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Introduction 

Let X be a complex projective nonlinear n-fold in IP". Let X * _ I P  m be the 
dual variety of X. Landman defines the defect of X to be d e f ( X ) = N - 1 -  
d imX*.  For  most examples, de f (X)=0  (i.e. X* is a hypersurface). The main 
purpose of this paper is to investigate those varieties with positive defect. 

Assume that d e f ( X ) = k > 0 .  Let H be a general tangent hyperplane of X. 
The contact locus of H with X is a k dimensional linear space L in X [15]. We 
show that NL/x, the normal sheaf of L, is isomorphic to N~x| ). Further- 

is a uniform vector bundle on IW and KXIL=(QL--(-n'~k--2). In more, NL/x 
particular, n = k  mod 2. The pairity theorem was first proved by A. Landman,  
using the Picard-Lefschetz theory (unpublished). Zak and Landman had ob- 
served that d e f ( X ) < n - 2 .  We show that if d e f ( X ) = n - 2 ,  then X is a scroll 
(n > 3). This theorem was first proved by Griffiths and Harris in the case n =  3. 

> n  n - k  
In [4], we shall show that if d e f ( X ) = k = ~ ,  X is a lp"+k/2-bundle over a T "  
fold. 

As a consequence of his theorem on tangencies, Zak proved that 
dim X * >  dim X. In particular, if X* is smooth, then dim X - d i m  X*. He also 

classified those varieties with the properties dim X -2~N-2)'" and dim Sec(X) 
3 

= N - 1  [19, 28]. 
In w using the isomorphism between NL/x and N~4X@(-gL(1 ) and the Be- 

linson spectral sequence, we show that if dim X=dimX*<=-~N, then X is one 
of the following varieties: 

(a) X is a hypersurface. 
(b) X is the Segre embedding of IP* x IP"-x in IP 2"- 1. 
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(c) X is the Pliicker embedding of G(2, 5) in IP 9 [22]. 
(d) X is the 10-dimensional spinor variety in IP 15 [19, 25]. 

Hartshorne conjectures that if d i m X > ~ N ,  then X is a complete intersection. 
The conjecture will imply that the above list is the complete list of nonsingular 
projective varieties satisfying the property dim X - d i m X * .  We are able to 
show that if codim(X)=2,  then def(X)=0,  unless X is the Segre embedding of 
lPlx  IP 2 in IP s. Throughout  the paper, we shall assume the base field is the 
complex numbers. 

Acknowledgement. I would like to thank Steve Kleiman for many helpful discussions and en- 
couragements. 

w 

The following proposition is well known. 

Proposition 1.1. Let X be an irreducible reduced subvariety of IP N. 

(a) Assume that X is contained in a hyperplane H. I f  X* '  is the dual variety 
of X ,  when we consider X as a subvariety of  IP N-l, then X* is the cone over X*'  
with vertex p corresponding to H. 

(b) Conversely, i f  X* is a cone with vertex p, then X is contained in the 
corresponding hyperplane H. In particular, def(X) is the same whether we consid- 
er X as a subvariety of IP n or IP n-  1. 

Proof. (a) I f  H 1 ~ H is a tangent hyperplane of X, then H 1 c~H is a tangent 
hyperplane of X in IP N-1. Conversely, if T is a tangent hyperplane of X in H, 
then each hyperplane H 1 in IP N containing T is tangent to X. Thus X* is a 
cone over X*'. 

(b) Each hyperplane which is tangent to X* at a smooth point will contain 
the point p. Hence X =(X*)* is contained in the hyperplane corresponding to p. 

Proposition 1.2. (Adjunction mapping theorem.) Let Y be a projective n-fold. 
Suppose that (.0r(1) is a very ample line bundle on Y and K r is the canonical line 
bundle on Y. 

(a) I f  [Kr |  then (Y,(fy(I)) is isomorphic to one of  the follow- 
ing: 

1. (~'~, (~r ~ (1)) .  
2. (IP 2, ~r~(2)). 
3. (Qn, (9o,(1)), where Q, is a quadric hypersurface. 
4. (IPc(F), (9(1)), where F is a vector bundle of rank n on a curve C and (_9(1) is 
the tautological line bundle. 

(b) I f  ]Kr| then it has no base points. 

Proof. The proposition is a fairly straightforward generalization of the theorem 
in [26, 27]. One can find a proof in [14]. 

Theorem 1.3. (Zak's theorem on tangencies [6], w 7.) 

(a) Suppose that X is a nondegenerate projective n-fold in IP N. I f  H is a k- 
plane in IP N (k ~n), then dim Sing(H n X )  < k - n .  

(b) I f  X is a nonlinear n-fold in IP N, then dim X * >  dim X. 
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Corollary 1.4. Suppose that X is a nonlinear projective n-fold in IP N. I f  X*  is 
smooth, then dim X = dim X*. 

Proof. Since (X*)*=X,  dim X >= dim X*, by 1.3(b). So dim X = dim X*, by 
1.3(5). 

w 

In the rest of the paper, we shall assume X is a nonlinear projective n-fold in 
IP N. We shall also assume that def(X)= k. If q is a general point of X and H is 
a general tangent hyperplane of X at q, then the contact locus of H with X is a 
k-dimensional linear space L. The main purpose of the section is to show that 
NL/x, the normal sheaf of L in X, is isomorphic to N~x| If k>0 ,  then we 
will show that NL/x is a uniform vector bundle on IP k and Kx[ L 

=(gL 2 . In particular, if k>0 ,  then n - k m o d 2 .  The pairity result 

was first observed by A. Landman (unpublished). 

Theorem 2.1. Let  X,  H, and L be as defined above. Assume def(X) = k. 

(a) I f  p is a point in L, then the tangent cone of  the hyperplane section H 
c~X at p is a quadric hypersurface of  rank n - k  in IP(~lx(p)). 

(b) Let  Sh: (9X(--1)-~(9 x be the section defining HoaX.  Then s h factors 
through I2L, where I L is the ideal sheaf o f  L in X.  

(c) Let  t h be the section o f  2 3 IL / IL~ 2 * = S  (N~/x) induced by s h. Then t h defines a 
nonsingular quadric hypersurface in lP(N~x(p)). 

Proof. (a) Let C x be the conormal variety of X. Then C x = Cx. [15]. Let  P2 be 
the projection map from C x to X* and let h be the point in X* corresponding 
to H. We may assume that P2 is smooth along p21(h). In [13], Kleiman 
showed that rank of the Hessian of s h at p is equal to n - rank(Olcx/x,(p, h))=n 
- - k .  

(b) We choose a local coordinate system {xl ,x  2 . . . .  ,x,} for X at p. We 
shall assume I L is generated by x l , x  2 . . . .  , x , _  k. Using the fact that L~_Hc~X,  
we can write the power series of s h in the following form, 

n - - k  n - k  

Sh= X, f l  + xz f 2 + "" + X,--k f,--k + ~ ~XiXj(g,,j), 
i=1  j = l  

where f l , f z  . . . .  , f , - k  are power series with the variables X,_k+ 1 . . . . .  X, only. But 

S i n g ( H c ~ X ) = L .  Thus ~sh L=0  for i = 1 , 2  . . . .  , n - k .  Hence f a = f z = . . . = f . _ k  
0Xi 

n - - k  n - - k  

=0.  Now Sh= E ~ xlxj(gi,J)" Thus s h factors through I 2. 
i=1  j = l  

(c) We can write gi,j=a~,~+hi,j, where (a~o)'s are constants and (h~,j)'s are 
power series without the constant term. Now 

n - - k  n - - k  

i=1  j = l  
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n - k  n - - k  

By 2.1a, ~ ~ a l , j x i x  ~ is a quadratic form of rank n - k .  But this is also the 
i = 1  j = l  

equation for the quadric hypersurface in lP(IL/I2(p)) induced by s h. 

Theorem 2.2 NL/x ~-- N~x| (1 ). 

Proof. We shall continue to use the notations in 2.1. By 2.1(b) and (c), s h gives 
a section of 

I2/I3| = S2(N~x)Q(gL(1). 

Since we assume the base field is not of characteristic two, S2N~x| is a 
direct summand of 

N~x@N~x@ (PL (1) ~ Hom(Nm/x, N~x (1)). 

Let gh be the map from NL/x to N~x(1) induced by sh. Then gh is an isomor- 
phism by 2.1 (c). 

Remark. Let E be a vector bundle on IP". E is said to be a uniform bundle if 
Elf is isomorphic to a fixed bundle (~w(a0G...q~6'w(ar) for all lines T in IP n'. 

Theorem 2.3. Assume def(x) = k > 0. 

(a) I f  T is a line in L, then 

n - k ( ~  n - k  C NL/xIT=--~ FI| 5- F,(1) 

(i.e. NL/x is a uniform vector bundle). 

n - k  n + k - 2  
NT/x =-~- oF, |  (PF~(1). 

3 n + k - 4  
(b) There is an irreducible 2 dimensional family of lines in X. I f  p is 

n + k - 2  
a general point in X,  then there is an - -  dimensional family of lines in X 

2 through p. 

Proof. (a) Let N a and N x be the normal sheaves of L and X in IP N respectively. 
Suppose T is a line in L. Then there is the following exact sequence, 

O~ NL/xlr~ Nglr--* Nxlr-~O, 

n- - I t  

where NL]T=N-kOw(1) .  If NL/xlr~--(~w(ai),  then ai<l .  Using the isomor- 
i = 1  

phism between NL/x and N~x| ), we observe that ai>O. Hence 

This implies that 

n - k  n - k  
N~/~I ~ = - y -  G e - - y -  r 

n - k  n + k - 2  
NT/x=-2 -OF~@ 2 - - ~ d l ) .  
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(b) Let p~L and let T o be a line in L through p. Since hX(Nro/x)=O, the 
Hilbert scheme of lines in X is smooth at the point t o corresponding to T o. 
Hence there is a unique irreducible component  W of the Hilbert scheme 
containing the point t o . Also 

3 n + k - 4  
dim ~,~ = h ~ (Nwo/x) = 2 

Consider the following closed subscheme of the ~ :  

Z, ~  {T[T is a line in the family ~ and peT} .  

Since hl(Nro/x| ~vf is smooth at the point corresponding to t o. Hence 
there is a unique irreducible component  ovf o of J f  containing the point t o. 

n + k - 2  
dim Jfo = h~174 -- 2 

Theorem 2.4. Assume that def(X) = k > 0. 

(a) n - k  mod2.  

(b) Kx[a=(ga ~ - n 2 k - 2 ) .  

(c) The Kodaira dimension of X is negative. 
- n  - k - 2  

(d) I f  K x = (fix(a), then a = 
2 

N ( - n  k - 2 )  
(e) I f  d i m X >  + l ,  t h e n K  x=(fix 2 o 

Proof. (a) By 2.3. n = k rood 2. 

(b) A n - k N L / x = ( f i L ( ~ k ) .  Thus KxlL=( f iL ( - -n2  k - 2 )  by the adjunction 
formula. 

(c) Since there is such a k-plane L through a general point p, [K~r I = r  for 
m>0 .  

( d )  and (e) If dim X > ~ - +  1, then Barth's theorem [2] asserted that Pic X is 

generated by (fix(l). Thus Kx~-(fi x 2 by (b). Also (d) follows from (b). 

Remark. 2.4(c) was first observed by Griffiths and Harris [10]. 

w 

In this section, we shall apply the result in w to obtain information about  
varieties with small dual varieties. Again we shall assume X is a nonlinear 
projective n-fold in IP N. 

Proposition 3.1. def(X)=0,  if X is one of the following varieties: 
(a) X is a complete intersection. 
(b) X is a curve. 
(c) X is a surface. 
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Proof. (a) We may assume X is nondegenerate by 1.1. Then Nx/~N ( -  1) is an 
ample bundle. Let Cx=IP(NNmN(--1)) be the conormal variety of X and let P2: 
C x ~ X *  be the projective map. p*6x,(1 ) is the tautological line bundle of 
IP(NxmN (-1)) .  Hence Pz is finite. 

(b) A general tangent hyperplane can only be tangent to X at a point. Thus 
def(X)=0.  

(c) A general tangent hyperplane can only be tangent to X along a sub- 
variety. Thus def(X)< 1. Then def(X)= 0 by 2.4.a. 

Remark. 3.1.c. is a theorem of Griffiths, Harris, Landman, and Marchionna 
[10]. 

Theorem3.2. Assume n> 2. Then d e f ( X ) < n - 2 .  Furthermore, d e f ( X ) = n - 2 ,  /f 
and only if X is a scroll (i.e. X=IPc(F ) where F is a rank n vector bundle on a 
curve C and the fibers are embedded linearly). 

Proof It is clear that def(X)< n -  1. Then d e f ( X ) < n - 2  by 2.4.a. 
If d e f ( X ) = n - 2 > 0 ,  then there is a n - 2 - p l a n e  L through a general point p 

such that 
Kx| ) by 2.3. 

Thus X is a scroll by 1.2. The converse is well known. 

n lpn + k/2 Remark. In [4], we shall show that if d e f ( X ) = k > } ,  then X is a bundle 

over a ~ - f o l d .  

Theorem 3.3. (a) I f  X is a 3-fold and def(X)>0,  then X is a scroll. 

(b) I f  X is a 4-fold and def(X)> 0, then X is a scroll. 

(c) Assume that n> 3 and N = 2 n - 1 .  I f  d i m X = d i m X * ,  then X is the Segre 
embedding of IP I x IP" - 1. 

Proof  (a) If n = 3 then def(X) = 1 and X is a scroll by 3.2. 

(b) If n = 4 then def(X)= 2 by 2.4. Hence X is a scroll. 

(c) d e f ( X ) = n - 2 .  Thus X is a scroll. Then X is the Segre embedding of 
IP 1 x IP "-1 by a theorem of S. Kleiman ([16], 4.3). 

Remark. 3.3.a was first proved by Griffiths and Harris. The fact def(X)_<_n-2 
was first observed by Zak and Landman. 

Theorem 3.4. I f  the codimension of X is two, then def(X)=0,  unless X is the 
Segre embedding of IP a x IP 2 in IP 5. 

Proof Assume that d i m X > 4  and de f (X)=k>0 .  Then K x ~ - 6 x (  - - n - k - 2 ) ' '  2 by 

2.4. But Ballico and Chiantini [1] have proved that if Kx=(gx ( -a )  with a>0 ,  
then X is a complete intersection. This contradicts 3.1. If dim X =  1 or 2, then 
def (X)=0 by 3.1. If X is a 3-fold in IP 5 and def(X)>0,  then X is the Segre 
embedding of IP t x IP 2 by 3.3. 

Remark. Holme and Schneider have independently observed that if codim(X) 
= 2 and dim X > 4, then def(X) = 0. 
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Theorem 3.5. I f  k=def(x)>N'-z then NL/x--n+k(gL| n 2  2 k(gL(1)" 

Proof. NL/x is a uniform bundle by 2.3.(a). The classification of uniform bundles 
n - k  n - k  

([3] and I-5]) implies that NL/x is isomorphic to either ~ (gL0) ~ (gL(1) or 

f2~(2). Assume for contradiction that NL/x~f2~(2). Then n = 4  and X is a 
scroll by 3.1 and 3.3. Say X=IPc(F ) where F is a rank 4 locally free sheaf on a 
curve C. Then L is embedded as a 2-plane in a fibre f of IPc(F ). Consider the 
exact sequence, 

o , x~r  , NL/x ' ~ ,x lL  - .  o 

0 , (gL(1) ' NL/x , C L * O. 

We observe that Nc/x = (_gL| 

w 

First we will construct a 10-dimensional variety S 4 in IP is. Later on in the 
section we will prove that if X is a 10-fold in IP 15 such that dim X = d i m  X*. 
Then we shall show that X ~ S 4. 

Let W be a five dimensional vector space. Set T~f lP(W)~IP 4 and 

D=IP(A3W)=IP 9. Denote by G the Pliicker embedding of the Grassman 
def 

variety of 2-planeg in T. If I is the incidence correspondence between T and G, 
then I=IPa(Q) where Q is the universal rank 3 quotient bundle on G. Consider 
the following diagram: 

E~ef ~ ( ~ 4  (2)) f ' O = I P  9 

ul Ul (4.0.1) 

I ~ G 

Observe that E is just the blowing up of IP 9 along G. Ic_E is just the 
exceptional divisor. Let (9~(0, 1) be the tautological line bundle of 1p(~2(2)). 
Observe that 

f *  Co(1 ) = (9~(0, 1)| (gr(1). (4.0.2) 

Let t~T and k(t) be its residue field. Then t corresponds to a 1-dimensional 
quotient space of W. Consider the standard exact sequence 

0---, f2~ (1) ~ W| (97~ CT(I ) -~0. 

Then the fibre of I over t, I ,={2-planes in T through t} --- {2-dimensional 
quotient spaces of f~(1)Qk(t)}=Gr(2, fl~(1)| In fact I = G r ( 2 ,  f2~(1)) 
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~O~(2))=E. The inclusion map I_~IP(f22T(2)) is just given by the Pliicker 
embedding. Observe that 

H~ ((_gE(0, 2)| (gr(1)) g H~ Oe(0 , 2)| 

"~- H~174 

= Hom(O , S Hom(O , 

It follows from the Pliicker relations, I~_E is defined by the sections 
H~ 2)| corresponding to the map from 04 to Hom((f22) *, O 2) 
given by the exterior product. Now 

(gE(I) = (gE(0, 2)| (gT(1), (4.0.3) 
and 

h* (gT(1) = g0E(0, 2)| (_ge(--I). (4.0.4) 

Since I is exceptional divisor for the map f, h~ 1 and 

IEIOE(0, 2)| (gT(1)I (4.0.5) 

is the unique divisor. Now we embed D as a hyperplane in IP 1~ Let IP 1~ be the 
blowing up of IP a~ along G. Denote by F the exceptional divisor and denote by 
E the proper transform of D in IP a~ Consider the following diagram: 

F ~ IP a~ ~_ E 

G ~Ip I~  ~ D. 

E is the blowing up of D along G. So E=IP(f~,(2)) and F c ~ E = I  is the 
incidence correspondence between IP 4 and G. The ideal sheaf Ir is gener- 
ated by its sections and h~ Thus the complete linear system 

. _ _  ~ 1 0  [n*(ge,o(2)Q(_0(-F)l gives a morphism ~: lPa~ 15 Let S4~r~b(IP ). Let 5q 
= ~b* (_0s,(1). Then 

= g* (_9~,o(2) | (9 ( - F )  = g* (gr,o(1)@ (9 ( -E ) .  

By (4.0.2) .LFIE=h* (gr,(1). Thus ~b(E)~fLis a 4-plane in S 4. Also that (gE(--E) is 
just the tautological line bundle of IP(A2f2~,| As in the classical cases 
[8, 19], one can show that 4) is just the blowing down of 1P a~ along E. So in 
fact S 4 is a smooth 10-fold in IW 5. (See [-29] for an elegant proof that S 4 is 
isomorphic to the 10-dimensional spinor variety.) 

Let X be a nonlinear n-fold in IP N such that de f (X)=k>0.  Let H a be a 
general tangent hyperplane of X. Then the contact locus of H 1 with X is a k- 
plane L. Let .~" be the blowing up of X along L. Denote by E the exceptional 
divisor and denote by F the proper transform of H a ~X.  Consider the follow- 
ing diagram: 

�9 F 

IP (4.0.6) 

L ~_ X ~_ H a n X .  
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We shall denote by (P~(a,b) the line bundle p*(gx(a)| ). Then (P~(F) 
= e ~ ( 1 ,  2). 

Let f :  X ~ I P  N-l-k be the projection with center L. Let Y=f()f) .  Then 
f*Cy(1)=(9~(1, 1). The hyperplane section H x n X  will correspond to a hyper- 
plane section D of Y. Observe that f - I (D)=E+F.  

Lemma 4.1. (a) I f  Z is a positive dimensional fibre off,  then Z ~_EuF. 
(b) dim Y= dim X. 

Proof. Let y~ Y-D.  Assure that Z = f - l ( y )  and dim Z > 1. Since Z c~ (E w F)=0,  
p maps Z isomorphically to a variety in X. So (9~(1,0)lz is nontrivial. But 
(92(1, 1) lz=f  * d~r(1)lz is trivial. So (9~(0, 1)lz is nontrivial. Hence Z c~E 4=0. This 
is a contradiction. 

Lemma 4.2. Assume that K x = (gx(b) for some b. Then 

(a) Kx=(gx ( - n 2 k - 2  ). 

(b) K 2 = ( ~ (  - n - k - 2  ) 2 , - n + k + l  . 

n - 3 k - 2  
(c) H~(e~(a, 1))=0, ~ i>0  and a>= 

2 

n - 3 k  
(d) Hi((9~(a, 2))=0, if i>0  and a> 

2 

Proof.(a) Since KxlL=(fL( - n - k - 2 ) 2  by 2.4b, K x = (9 x (\- n 2 k - 2  ) -  6 

(b) This follows from (a) and the fact that X is the blowing up of X along 
L. 

( n - 3 k - 2  0) It follows from the (c) (gyc(a , 1)=K2|174 a 2 ' " 

vanishing theorem of Grauert-Rimenschneider ([24], Theorem3), that 
n - 3 k - 2  

Hi((Oy~(a, 1))=0, if i > 0  and a_-> 
2 

(d) The proof is similar to (c). We shall leave it to the readers. 

Lemma 4.3, Assume that K x = Cx(b ). Also assume that 

(a) n~ for a<O. 
(b) Hk(N~x(a))=0 for a> -k .  

n - 3 k  
(c) Hi(N~x(a)) =0  / f 0 < i < k  and a > _ _ - -  

- 2 

k - n  
(d) ni(N~x(a)) =0 if O<i<k and a < _ - -  

- 2 

Proof. (a) Consider the exact sequence, 

0=n~162  1))~H~ l ) )~n l ( (~ (0 ,  2)). 

n - 3 k - 2  
<_0. Then 

2 - 
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Now HX(d)x(0,2))=0 by 4.2(d). So H~ 1))~-H~ Hence 
H~ = 0  for a <0. 

(b) Recall that NL/x=N~x| So (b) following from (a) and Serre's 
duality. 

(c) Consider the exact sequence 

H'((9 2(a, 1)) --* H'( (P~(a, 1)) ~ H' + ~((9 2(a , 2)). 

By 4.2(e) and (d), we conclude that 

n'((gE(a, 1)) ~ H'(U~x| = 0 

(d) This follows from (c) and Serre's duality. 

n - 3 k  
for a _ - -  

- 2 

Theorem 4.4. Assume that K x =  (gx(b) for some beZ.  Then 

(a) d e f ( X ) < ~ - ~  (n>3). 

(b) I f  d i m X = 4 m + 2  and def(X)=2m(>0) ,  then 

N~x=Hm(N~x(m))| and m<2.  

Proof Consider the Belinson spectral sequence ([23], 3.1.3.) 

P q  - -  q * - p  E~ - H  (N~/x(p))| (--p) 
which converges to 

E' - ,x 
otherwise (i.e. EPq=O, if p+q+O).  

f > n - 1  n - 3 k  k - n  
(a) If de ( X ) = - - f - ,  then 2 - - - 1  __<-~--. It follows from 4.3 Hq(Nc*/x(p)) 

= 0  for -k<=p<=O. It follogs that N~x=O. This is a contradiction. 
(b) In this case Hq(N~x(p))=O for -2m<=p<=O unless p=m. So Fpq-~p~ 

This implies that N~x=H"(N~x)QfP~(m ). So rank(N~x)=2m+ 2__> (Zrnm). We 
conclude that m _< 2. 

Theorem 4.5. Let X be a nonlinear n-fold in IP". We assume that n < ~ N. Suppose 
that dim X = dim X*. Then X is one of the following varieties: 

(a) X is a hypersurface in IP z or IP 3. 

(b) X is the Segre embedding of lPlx  IP "-1 in IP 2~-1. 

(c) X is the Pliicker embedding of G(2, 5) in IP 9. 
(d) X is the lO-dimensional spinor variety S 4 in IP 15 [19, 25]. 

Proof We may assume that n>__3. (3.1). Now d e f ( X ) = N - l - n .  Since 
N + I  

def(X)_<_n2-2, we conclude that > N + I  If n=  - ,  then d e f ( X ) = n - 2  and 
n =  2 " 2 N 

X is a Segre variety by 3.3(c). In the following we shall assume that n > ~ - + l .  
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Then Kx=(gxl~ll-N-lX by 2.4(e). We conclude that def (X)=N_l_n<n-2  
\ 2 ]  - 2 

by 4.4. Hence n>__2N. By our assumption n<2N. So n=]N. Now de f (X)=N 
- 1 - n = � 8 9  Thus n = 0 m o d 2 .  Since d e f ( X ) = n m o d 2 ,  we conclude that 
n = 2  mod4. We write n = 4 m + 2 .  Then def(X)=2m. So m < 2  by 4.4(b). If X is 
contained in a hyperplane, then the dual variety of X as a subvariety of IP N- 1 
will have dimension smaller than dim X. This will contradict Zak's theorem. So 
we conclude that X is nondegenerate. By Zak's linear normality theorem, we 
conclude that (4.5.1) h~ N + 1. 

Case I. Assume that m = 1. 

In this case, X is a 6-fold in IP 9 and Kx=Cx(-5 ). Let G be the Pliicker 
embedding of G(2, 5) in IP 9. It follows from the Kodaria vanishing theorem, 

X((gx(a))=X((gG(a)) for - 6 < a <  1. 

So deg X---deg G = 5. It follows from Fujita's classification of Del Pezzo main- 
fold that X ~ G [-7, 8]. 

Case 2. Assume that m = 2. 

In this case, X is a 10-fold in IP ~5 and Kx=(Px(-8 ). As in Case 1, we can 
show that d e g X = d e g S 4 = 1 2 .  Also in this case N~x=f2~,| ). In the 
following we shall use the notations in (4.0.6) and (4.1). Let f :  )?--,IP 1~ 
Suppose that H~IC~(1, 0)l. Using the Chern polynomial of f224| we find 
the following intersection product 

E.(EO-3H.ES+5HZ.E4-5H3E3)=O ([12], p. 429) (4.5.2) 

in the Chow ring of 2 .  Also observe that H 5. E = 0  and H 4" E 6 =  - 1 .  Using 
(4.5.2), we conclude that n 3 . E T = - 3 ,  HZ.E 8= - 4 ,  H ' E  9= - 2  and E 1~ - 1 .  
Also H l ~  Let M~102(1, 1)[=lf*(gF,o(1)l. We find MI~176 
= 1. We conclude that the map f :  X-*IP 1~ is a birational morphism 602(0, 1)[ E 
is the tautological line bundle of IP(Og4| Now (9~(F)=(9~(1, 2). So I=E 
c~F is the unique divisor in 1(9F(1,2)1 and I is the incidence correspondence 
b e t w e e n  IP 4 and G(2, 5) by (4.0.6). Also observe that f ( I ) =  G is the Grassman 
variety in IP 9 by (4.0.2). Also observe that f(E + F) is a hyperplane D in IP I~ 
and f-~(D)=E+F. We can compute that (F.MV).H2=(F.MV).E.H 
=(F.MT).E2=O. Since aH-E  is very ample for sufficiently large a, we con- 
clude that (F. MT)=0. It follows that dim f ( F ) < 6 .  Since f(l)=G, we conclude 
that f(F)=G. By the construction given at the beginning of this section, we 
know f: E - I ~ D - G  is an isomorphism. It follows from Lemma 4.1 and the 
Zariski's main theorem that f :  X-F-*IpI~ is an isomorphism. We find 
H .  M 9=  2. Thus each hyperplane section of X corresponds to a quadric hyper- 
surface in IW ~ The birational morphism f and p induces a birational cor- 
respondence g: IP~~ 15. Observe that g*(fx(1)=(ge,o(2), this induces a 
15-dimensional linear system in 1(9e,o(2)[. The base locus of this linear system 
contains G. But h~ 16 and IG/r,o(2) is generated by its sections. Thus 
the base locus of this linear system is G and there is a morphism 4~: lia~~ 
where IP 1~ is the blowing up of IP ~~ along G. We observe that X is just the 
variety S 4 we constructed at the beginning of this section. 
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