'>p by the assumption,  Np>=p, Np>p2 p-1 for p > l .  Hence  the p roof  is 
completed.  

Case 111). Since f22, f23, f25 are empty,  by (6.2) we get 

- A(A( C, p))=a~ a~ a ~ ( a  2 a 3 - - a  3 -I- 1) x, 

where u, v, w and x are multiples of  p with x > 0 .  Let F= {u} • {v+ l} x Z. 
Then  F c Za(p) and 

U aV+ l a~+ l ( -F (A(C ,P) )=xa l  2 1 - a 3 )  ~-1 

Therefore,  for p > 1, Np > x > p and N~ > x 2 ~- 1 > p 2 p-  l. Thus we complete  the proof. 

Case IV). By (6.2), we get 

u v a Y +_A(A(C, p)) = a~ a 2 a~(a 3 - 1)X(a3 - a 2 a3)X(a3 - 1 - a 2 3), 

where u, v, w, x, y are multiples of  p with x > 0 ,  y__>0. Let F = { u }  • { v + l }  • Z. 
Then F = z a ( p )  and 

+ r ( A ( C ,  p)) = a]  a~ + 1 a~' +X(a 3 --  1) x +y-  l ( x ( a3  --  1) q- y a3). 

Therefore,  for p>= 1, Nv>=x+y> p, N~>p2 v-1. Thus the p roof  is completed.  
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7. 1-periodic Solutions 

In this section, we give a sharper est imation for the number  of 1-periodic 
solutions. The following result is the best estimation which is obtained by our 
method.  

Proposition 3. Assume (2.2), (2.3). Let Ca, c 2 and c 3 be 1-periodic solutions of(2.1) 
satisfying (2.4)for p = 1. Then the number of 1-periodic solutions, passing K' at t 
=0, is not smaller than 

3]m[lnl+lm[+[n]-3 if [cl, c2,c3]=[amb"],mn>O, 

3]mllnl+lm[+lnl+l if [c~,c2,e3]=[amb"],mn<O, 

2 if Ecl, c2, c3] = [a"]  or Ibm], 

where m, n are non-zero integers, [ ] denotes conjugate class. 

Proof If [-ci, c2, c3] = Eam b"], then by Lemma  3 in Sect. 6 

- A ( C ,  1) = P(1, m) P(2, n)R + Q(1, m) + Q(2, n). 

Hence the straightforward calculation proves the proposition, q.e.d. 
For  example, if [cl ,  c2, c3] = Ea 2 b] (see Fig. 2.), then 

- A ( C ,  1) = a x2 a22 a3 __ al a Z a 3 + a x a z a 3 + a l a Z a l a z + a 2 "  

Hence, there are at least six 1-periodic solutions of degree (2,2,1), (1,2,1), 
(1,2,0), (1,1,1), (1,1,0), (0,1,0), other  than Cl, c 2 and c 3. Also if Ecl,c2, c3] 
= a l ~ 1 7 6 1 7 6 1 7 6  then there are at least 30 ,1971-per iod ic  solutions other  than 
Cl~C 2 and c 3. 
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