

Varieties with small dual varieties, I

Lawrence Ein*

University of California, Department of Mathematics, Los Angeles, CA 90024, USA

Introduction

Let X be a complex projective nonlinear *n*-fold in \mathbb{P}^n . Let $X^* \subseteq \mathbb{P}^{N^*}$ be the dual variety of X. Landman defines the defect of X to be def(X)= $N-1$ dim X^* . For most examples, def(X)=0 (i.e. X^* is a hypersurface). The main purpose of this paper is to investigate those varieties with positive defect.

Assume that $def(X)=k>0$. Let H be a general tangent hyperplane of X. The contact locus of H with X is a k dimensional linear space L in X [15]. We show that $N_{L/X}$, the normal sheaf of L, is isomorphic to $N_{L/X}^* \otimes \mathcal{O}_L(1)$. Furthermore, $N_{L/X}$ is a uniform vector bundle on \mathbb{P}^k and $K_X|_{L} = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$. In particular, $n \equiv k \mod 2$. The pairity theorem was first proved by A. Landman, using the Picard-Lefschetz theory (unpublished). Zak and Landman had observed that $\text{def}(X) \leq n-2$. We show that if $\text{def}(X)=n-2$, then X is a scroll $(n \geq 3)$. This theorem was first proved by Griffiths and Harris in the case $n=3$. In [4], we shall show that if def(X)= $k \geq \frac{n}{2}$, X is a IP^{n+k/2}-bundle over a $\frac{n-k}{2}$ fold.

As a consequence of his theorem on tangencies, Zak proved that $\dim X^* \ge \dim X$. In particular, if X^* is smooth, then $\dim X = \dim X^*$. He also classified those varieties with the properties $\dim X = \frac{2(x+2)}{3}$ and $\dim \text{Sec}(X)$

 $=N-1$ [19, 28].

In §4, using the isomorphism between $N_{L/X}$ and $N_{L/X}^* \otimes \mathcal{O}_L(1)$ and the Belinson spectral sequence, we show that if $\dim X = \dim X^* \leq \frac{2}{3}N$, then X is one of the following varieties:

- (a) X is a hypersurface.
- (b) X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$ in \mathbb{P}^{2n-1} .

Partially supported by an N.S.F. Grant

Current address: Department of Mathematics, University of Illinois - Chicago, Box 4348, Chicago, Ill. 60608, USA

- (c) X is the Plücker embedding of $G(2, 5)$ in \mathbb{P}^9 [22].
- (d) X is the 10-dimensional spinor variety in \mathbb{P}^{15} [19, 25].

Hartshorne conjectures that if dim $X>\frac{2}{3}N$, then X is a complete intersection. The conjecture will imply that the above list is the complete list of nonsingular projective varieties satisfying the property dim $X = \dim X^*$. We are able to show that if $codim(X)=2$, then $def(X)=0$, unless X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^2$ in \mathbb{P}^5 . Throughout the paper, we shall assume the base field is the complex numbers.

Acknowledgement. I would like to thank Steve Kleiman for many helpful discussions and encouragements.

$§1$.

The following proposition is well known.

Proposition 1.1. Let X be an irreducible reduced subvariety of \mathbb{P}^N .

(a) *Assume that X is contained in a hyperplane H. If X*' is the dual variety of X, when we consider X as a subvariety of* \mathbb{P}^{N-1} , then X^* is the cone over $X^{*'}$ *with vertex p corresponding to H.*

(b) *Conversely, if X* is a cone with vertex p, then X is contained in the corresponding hyperplane H. In particular,* $\text{def}(X)$ *is the same whether we consider X as a subvariety of* \mathbb{P}^N *or* \mathbb{P}^{N-1} .

Proof. (a) If $H_1 + H$ is a tangent hyperplane of X, then $H_1 \cap H$ is a tangent hyperplane of X in \mathbb{P}^{N-1} . Conversely, if T is a tangent hyperplane of X in H, then each hyperplane H_1 in \mathbb{P}^N containing T is tangent to X. Thus X^* is a cone over X^* .

(b) Each hyperplane which is tangent to X^* at a smooth point will contain the point p. Hence $X = (X^*)^*$ is contained in the hyperplane corresponding to p.

Proposition 1.2. *(Adjunction mapping theorem.) Let Y be a projective n-fold. Suppose that* $\mathcal{O}_Y(1)$ *is a very ample line bundle on Y and* K_Y *is the canonical line bundle on Y.*

(a) If $|K_{\mathbf{y}} \otimes \mathcal{O}_{\mathbf{y}}(n-1)| = \emptyset$, then $(Y, \mathcal{O}_{\mathbf{y}}(1))$ is isomorphic to one of the follow*ing:*

1. ($\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)$).

2. (\mathbb{P}^2 , $\mathcal{O}_{\mathbb{P}^2}(2)$).

3. $(Q_n, \mathcal{O}_{Q_n}(1))$, where Q_n is a quadric hypersurface.

4. (IP_C(F), $\mathcal{O}(1)$), where F is a vector bundle of rank n on a curve C and $\mathcal{O}(1)$ is *the tautological line bundle.*

(b) If $|K_{\mathbf{v}} \otimes \mathcal{O}_{\mathbf{v}}(n-1)| \neq \emptyset$ then it has no base points.

Proof. The proposition is a fairly straightforward generalization of the theorem in $[26, 27]$. One can find a proof in $[14]$.

Theorem 1.3. *(Zak's theorem on tangencies* [6], §7.*)*

(a) Suppose that X is a nondegenerate projective n-fold in \mathbb{P}^N . If H is a k*plane in* \mathbb{P}^N ($k \ge n$), then dim $\text{Sing}(H \cap X) \le k - n$.

(b) If X is a nonlinear n-fold in \mathbb{P}^N , then dim $X^* \ge \dim X$.

Corollary 1.4. Suppose that X is a nonlinear projective n-fold in \mathbb{P}^N . If X^* is *smooth, then* dim $X = \dim X^*$.

Proof. Since $(X^*)^* = X$, dim $X \ge \dim X^*$, by 1.3(b). So dim $X = \dim X^*$, by $1.3(b)$.

$\S 2.$

In the rest of the paper, we shall assume X is a nonlinear projective *n*-fold in IP^N. We shall also assume that $\det(X) = k$. If q is a general point of X and H is a general tangent hyperplane of X at q, then the contact locus of H with X is a k-dimensional linear space L. The main purpose of the section is to show that $N_{L/X}$, the normal sheaf of L in X, is isomorphic to $N_{L/X}^* \otimes \mathcal{O}_L(1)$. If $k > 0$, then we will show that $N_{L/X}$ is a uniform vector bundle on \mathbb{P}^k and $K_X|_{L}$ $=\mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$. In particular, if $k>0$, then $n\equiv k \mod 2$. The pairity result was first observed by A. Landman (unpublished).

Theorem 2.1. Let X, H, and L be as defined above. Assume $\det(X) = k$.

(a) *If p is a point in L, then the tangent cone of the hyperplane section H* $\cap X$ at p is a quadric hypersurface of rank $n-k$ in $\mathbb{P}(\Omega^1_Y(p))$.

(b) Let s_h : $\mathcal{O}_X(-1) \rightarrow \mathcal{O}_X$ *be the section defining* $H \cap X$ *. Then* s_h *factors through* I_L^2 *, where* I_L *is the ideal sheaf of L in X.*

(c) Let t_h be the section of $I_L^2/I_L^3 \cong S^2(N_{L/X}^*)$ induced by s_h . Then t_h defines a *nonsingular quadric hypersurface in* $\mathbb{P}(N_{t,x}^*(p))$.

Proof. (a) Let C_x be the conormal variety of X. Then $C_x = C_{x*}$ [15]. Let p_2 be the projection map from C_X to X^* and let h be the point in \overline{X}^* corresponding to H. We may assume that p_2 is smooth along $p_2^{-1}(h)$. In [13], Kleiman showed that rank of the Hessian of s_h at p is equal to $n - \text{rank}(\Omega_{C_{\text{X/Y}*}}^1(p, h)) = n$ $-k$.

(b) We choose a local coordinate system $\{x_1, x_2, ..., x_n\}$ for X at p. We shall assume I_L is generated by $x_1, x_2, ..., x_{n-k}$. Using the fact that $L \subseteq H \cap X$, we can write the power series of s_h in the following form,

$$
s_{h} = x_{1} f_{1} + x_{2} f_{2} + \ldots + x_{n-k} f_{n-k} + \sum_{i=1}^{n-k} \sum_{j=1}^{n-k} x_{i} x_{j} (g_{i,j}),
$$

where $f_1, f_2, ..., f_{n-k}$ are power series with the variables $x_{n-k+1}, ..., x_n$ only. But $\begin{array}{l}\n\operatorname{Sing}(H \cap X) = L. \quad \text{Thus } \left. \frac{\partial s_h}{\partial x_i} \right|_L = 0 \text{ for } i = 1, 2, ..., n-k. \quad \text{Hence } f_1 = f_2 = ... = f_n. \\
\text{and } \left. \frac{\partial s_h}{\partial x_i} \right|_L = 0. \quad \text{Now } s_h = \sum_{k=0}^{n-k} \sum_{i=1}^{n-k} x_i x_i (g_{i,i}). \quad \text{Thus } s_h \text{ factors through } I_L^2.\n\end{array}$ $i=1$ $j=1$

(c) We can write $g_{i,j}=a_{i,j}+h_{i,j}$, where $(a_{i,j})$'s are constants and $(h_{i,j})$'s are power series without the constant term. Now

$$
s_h = \sum_{i=1}^{n-k} \sum_{j=1}^{n-k} x_i x_j (a_{i,j} + h_{i,j}).
$$

n-k n--k By 2.1a, $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i,j} x_i x_j$ is a quadratic form of rank $n-k$. But this is also the equation for the quadric hypersurface in $\mathbb{P}(I_1/I_1^2(p))$ induced by s_h .

Theorem 2.2 $N_{L/X} \cong N_{L/X}^* \otimes \mathcal{O}_L(1)$.

Proof. We shall continue to use the notations in 2.1. By 2.1(b) and (c), s_h gives a section of

$$
I_L^2/I_L^3 \otimes \mathcal{O}_L(1) = S^2(N_{L/X}^*) \otimes \mathcal{O}_L(1).
$$

Since we assume the base field is not of characteristic two, $S^2 N_{t,x}^* \otimes \mathcal{O}_r(1)$ is a direct summand of

$$
N_{L/X}^* \otimes N_{L/X}^* \otimes \mathcal{O}_L(1) \cong \text{Hom}(N_{L/X}, N_{L/X}^*(1)).
$$

Let g_h be the map from $N_{L/X}$ to $N_{L/X}^*(1)$ induced by s_h . Then g_h is an isomorphism by 2.1 (c).

Remark. Let E be a vector bundle on \mathbb{P}^m . E is said to be a uniform bundle if $E|_{T}$ is isomorphic to a fixed bundle $\mathcal{O}_{\mathbb{P}^1}(a_1) \oplus ... \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$ for all lines T in \mathbb{P}^m .

Theorem 2.3. *Assume* $\text{def}(x) = k > 0$.

(a) *If T is a line in L, then*

$$
N_{L/X}|_T = \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^1} \oplus \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^1}(1)
$$

(i.e. $N_{L/X}$ is a uniform vector bundle).

$$
N_{T/X} = \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^1} \oplus \frac{n+k-2}{2} \mathcal{O}_{\mathbb{P}^1}(1).
$$

(b) There is an irreducible $\frac{3n+k-4}{2}$ dimensional family of lines in X. If p is

a general point in X, then there is an $\frac{n+k-2}{2}$ dimensional family of lines in X through p.

Proof. (a) Let N_L and N_X be the normal sheaves of L and X in \mathbb{P}^N respectively. Suppose T is a line in L . Then there is the following exact sequence,

$$
0 \to N_{L/X}|_T \to N_L|_T \to N_X|_T \to 0,
$$

where $N_L|_{T} = N - k \mathcal{O}_{\mathbb{P}^1}(1)$. If $N_{L/X}|_{T} \cong \bigoplus_{i=1}^{n-k} \mathcal{O}_{\mathbb{P}^1}(a_i)$, then $a_i \leq 1$. Using the isomorphism between $N_{L/X}$ and $N_{L/X}^* \otimes \mathcal{O}_L(1)$, we observe that $a_i \ge 0$. Hence

$$
N_{L/X}|_T = \frac{n-k}{2} \mathcal{O}_T \oplus \frac{n-k}{2} \mathcal{O}_T(1).
$$

This implies that

$$
N_{T/X} \cong \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^1} \oplus \frac{n+k-2}{2} \mathcal{O}_{\mathbb{P}^1}(1).
$$

Varieties with small dual varieties. I 67

(b) Let $p \in L$ and let T_0 be a line in L through p. Since $h^1(N_{T_0/X})=0$, the Hilbert scheme of lines in X is smooth at the point t_0 corresponding to T_0 . Hence there is a unique irreducible component $\mathscr F$ of the Hilbert scheme containing the point t_0 . Also

$$
\dim \mathscr{F} = h^0(N_{T_0/X}) = \frac{3n + k - 4}{2}.
$$

Consider the following closed subscheme of the \mathscr{F} :

 $\mathcal{H} = \{T | T$ is a line in the family \mathcal{F} and $p \in T\}$.

Since $h^1(N_{T_0/X} \otimes I_{p/T_0}) = 0$, *H* is smooth at the point corresponding to t_0 . Hence there is a unique irreducible component \mathcal{H}_0 of $\mathcal H$ containing the point t_0 . $n+k-2$ dim $\mathcal{H}_0 = h^{\circ}(N_{T/X} \otimes I_{p/T}) =$ $\frac{1}{2}$

Theorem 2.4. *Assume that* $\det(X) = k > 0$.

(a)
$$
n \equiv k \mod 2
$$
.
\n(b) $K_x|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$.

(c) The *Kodaira dimension of X is negative.*

(d) If
$$
K_x = \mathcal{O}_x(a)
$$
, then $a = \frac{-n-k-2}{2}$.
\n(e) If $\dim X > \frac{N}{2} + 1$, then $K_x = \mathcal{O}_x \left(\frac{-n-k-2}{2} \right)$.

Proof. (a) By 2.3. $n \equiv k \mod 2$.

(b) $A^{n-k}N_{L/X}=\mathcal{O}_L\left(\frac{n-k}{2}\right)$. Thus $K_X|_L=\mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$ by the adjunction formula.

(c) Since there is such a k-plane L through a general point p, $|K_x^m| = \emptyset$ for $m\geq 0$.

(d) and (e) If dim $X \ge -+1$, then Barth's theorem [2] asserted that Pic X is generated by $\mathcal{O}_X(1)$. Thus $K_X \cong \mathcal{O}_X$ $\begin{bmatrix} 1 & 2 \end{bmatrix}$ by (b). Also (d) follows from (b).

Remark. 2.4(c) was first observed by Griffiths and Harris [10].

$\S 3.$

In this section, we shall apply the result in $\S 2$ to obtain information about varieties with small dual varieties. Again we shall assume X is a nonlinear projective *n*-fold in \mathbb{P}^{N} .

Proposition 3.1. def(X)=0, *if X is one of the following varieties:*

- (a) *X is a complete intersection.*
- (b) *X is a curve.*
- (c) *X is a surface.*

Proof. (a) We may assume X is nondegenerate by 1.1. Then $N_{X/\mathbb{P}^N}(-1)$ is an ample bundle. Let $C_x = \mathbb{P}(N_{N/\mathbb{P}^N}(-1))$ be the conormal variety of X and let p_2 : $C_x \rightarrow X^*$ be the projective map. $p_2^* \mathcal{O}_{X^*}(1)$ is the tautological line bundle of $\mathbb{P}(N_{\mathbf{X}/\mathbf{P}^N}(-1))$. Hence p_2 is finite.

(b) A general tangent hyperplane can only be tangent to X at a point. Thus $\det(X)=0.$

(c) A general tangent hyperplane can only be tangent to X along a subvariety. Thus $\text{def}(X) \leq 1$. Then $\text{def}(X) = 0$ by 2.4.a.

Remark. 3.1.c. is a theorem of Griffiths, Harris, Landman, and Marchionna [10].

Theorem 3.2. Assume $n \ge 2$. Then $\text{def}(X) \le n-2$. *Furthermore*, $\text{def}(X)=n-2$, *if and only if X is a scroll (i.e.* $X = \mathbb{P}_{C}(F)$ where F is a rank n vector bundle on a *curve C and the fibers are embedded linearly).*

Proof. It is clear that $\det(X) \leq n-1$. Then $\det(X) \leq n-2$ by 2.4.a.

If def(X)=n-2>0, then there is a n-2-plane L through a general point p such that

$$
K_X \otimes \mathcal{O}_X(n-1)|_L \cong \mathcal{O}_L(-1) \quad \text{by } 2.3.
$$

Thus X is a scroll by 1.2. The converse is well known.

Remark. In [4], we shall show that if $\det(X) = k \geq \frac{n}{2}$, then X is a $\mathbb{P}^{n+k/2}$ bundle over a $\frac{n-k}{2}$ -fold.

Theorem 3.3. (a) If X is a 3-fold and $\text{def}(X) > 0$, then X is a scroll.

(b) If X is a 4-fold and $\text{def}(X) > 0$, then X is a scroll.

(c) Assume that $n \geq 3$ and $N = 2n - 1$. If $\dim X = \dim X^*$, then X is the Segre *embedding of* $\mathbb{P}^1 \times \mathbb{P}^{n-1}$.

Proof. (a) If $n = 3$ then $\text{def}(X) = 1$ and X is a scroll by 3.2.

(b) If $n = 4$ then def(X) = 2 by 2.4. Hence X is a scroll.

(c) def(X)=n-2. Thus X is a scroll. Then X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$ by a theorem of S. Kleiman ([16], 4.3).

Remark. 3.3.a was first proved by Griffiths and Harris. The fact def(X) $\leq n-2$ was first observed by Zak and Landman.

Theorem 3.4. *If the codimension of X is two, then* $\det(X) = 0$ *, unless X is the Segre embedding of* $\mathbb{P}^1 \times \mathbb{P}^2$ in \mathbb{P}^5 .

Proof. Assume that dim $X \ge 4$ and def(X)=k>0. Then $K_X \cong \mathcal{O}_X\left(\frac{-n-k-2}{2}\right)$ by

2.4. But Ballico and Chiantini [1] have proved that if $K_x = \mathcal{O}_x(-a)$ with $a > 0$, then X is a complete intersection. This contradicts 3.1. If dim $X = 1$ or 2, then $def(X)=0$ by 3.1. If X is a 3-fold in \mathbb{P}^5 and $def(X)>0$, then X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^2$ by 3.3.

Remark. Holme and Schneider have independently observed that if $codim(X)$ $= 2$ and dim $X \ge 4$, then def(X) = 0.

Theorem 3.5. *If* $k = \text{def}(X) \ge \frac{N}{2}$, then $N_{L/X} = \frac{n+k}{2} \mathcal{O}_L \bigoplus \frac{n-k}{2} \mathcal{O}_L(1)$.

Proof. $N_{L/X}$ is a uniform bundle by 2.3.(a). The classification of uniform bundles ([3] and [5]) implies that $N_{L/X}$ is isomorphic to either $\frac{n-k}{2}$ $\mathcal{O}_L(\mathfrak{g}) \frac{n-k}{2}$ $\mathcal{O}_L(1)$ or

 $\Omega_{\mathbb{P}^2}^1(2)$. Assume for contradiction that $N_{L/X}\cong\Omega_{\mathbb{P}^2}^1(2)$. Then $n=4$ and X is a scroll by 3.1 and 3.3. Say $X = \mathbb{P}_{C}(F)$ where F is a rank 4 locally free sheaf on a curve C. Then L is embedded as a 2-plane in a fibre f of $P_c(F)$. Consider the exact sequence,

We observe that $N_{L/X} = \mathcal{O}_L \oplus \mathcal{O}_L(1)$.

w

First we will construct a 10-dimensional variety S_4 in \mathbb{P}^{15} . Later on in the section we will prove that if X is a 10-fold in \mathbb{P}^{15} such that dim $X = \dim X^*$. Then we shall show that $X \cong S_4$.

Let W be a five dimensional vector space. Set $T = \mathbb{P}(W) \cong \mathbb{P}^4$ and $D_{\text{def}} = \mathbb{P}(A^3 W) = \mathbb{P}^9$. Denote by G the Plücker embedding of the Grassman variety of 2-planes in T . If I is the incidence correspondence between T and G , then $I = \mathbb{P}_G(Q)$ where Q is the universal rank 3 quotient bundle on G. Consider the following diagram:

$$
E = \mathbb{P}(\Omega_{\mathbb{P}^4}^2(2)) \xrightarrow{f} D = \mathbb{P}^9
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
I \longrightarrow G
$$

\n
$$
T = \mathbb{P}^4 = \mathbb{P}^4
$$

\n(4.0.1)

Observe that E is just the blowing up of \mathbb{P}^9 along *G.* $I \subseteq E$ is just the exceptional divisor. Let $\mathcal{O}_E(0, 1)$ be the tautological line bundle of $\mathbb{P}(\Omega^2_T(2))$. Observe that

$$
f^* \mathcal{O}_D(1) = \mathcal{O}_E(0, 1) \otimes h^* \mathcal{O}_T(1). \tag{4.0.2}
$$

Let $t \in T$ and $k(t)$ be its residue field. Then t corresponds to a 1-dimensional quotient space of W. Consider the standard exact sequence

$$
0 \to \Omega^1_T(1) \to W \otimes \mathcal{O}_T \to \mathcal{O}_T(1) \to 0.
$$

Then the fibre of I over t, $I_t = \{2\text{-planes in }T \text{ through } t\} \cong \{2\text{-dimensional }T\}$ quotient spaces of $\Omega^1_T(1)\otimes k(t)$ = Gr(2, $\Omega^1_T(1)\otimes k(t)$). In fact $I = \text{Gr}(2, \Omega^1_T(1))$ $\subseteq \Omega_T^2(2)=E$. The inclusion map $I \subseteq \mathbb{P}(\Omega_T^2(2))$ is just given by the Plücker embedding. Observe that

$$
H^0(\mathcal{O}_E(0, 2)\otimes h^*\mathcal{O}_T(1)) \cong H^0(h_*\mathcal{O}_E(0, 2)\otimes \mathcal{O}_T(1))
$$

\n
$$
\cong H^0(S^2(\Omega_T^2)\otimes \mathcal{O}_T(5))
$$

\n
$$
\cong \text{Hom}(\Omega_T^4, S^2 \Omega_T^2) \subseteq \text{Hom}(\Omega_T^4, \text{Hom}((\Omega_T^2)^*, \Omega_T^2)).
$$

It follows from the Plücker relations, $I \subseteq E$ is defined by the sections $H^0(\mathcal{O}_E(0, 2)\otimes h^*\mathcal{O}_T(1))$ corresponding to the map from Ω^4 to Hom($(\Omega^2_T)^*, \Omega^2_T$) given by the exterior product. Now

$$
\mathcal{O}_E(I) = \mathcal{O}_E(0, 2) \otimes h^* \mathcal{O}_T(1),\tag{4.0.3}
$$

and

$$
h^* \mathcal{O}_T(1) = \mathcal{O}_E(0, 2) \otimes \mathcal{O}_E(-I). \tag{4.0.4}
$$

Since I is exceptional divisor for the map f, $h^0(\mathcal{O}_F(I)) = 1$ and

$$
I \in |\mathcal{O}_E(0, 2) \otimes h^* \mathcal{O}_T(1)| \tag{4.0.5}
$$

is the unique divisor. Now we embed D as a hyperplane in \mathbb{P}^{10} . Let $\tilde{\mathbb{P}}^{10}$ be the blowing up of \mathbb{P}^{10} along G. Denote by F the exceptional divisor and denote by E the proper transform of D in \tilde{P}^{10} . Consider the following diagram:

$$
F \subseteq \widetilde{\mathbb{P}}^{10} \supseteq E
$$

$$
\downarrow \pi
$$

$$
G \subseteq \mathbb{P}^{10} \supseteq D.
$$

E is the blowing up of D along G. So $E = \mathbb{P}(\Omega_{\mathbb{P}^4}^2(2))$ and $F \cap E = I$ is the incidence correspondence between \mathbb{P}^4 and G. The ideal sheaf $I_{G/\mathbb{P}^{10}}(2)$ is generated by its sections and $h^0(I_{G/\mathbb{P}^{10}}(2)) = 16$. Thus the complete linear system $\pi^* \mathcal{O}_{\mathbb{P}^{10}}(2) \otimes \mathcal{O}(-F)$ gives a morphism $\phi: \mathbb{P}^{10} \to \mathbb{P}^{15}$. Let $S_4 = \phi(\mathbb{P}^{10})$. Let \mathcal{L} $=\phi^* \mathcal{O}_{S_n}(1)$. Then

$$
\mathscr{L} = \pi^* \mathscr{O}_{\mathbb{P}^{10}}(2) \otimes \mathscr{O}(-F) = \pi^* \mathscr{O}_{\mathbb{P}^{10}}(1) \otimes \mathscr{O}(-E).
$$

By (4.0.2) $\mathscr{L}|_E=h^*\mathscr{O}_{\mathbb{P}^4}(1)$. Thus $\phi(E)_{def}L$ is a 4-plane in S_4 . Also that $\mathscr{O}_E(-E)$ is just the tautological line bundle of $\overline{\mathbb{P}}(A^2 \Omega_{\mathbb{P}^4}^1 \otimes \mathcal{O}_{\mathbb{P}^4}(2))$. As in the classical cases [8, 19], one can show that ϕ is just the blowing down of $\tilde{\mathbb{P}}^{10}$ along E. So in fact S_4 is a smooth 10-fold in \mathbb{P}^{15} . (See [29] for an elegant proof that S_4 is isomorphic to the 10-dimensional spinor variety.)

Let X be a nonlinear *n*-fold in \mathbb{P}^N such that $\text{def}(X) = k > 0$. Let H_1 be a general tangent hyperplane of X. Then the contact locus of H_1 with X is a kplane L. Let \tilde{X} be the blowing up of X along L. Denote by E the exceptional divisor and denote by F the proper transform of $H_1 \cap X$. Consider the following diagram:

$$
\mathbb{P}(N_{L/X}^*) = E \subseteq X \supseteq F
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
L \subseteq X \supseteq H_1 \cap X.
$$
\n(4.0.6)

We shall denote by $\mathcal{O}_{\bar{x}}(a,b)$ the line bundle $p^* \mathcal{O}_{\bar{x}}(a) \otimes \mathcal{O}_{\bar{x}}(-bE)$. Then $\mathcal{O}_{\bar{x}}(F)$ $=\mathcal{O}_{\tilde{\mathbf{v}}}(1, 2)$.

Let $f: \tilde{X} \to \mathbb{P}^{N-1-k}$ be the projection with center *L. Let* $Y = f(\tilde{X})$. Then $f^*C_\gamma(1) = C_{\overline{\chi}}(1, 1)$. The hyperplane section $H_1 \cap X$ will correspond to a hyperplane section D of Y. Observe that $f^{-1}(D) = E + F$.

Lemma 4.1. (a) If Z is a positive dimensional fibre of f, then $Z \subseteq E \cup F$.

(b) dim $Y = \dim X$.

Proof. Let $y \in Y - D$. Assure that $Z = f^{-1}(y)$ and dim $Z \ge 1$. Since $Z \cap (E \cup F) = \emptyset$, p maps Z isomorphically to a variety in X. So $\mathcal{O}_{\bar{X}}(1,0)|_Z$ is nontrivial. But $\mathcal{O}_{\tilde{X}}(1, 1)|_Z = f^* \mathcal{O}_Y(1)|_Z$ is trivial. So $\mathcal{O}_{\tilde{X}}(0, 1)|_Z$ is nontrivial. Hence $Z \cap E = \emptyset$. This is a contradiction.

Lemma 4.2. *Assume that* $K_x = \mathcal{O}_x(b)$ *for some b. Then*

(a)
$$
K_x = \mathcal{O}_x \left(\frac{-n-k-2}{2} \right)
$$
.
\n(b) $K_{\bar{x}} = \mathcal{O}_{\bar{x}} \left(\frac{-n-k-2}{2}, -n+k+1 \right)$.
\n(c) $H^i(\mathcal{O}_{\bar{x}}(a, 1)) = 0$, if $i > 0$ and $a \ge \frac{n-3k-2}{2}$.
\n(d) $H^i(\mathcal{O}_{\bar{x}}(a, 2)) = 0$, if $i > 0$ and $a \ge \frac{n-3k}{2}$.

Proof. (a) Since $K_x|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$ by 2.4b, $K_x = \mathcal{O}_x\left(\frac{-n-k-2}{2}\right)$.

(b) This follows from (a) and the fact that X is the blowing up of X along L.

(c) $\mathcal{O}_{\bar{X}}(a,1)=K_{\bar{X}}\otimes f^*\mathcal{O}_Y(n-k)\otimes\mathcal{O}_{\bar{X}}\left(a-\frac{n-3k-2}{2},0\right)$. It follows from the vanishing theorem of Grauert-Rimenschneider ([24], Theorem3), that $H^i(\mathcal{O}_{\tilde{X}}(a, 1)) = 0$, if $i > 0$ and $a \ge \frac{n-3k-2}{2}$

(d) The proof is similar to (c). We shall leave it to the readers.

Lemma 4.3. *Assume that* $K_x = \mathcal{O}_x(b)$. *Also assume that* $\frac{n-3k-2}{2} \leq 0$. *Then*

- (a) $H^0(N_{t,x}^*(a)) = 0$ for $a \le 0$.
- (b) $H^k(N_{L/X}^*(a))=0$ for $a \geq -k$.
- (c) $H^i(N^*_{L/X}(a)) = 0$ *if* $0 < i < k$ *and* $a \ge \frac{n-3k}{2}$

(d)
$$
H^i(N^*_{L/X}(a)) = 0
$$
 if $0 < i < k$ and $a \leq \frac{k-n}{2}$.

Proof. (a) Consider the exact sequence,

$$
0 = H^{0}(\mathcal{O}_{\tilde{X}}(0, 1)) \to H^{0}(\mathcal{O}_{E}(0, 1)) \to H^{1}(\mathcal{O}_{\tilde{X}}(0, 2)).
$$

Now $H^1(\mathcal{O}_{\bar{X}}(0,2))=0$ by 4.2(d). So $H^0(\mathcal{O}_E(0,1))\cong H^0(N^*_{L/X})=0$. Hence $H^{0}(N_{L/X}^{*}(a)) = 0$ for $a \leq 0$.

(b) Recall that $N_{L/X} = N_{L/X}^* \otimes \mathcal{O}_L(1)$. So (b) following from (a) and Serre's duality.

(c) Consider the exact sequence

 $H^i(\mathcal{O}_{\tilde{\mathbf{v}}}(a,1)) \rightarrow H^i(\mathcal{O}_{\tilde{\mathbf{r}}}(a,1)) \rightarrow H^{i+1}(\mathcal{O}_{\tilde{\mathbf{v}}}(a,2)).$

By 4.2 (e) and (d), we conclude that

$$
H^{i}(\mathcal{O}_{E}(a, 1)) \cong H^{i}(N_{L/X}^{*} \otimes \mathcal{O}(a)) = 0 \quad \text{for } a \geq \frac{n-3k}{2}.
$$

(d) This follows from (c) and Serre's duality.

Theorem 4.4. *Assume that* $K_x = \mathcal{O}_x(b)$ *for some b* $\in \mathbb{Z}$ *. Then*

- (a) def(X) $\leq \frac{n-2}{2}$ (n \geq 3).
- (b) *If* $\dim X = 4m + 2$ *and* $\det(X) = 2m(>0)$, *then*

$$
N_{L/X}^* = H^m(N_{L/X}^*(m)) \otimes \Omega_L^m(m), \quad \text{and } m \le 2.
$$

Proof. Consider the Belinson spectral sequence ([23], 3.1.3.)

$$
E_1^{pq} = H^q(N_{L/X}^*(p)) \otimes \Omega_L^{-p}(-p)
$$

which converges to

$$
E^{i} = \begin{cases} N_{L/X}^* & \text{if } i = 0\\ 0 & \text{otherwise} \end{cases}
$$
 (i.e. $E_{\infty}^{pq} = 0$, if $p + q \neq 0$).

(a) If def(X) $\geq \frac{n-1}{2}$, then $\frac{n-3k}{2} - 1 \leq \frac{k-n}{2}$. It follows from 4.3 $H^q(N^*_{L/X}(p))$ $=0$ for $-k \leq p \leq 0$. It follogs that $N_{L/X}^* = 0$. This is a contradiction.

(b) In this case $H^q(N_{L/X}^*(p))=0$ for $-2m \leq p \leq 0$ unless $p=m$. So $E_1^{pq}=E_{\infty}^{pq}$. This implies that $N_{L/X}^* = H^m(N_{L/X}^*) \otimes \Omega_L^m(m)$. So rank $(N_{L/X}^*) = 2m + 2 \geq {2m \choose m}$. We conclude that $m \leq 2$.

Theorem 4.5. Let X be a nonlinear n-fold in \mathbb{P}^n . We assume that $n \leq \frac{2}{3}N$. Suppose *that* $\dim X = \dim X^*$. *Then* X is one of the following varieties:

(a) *X* is a hypersurface in \mathbb{P}^2 or \mathbb{P}^3 .

- (b) *X* is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$ in \mathbb{P}^{2n-1} .
- (c) *X* is the Plücker embedding of $G(2, 5)$ in \mathbb{P}^9 .
- (d) *X* is the 10-dimensional spinor variety S_4 in \mathbb{P}^{15} [19, 25].

Proof. We may assume that $n \ge 3$. (3.1). Now $\text{def}(X) = N - 1 - n$. Since $\det(X) \leq n-2$, we conclude that $n \geq \frac{N+1}{2}$. If $n = \frac{N+1}{2}$, then $\det(X) = n-2$ and X is a Segre variety by 3.3(c). In the following we shall assume that $n \geq \frac{N}{2} + 1$.

Then $K_x = \mathcal{O}_x \left(\frac{N-1}{2} \right)$ by 2.4(e). We conclude that $\det(X) = N-1 - n \leq \frac{n-2}{2}$ by 4.4. Hence $n \geq \frac{2}{3}N$. By our assumption $n \leq \frac{2}{3}N$. So $n=\frac{2}{3}N$. Now def(X)=N $-1-n=\frac{1}{2}n-1$. Thus $n\equiv 0 \mod 2$. Since $\text{def}(X)\equiv n \mod 2$, we conclude that $n \equiv 2 \mod 4$. We write $n=4m+2$. Then $\text{def}(X)=2m$. So $m \le 2$ by 4.4(b). If X is contained in a hyperplane, then the dual variety of X as a subvariety of \mathbb{P}^{N-1} will have dimension smaller than $\dim X$. This will contradict Zak's theorem. So we conclude that X is nondegenerate. By Zak's linear normality theorem, we conclude that (4.5.1) $h^{0}(\mathcal{O}_{Y}(1)) = N + 1$.

Case 1. Assume that $m = 1$.

In this case, X is a 6-fold in \mathbb{P}^9 and $K_x = \mathcal{O}_x(-5)$. Let G be the Plücker embedding of $G(2, 5)$ in \mathbb{P}^9 . It follows from the Kodaria vanishing theorem,

$$
X(\mathcal{O}_X(a)) = X(\mathcal{O}_G(a)) \quad \text{for } -6 \le a \le 1.
$$

So deg $X = \deg G = 5$. It follows from Fujita's classification of Del Pezzo mainfold that $X \cong G$ [7, 8].

Case 2. Assume that $m = 2$.

In this case, X is a 10-fold in \mathbb{P}^{15} and $K_x = \mathcal{O}_x(-8)$. As in Case 1, we can show that deg $X = \deg S_4 = 12$. Also in this case $N_{L/X}^* = \Omega_{\mathbb{P}^4}^2 \otimes \mathbb{O}_{\mathbb{P}^4}(2)$. In the following we shall use the notations in (4.0.6) and (4.1). Let $f: \tilde{X} \rightarrow \mathbb{P}^{10}$. Suppose that $H \in |{\mathcal{O}}_{\bar{X}}(1, 0)|$. Using the Chern polynomial of $\Omega_{\mathbb{P}^4}^2 \otimes {\mathcal{O}}_{\mathbb{P}^4}(2)$, we find the following intersection product

$$
E \cdot (E^6 - 3H \cdot E^5 + 5H^2 \cdot E^4 - 5H^3 E^3) = 0 \qquad ([12], \, p. \, 429) \tag{4.5.2}
$$

in the Chow ring of \tilde{X} . Also observe that $H^5 \cdot E = 0$ and $H^4 \cdot E^6 = -1$. Using (4.5.2), we conclude that $H^3 \cdot E^7 = -3$, $H^2 \cdot E^8 = -4$, $H \cdot E^9 = -2$ and $E^{10} = -1$. Also $H^{10} = \deg X = 12$. Let $M \in |\mathcal{O}_{\bar{X}}(1, 1)| = |f^* \mathcal{O}_{\mathbb{P}^{10}}(1)|$. We find $M^{10} = (H - E)^{10}$ = 1. We conclude that the map $f: \tilde{X} \to \mathbb{P}^{10}$ is a birational morphism $\mathcal{O}_{\tilde{X}}(0, 1)|_E$ is the tautological line bundle of $\mathbb{P}(\Omega_{\mathbb{P}^4}^2 \otimes \mathcal{O}(2))$. Now $\mathcal{O}_{\tilde{Y}}(F) = \mathcal{O}_{\tilde{Y}}(1, 2)$. So $I = E$ $\cap F$ is the unique divisor in $|\mathcal{O}_F(1,2)|$ and I is the incidence correspondence between \mathbb{P}^4 and $G(2, 5)$ by (4.0.6). Also observe that $f(I)=G$ is the Grassman variety in \mathbb{P}^9 by (4.0.2). Also observe that $f(E+F)$ is a hyperplane D in \mathbb{P}^{10} and $f^{-1}(D)=E+F$. We can compute that $(F \cdot M^7) \cdot H^2 = (F \cdot M^7) \cdot E \cdot H$ $=(F \cdot M^7) \cdot E^2 = 0$. Since $aH - E$ is very ample for sufficiently large a, we conclude that $(F \cdot M^7) = 0$. It follows that dim $f(F) \le 6$. Since $f(I) = G$, we conclude that $f(F) = G$. By the construction given at the beginning of this section, we know $f: E-I \rightarrow D-G$ is an isomorphism. It follows from Lemma 4.1 and the Zariski's main theorem that $f: \tilde{X} - F \rightarrow \mathbb{P}^{10} - G$ is an isomorphism. We find $H \cdot M^9 = 2$. Thus each hyperplane section of X corresponds to a quadric hypersurface in \mathbb{P}^{10} . The birational morphism f and p induces a birational correspondence g: $\mathbb{P}^{10} \to X \subset \mathbb{P}^{15}$. Observe that $g^* \mathcal{O}_x(1) = \mathcal{O}_{\mathbb{P}^{10}}(2)$, this induces a 15-dimensional linear system in $|C_{\mathbf{p}^{10}}(2)|$. The base locus of this linear system contains G. But $h^0(I_{G/\mathbb{P}^{10}}(2)) = 16$ and $I_{G/\mathbb{P}^{10}}(2)$ is generated by its sections. Thus the base locus of this linear system is G and there is a morphism $\phi: \tilde{\mathbb{P}}^{10} \to X$ where $\tilde{\mathbb{P}}^{10}$ is the blowing up of \mathbb{P}^{10} along G. We observe that X is just the variety S_4 we constructed at the beginning of this section.

References

- 1. Ballico, E., Chiantini, L.: On smooth subcanonical varieties of codimension $2\mathbb{P}^n$ n ≥ 4 (To appear in Ann. Mat. Pure Appl.)
- 2. Barth, W.: Transplanting cohomology class in complex projective space. Am. J. Math. 92, 951- 961 (1970)
- 3. Ein, L.: Stable vector bundle on projective space in char $p > 0$. Math. Ann. 254, 53–72 (1980)
- 4. Ein, L.: Varieties with small dual varieties II. (preprint)
- 5. Elencwajg, G., Hirschowitz, A., Schneider, M.: Les fibres uniformes de rang au plus n sur $\mathbb{P}_n(\mathbb{C})$. Proceedings of the Nice Conference 1979 on Vector bundles and Differential equations
- 6. Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry, Lect. Notes Math. 862, 26-92 (1981)
- 7. Fujita, T.: On the structure of polarized manifolds with total deficiency one I. J. Math. Soc. Jpn 32-4, 709-775 (1980)
- 8. Fujita, T.: On the structure of polarized manifolds with total deficiency one II. J. Math. Soc. Jpn. 33-3, 415~434 (1981)
- 9. Fujita, T., Roberts, J.: Varieties with small secant varieties: the extremal case. Am. J. Math. 103, 953-976 (1981)
- 10. Griffiths, P., Harris, J.: Algebraic geometry and local differential geometry. Ann. Sci. Ec. Norm. Super. 12, 355~432 (1979)
- 11. Hartshorne, R.: Varieties of low codimension in projective space. Bull. Am. Math. Soc. 80, 1017-1032 (1974)
- 12. Hartshorne, R.: Algebraic geometry. Graduate Text in Mathematics, vol. 52. Berlin-Heidelberg-New York: Springer 1977
- 13. Hefez, A., Kleiman, S.: Notes on duality for projective varieties (to appear)
- 14. Ionescu, P.: An enumeration of all smooth projective varieties of degree 5 and 6. Increst Preprint Series Math. 74 (1981)
- 15. Kleiman, S.: About the conormal scheme (to appear)
- 16. Kleiman, S.: Plane forms and multiple point formulas (to appear)
- 17. Kleiman, S.: The enumerative theory of singularities. In: Holme, P. (ed.): Real and complex singularities. Oslo 1976, pp. 297-396. Sijtoff and Noordhoof 1977
- 18. Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13-1, 31~47 (1973)
- 19. Lazarsfeld, R., Van de Ven, A.: Recent work of F.L. Zak (appeared in DMV-seminar)
- 20. Lamothe, K.: The topology of complex projective varieties after S. Lefschetz. Topology 20, 15- 51 (1980)
- 21. Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math. 110, 593-606 (1979)
- 22. Mumford, D.: Some footnote of the work of C.P. Ramanujam. In: Ramanujam, C.P.: A Tribute, pp. 247-262. Berlin-Heidelberg-New York: Springer 1978
- 23. Okonek, C., Spindler, H., Schneider, M.: Vector bundles on complex projective space. Prog. Math. 3, Basel, Boston: Birkhäuser (1980)
- 24. Ramanajam, C.P.: Remarks on the Kodaira vanishing theorem. J. Indian Math. Soc. 36, 41-51 (1972)
- 25. Room, T.: A Synthesis of Clifford matrices and its generalization. Am. J. Math. 74, 967-984 (1952)
- 26. Sommese, A.J.: Hyperplane section of projection surface I the adjunction mapping. Duke Math. J. 46, 377-401 (1979)
- 27. Van de Ven, A.: On the 2-connectedness of the very ample divisor on a surface. Duke Math. J. 46, 403-407 (1979)
- 28. Zak, F.: Projection of algebraic varieties. Math. U.S.S.R. Sbornik, 44, 535-544 (1983)
- 29. Zak, F.: Varieties of small codimension arising from group action. Addendum of 'Recent work of F.L. Zak' (to appear)