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Introduction

Let X be a complex projective nonlinear n-fold in IP". Let X*<IP"" be the
dual variety of X. Landman defines the defect of X to be def(X)=N—-1-
dim X*. For most examples, def(X)=0 (i.e. X* is a hypersurface). The main
purpose of this paper is to investigate those varieties with positive defect.
Assume that def(X)=k>0. Let H be a general tangent hyperplane of X.
The contact locus of H with X is a k dimensional linear space L in X [15]. We
show that N, the normal sheaf of L, is isomorphic to Nff,®0,(1). Further-

. . AT
more, N,y is a uniform vector bundle on IP* and Ky|, =0, ("#) In

particular, n=k mod 2. The pairity theorem was first proved by A. Landman,
using the Picard-Lefschetz theory (unpublished). Zak and Landman had ob-
served that def(X)<n—2. We show that if def(X)=n—2, then X is a scroll
(n=3). This theorem was first proved by Griffiths and Harris in the case n=3.

-k
In [4], we shall show that if def(X )=kgg, X is a IP"**¥2-bundle over a ~—-

fold.

As a consequence of his theorem on tangencies, Zak proved that
dim X* >dim X. In particular, if X* is smooth, then dim X =dim X*. He also
2(N-2)

classified those varieties with the properties dim X =

=N-—1[19, 28].

In §4, using the isomorphism between Ny and N,®0,(1) and the Be-
linson spectral sequence, we show that if dim X ==dim X*<%N, then X is one
of the following varieties:

and dim Sec(X)

(a) X is a hypersurface.
(b) X is the Segre embedding of IP! x IP"~! in IP2"~ 1,
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{(c) X is the Pliicker embedding of G(2, 5) in IP® [22].

(d) X is the 10-dimensional spinor variety in IP*3 [19, 25].
Hartshorne conjectures that if dim X >%N, then X is a complete intersection.
The conjecture will imply that the above list is the complete list of nonsingular
projective varieties satisfying the property dim X =dim X* We are able to
show that if codim(X)=2, then def(X)=0, unless X is the Segre embedding of
IP! x IP? in IP°. Throughout the paper, we shall assume the base field is the
complex numbers.

Acknowledgement. 1 would like to thank Steve Kleiman for many helpful discussions and en-
couragements.

§1.

The following proposition is well known.

Proposition 1.1. Let X be an irreducible reduced subvariety of TP~.

(a) Assume that X is contained in a hyperplane H. If X*' is the dual variety
of X, when we consider X as a subvariety of IPY =, then X* is the cone over X*'
with vertex p corresponding to H.

(b) Conversely, if X* is a cone with vertex p, then X is contained in the
corresponding hyperplane H. In particular, def(X) is the same whether we consid-
er X as a subvariety of P or IPN~1,

Proof. (a) If H,+H is a tangent hyperplane of X, then H,nH is a tangent
hyperplane of X in IP¥~!. Conversely, if T is a tangent hyperplane of X in H,
then each hyperplane H, in PV containing T is tangent to X. Thus X* is a
cone over X*'.

(b) Each hyperplane which is tangent to X* at a smooth point will contain
the point p. Hence X =(X*)* is contained in the hyperplane corresponding to p.

Proposition 1.2. ( Adjunction mapping theorem.) Let Y be a projective n-fold.
Suppose that Oy(1) is a very ample line bundle on Y and Ky is the canonical line
bundle on Y.

(@) If |[Ky®0Oy(n—1)|=0, then (Y, 0y(1)) is isomorphic to one of the follow-
ing:
L. (IPY, Opn(1)).

2. (IP?, 0p(2)).

3. (Q,, 0,,(1)), where Q, is a quadric hypersurface.

4. (IP-(F), O(1)), where F is a vector bundle of rank n on a curve C and O(1) is
the tautological line bundle.

(b) If |IKy®Oy(n—1)|49 then it has no base points.
Proof. The proposition is a fairly straightforward generalization of the theorem
in [26, 27]. One can find a proof in [14].
Theorem 1.3. (Zak’s theorem on tangencies 6], §7.)

(a) Suppose that X is a nondegenerate projective n-fold in PPN. If H is a k-
plane in IPY (k= n), then dim Sing(H N X)<k —n.

(b) If X is a nonlinear n-fold in IP", then dim X* >dim X.
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Corollary 1.4. Suppose that X is a nonlinear projective n-fold in PY. If X* is
smooth, then dim X =dim X*.

Proof. Since (X*)*=X, dimX=dim X*, by 1.3(b). So dim X=dim X*, by
1.3(b).

§2

In the rest of the paper, we shall assume X is a nonlinear projective n-fold in
IPY. We shall also assume that def(X)=k. If g is a general point of X and H is
a general tangent hyperplane of X at g, then the contact locus of H with X is a
k-dimensional linear space L. The main purpose of the section is to show that
Np,x» the normal sheaf of L in X, is isomorphic to Nf,®0,(1). If k>0, then we
will show that N, , is a uniform vector bundle on IP* and K,
—n—k-2

=0, (_nz__“) In particular, if k>0, then n=k mod 2. The pairity result
was first observed by A. Landman (unpublished).

Theorem 2.1. Let X, H, and L be as defined above. Assume def(X)=k.

(a) If p is a point in L, then the tangent cone of the hyperplane section H
~ X at p is a quadric hypersurface of rank n—k in P(QL(p)).

(b) Let s,: Ox(—1)—>0y be the section defining HnX. Then s, factors
through 1}, where 1, is the ideal sheaf of L in X.

(c) Let t, be the section of Ii/ligSz(NL*/X) induced by s,. Then t, defines a
nonsingular quadric hypersurface in IP(Nfx(p)).

Proof. (a) Let Cy be the conormal variety of X. Then Cy=Cy, [15]. Let p, be
the projection map from Cy to X* and let h be the point in X* corresponding
to H. We may assume that p, is smooth along p;'(h). In [13], Kleiman

showed that rank of the Hessian of s, at p is equal to n — rank(Qlcx,X*(p, h))=n
—k. '

(b) We choose a local coordinate system {x,,x,,...,x,} for X at p. We
shall assume I, is generated by x,,x,,...,x,_,. Using the fact that L& Hn X,
we can write the power series of s, in the following form,

n—-k n—k
Su=Xy 4%y fob oA X, Skt Y Y X xi(8 ),
i=1j=1
where f,, f5, ..., f,_, are power series with the variables x,_,, ,,..., x, only. But
Js
Sing(Hn X)=L. Thus a—"l =0 for i=1,2,...,n—k. Hence fi=f,=...=f,_,
XilL
n—k n—k
=0. Now s,= Y, Y x;x,(g; ). Thus s, factors through I;.
i=1 j=1

(c) We can write g; ;=a, ;+h; ;, where (g; }J's are constants and (h; ;'s are
power series without the constant term. Now

n—k n—k

Sp= 2, 2, X X;(a; ).

i=1j=1



66 L. Ein

n—kn—k

By 2.1a, Y Za, ;j%:X; is a quadratic form of rank n—k. But this is also the
i=1 j=1

equation for the quadrlc hypersurface in IP(1,/I1%(p)) induced by s,.

Theorem 2.2 N, =N, ®0,(1).

Proof. We shall continue to use the notations in 2.1. By 2.1(b) and (c), s, gives
a section of
I/R®0(1)=S*(NE)®0.(1).

Since we assume the base field is not of characteristic two, S? N, /X®0L(1) is a
direct summand of

Ny @ N x @0, (1) =Hom(Ny . N (1)).

Let g, be the map from N,y to Nx(1) induced by s,. Then g, is an isomor-
phism by 2.1(c).

Remark. Let E be a vector bundle on IP™. E is said to be a uniform bundle if
E|; is isomorphic to a fixed bundie Op.(a,)® ... ®Opi(a,) for all lines T in IP™.

Theorem 2.3. Assume def(x)=k>0.
(@) If Tis a line in L, then
n—k n—k
NL/XszT (O]PI@T (9,1,1(1)

(i.e. Ny x is a uniform vector bundle).

n—k k
Npjx= 1?1@)

-2
Opi(1).

3n+k—4
(b) There is an irreducible _'L'_*'z__ dimensional family of lines in X. If p is

n+k—2
a general point in X, then there is an dimensional family of lines in X

through p.

Proof. (a) Let N, and N, be the normal sheaves of L and X in IP" respectively.
Suppose T is a line in L. Then there is the following exact sequence,

0_)NL/X|T_’NL|T_’NX|T_)O’

n—k

where Ni|;=N—kOp(1). If N, 4|~ @ Opi(a), then ;1. Using the isomor-
i=1

phism between N,y and N/ x®0,(1), we observe that a,20. Hence

n—k -
NL/XIT:‘T (9,@7 0(1).
This implies that

n—k mn+k—2
7 O

Npx Op:(1).
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(b) Let peL and let T, be a line in L through p. Since hl(NTO/X)=0, the
Hilbert scheme of lines in X is smooth at the point ¢, corresponding to Tj.
Hence there is a unique irreducible component % of the Hilbert scheme
containing the point ¢,. Also

3n+k—4
dim 7 =h°(NTO/X)=—ﬁ2—~.
Consider the following closed subscheme of the #:

#={T|T is a line in the family & and peT}.

Since h'(Ny,x®1,,7,)=0, # is smooth at the point corresponding to t,. Hence
there is a unique irreducible component #, of # containing the point ¢,.

dim]fg:ho(NT/X(@Ip/T):E—tg:g.
Theorem 2.4. Assume that def(X)=k>0.
(a) n=k mod 2.
O Kal=0, (“57).
(c) The Kodaira dimension of X is negative.
(d) If Ky=0y(a), then a:i%k——g.
(@zfdmL¥>gQ4,malKX=@X(11%5:3>

Proof. (a) By 2.3. n=k mod 2.

n—k —n—k—2
() A" Ny =0, (T) Thus K|, =0, (—2——

formula.

(c) Since there is such a k-plane L through a general point p, |K%|=§ for
m=0.

N
(d) and (¢) If dim X gi-}— 1, then Barth’s theorem [2] asserted that Pic X is

—n—k-2
generated by Oy (1). Thus Ky=0, (*Lz—) by (b). Also (d) follows from (b).

Remark. 2.4(c) was first observed by Griffiths and Harris [10].

) by the adjunction

§3.

In this section, we shall apply the result in §2 to obtain information about
varieties with small dual varieties. Again we shall assume X is a nonlinear
projective n-fold in IPY.

Proposition 3.1. def(X)=0, if X is one of the following varieties:

(a) X is a complete intersection.
(b) X is a curve.
(c) X is a surface.
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Proof. (a) We may assume X is nondegenerate by 1.1. Then N,p~(—1) is an
ample bundle. Let Cy=IP(Nyp~{—1)) be the conormal variety of X and let p,:
Cy—X* be the projective map. p%0,.(1) is the tautological line bundle of
IP(Nyp~(—1)). Hence p, is finite.

(b) A general tangent hyperplane can only be tangent to X at a point. Thus
def(X)=0.

(c) A general tangent hyperplane can only be tangent to X along a sub-
variety. Thus def(X)<1. Then def(X)=0 by 2.4.a.

Remark. 3.1.c. is a theorem of Griffiths, Harris, Landman, and Marchionna

[10].

Theorem 3.2. Assume n=2. Then def(X)<n—2. Furthermore, def(X)=n-2, if
and only if X is a scroll (i.e. X =1P.(F) where F is a rank n vector bundle on a
curve C and the fibers are embedded linearly).

Proof. 1t is clear that def(X)<n—1. Then def(X)<n—2 by 2.4.a.
If def(X)=n—2>0, then there is a n —2-plane L through a general point p

such that
Ky®0,(n—1)|, =0, (—1) by 23.

Thus X is a scroll by 1.2. The converse is well known.

Remark. In [4], we shall show that if def(X):kgg, then X is a IP**%2 bundle
n—k

over a 2 -fold.

Theorem 3.3. (a) If X is a 3-fold and def(X)>0, then X is a scroll.

(b) If X is a 4-fold and def(X)>0, then X is a scroll.

(c) Assume that n=3 and N=2n—1. If dim X =dim X*, then X is the Segre
embedding of TP' xIP"~ 1,
Proof. (a) If n=3 then def(X)=1 and X is a scroll by 3.2.

(b) If n=4 then def(X)=2 by 2.4. Hence X is a scroll.

(c) def(X)=n—~2. Thus X is a scroll. Then X is the Segre embedding of
IP! xIP*~! by a theorem of S. Kleiman ([16], 4.3).

Remark. 3.3.a was first proved by Griffiths and Harris. The fact def(X)<n -2
was first observed by Zak and Landman.

Theorem 3.4. If the codimension of X is two, then def(X)=0, unless X is the
Segre embedding of IP* x IP? in IP°,
—n—k-2

Proof. Assume that dim X =24 and def(X)=k>0. Then K, >0, (Lz——) by
2.4. But Ballico and Chiantini [1] have proved that if Ky=0,(—a) with a>0,
then X is a complete intersection. This contradicts 3.1. If dim X =1 or 2, then
def(X)=0 by 3.1. If X is a 3-fold in IP® and def(X)>0, then X is the Segre
embedding of IP! x IP? by 3.3.

Remark. Holme and Schneider have independently observed that if codim(X)
=2 and dim X >4, then def(X)=0.
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N k
Theorem 3.5, If k=del(X) 2, then L/X_ﬂ@ o =% 0,1).

Proof. Ny x is a uniform bundle by 2.3.(a). The classification of uniform bundles
k
([3] and [S]) implies that N, is isomorphic to elther L@ 0,(1) or

Qp2(2). Assume for contradiction that NL/X__Q“,Z(2) Then n=4 and X is a
scroll by 3.1 and 3.3. Say X =IP.(F) where F is a rank 4 locally free sheaf on a
curve C. Then L is embedded as a 2-plane in a fibre f of IP.(F). Consider the
exact sequence,

0 NL/f > Npjx > M’/xll_ >0

2 ¢

00— 0,(1) Nyx o, 0.

We observe that N, =0, ®0O,(1).

§ 4.

First we will construct a 10-dimensional variety S, in P!>. Later on in the
section we will prove that if X is a 10-fold in IP'® such that dim X =dim X*.
Then we shall show that X =S,.

Let W be a five dimensional vector space. Set T ]P(W) P* and
D= IP(A3 W)=IP°. Denote by G the Pliicker embedding of the Grassman

varlety of 2-planes in T. If I is the incidence correspondence between T and G,
then I=1P;(Q) where Q is the universal rank 3 quotient bundie on G. Consider
the following diagram:

E =TP(Q}.(2) S s p=1p°

] ul (4.0.1)
& I —— G
T=P*=1P*

Observe that E is just the blowing up of IP® along G. ICE is just the
exceptional divisor. Let Op(0,1) be the tautological line bundle of IP(22(2)).
Observe that

S*O,(1)= 00, 1)@h* OL(1). (4.0.2)

Let teT and k(r) be its residue field. Then t corresponds to a 1-dimensional
quotient space of W. Consider the standard exact sequence

0— QL(1) > WQ O, — 0,(1)—0.

Then the fibre of I over ¢, I,={2-planes in T through t}= {2-dimensional
quotient spaces of (1)®k(t)} Gr(2, Q;()®k(®). In fact I=Gr(2, QL(1))
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cQ2(2))=E. The inclusion map I<IP(Q2(2)) is just given by the Pliicker
embedding. Observe that

H(0g(0,2)®@h* 01(1)) = H°(h, O5(0,2)®@ (1))
= H°(S(QD)®0(5))
~Hom(Q%, S* Q%) = Hom(Q%, Hom ((Q3)*, Q2)).
It follows from the Pliicker relations, IS E is defined by the sections

H°(04(0,2)®h* 01(1)) corresponding to the map from Q% to Hom((Q2)*, Q2)
given by the exterior product. Now

Op(D)=050,2)@h* O,(1), (4.0.3)
h* 0,(1)= 040, 2)QOp(—1I). (4.0.4)

and

Since I is exceptional divisor for the map f, h°(Ox(I))=1 and
I€|04(0,2)®A* O (1) (4.0.5)

is the unique divisor. Now we embed D as a hyperplane in IP'°. Let IP!° be the
blowing up of IP!? along G. Denote by F the exceptional divisor and denote by
E the proper transform of D in IP'°. Consider the following diagram:

F E
G D.
E is the blowing up of D along G. So E=IP(Q3.(2)) and FNE=I is the
incidence correspondence between IP* and G. The ideal sheaf I pi0(2) is gener-
ated by its sections and h°(Igpi0(2))=16. Thus the complete linear system

|7* Op1o(2)® O(—F)| gives a morphism ¢: IP°-IP'°, Let Sa= (/)(lPlO) Let &
= $* 0 (1). Then

in
IU

%e—%’

in
IU

L =1* 0p1o(QRO(— F)=7* Op:1o(1)R O( — E).

By (4.0.2) Z|p=h* Ops(1). Thus ¢(E L1s a 4-plane in §,. Also that O (—E) is
just the tautological line bundle of IP(A2 QL. ®0p4(2)). As in the classical cases
[8, 191, one can show that ¢ is just the blowing down of P! along E. So in
fact S, is a smooth 10-fold in IP*>. (See [29] for an elegant proof that S, is
isomorphic to the 10-dimensional spinor variety.)

Let X be a nonlinear n-fold in IPY such that def(X)=k>0. Let H, be a
general tangent hyperplane of X. Then the contact locus of H; with X is a k-
plane L. Let X be the blowing up of X along L. Denote by E the exceptional
divisor and denote by F the proper transform of H, nX. Consider the follow-

ing diagram: P(N&y) = E o F

{P j (4.0.6)
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We shall denote by Ox(a,b) the line bundle p* 0y (a)@03(—bE). Then Oz(F)
=04(1,2).

Let f: X—IP"~1-* be the projection with center L. Ler Y=f(X). Then
f*0,(1)=0%(1,1). The hyperplane section H, ~X will correspond to a hyper-
plane section D of Y. Observe that f~1(D)=E+F.

Lemma 4.1. (a) If Z is a positive dimensional fibre of f, then Z< EUF.

(b) dim Y=dim X.
Proof. Let yeY—D. Assure that Z=f~!(y) and dimZ >1. Since Zn(EUF)=9,
p maps Z isomorphically to a variety in X. So Ox(1,0)|, is nontrivial. But
Oz(1, D, =1*0y(1)], is trivial. So 04(0, 1)}, is nontrivial. Hence Z nE +§. This
is a contradiction.
Lemma 4.2. Assume that K= 0y(b) for some b. Then

—n—k-—2
(a) Ky=04 (f)

—n—k—=2

(b)K,z:(O,?( . ,—n+k+1>.

n—3k-2
> )
n—3k

(c) H(0z(a,1))=0, if i>0 and a=

(d) H(0(a,2))=0, if i>0 and a=

—n—k—2 —n—k-2
Proof. (a) Since K|, =0, (JT——) by 2.4b, K, =0y <_n2—)

(b) This follows from (a) and the fact that X is the blowing up of X along

L.
n—3k-—2
(© Ozla, )=K;® f*O0y(n—k)®0% (a s

vanishing theorem of Grauert-Rimenschneider ([24], Theorem 3), that

,0). It follows from the

. —3k—-2
H(04(a, 1))=0, if i>0 and ag'i—2-.
(d) The proof is similar to (c). We shall leave it to the readers.
—3k-2
Lemma 4.3. Assume that K, = 0,(b). Also assume that n—32k-§0. Then

(a) HO(N,jX(a))zo for a<£0.
(b) H*(N}x(a))=0 for az —k.

. ~3k
() H(NZy(@) =0 if 0<i<k and az-——.

. k—
(d) H'(Nfy(a) =0 if 0<i<k and a§—2~n.

Proof. (a) Consider the exact sequence,

0=H°(05(0, 1))~ H®(0(0, 1)) > H'(0£(0, 2)).
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Now H'(0z(0,2)=0 by 42(d). So H°(0y0,1)=H(Nfy)=0. Hence
H°(N}x(a))=0 for a<0.

(b) Recall that N, y=Nx®0,(1). So (b) following from (a) and Serre’s
duality.

(c) Consider the exact sequence
H'(Ux(a, 1) H'(Og(a, 1))— H'* (O3(a, 2).
By 4.2(e) and (d), we conclude that
n—3k

H(Og(a, ) 2 H (N} x®0(a))=0 for a2
(d) This follows from (c) and Serre’s duality.
Theorem 4.4. Assume that K =0,(b) for some beZ. Then

n—2
2
(b) If dim X =4m+2 and def(X)=2m(>0), then

(a) def(X)=<

(n=3).

Nfix=H"(Nfix(m)@QT(m), and m=2.
Proof. Consider the Belinson spectral sequence ([23], 3.1.3))

EP=H'(Nfx(p)®LL"(—D)
which converges to

g N if =0
|0 otherwise (i.e. E?#=0, if p+q=+0).

(a) If def(X)gngl, then "_23 k—1§k;”. It follows from 4.3 HU(N}y(p))

=0 for —k=p=0. It follogs that N},=0. This is a contradiction.
(b) In this case HY(Nfx(p))=0 for —2m=<p=<0 unless p=m. So E{*=EZ!

2
This implies that N, =H"(N},)®Q} (m). So rank(N,jX)=2m+2g( m) We
conclude that m£2. n

Theorem 4.5. Let X be a nonlinear n-fold in IP". We assume that n<%N. Suppose
that dim X =dim X*. Then X is one of the following varieties:

(@) X is a hypersurface in IP? or IP3.

(b) X is the Segre embedding of IP* xIP"~! in IP?"~ 1,

(c) X is the Pliicker embedding of G(2,5) in IP°.

(d) X is the 10-dimensional spinor variety S, in IP** [19, 25].
Proof. We may assume that n=3. (3.1). Now def(X)=N—1—n. Since

;1. If n=ﬁzil—, then def(X)=n—2 and

N
X is a Segre variety by 3.3(c). In the following we shall assume that n_2_7+1.

def(X)<n-2, we conclude that n= N
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Then K,=0y (Lzl) by 2.4(e). We conclude that def(X)=N-—1-—n én—z—z
by 4.4. Hence n>%N. By our assumption n<%N. So n=2%N. Now def(X)=N
—1—n=%n—1. Thus n=0mod 2. Since def(X)=nmod2, we conclude that
n=2mod4. We write n=4m+2. Then def(X)=2m. So m<2 by 4.4(b). If X is
contained in a hyperplane, then the dual variety of X as a subvariety of IP¥~!
will have dimension smaller than dim X. This will contradict Zak’s theorem. So
we conclude that X is nondegenerate. By Zak’s linear normality theorem, we
conclude that (4.5.1) h°(Ox(1))=N +1.

Case 1. Assume that m=1.

In this case, X is a 6-fold in IP® and K,=0,(—5). Let G be the Pliicker
embedding of G(2,5) in IP°. It follows from the Kodaria vanishing theorem,

X(Ox(a)=X(Osz(a)) for —6=Za<l.

So deg X =deg G=5. 1t follows from Fujita’s classification of Del Pezzo main-
fold that X =G [7, 8].

Case 2. Assume that m=2.

In this case, X is a 10-fold in IP'® and K,=0y(—38). As in Case 1, we can
show that deg X =degS,=12. Also in this case Njy=07.®0p.(2). In the
following we shall use the notations in (4.0.6) and (4.1). Let f: X ~IP'°.
Suppose that He|Oz(1, 0)|. Using the Chern polynomial of Q2.® Op.(2), we find
the following intersection product

E-(ES—3H-ES+5H* E*—5H3E®=0 ([12], p.429) 4.52)

in the Chow ring of X. Also observe that H>- E=0 and H*-E®= —1. Using
(4.5.2), we conclude that H®-E’= —3, H?> . E®= —4, H-E°= —2 and E'°= —1.
Also H'®=deg X =12. Let Me|Ox(1, 1)|= f*(ﬂwm(lﬂ We find M*°=(H —E)'°
=1. We conclude that the map f: X—IP'° is a birational morphism 03(0, 1)|
is the tautological line bundle of P(23.®0(2)). Now 03(F)=04(1,2). So I=E
NF is the unique divisor in |Og(1,2)| and I is the incidence correspondence
between IP* and G(2,5) by (4.0.6). Also observe that f(I)=G is the Grassman
variety in IP° by (4.0.2). Also observe that f(E+F) is a hyperplane D in IP*°
and f~'(D)=E+F. We can compute that (F-M7)-H*=(F-M")-E-H
=(F-M")-E?=0. Since aH —E is very ample for sufficiently large a, we con-
clude that (F-M7)=0. It follows that dim f(F)<6. Since f(I)=G, we conclude
that f(F)=G. By the construction given at the beginning of this section, we
know f: E—I—-D—G is an isomorphism. It follows from Lemma 4.1 and the
Zariski’s main theorem that f: X —F—IP® -G is an isomorphism. We find
H-M?°=2. Thus each hyperplane section of X corresponds to a quadric hyper-
surface in P'°. The birational morphism f and p induces a birational cor-
respondence g: IP1°— X <IP*®. Observe that g* Oy(1)=0p:o(2), this induces a
15-dimensional linear system in |Gp.0(2)}. The base locus of this linear system
contains G. But h°(I apo(2)=16 and I;pi0(2) is generated by its sections. Thus
the base locus of this linear system is G and there is a morphism ¢ P-Xx
where P10 is the blowing up of IP!° along G. We observe that X is just the
variety S, we constructed at the beginning of this section.
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