

Varieties with small dual varieties, I

Lawrence Ein*

University of California, Department of Mathematics, Los Angeles, CA 90024, USA

Introduction

Let X be a complex projective nonlinear *n*-fold in \mathbb{P}^n . Let $X^* \subseteq \mathbb{P}^{N^*}$ be the dual variety of X. Landman defines the defect of X to be $def(X) = N - 1 - \dim X^*$. For most examples, def(X) = 0 (i.e. X^* is a hypersurface). The main purpose of this paper is to investigate those varieties with positive defect.

Assume that def(X) = k > 0. Let *H* be a general tangent hyperplane of *X*. The contact locus of *H* with *X* is a *k* dimensional linear space *L* in *X* [15]. We show that $N_{L/X}$, the normal sheaf of *L*, is isomorphic to $N_{L/X}^* \otimes \mathcal{O}_L(1)$. Furthermore, $N_{L/X}$ is a uniform vector bundle on \mathbb{P}^k and $K_X|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$. In particular, $n \equiv k \mod 2$. The pairity theorem was first proved by A. Landman, using the Picard-Lefschetz theory (unpublished). Zak and Landman had observed that $def(X) \leq n-2$. We show that if def(X) = n-2, then *X* is a scroll $(n \geq 3)$. This theorem was first proved by Griffiths and Harris in the case n=3. In [4], we shall show that if $def(X) = k \geq \frac{n}{2}$, *X* is a $\mathbb{P}^{n+k/2}$ -bundle over a $\frac{n-k}{2}$ -fold.

As a consequence of his theorem on tangencies, Zak proved that dim $X^* \ge \dim X$. In particular, if X^* is smooth, then dim $X = \dim X^*$. He also classified those varieties with the properties dim $X = \frac{2(N-2)}{3}$ and dim Sec(X)

= N - 1 [19, 28].

In §4, using the isomorphism between $N_{L/X}$ and $N_{L/X}^* \otimes \mathcal{O}_L(1)$ and the Belinson spectral sequence, we show that if dim $X = \dim X^* \leq \frac{2}{3}N$, then X is one of the following varieties:

- (a) X is a hypersurface.
- (b) X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$ in \mathbb{P}^{2n-1} .

^{*} Partially supported by an N.S.F. Grant

Current address: Department of Mathematics, University of Illinois - Chicago, Box 4348, Chicago, Ill. 60608, USA

- (c) X is the Plücker embedding of G(2, 5) in \mathbb{IP}^9 [22].
- (d) X is the 10-dimensional spinor variety in \mathbb{P}^{15} [19, 25].

Hartshorne conjectures that if dim $X > \frac{2}{3}N$, then X is a complete intersection. The conjecture will imply that the above list is the complete list of nonsingular projective varieties satisfying the property dim $X = \dim X^*$. We are able to show that if $\operatorname{codim}(X) = 2$, then def(X) = 0, unless X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^2$ in \mathbb{P}^5 . Throughout the paper, we shall assume the base field is the complex numbers.

Acknowledgement. I would like to thank Steve Kleiman for many helpful discussions and encouragements.

§ 1.

The following proposition is well known.

Proposition 1.1. Let X be an irreducible reduced subvariety of \mathbb{P}^{N} .

(a) Assume that X is contained in a hyperplane H. If $X^{*'}$ is the dual variety of X, when we consider X as a subvariety of \mathbb{P}^{N-1} , then X^* is the cone over $X^{*'}$ with vertex p corresponding to H.

(b) Conversely, if X^* is a cone with vertex p, then X is contained in the corresponding hyperplane H. In particular, def(X) is the same whether we consider X as a subvariety of \mathbb{P}^N or \mathbb{P}^{N-1} .

Proof. (a) If $H_1 \neq H$ is a tangent hyperplane of X, then $H_1 \cap H$ is a tangent hyperplane of X in \mathbb{P}^{N-1} . Conversely, if T is a tangent hyperplane of X in H, then each hyperplane H_1 in \mathbb{P}^N containing T is tangent to X. Thus X^* is a cone over $X^{*'}$.

(b) Each hyperplane which is tangent to X^* at a smooth point will contain the point p. Hence $X = (X^*)^*$ is contained in the hyperplane corresponding to p.

Proposition 1.2. (Adjunction mapping theorem.) Let Y be a projective n-fold. Suppose that $\mathcal{O}_{Y}(1)$ is a very ample line bundle on Y and K_{Y} is the canonical line bundle on Y.

(a) If $|K_Y \otimes \mathcal{O}_Y(n-1)| = \emptyset$, then $(Y, \mathcal{O}_Y(1))$ is isomorphic to one of the following:

1. (**IP**^{*N*}, $\mathcal{O}_{\mathbf{P}^{N}}(1)$).

2. $(\mathbb{IP}^2, \mathcal{O}_{\mathbb{IP}^2}(2)).$

3. $(Q_n, \mathcal{O}_{Q_n}(1))$, where Q_n is a quadric hypersurface.

4. $(\mathbb{P}_{C}(F), \mathcal{O}(1))$, where F is a vector bundle of rank n on a curve C and $\mathcal{O}(1)$ is the tautological line bundle.

(b) If $|K_Y \otimes \mathcal{O}_Y(n-1)| \neq \emptyset$ then it has no base points.

Proof. The proposition is a fairly straightforward generalization of the theorem in [26, 27]. One can find a proof in [14].

Theorem 1.3. (Zak's theorem on tangencies [6], §7.)

(a) Suppose that X is a nondegenerate projective n-fold in \mathbb{P}^{N} . If H is a k-plane in \mathbb{P}^{N} $(k \ge n)$, then dim $\text{Sing}(H \cap X) \le k - n$.

(b) If X is a nonlinear n-fold in \mathbb{IP}^N , then dim $X^* \ge \dim X$.

Corollary 1.4. Suppose that X is a nonlinear projective n-fold in $\mathbb{P}^{\mathbb{N}}$. If X^* is smooth, then dim $X = \dim X^*$.

Proof. Since $(X^*)^* = X$, dim $X \ge \dim X^*$, by 1.3(b). So dim $X = \dim X^*$, by 1.3(b).

§ 2.

In the rest of the paper, we shall assume X is a nonlinear projective *n*-fold in \mathbb{IP}^N . We shall also assume that def(X)=k. If q is a general point of X and H is a general tangent hyperplane of X at q, then the contact locus of H with X is a k-dimensional linear space L. The main purpose of the section is to show that $N_{L/X}$, the normal sheaf of L in X, is isomorphic to $N_{L/X}^* \otimes \mathcal{O}_L(1)$. If k > 0, then we will show that $N_{L/X}$ is a uniform vector bundle on \mathbb{P}^k and $K_X|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$. In particular, if k > 0, then $n \equiv k \mod 2$. The pairity result was first observed by A. Landman (unpublished).

Theorem 2.1. Let X, H, and L be as defined above. Assume def(X) = k.

(a) If p is a point in L, then the tangent cone of the hyperplane section $H \cap X$ at p is a quadric hypersurface of rank n-k in $\mathbb{P}(\Omega_X^1(p))$.

(b) Let $s_h: \mathcal{O}_X(-1) \to \mathcal{O}_X$ be the section defining $H \cap X$. Then s_h factors through I_L^2 , where I_L is the ideal sheaf of L in X.

(c) Let t_h be the section of $I_L^2/I_L^3 \cong S^2(N_{L/X}^*)$ induced by s_h . Then t_h defines a nonsingular quadric hypersurface in $\mathbb{P}(N_{L/X}^*(p))$.

Proof. (a) Let C_X be the conormal variety of X. Then $C_X = C_{X*}$ [15]. Let p_2 be the projection map from C_X to X^* and let h be the point in X^* corresponding to H. We may assume that p_2 is smooth along $p_2^{-1}(h)$. In [13], Kleiman showed that rank of the Hessian of s_h at p is equal to $n - \operatorname{rank}(\Omega_{C_{X/X*}}^1(p, h)) = n - k$.

(b) We choose a local coordinate system $\{x_1, x_2, ..., x_n\}$ for X at p. We shall assume I_L is generated by $x_1, x_2, ..., x_{n-k}$. Using the fact that $L \subseteq H \cap X$, we can write the power series of s_h in the following form,

$$s_{h} = x_{1} f_{1} + x_{2} f_{2} + \ldots + x_{n-k} f_{n-k} + \sum_{i=1}^{n-k} \sum_{j=1}^{n-k} x_{i} x_{j}(g_{i,j}),$$

where $f_1, f_2, ..., f_{n-k}$ are power series with the variables $x_{n-k+1}, ..., x_n$ only. But $\operatorname{Sing}(H \cap X) = L$. Thus $\frac{\partial s_h}{\partial x_i}\Big|_L = 0$ for i = 1, 2, ..., n-k. Hence $f_1 = f_2 = ... = f_{n-k}$ = 0. Now $s_h = \sum_{i=1}^{n-k} \sum_{j=1}^{n-k} x_i x_j (g_{i,j})$. Thus s_h factors through I_L^2 .

(c) We can write $g_{i,j} = a_{i,j} + h_{i,j}$, where $(a_{i,j})$'s are constants and $(h_{i,j})$'s are power series without the constant term. Now

$$s_{h} = \sum_{i=1}^{n-k} \sum_{j=1}^{n-k} x_{i} x_{j} (a_{i,j} + h_{i,j}).$$

By 2.1a, $\sum_{i=1}^{n-k} \sum_{j=1}^{n-k} a_{i,j} x_i x_j$ is a quadratic form of rank n-k. But this is also the equation for the quadric hypersurface in $\mathbb{P}(I_I/I_L^2(p))$ induced by s_h .

Theorem 2.2 $N_{L/X} \cong N_{L/X}^* \otimes \mathcal{O}_L(1)$.

Proof. We shall continue to use the notations in 2.1. By 2.1 (b) and (c), s_h gives a section of

$$I_L^2/I_L^3 \otimes \mathcal{O}_L(1) = S^2(N_{L/X}^*) \otimes \mathcal{O}_L(1).$$

Since we assume the base field is not of characteristic two, $S^2 N_{L/X}^* \otimes \mathcal{O}_L(1)$ is a direct summand of

$$N_{L/X}^* \otimes N_{L/X}^* \otimes \mathcal{O}_L(1) \cong \operatorname{Hom}(N_{L/X'} N_{L/X}^*(1)).$$

Let g_h be the map from $N_{L/X}$ to $N^*_{L/X}(1)$ induced by s_h . Then g_h is an isomorphism by 2.1(c).

Remark. Let E be a vector bundle on \mathbb{P}^m . E is said to be a uniform bundle if $E|_T$ is isomorphic to a fixed bundle $\mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$ for all lines T in \mathbb{P}^m .

Theorem 2.3. Assume def(x) = k > 0.

(a) If T is a line in L, then

$$N_{L/X}|_{T} = \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^{1}} \oplus \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^{1}}(1)$$

(i.e. $N_{L/X}$ is a uniform vector bundle).

$$N_{T/X} = \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^1} \oplus \frac{n+k-2}{2} \mathcal{O}_{\mathbb{P}^1}(1).$$

(b) There is an irreducible $\frac{3n+k-4}{2}$ dimensional family of lines in X. If p is

a general point in X, then there is an $\frac{n+k-2}{2}$ dimensional family of lines in X through p.

Proof. (a) Let N_L and N_X be the normal sheaves of L and X in \mathbb{P}^N respectively. Suppose T is a line in L. Then there is the following exact sequence,

$$0 \to N_{L/X}|_T \to N_L|_T \to N_X|_T \to 0,$$

where $N_L|_T = N - k \mathcal{O}_{\mathbb{P}^1}(1)$. If $N_{L/X}|_T \cong \bigoplus_{i=1}^{n-k} \mathcal{O}_{\mathbb{P}^1}(a_i)$, then $a_i \leq 1$. Using the isomorphism between $N_{L/X}$ and $N_{L/X}^* \otimes \mathcal{O}_L(1)$, we observe that $a_i \geq 0$. Hence

$$N_{L/X}|_T = \frac{n-k}{2} \mathcal{O}_T \oplus \frac{n-k}{2} \mathcal{O}_T(1).$$

This implies that

$$N_{T/X} \cong \frac{n-k}{2} \mathcal{O}_{\mathbb{P}^1} \oplus \frac{n+k-2}{2} \mathcal{O}_{\mathbb{P}^1}(1).$$

Varieties with small dual varieties, I

(b) Let $p \in L$ and let T_0 be a line in L through p. Since $h^1(N_{T_0/X}) = 0$, the Hilbert scheme of lines in X is smooth at the point t_0 corresponding to T_0 . Hence there is a unique irreducible component \mathscr{F} of the Hilbert scheme containing the point t_0 . Also

dim
$$\mathscr{F} = h^0(N_{T_0/X}) = \frac{3n+k-4}{2}.$$

Consider the following closed subscheme of the \mathcal{F} :

 $\mathscr{H} = \{T \mid T \text{ is a line in the family } \mathscr{F} \text{ and } p \in T\}.$

Since $h^1(N_{T_0/X} \otimes I_{p/T_0}) = 0$, \mathscr{H} is smooth at the point corresponding to t_0 . Hence there is a unique irreducible component \mathscr{H}_0 of \mathscr{H} containing the point t_0 . dim $\mathscr{H}_0 = h^0(N_{T/X} \otimes I_{p/T}) = \frac{n+k-2}{2}$.

Theorem 2.4. Assume that def(X) = k > 0.

- (a) $n \equiv k \mod 2$. (b) $K_X|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$.
- (c) The Kodaira dimension of X is negative.
- (d) If $K_x = \mathcal{O}_x(a)$, then $a = \frac{-n-k-2}{2}$. (e) If $\dim X > \frac{N}{2} + 1$, then $K_x = \mathcal{O}_x\left(\frac{-n-k-2}{2}\right)$.

Proof. (a) By 2.3. $n \equiv k \mod 2$.

(b) $\Lambda^{n-k} N_{L/X} = \mathcal{O}_L\left(\frac{n-k}{2}\right)$. Thus $K_X|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$ by the adjunction formula.

(c) Since there is such a k-plane L through a general point p, $|K_X^m| = \emptyset$ for $m \ge 0$.

(d) and (e) If dim $X \ge \frac{N}{2} + 1$, then Barth's theorem [2] asserted that Pic X is generated by $\mathcal{O}_X(1)$. Thus $K_X \cong \mathcal{O}_X\left(\frac{-n-k-2}{2}\right)$ by (b). Also (d) follows from (b).

Remark. 2.4(c) was first observed by Griffiths and Harris [10].

§ 3.

In this section, we shall apply the result in §2 to obtain information about varieties with small dual varieties. Again we shall assume X is a nonlinear projective *n*-fold in \mathbb{P}^{N} .

Proposition 3.1. def(X) = 0, if X is one of the following varieties:

- (a) X is a complete intersection.
- (b) X is a curve.
- (c) X is a surface.

Proof. (a) We may assume X is nondegenerate by 1.1. Then $N_{X/\mathbb{P}^N}(-1)$ is an ample bundle. Let $C_X = \mathbb{P}(N_{N/\mathbb{P}^N}(-1))$ be the conormal variety of X and let p_2 : $C_X \to X^*$ be the projective map. $p_2^* \mathcal{O}_{X^*}(1)$ is the tautological line bundle of $\mathbb{P}(N_{X/\mathbb{P}^N}(-1))$. Hence p_2 is finite.

(b) A general tangent hyperplane can only be tangent to X at a point. Thus def(X)=0.

(c) A general tangent hyperplane can only be tangent to X along a subvariety. Thus $def(X) \leq 1$. Then def(X) = 0 by 2.4.a.

Remark. 3.1.c. is a theorem of Griffiths, Harris, Landman, and Marchionna [10].

Theorem 3.2. Assume $n \ge 2$. Then $def(X) \le n-2$. Furthermore, def(X) = n-2, if and only if X is a scroll (i.e. $X = \mathbb{P}_{C}(F)$ where F is a rank n vector bundle on a curve C and the fibers are embedded linearly).

Proof. It is clear that $def(X) \leq n-1$. Then $def(X) \leq n-2$ by 2.4.a.

If def(X)=n-2>0, then there is a n-2-plane L through a general point p such that

$$K_X \otimes \mathcal{O}_X(n-1)|_L \cong \mathcal{O}_L(-1)$$
 by 2.3.

Thus X is a scroll by 1.2. The converse is well known.

Remark. In [4], we shall show that if def $(X) = k \ge \frac{n}{2}$, then X is a $\mathbb{P}^{n+k/2}$ bundle over a $\frac{n-k}{2}$ -fold.

Theorem 3.3. (a) If X is a 3-fold and def(X) > 0, then X is a scroll.

(b) If X is a 4-fold and def(X) > 0, then X is a scroll.

(c) Assume that $n \ge 3$ and N = 2n-1. If dim $X = \dim X^*$, then X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$.

Proof. (a) If n=3 then def(X)=1 and X is a scroll by 3.2.

(b) If n=4 then def(X)=2 by 2.4. Hence X is a scroll.

(c) def(X) = n-2. Thus X is a scroll. Then X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$ by a theorem of S. Kleiman ([16], 4.3).

Remark. 3.3.a was first proved by Griffiths and Harris. The fact $def(X) \leq n-2$ was first observed by Zak and Landman.

Theorem 3.4. If the codimension of X is two, then def(X)=0, unless X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^2$ in \mathbb{P}^5 .

Proof. Assume that dim $X \ge 4$ and def(X) = k > 0. Then $K_X \cong \mathcal{O}_X\left(\frac{-n-k-2}{2}\right)$ by

2.4. But Ballico and Chiantini [1] have proved that if $K_X = \mathcal{O}_X(-a)$ with a > 0, then X is a complete intersection. This contradicts 3.1. If dim X = 1 or 2, then def(X) = 0 by 3.1. If X is a 3-fold in \mathbb{P}^5 and def(X) > 0, then X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^2$ by 3.3.

Remark. Holme and Schneider have independently observed that if $\operatorname{codim}(X) = 2$ and dim $X \ge 4$, then def(X) = 0.

Theorem 3.5. If $k = \operatorname{def}(X) \ge \frac{N}{2}$, then $N_{L/X} = \frac{n+k}{2} \mathcal{O}_L \oplus \frac{n-k}{2} \mathcal{O}_L(1)$.

Proof. $N_{L/X}$ is a uniform bundle by 2.3.(a). The classification of uniform bundles ([3] and [5]) implies that $N_{L/X}$ is isomorphic to either $\frac{n-k}{2} \mathcal{O}_L \oplus \frac{n-k}{2} \mathcal{O}_L(1)$ or

 $\Omega_{\mathbb{P}^2}^1(2)$. Assume for contradiction that $N_{L/X} \cong \Omega_{\mathbb{P}^2}^1(2)$. Then n=4 and X is a scroll by 3.1 and 3.3. Say $X = \mathbb{P}_C(F)$ where F is a rank 4 locally free sheaf on a curve C. Then L is embedded as a 2-plane in a fibre f of $\mathbb{P}_C(F)$. Consider the exact sequence,

We observe that $N_{L/X} = \mathcal{O}_L \oplus \mathcal{O}_L(1)$.

§4.

First we will construct a 10-dimensional variety S_4 in \mathbb{P}^{15} . Later on in the section we will prove that if X is a 10-fold in \mathbb{P}^{15} such that dim $X = \dim X^*$. Then we shall show that $X \cong S_4$.

Let W be a five dimensional vector space. Set $T = \mathbb{P}(W) \cong \mathbb{P}^4$ and $D = \mathbb{P}(\Lambda^3 W) = \mathbb{P}^9$. Denote by G the Plücker embedding of the Grassman variety of 2-planes in T. If I is the incidence correspondence between T and G, then $I = \mathbb{P}_G(Q)$ where Q is the universal rank 3 quotient bundle on G. Consider the following diagram:

Observe that E is just the blowing up of \mathbb{P}^9 along G. $I \subseteq E$ is just the exceptional divisor. Let $\mathcal{O}_E(0,1)$ be the tautological line bundle of $\mathbb{P}(\Omega_T^2(2))$. Observe that

$$f^* \mathcal{O}_D(1) = \mathcal{O}_E(0, 1) \otimes h^* \mathcal{O}_T(1). \tag{4.0.2}$$

Let $t \in T$ and k(t) be its residue field. Then t corresponds to a 1-dimensional quotient space of W. Consider the standard exact sequence

$$0 \to \Omega^1_T(1) \to W \otimes \mathcal{O}_T \to \mathcal{O}_T(1) \to 0.$$

Then the fibre of I over t, $I_t = \{2\text{-planes in } T \text{ through } t\} \cong \{2\text{-dimensional quotient spaces of } \Omega_T^1(1) \otimes k(t)\} = \operatorname{Gr}(2, \Omega_T^1(1) \otimes k(t))$. In fact $I = \operatorname{Gr}(2, \Omega_T^1(1))$

 $\subseteq \Omega_T^2(2) = E$. The inclusion map $I \subseteq \mathbb{P}(\Omega_T^2(2))$ is just given by the Plücker embedding. Observe that

$$H^{0}(\mathcal{O}_{E}(0,2)\otimes h^{*}\mathcal{O}_{T}(1))\cong H^{0}(h_{*}\mathcal{O}_{E}(0,2)\otimes\mathcal{O}_{T}(1))$$

$$\cong H^{0}(S^{2}(\Omega_{T}^{2})\otimes\mathcal{O}_{T}(5))$$

$$\cong \operatorname{Hom}(\Omega_{T}^{4}, S^{2}\Omega_{T}^{2})\subseteq \operatorname{Hom}(\Omega_{T}^{4}, \operatorname{Hom}((\Omega_{T}^{2})^{*}, \Omega_{T}^{2})).$$

It follows from the Plücker relations, $I \subseteq E$ is defined by the sections $H^0(\mathcal{O}_E(0,2) \otimes h^* \mathcal{O}_T(1))$ corresponding to the map from Ω_T^4 to $\operatorname{Hom}((\Omega_T^2)^*, \Omega_T^2)$ given by the exterior product. Now

$$\mathcal{O}_E(I) = \mathcal{O}_E(0,2) \otimes h^* \mathcal{O}_T(1), \tag{4.0.3}$$

and

$$h^* \mathcal{O}_T(1) = \mathcal{O}_E(0, 2) \otimes \mathcal{O}_E(-I). \tag{4.0.4}$$

Since I is exceptional divisor for the map $f, h^0(\mathcal{O}_E(I)) = 1$ and

$$I \in |\mathcal{O}_E(0,2) \otimes h^* \mathcal{O}_T(1)| \tag{4.0.5}$$

is the unique divisor. Now we embed D as a hyperplane in \mathbb{P}^{10} . Let $\tilde{\mathbb{P}}^{10}$ be the blowing up of \mathbb{P}^{10} along G. Denote by F the exceptional divisor and denote by E the proper transform of D in $\tilde{\mathbb{P}}^{10}$. Consider the following diagram:

E is the blowing up of *D* along *G*. So $E = \mathbb{P}(\Omega_{\mathbb{P}^4}^2(2))$ and $F \cap E = I$ is the incidence correspondence between \mathbb{P}^4 and *G*. The ideal sheaf $I_{G/\mathbb{P}^{10}}(2)$ is generated by its sections and $h^0(I_{G/\mathbb{P}^{10}}(2)) = 16$. Thus the complete linear system $|\pi^* \mathcal{O}_{\mathbb{P}^{10}}(2) \otimes \mathcal{O}(-F)|$ gives a morphism $\phi: \mathbb{\tilde{P}}^{10} \to \mathbb{P}^{15}$. Let $S_4 \stackrel{=}{=} \phi(\mathbb{\tilde{P}}^{10})$. Let $\mathscr{L} = \phi^* \mathcal{O}_{S_4}(1)$. Then

$$\mathscr{L} = \pi^* \mathcal{O}_{\mathbb{P}^{10}}(2) \otimes \mathcal{O}(-F) = \pi^* \mathcal{O}_{\mathbb{P}^{10}}(1) \otimes \mathcal{O}(-E).$$

By (4.0.2) $\mathscr{L}|_E = h^* \mathscr{O}_{\mathbb{P}^4}(1)$. Thus $\phi(E) = L$ is a 4-plane in S_4 . Also that $\mathscr{O}_E(-E)$ is just the tautological line bundle of $\mathbb{P}(\Lambda^2 \Omega_{\mathbb{P}^4}^1 \otimes \mathscr{O}_{\mathbb{P}^4}(2))$. As in the classical cases [8, 19], one can show that ϕ is just the blowing down of $\mathbb{I}^{p_{10}}$ along E. So in fact S_4 is a smooth 10-fold in $\mathbb{I}^{p_{15}}$. (See [29] for an elegant proof that S_4 is isomorphic to the 10-dimensional spinor variety.)

Let X be a nonlinear *n*-fold in \mathbb{P}^N such that def(X)=k>0. Let H_1 be a general tangent hyperplane of X. Then the contact locus of H_1 with X is a k-plane L. Let \tilde{X} be the blowing up of X along L. Denote by E the exceptional divisor and denote by F the proper transform of $H_1 \cap X$. Consider the following diagram: $\mathbb{IP}(N_{t(X)}^*) = E \subseteq \tilde{X} \supseteq F$

$$\mathbf{P}(N_{L/X}^*) = E \subseteq X \supseteq F \\
\downarrow \qquad \downarrow^{p} \qquad \downarrow \\
L \subseteq X \supseteq H_1 \cap X.$$
(4.0.6)

We shall denote by $\mathcal{O}_{\tilde{X}}(a, b)$ the line bundle $p^* \mathcal{O}_{X}(a) \otimes \mathcal{O}_{\tilde{X}}(-bE)$. Then $\mathcal{O}_{\tilde{X}}(F) = \mathcal{O}_{\tilde{X}}(1, 2)$.

Let $f: \tilde{X} \to \mathbb{P}^{N-1-k}$ be the projection with center L. Let $Y = f(\tilde{X})$. Then $f^* \mathcal{O}_Y(1) = \mathcal{O}_{\bar{X}}(1, 1)$. The hyperplane section $H_1 \cap X$ will correspond to a hyperplane section D of Y. Observe that $f^{-1}(D) = E + F$.

Lemma 4.1. (a) If Z is a positive dimensional fibre of f, then $Z \subseteq E \cup F$.

(b) dim $Y = \dim X$.

Proof. Let $y \in Y - D$. Assure that $Z = f^{-1}(y)$ and dim $Z \ge 1$. Since $Z \cap (E \cup F) = \emptyset$, p maps Z isomorphically to a variety in X. So $\mathscr{O}_{\tilde{X}}(1,0)|_Z$ is nontrivial. But $\mathscr{O}_{\tilde{X}}(1,1)|_Z = f^*\mathscr{O}_Y(1)|_Z$ is trivial. So $\mathscr{O}_{\tilde{X}}(0,1)|_Z$ is nontrivial. Hence $Z \cap E \neq \emptyset$. This is a contradiction.

Lemma 4.2. Assume that $K_{\chi} = \mathcal{O}_{\chi}(b)$ for some b. Then

(a)
$$K_{\chi} = \mathcal{O}_{\chi} \left(\frac{-n-k-2}{2} \right).$$

(b) $K_{\bar{\chi}} = \mathcal{O}_{\bar{\chi}} \left(\frac{-n-k-2}{2}, -n+k+1 \right).$
(c) $H^{i}(\mathcal{O}_{\bar{\chi}}(a,1)) = 0$, if $i > 0$ and $a \ge \frac{n-3k-2}{2}.$
(d) $H^{i}(\mathcal{O}_{\bar{\chi}}(a,2)) = 0$, if $i > 0$ and $a \ge \frac{n-3k}{2}.$

Proof. (a) Since $K_X|_L = \mathcal{O}_L\left(\frac{-n-k-2}{2}\right)$ by 2.4b, $K_X = \mathcal{O}_X\left(\frac{-n-k-2}{2}\right)$.

(b) This follows from (a) and the fact that X is the blowing up of X along L. (n-3k-2)

(c) $\mathcal{O}_{\tilde{X}}(a,1) = K_{\tilde{X}} \otimes f^* \mathcal{O}_Y(n-k) \otimes \mathcal{O}_{\tilde{X}}\left(a - \frac{n-3k-2}{2}, 0\right)$. It follows from the vanishing theorem of Grauert-Rimenschneider ([24], Theorem 3), that $H^i(\mathcal{O}_{\tilde{X}}(a,1)) = 0$, if i > 0 and $a \ge \frac{n-3k-2}{2}$.

(d) The proof is similar to (c). We shall leave it to the readers.

Lemma 4.3. Assume that $K_x = \mathcal{O}_x(b)$. Also assume that $\frac{n-3k-2}{2} \leq 0$. Then

- (a) $H^0(N^*_{L/X}(a)) = 0$ for $a \leq 0$.
- (b) $H^k(N^*_{L/X}(a)) = 0$ for $a \ge -k$.
- (c) $H^i(N^*_{L/X}(a)) = 0$ if 0 < i < k and $a \ge \frac{n-3k}{2}$.

(d)
$$H^i(N^*_{L/X}(a)) = 0$$
 if $0 < i < k$ and $a \leq \frac{k-n}{2}$.

Proof. (a) Consider the exact sequence,

$$0 = H^0(\mathcal{O}_{\tilde{X}}(0,1)) \to H^0(\mathcal{O}_E(0,1)) \to H^1(\mathcal{O}_{\tilde{X}}(0,2)).$$

Now $H^1(\mathcal{O}_{\bar{X}}(0,2)) = 0$ by 4.2(d). So $H^0(\mathcal{O}_E(0,1)) \cong H^0(N^*_{L/X}) = 0$. Hence $H^0(N^*_{L/X}(a)) = 0$ for $a \leq 0$.

(b) Recall that $N_{L/X} = N_{L/X}^* \otimes \mathcal{O}_L(1)$. So (b) following from (a) and Serre's duality.

(c) Consider the exact sequence

 $H^{i}(\mathcal{O}_{\tilde{X}}(a,1)) \rightarrow H^{i}(\mathcal{O}_{E}(a,1)) \rightarrow H^{i+1}(\mathcal{O}_{\tilde{X}}(a,2)).$

By 4.2(e) and (d), we conclude that

$$H^{i}(\mathcal{O}_{E}(a,1)) \cong H^{i}(N^{*}_{L/X} \otimes \mathcal{O}(a)) = 0 \quad \text{for } a \ge \frac{n-3k}{2}.$$

(d) This follows from (c) and Serre's duality.

Theorem 4.4. Assume that $K_{\chi} = \mathcal{O}_{\chi}(b)$ for some $b \in \mathbb{Z}$. Then

- (a) $def(X) \leq \frac{n-2}{2} \ (n \geq 3).$
- (b) If dim X = 4m + 2 and def(X) = 2m(>0), then

$$N_{L/X}^* = H^m(N_{L/X}^*(m)) \otimes \Omega_L^m(m), \quad and \ m \leq 2.$$

Proof. Consider the Belinson spectral sequence ([23], 3.1.3.)

$$E_1^{pq} = H^q(N^*_{L/X}(p)) \otimes \Omega_L^{-p}(-p)$$

which converges to

$$E^{i} = \begin{cases} N^{*}_{L/X} & \text{if } i = 0\\ 0 & \text{otherwise} \quad (\text{i.e. } E^{pq}_{\infty} = 0, \text{ if } p + q \neq 0). \end{cases}$$

(a) If $def(X) \ge \frac{n-1}{2}$, then $\frac{n-3k}{2} - 1 \le \frac{k-n}{2}$. It follows from 4.3 $H^q(N_{L/X}^*(p)) = 0$ for $-k \le p \le 0$. It follogs that $N_{L/X}^* = 0$. This is a contradiction.

(b) In this case $H^q(N_{L/X}^*(p)) = 0$ for $-2m \le p \le 0$ unless p = m. So $E_1^{pq} = E_{\infty}^{pq}$. This implies that $N_{L/X}^* = H^m(N_{L/X}^*) \otimes \Omega_L^m(m)$. So $\operatorname{rank}(N_{L/X}^*) = 2m + 2 \ge {2m \choose m}$. We conclude that $m \le 2$.

Theorem 4.5. Let X be a nonlinear n-fold in \mathbb{IP}^n . We assume that $n \leq \frac{2}{3}N$. Suppose that dim $X = \dim X^*$. Then X is one of the following varieties:

(a) X is a hypersurface in \mathbb{P}^2 or \mathbb{P}^3 .

- (b) X is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^{n-1}$ in \mathbb{P}^{2n-1} .
- (c) X is the Plücker embedding of G(2, 5) in \mathbb{P}^9 .
- (d) X is the 10-dimensional spinor variety S_4 in \mathbb{P}^{15} [19, 25].

Proof. We may assume that $n \ge 3$. (3.1). Now def(X) = N - 1 - n. Since $def(X) \le n-2$, we conclude that $n \ge \frac{N+1}{2}$. If $n = \frac{N+1}{2}$, then def(X) = n-2 and X is a Segre variety by 3.3(c). In the following we shall assume that $n \ge \frac{N}{2} + 1$.

Then $K_X = \mathcal{O}_X\left(\frac{-N-1}{2}\right)$ by 2.4(e). We conclude that $def(X) = N - 1 - n \leq \frac{n-2}{2}$ by 4.4. Hence $n \geq \frac{2}{3}N$. By our assumption $n \leq \frac{2}{3}N$. So $n = \frac{2}{3}N$. Now $def(X) = N - 1 - n = \frac{1}{2}n - 1$. Thus $n \equiv 0 \mod 2$. Since $def(X) \equiv n \mod 2$, we conclude that $n \equiv 2 \mod 4$. We write n = 4m + 2. Then def(X) = 2m. So $m \leq 2$ by 4.4(b). If X is contained in a hyperplane, then the dual variety of X as a subvariety of \mathbb{P}^{N-1} will have dimension smaller than dim X. This will contradict Zak's theorem. So we conclude that X is nondegenerate. By Zak's linear normality theorem, we conclude that $(4.5.1) h^0(\mathcal{O}_X(1)) = N + 1$.

Case 1. Assume that m = 1.

In this case, X is a 6-fold in \mathbb{P}^9 and $K_X = \mathcal{O}_X(-5)$. Let G be the Plücker embedding of G(2, 5) in \mathbb{P}^9 . It follows from the Kodaria vanishing theorem,

$$X(\mathcal{O}_X(a)) = X(\mathcal{O}_G(a))$$
 for $-6 \leq a \leq 1$.

So deg X = deg G = 5. It follows from Fujita's classification of Del Pezzo mainfold that $X \cong G$ [7, 8].

Case 2. Assume that m = 2.

In this case, X is a 10-fold in \mathbb{P}^{15} and $K_X = \mathcal{O}_X(-8)$. As in Case 1, we can show that deg $X = \deg S_4 = 12$. Also in this case $N_{L/X}^* = \Omega_{\mathbb{P}^4}^2 \otimes \mathcal{O}_{\mathbb{P}^4}(2)$. In the following we shall use the notations in (4.0.6) and (4.1). Let $f: \tilde{X} \to \mathbb{P}^{10}$. Suppose that $H \in |\mathcal{O}_{\tilde{X}}(1,0)|$. Using the Chern polynomial of $\Omega_{\mathbb{P}^4}^2 \otimes \mathcal{O}_{\mathbb{P}^4}(2)$, we find the following intersection product

$$E \cdot (E^6 - 3H \cdot E^5 + 5H^2 \cdot E^4 - 5H^3 E^3) = 0 \quad ([12], \text{ p. } 429) \quad (4.5.2)$$

in the Chow ring of \tilde{X} . Also observe that $H^5 \cdot E = 0$ and $H^4 \cdot E^6 = -1$. Using (4.5.2), we conclude that $H^3 \cdot E^7 = -3$, $H^2 \cdot E^8 = -4$, $H \cdot E^9 = -2$ and $E^{10} = -1$. Also $H^{10} = \deg X = 12$. Let $M \in |\mathcal{O}_{\tilde{X}}(1, 1)| = |f^* \mathcal{O}_{\mathbb{P}^{10}}(1)|$. We find $M^{10} = (H - E)^{10}$ = 1. We conclude that the map $f: \tilde{X} \to \mathbb{P}^{10}$ is a birational morphism $\mathcal{O}_{\tilde{X}}(0,1)|_{E}$ is the tautological line bundle of $\mathbb{P}(\Omega_{\mathbb{P}^4}^2 \otimes \mathcal{O}(2))$. Now $\mathcal{O}_{\tilde{x}}(F) = \mathcal{O}_{\tilde{x}}(1,2)$. So I = E $\cap F$ is the unique divisor in $|\mathcal{O}_F(1,2)|$ and I is the incidence correspondence between \mathbb{IP}^4 and G(2, 5) by (4.0.6). Also observe that f(I) = G is the Grassman variety in \mathbb{P}^9 by (4.0.2). Also observe that f(E+F) is a hyperplane D in \mathbb{P}^{10} and $f^{-1}(D) = E + F$. We can compute that $(F \cdot M^7) \cdot H^2 = (F \cdot M^7) \cdot E \cdot H$ $=(F \cdot M^7) \cdot E^2 = 0$. Since aH - E is very ample for sufficiently large a, we conclude that $(F \cdot M^7) = 0$. It follows that dim $f(F) \le 6$. Since f(I) = G, we conclude that f(F) = G. By the construction given at the beginning of this section, we know f: $E - I \rightarrow D - G$ is an isomorphism. It follows from Lemma 4.1 and the Zariski's main theorem that $f: \tilde{X} - F \to \mathbb{P}^{10} - G$ is an isomorphism. We find $H \cdot M^9 = 2$. Thus each hyperplane section of X corresponds to a quadric hypersurface in \mathbb{P}^{10} . The birational morphism f and p induces a birational correspondence g: $\mathbb{P}^{10} \to X \subset \mathbb{P}^{15}$. Observe that $g^* \mathcal{O}_X(1) = \mathcal{O}_{\mathbb{P}^{10}}(2)$, this induces a 15-dimensional linear system in $|\mathcal{O}_{\mathbb{P}^{10}}(2)|$. The base locus of this linear system contains G. But $h^0(I_{G/\mathbb{P}^{10}}(2)) = 16$ and $I_{G/\mathbb{P}^{10}}(2)$ is generated by its sections. Thus the base locus of this linear system is G and there is a morphism $\phi: \tilde{\mathbb{P}}^{10} \to X$ where $\tilde{\mathbb{P}}^{10}$ is the blowing up of \mathbb{P}^{10} along G. We observe that X is just the variety S_4 we constructed at the beginning of this section.

References

- 1. Ballico, E., Chiantini, L.: On smooth subcanonical varieties of codimension $2\mathbb{IP}^n$ $n \ge 4$ (To appear in Ann. Mat. Pure Appl.)
- 2. Barth, W.: Transplanting cohomology class in complex projective space. Am. J. Math. 92, 951-961 (1970)
- 3. Ein, L.: Stable vector bundle on projective space in char p > 0. Math. Ann. 254, 53-72 (1980)
- 4. Ein, L.: Varieties with small dual varieties II. (preprint)
- 5. Elencwajg, G., Hirschowitz, A., Schneider, M.: Les fibres uniformes de rang au plus n sur $\mathbb{P}_n(\mathbb{C})$. Proceedings of the Nice Conference 1979 on Vector bundles and Differential equations
- 6. Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry, Lect. Notes Math. 862, 26-92 (1981)
- 7. Fujita, T.: On the structure of polarized manifolds with total deficiency one I. J. Math. Soc. Jpn 32-4, 709-775 (1980)
- 8. Fujita, T.: On the structure of polarized manifolds with total deficiency one II. J. Math. Soc. Jpn. 33-3, 415-434 (1981)
- 9. Fujita, T., Roberts, J.: Varieties with small secant varieties: the extremal case. Am. J. Math. 103, 953-976 (1981)
- Griffiths, P., Harris, J.: Algebraic geometry and local differential geometry. Ann. Sci. Ec. Norm. Super. 12, 355–432 (1979)
- 11. Hartshorne, R.: Varieties of low codimension in projective space. Bull. Am. Math. Soc. 80, 1017–1032 (1974)
- 12. Hartshorne, R.: Algebraic geometry. Graduate Text in Mathematics, vol. 52. Berlin-Heidelberg-New York: Springer 1977
- 13. Hefez, A., Kleiman, S.: Notes on duality for projective varieties (to appear)
- 14. Ionescu, P.: An enumeration of all smooth projective varieties of degree 5 and 6. Increst Preprint Series Math. 74 (1981)
- 15. Kleiman, S.: About the conormal scheme (to appear)
- 16. Kleiman, S.: Plane forms and multiple point formulas (to appear)
- 17. Kleiman, S.: The enumerative theory of singularities. In: Holme, P. (ed.): Real and complex singularities. Oslo 1976, pp. 297–396. Sijtoff and Noordhoof 1977
- Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13-1, 31-47 (1973)
- 19. Lazarsfeld, R., Van de Ven, A.: Recent work of F.L. Zak (appeared in DMV-seminar)
- 20. Lamothe, K.: The topology of complex projective varieties after S. Lefschetz. Topology 20, 15-51 (1980)
- 21. Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math. 110, 593-606 (1979)
- 22. Mumford, D.: Some footnote of the work of C.P. Ramanujam. In: Ramanujam, C.P.: A Tribute, pp. 247–262. Berlin-Heidelberg-New York: Springer 1978
- Okonek, C., Spindler, H., Schneider, M.: Vector bundles on complex projective space. Prog. Math. 3, Basel, Boston: Birkhäuser (1980)
- 24. Ramanajam, C.P.: Remarks on the Kodaira vanishing theorem. J. Indian Math. Soc. 36, 41-51 (1972)
- 25. Room, T.: A Synthesis of Clifford matrices and its generalization. Am. J. Math. 74, 967-984 (1952)
- Sommese, A.J.: Hyperplane section of projection surface I the adjunction mapping. Duke Math. J. 46, 377-401 (1979)
- Van de Ven, A.: On the 2-connectedness of the very ample divisor on a surface. Duke Math. J. 46, 403-407 (1979)
- 28. Zak, F.: Projection of algebraic varieties. Math. U.S.S.R. Sbornik, 44, 535-544 (1983)
- 29. Zak, F.: Varieties of small codimension arising from group action. Addendum of 'Recent work of F.L. Zak' (to appear)