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Recently M. Adler [1] and B. Kostant  pointed out a connection between 
completely integrable systems of  Lax type and the orbit method in repre- 
sentation theory. In a joint  article with I. Frenckel [17] the authors suggested an 
extension of  this approach  to affine Lie algebras resulting in a large number  of  
finite-dimensional completely integrable systems. 1 In the present paper we give 
an alternative realization of  these systems based on reduction of  bi-invariant 
dynamical  systems on Lie groups. Our  approach  follows the general pat tern of  
[7] (cf. also an earlier paper [18]). The Lie groups we need are the infinite- 
dimensional loop groups of semisimple Lie groups and their subgroups. The 
corresponding analytical tools are provided by factorization theory of  matrix- 
valued analytic functions [4]. 

The reduction formalism applies both to classical and quan tum versions of  
the problem. For  systems associated with finite-dimensional Lie algebras the 
quantizat ion problem can be solved completely. For  systems associated with the 
affine Lie algebras the problems is, however, much more complicated;  the 
spectrum of such systems remains to be determined. In the paper we do not give 
a full t reatment  of the quantum case but only suggest a construct ion of  the 
quantum mechanical  integrals of  motion. 

The contents of  our paper is as follows. 
In n~ we recall some basic facts on reduction of Hamil tonian  systems with 

symmetry. As compared  to [7], we have added a reduct ion scheme for quan tum 
bundles, which is necessary for geometric quant izat ion o f  Lax equations. In n ~ 2 
we discuss reduction of bi-invariant systems on the cotangent  bundle of  a Lie 
group. This provides a natural framework for the Adler-Kostant  scheme, which 
is presented in n ~ 3. As an example, in n~ we consider the open  Toda  lattice, 
our results generalizing those of [16]. 2 In n~ we give a quan tum mechanical  

From a remark in the paper [1] (which was known to the authors in the form of a preprint) we 
learned that M. Adler, P. Moerbeke and T. Ratu are preparing a paper on the same subject 
2 After this paper had been written, the authors received from B. Kostant his preprin~ "The 
solution to a generalized Toda Lattice and Representation Theory" which contains a detailed study 
of open Toda lattices. We also realize that B. Kostant was the first to use group-representation 
methods for their quantization 
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version of n~ and obtain quantum integrals of motion for geometrically 
quantized Lax systems; some of the presented results originate from B. 
Kostant 's  paper [9]. In n~ we describe infinite-dimensional Lie groups as- 
sociated with the affine Lie algebras. The study of reduced Hamiltonian systems 
on these groups leads to factorization problems for group-valued functions. 

Some important examples of dynamical systems associated with algebras of 
height 2 are given in Appendix 1. Finally, in Appendix 2 we suggest a con- 
struction of the quantum integrals of motion for systems associated with the 
affine Lie algebras. 

Notation. Troughout the paper we denote Lie groups by capital Latin letters 
and their Lie algebras by the corresponding Gothic ones. 

1 ~ We recall some known facts on reduction of the Hamiltonian systems with 
symmetry. 

Let G x M--,M be a Hamiltonian action of a connected Lie group G on a 
symplectic manifold (M, co). This means that for each xcg  the corresponding 
vector field on M is generated by a Hamiltonian H x, the mapping x~--~H x is 
linear and Htx,yl={Hx, Hy}. Under these conditions the momentum map q~: 
M ~ g * ,  4~m(x)=Hx(m), commutes with the action of G. (Recall that g* is a 
natural G-module with respect to the coadjoint representation of G). 

Let f o g *  be a regular value of ~b, so that M : = ~ b - l ( f )  is a smooth 
submanifold of M. Let co: be the restriction of co to M:. Let G:  be the stationary 
subgroup of f Clearly, G: leaves M: invariant and G:-orbits in M: are 
intersections of M: with G-orbits in M. For simplicity we assume throughout 
this section that G: is connected. 

Proposition 1. The null distribution of co: coincides with the tangent distribution to 
G f-orbits in M:. 

It follows that all the G:-orbits in (a connected component  of) M: have the 
same dimension and form a foliation. Suppose that it defines a smooth fibration 
over the base M:. We shall call M: the quotient manifold. 

Proposition 2. The 2-form co: projects into a closed nondegenerate Jbrm oh: on Mr. 

Let F be a smooth G-invariant function on M. The corresponding Hamil- 
tonian vector field X F is G-invariant and tangent to M:. The projections of F 
and Xv onto 3~: are defined in a natural way; we denote them by F and XF, 
respectively. Let X r be the Hamil tonian vector field on M :  generated by F. 

Proposition 3. XF=Xr, i.e. the flow of the reduced Hamiltonian coincides with 
the quotient flow. 

Corollary 4. For G-invariant functions F1, F 2 on M one has {F1, F2} = {F1, F2}. 

Now we extend the reduction procedure to the quantum problem. 
Let p: E--*M be a quantum bundle over M i.e. a principal U(1)-bundle wit)l 

a connection form ~ whose curvature is (2n)-lco. Let E: be the restriction1 
of E to M:. From Proposition 1 it follows that E: is flat over each G:-orbit  i~a 
M:. We say, that the prequantization condition holds, if the monodromy of 
these flat bundles is trivial. Recall that we assume G: to be connected. 
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Proposition 5. I f  the prequantization condition holds, the quantum bundle E :-~M : 
may be reduced to a quantum bundle over the quotient manifold My. 

Proof. For a function F on M let 2(F) be a vector field on E such that p,  2(F) 
= X  v and ~(2(F))=Fop. It is easy to verify that the Lie derivative of ~ with 
respect to ,~(F) is zero. Now we take into account the prequantization condition 
and use parallel transport to lift the action of G: from M: to E:. This action 
leaves the connection in E: invariant because the generating vector field on E :  
corresponding to x 6 gf differs from 2(Hx) by a constant vertical field. The orbits 
of G: in E: being horizontal, the connection form may be projected into the 
quotient bundle ET-~M:. 

We note that the mapping F~-~2(F) satisfies 2({F1, F2)  ) = [/~(F1) , ,~(F2)]. 

Lemma 6. Suppose that i) The action of G: on My is free; ii) The mapping x 
~-~2(Hx) of g: into the Lie algebra of vector fields on E: extends to an action of 
G: on Ey. 

Then the prequantization condition holds if and only if the function z/(exp x) 
= exp if(x) extends to a character of G:. 

2 ~ As an example, consider the action of a Lie group G on its cotangent bundle 
M = T* G. We identify T* G with G x 9" via right translations. G acts on M via 
left and right translations: h(g, ~)=(hg, Ad* h(r (g, ~)h=(gh-1,  4). This action 
gives rise to the left and right momenta maps ~ ,  cb r" 

q~,(g, {) = r @,(g, {) = Ad* g ~({). 

For brevity, we shall speak of the left and right action of G, respectively. 
Let 0 be canonical 1-form on T* G. The quantum bundle over T* G is the 

trivial (and trivialized) bundle E = T * G •  with the connection form 
=(21t) - 1 0 + ( 2 ~ i z )  -1 dz. The action of G on T*G naturally lifts to E. 

Fix a point f e  9" and put My = ebi-~(f). 

Lemma 7. (i) The Poisson bracket in the space of right-invariant functions on 
T*G (i.e. such that F(g, {)=F({)) coincides with the KiritIov bracket on g* ([2]). 

(ii) The quotient manifold My is isomorphic to the orbit (g f c  g*. The projection 
Mf--+(g f is given by the right momentum map ([2]). 

(iii) The quantum bundle E: reduces to a quantum bundle over (g y if and only if 
.f defines a character of G y. 

(iv) f defines a character of G: if and only if the restriction (2 ~z)- 1 O: of the 
1-form (27z)-*0 to Gf-orbits in My is integral (from__ Proposition 1 it follows that 
the restricted Jbrm is closed). The 2-form ~5y on My ~-C: is obtained from Oy by 
transgression. I f  HI(G,Z)=O, f defines a character of Gy if and only if 
(2rt)- 1 (Sf is integral [10]. 

Assume now that the orbit (gy is equipped with a real G-invariant polariza- 
tion [8]. Let L: be the corresponding Lagrangian subgroup, 1: its Lie algebra, 
~: 9"--+1~ the natural projection. Note that T*G admits a standard real polar- 
ization associated with the projection T* G-,G. Consider the reduction of T* G 
with respect to the right action of L: over f =  rt(f). 
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Lemma 8. (i) The standard polarization of T* G projects onto a real polarization 
of the quotient symplectic manifold M :. 

(ii) Suppose that the polarization of (r satisfies the Pukanszky condition" 
~z-l(f) c @. Then ~I : and (f) : are isomorphic as polarized symplectic manifolds. 

Proof. The inverse image of f under the right momentum map zro ~,: T*G-~I~ 
is 

M : =  {(g, Ad* g(~)): geG, rc(~)=f}. 

The linear spaces Ad* g0z - l ( f ) )  are intersections of M~. with the leafs of the 
standard polarization of T* G. This makes (i) evident. To prove (ii) consider the 
left momentum map 4)l: T*G~g* .  If the Pukanszky condition holds, 4~ l maps 
M: onto  @ and Ad* g(rc- l ( f ) )  onto the leafs of the L:-polarization of (~:. The 
fibers of  4~ l coincide with the right L:-orbits. In other words. M f ~ @  and ~ is 
the reduction map. �9 

Let E be a quantum bundle over a polarized symplectic manifold (M,L). 
Denote by S(M) the space of smooth sections of the associated line bundle over 
M covariantly constant on the leafs of L. The space S(T*G) is naturally 
isomorphic to C~(G). From the above lemma we get 

Proposition 9. Suppose that the character of 1: defined by f =  ~(f) extends to a 1- 
dimensional representation X: of L:. Then S(@) may be identified with the 
subspace W:c C~176 consisting of the functions ~o such that 

~o(gh)=zf(h-1)q)(g), heL:.  

3 ~ . Now we apply the reduction technics to get an algebra of commuting 
Hamiltonians described in [17]. 

We recall briefly some notions from [17]. 
Let a Lie algebra g be split into a linear sum of two subalgebras, g = a + b. 

Let f ~  a*'-'b • be a character of a. Given a function F on g* let us denote by F: 
the function on  b*-~a • defined by F:(~)=F(~+f). Let I(g*) be the algebra of 
smooth invariant functions on g*. 

Theorem 10. The functions F:, F ~ I(g*) Poisson commute on b*. If  there exists a 
nondegenerate invariant bilinear form on g, the corresponding equations of morion 
may be written in the Lax form. 

Let A and B be the subgroups of G corresponding to the subalgebras a and 
b. To prove the theorem we reduce T*G with respect to the left action of A. 
Assume first tha t  the mapping (a, b)~-,ab of the product A x B onto an open 
subset A B c G  is one-to-one. Consider the reduction of T*(AB)=AB x g* with 
respect to the left action of A over the character f e  n*; let T: be the quotient 
manifold. Obviously, T: is a B-space. 

Proposition 11. T: is isomorphic to T* B as a symplectic B-space. 

Proof. The inverse image of f under the left momentum map is B x b~, where by 
= f +  a a. The set B x b~ is a cross-section for the action of A and thus provides a 
model for the quotient manifold T:. Since f i b = 0  and a• *, B x b~ is isomor- 
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phic to T*B as a B-space. Moreover, the restriction of the canonical 1-form on 
T* G to B • b~ coincides under this isomorphism with the canonical l-form on 
T*B. Hence also the symplectic structures of the two manifolds coincide. �9 

The functions from l(g*) extend to bi-invariant functions on T*G. Their 
restrictions to B • b~ commute with respect to the Poisson bracket on T*B 
(Proposition4) and are right B-invariant. Hence from Lemma7(i )  we get the 
first part  of the theorem. 

Proposition 12. Let F be a bi-invariant function on T*G. 

(i) The trajectory of the Hamihonian F starting at (g, ~) has the form 

(g(t), ~(t))=(exp tdF(~ + f ) -  g, ~). 

(ii) Let ~6b*, exptdF(~ + f )=a(t)b( t ) ,  a(t) and b(t) being smooth curves in 
the subgroups A and B, respectively. Then the trajectory of the reduced Hamil- 
tonian F in b* starting at ~ has the form 

~(t) = Ad* b(t) ~ or, equivalently, 

~(t) + f =  Ad~ a(t)- 1(3 + f ) .  

(iii) The reduced equations of motion are 

~ = a d *  M ( ~ + f ) ;  

here M is the projection of dF(~ + f )  to • along b. 

If there is a nondegenerate invariant form on g, then g*~-.q, ad*~-ad and the 
equations of motion have the Lax form. 

Pro@ (i) is evident. By Lemma 3 the trajectories of the reduced system are 
projections of those of the initial one. This proves (ii); (iii) follows from (ii) by 
taking time derivative. 

The assumption that the mapping A • B ~ A B  is globally one-to-one may be 
eliminated by considering an open subset of the level surface M s which projects 
onto a sufficiently small neighborhood of the unit element in G. 

Remark 1. Assume again that the mapping A • B ~ A B  is one-to-one and consid- 
er a further reduction of the manifold M~, = A \ M ~ ( M  = T* G) with respect to the 
right action of B over ceb*.  Since T * B c M  I the quotient space MI,~ 
=A\Mr ,c /B  ,, contains an open subset isomorphic to the orbit (9 of B in b*. In 
general, the restrictions of quotient Hamiltonian flows to (9 c are incomplete. If 
My, ~ is a smooth manifold, we may consider it as a completion of 6~,, with respect 
to the flows, generated by Hamiltonians F e I(g*). 

Remark 2. If the orbit 6)~ admits a real polarization, the space M I may also be 
reduced with respect to the right action of the corresponding Lagrangian 
subgroup. This is of special advantage in the quantum version of the problem 
(cf. n ~ 5). 

4 ~ Example. Let g be a real split semisimple Lie algebra, let a c q  be its split 
Cartan subalgebra, let A be the root system of (g, a). For e e A let e~ denote the 
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corresponding root vector. Fix an order in A and let P be the set of simple roots. 
Put ~_+ = @ Re~, b = a + n + .  Let 0 be the Cartan involution in g which fixes a 

and interchanges b+ and b . 
Let G be the ,corresponding real semisimple Lie group. We denote the 

Cartan involution in G which corresponds to 0 by the same letter. Let K be the 
maximal compact subgroup of G which is fixed under 0, let M be the centralizer 
of a in K. Put A=e xpn ,  N• = e x p n + ,  B = M A N _ .  Put f =  ~ e_,.  

c~6P 

Identify 9* with g via the Killing form Q. This induces isomorphisms 
b* ~-b+, n* -~n_. Thus f may be regarded as a character of n+. 

Let 4>: T*G->n*| be the momentum map corresponding to the left 
action of N+ and the right action of B. Fix a point ceb*_ and let BccB be its 
stationary subgroup. 

Proposition 13._The space MI,c= ~b-l((f, c)) is a smooth submanifold of T* G. The 
quotient space MI, c=N+\MI, c/Bc is a smooth symplectic manifold. 

Proof. It suffices to prove that 

(i) (f, c) is a regular value of ~b. 

(ii) The group N+ x B c acts properly on MI, c. 

Let dq~g,~: 9 0  g--,n* O h * - ~ n _  Ob+ be the differential of �9 at (g, ~)~MI, ~. 
One easily finds that 

d~g,~(x, y) =YI,+ + a d  g - l ( y +  [x, ~])lb_ �9 

To prove that dq)g,~ is surjective it suffices to check that the map (x,y)~--,y 
+ [x ,~ ]  which maps g |  into g is surjective. If v e g  is such that Q(v,y 
+ [ x , ~ ] ) = 0  for all xe9 ,  y e b + ,  then veb~+=,+  and I v , ( ] = 0 .  Note that ~ e f  
+b+.  In [9, Th. 1.2] it is proved that the adjoint action of N+ on 9 induces a 
free and proper action on the affine space f + b +  c 9- Hence v=0,  which proves 
(i). It follows also that N+ x B  acts freely and properly on M i = G x ( f + b + ) ,  
whence we get (ii). �9 

The orbit ~ is open and dense in the quotient manifold Ms, ~. In MI, ~ the 
reduced Hamiltonian flows generated by F E I(g) are complete; their restrictions 
to (9 are usually incomplete. An important special case in which they occur to 
be complete on (9~ is the generalized Toda lattice. 

Put e =  ~ e~. Clearly, eeb+  ~-b*. Let B~ be the identity component 

of B. Let (9 ~ be the B~ of e (with respect to the coadjoint action). The 
typical point of (9 ~ is 

x = p +  ~ c~e~, pea, c ~ R ,  c~>0. 
ct~ P 

Recall that (9o naturally embeds onto an open subset of the quotient space 
MI, ~. Thus, the Hamiltonians F el(g)  induce quotient flows on (9o. 

Proposition 14. The quotient Hamiltonian flow on (9o induced by a function 
F e I(g) is complete. 
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Remark. It is easy to see that the reduced Hamiltonian F equals F restricted to 
(9 ~ In particular, the dynamical system associated with the function H ( 0  
=Q(~, ~) is the generalized Toda lattice. 

Proof  of  Proposition 14. We shall use another realization of (9 ~ . Consider 
reduction of T*G with respect to the left action of the maximal compact 
subgroup K ~ G and the right action of B ~ over the point (0, c) e f* | b*. Since G 
= K A N _ ,  the quotient space ~ro. c is isomorphic to (9o, the B~ of c. Let g 
= { |  be the Cartan decomposition. Since b* -~•  = p ,  the quotient space Mo, ,. 
naturally embeds into p. Clearly, the reduced flows on Mo, c generated by 
F 6 l ( g )  are always complete. The spaces b+ and p are two different models of 
b*_. Let i: b+ ~ p  be the natural isomorphism i (x)= x - O ( x ) .  The reduced Hamil- 
tonian on (9 ~ corresponding to F e I ( g )  is U = F o  i. It happens that for c = e  the 
Hamiltonians F and F'  are related by a simple canonical transformation. 
Namely, define a map (9o~(9o by putting p'--sp,1 c=-~c=' _ 1 ,2 (We make use of co- 
ordinates on (9o introduced above). This map is symplectic. Let F be a 
homogeneous polynomial of degree d. It is easy to check that F'(p,c)  
= 2 eF(p', c'). �9 

5 ~ Now we discuss a quantum version of the reduction method, namely a 
reduction of the centre Z(g) of the universal envelopping algebra of g with 
respect to the decomposition g =  n+b .  Following the pattern of n ~ 3, consider 
first the quotient manifold M I obtained via reduction of T*G with respect to 
the left action of A over a character .fc a*. 

Suppose that f gives rise to a unitary character of A, ) ( r  
(the prequantization condition). The space of smooth sections of the quotient 
quantum line bundle over M I which are covariantly constant on the leaves of 
the standard polarization of T* G may be identified with the space W I of smooth 
functions on G satisfying the functional equation 

cp(ag) = z l ( a -  ') cp (g). 

On A B c G such a function is determined by its restriction to B. 
The space Wj, is a Z(g)-module; we now give its algebraic description. 
Extend f to a character of the universal envelopping algebra U(a) and let U/ 

be its kernel. Then we have the direct decomposition 

Let py: U(g)--,U(b) be the projection onto the first summand. For q)eWy, 
u~ U(g)U I we have ucp=0, hence z (p=pi (z ) (p  for z~Z(,q). Restricted to B this 
equation shows that z may be viewed as an operator in C~(B). 

Lemma 15. Let  cp ~ W I and let qo, be its restriction to B. Then 

z (p(b) = pf (z )  q),(b). 

Corollary 16. The restriction o f  p /  to Z(g) is an algebra homomorphism, so that 
p f (Z(g))  is a commutative subalgebra of  U(b). 
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Now let * be the ant iautomorphism of U(g) which is equal to - i d  on g. 
Obviously, Z(g) is *-invariant. Assume that there exists a G-invariant measure 
on A\G; clearly it coincides on B : A \ G  with a right-invariant Haar  measure 
db,. Let A be a character of B which distinguishes between right and left Haar  

(" ) measures on B, db,=A(b)db I. Put 28(x)=  ~ tA(exp tx )  Let c~ be the 
t=0" 

automorphism of U(b) defined by c~(x)=x-6(x) for x~b .  Put y:=eop:. 

Lemma 17. The homomorphism ~/ :: Z ( g ) ~  U(b) is symmetric, i.e. 7 :(z*)=?,f(z)*. 

Proof. Let us identify C~(B) with a subspace Wj ~ of W:. Let 7:, be the right 
regular representation of U(g) in WI ~ and ~l be the left regular representation of 
U(b) in C~(B). If U, V are linear operators in W~_C~o~(B), we write V=U* if 
for any ~0, 0 ~ C~ (B) 

Up. ~db,=S~o. VCdb. 

and V = U* if 

Up. ~b db t=S q~. VC db,. 

Now, for ue  U(g) ~ (u* )=~(u )* .  For z s Z ( g )  we have ~,(z)=~l(p:(z)), so that 
r:l(p:(z*)) = nz(p:(z))*. Since multiplication by A ~ transforms �9 into I" and p: into 
~:, we get ~l(7:(Z*))=rcl(7:(z))*. On the other hand for u, ve  U(b), v=u* if and 
only if lh(v)=~l(u)*. This proves the lemma. 

Further reduction of the classical phase space with respect to the right action 
of B over c G b* gives the orbit (9 c. In the quantum case it is more convenient to 
reduce our phase space with respect to the right action of the Lagrangian 
subgroup L~ (n ~ 2, Lemma 8). Assume that g=  lr(c) extends to a character 7,c of L,, 
(the quantization condition). Then the space S(M:,~) of smooth sections of the 
reduced quantum line bundle over M:, 0 which are covariantly constant on the 
leafs of the polarization may be identified with the space 

W:,~={(peC~ (p(agl)=z:(a-1))~(l)(p(g); aGA, IGL~}. 

Accordingly, the space S((9~) is identified with 

W~={cpGC~(B)" (p(bl)=)~(l)(p(b), 1GL~}. 

W:,~ is a Z(g)-module, W c is a U(b)-module. Restricting the elements of W:,,. 
to B one obtains a p:-equivariant  linear map W:.~W~. 

The projection pf provides a quantum-mechanical  analogue of the classical 
reduction. In general, "quan tum operators" p:(z) are not in one-to-one cor- 
respondence with reduced classical Hamiltonians. We return to the example of 
n ~ 4 where a more precise information is available. Our exposition is based on 
the results of D. Kazhdan and B. Kostant. We keep to the notation of n ~ 
writing b instead of b_. 

Let S(g) be the symmetric algebra of g. There is a canonical isomorphism 
between S(g) and the polynomial algebra P(,q*) on the dual space. In particular, 
it makes sense to speak of a value of u G S(g) at a point x e g*~-g. 
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Define an element Xo~a by e(Xo)= 1, e e P .  The endomorphism adx  o extends 
to a differentiation of S(.q) and U(g) which is compatible with the standard 
grading in S(g) (respectively, with the standard filtration in U(g)). Following 
D. Kazhdan, we introduce in S(b) the Xo-grading. 

Let (S/(b))j be the eigenspace of ad Xols,~b ) corresponding to the eigenvalue j. 
Clearly, all such eigenvalues are integral. Put 

S~k~(b)= @ (Si(b))~. 
i + j = k  

Evidently, Sti)(b ) Stj)(b)=S~i+j~(b ) so we get a grading of S(b). The Xo-filtration of 
U(b) is defined in a similar way. 

Extend f to a character of U(n+) and let PI: U(g)--*U(b) be the associated 
projection. Let py: S(g)~S(b) be the restriction map 

p f u ( x ) = u ( x + f ) ,  u~ S(g), xEb+.  

Recall that the affine space f + b +  is invariant under the adjoint action of N+. 
We define the action N+ x b+ ~b+  by putting 

n . x=  Ad n(x + f ) -  f . 

Let S(b) N+ be the subalgebra of N+-invariants with respect to the contragredient 
action of N+ on S(b) (Recall that b+ -~b* and so S(b)-~P(b+)). Equip S(~) with 
the standard grading and U(g) with the standard filtration. 

Theorem (D. Kazhdan, B. Kostant, [8]). 

(i) S(b) N+ is a graded subalgebra with respect to the xo-grading and PI: 
S(g)--*S(b) t~+ is a graded algebra isomorphism. 

(ii) Put W=pf(Z(g)) .  Then W c  U(b) is a filtered subalgebra with respect to 
the Xo-filtration and Pz: Z(g)--* W is a filtered algebra isomorphism. 

(iii) The following diagram with exact rows is commutative 

0 ~ Z k - 1  - - , Z  k - - ~ S k ( 9 )  6 - - , 0  

0 -~ w~_ 1 ~ - - '  w~k~ ~ S~k~(b) N+ -~ 0. 

This diagram shows that classical Hamiltonians are principal symbols of the 
operators pi(z). 

The correspondence between quantum and classical Hamiltonians may be 
inverted. To this end consider the direct sum decomposition U(.q)=U(b) 
+ U(.q)n+ and let Po: U(g)~U(b)  be the projection onto U(b) along U(.q)n+. 
The restriction of Po to Z(g) is the well known Harish-Chandra homomorphism; 
its image lies in U(a). Let 6 be half the sum of positive roots of (.q, a), let ~ be the 
automorphism of U(a) given by ~ ( x ) = x - 6 ( x )  for x~a.  Put 70=~Opo , The 
mapping ~o is an isomorphism of Z(.q) onto the subalgebra U(a) w of Weyl group 
invariants in U(a). Combining it with the Chevalley isomorphism U(a) w~-S(g) ~ 
we get an algebra isomorphism F: Z(g)~S(g) G. Put A = F - 1  3 

3 For the mapping A there is an explicit formula [3]. Let fl: S(.q)-~U(.q) be the symmetrization 
map. Define the formal power series qE~(~q*) by q=det(sh ad/ad). Let D(q) be the natural differential 
operator on S(g) defined by q. Then A(u)=fl(D(q)u) 
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Let qs=7s  o A o p ;  ~. The following diagram is commutative 

A 
s ( g )  G - -  , z ( g )  

S(b)N+ ~ s  , W. 

Clearly, qs is an algebra homomorphism. If u ~ Stk)(b) N 4, then qs(U) ~ W~k ) and 
grt~)qs(U)=U. This permits to regard qs as a "quantization map". 

Let c ~ b* let L c be the corresponding Lagrangian subgroup and let ~r c be the 
representation of U(b) in a Hilbert space H~ which corresponds to the orbit 
((9~,Lc). The mapping 7s,~=~OTr is a quantum analogue of the two-sided 
reduction. 

Suppose that there is a B-invariant measure d# on B/L c. Let 

W~c={~0eWs,,: ]t~01] 2= j I~o(b)12d~(b) <oo} 
B/Lc 

and let Wr c be the completion of WsZ,~ in this norm. The representation space H, 
may be identified with Wr Consequently, the study of the spectrum of 
7r in H~ is reduced to the study of the spectrum of Z(g) in Wr 

For the generalized Toda lattice, i.e. for the orbit (9 ~ we have a more definite 
result. To state it recall that there is a natural isomorphism 7o: Z(g)-*S(a) w. Let 
us consider S(a) w as a commutative algebra of (unbounded) operators acting in 
L2(a* ) via multiplication. 

Theorem. The algebra 7f, e(Z(g)) of (unbounded) operators in H e is unitarily 
equivalent to S(a) w. Under this equivalence 7f,e(z) goes into 70(z). 

The proof is lengthy and will not be presented here. We only mention that 
the eigenfunctions are related to the so-called Whittaker functions. The algeb- 
raic spectrum of Z(g) in Wy,~ is described in [8] (see also footnote2). 

Remark. The Iwasawa decomposition leads to another variant of quantum 
reduction for the generalized Toda lattice. Let ~: U(g)-~ U(b) be the projection 
along U(g)f and put ~e=ne o C~o~. NOW using the co-ordinates p, c~ (see the end 
of n~ we may regard rt,,(u), ueU(b) as differential operators in the space of 
variables % 

Proposition 18. Let T be a transformation which maps c, into 1/4c 2. Let ueS(g) a 
be homogeneous of degree d, let /~: S(g)~U(g) be the symmetrization map, z 
=/~(u). Then ~(z)=2eT.Ti,~(z).  

The proof is straightforward and will be omitted. 

6 ~ . The most interesting finite-dimensional dynamical systems provided by the 
Adler-Kostant method are those associated with the Kac-Moody algebras [17]. 
As we show below, these systems may also be obtained by reduction. We recall 
briefly their construction for the simplest case of the so called affine Lie 
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algebras. (or, Kac-Moody algebras of height 1) consisting of Laurent poly- 
nomials with coefficients in a finite dimensional Lie algebra. 

Let g be a Lie algebra over R, let g = g |  -1] be the Lie algebra of 
Laurent polynomials with coefficients in g and the commutator 

[x |  m, y |  = Ix, y] |  "+" 

There are two important subalgebras g+ c ~  defined by g+ =g |  The 
subalgebras g~ = z • g_+, k > 0, form a decreasing sequence of ideals in g+_. Given 
a subalgebra q c g  define the subalgebras q+_cg by putting q+=q+flx+_. If g 
splits into a linear sum of two its subalgebras, g = a + b ,  then g = a +  +b . Since 
gk is an ideal in b_, one can set b k=b /gk. 

Put g ' = g * |  If f eg ' ,  x<q, then f ( x )  is a Laurent polynomial. 
Putting ( J ; x ) =  Res(z - l f (x ) ) ,=o  we may identify ff with the dual of g. In this 
paper we shall only be interested in its subspace ~*= g* |  [z, z-1] consisting 
of finite sums. 

Let a, b be as above. In a similar may, the finite duals a*, b*_ are defined. 
_ • Using the decomposition g=n+ + b ,  we identify b* with the subspace a+ eft*, 

b*-J '"v1 r z k ~ is a~+ = {k_>0 • fkzk' f0~a• The finite-dimensional space , --[kZ..Oj k _  , fo~a • 
) 

naturally isomorphic to the dual of the factor-algebra b, and hence is invariant 
under a d * b .  Effectively, the action of b on b* reduces to that of b,, which 
accounts for the validity of the finite-dimensional scheme of n ~ 4 as applied to g 
~-a++b_.  

With a slight abuse of language we shall speak of the orbits of b in b* 
meaning the orbits of the finite-dimensional Lie group which corresponds to b,. 

Let p~I(g*). Define a sequence of polynomials on )* by putting 

p,(~) = Res[z - . - 1  P(~(z))]z= 0, neZ. 

Clearly, p, eI(.~*). Now we are able to restate Theorem 5. 

Theorem 5". Let g = a + b ,  .~=a+ + b  be as above. Let f ~ b  l - be a character of 
ct+. The polynomials p,,f(~)=p,(~ + f ) ,  pal(g*), nCZ, Poisson commute on b*_. I f  
there is a nondegenerate invariant bilinear form on g, the corresponding equations 
of motion are of Lax  type. 

The last condition holds if g is semisimple; then ~ is an affine Lie algebra, or 
Kac-Moody algebra of height 1 ([5, 6, 14]). 

In [17] some quotient dynamical systems related to these algebras were 
described, in particular, the non-abelian Toda lattices. Other systems, notably, 
the Euler equations of the n-dimensional top are connected with Kac-Moody 
algebras of height 2. As stated, Theorem 5 does not apply directly to this case, 
however, it may easily be generalized. The same is true of the reduction scheme 
presented below. For the sake of brevity we do not dwell upon this. Some more 
examples of dynamical systems related to height 2 algebras are discussed in 
Appendix 1. 

Our aim is to give another realization for dynamical systems of Theorem 5' 
in terms of reduced Hamiltonian systems. To this end we replace .~ by its 
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suitable completion. Here we consider the Banach-Lie algebra g~ consisting of 
absolutely convergent Fourier series with coefficients in g. 

Let b~ be the closure of b c g ~  in the topology of absolute convergence. 
Clearly, the finite-dimensional subspaces h* c ~* ~, ~e/are invariant under ad*b~ and 
the orbits of b~ in b* coincide with those of b .  

Now we define Lie groups which correspond to g~- and its subalgebras. The 
aim of our definitions is to get an analogue of the Bruhat decomposition for 
these infinite-dimensional groups. Note, that the group of "all" functions on the 
unit circle with values in G is too large for our purposes. 

For simplicity, we restrict ourselves to functions with values in special matrix 
groups, i.e. in the subgroups of SL(N).  

First let G = S L ( N , R ) .  Let 3q/" denote the real algebra of absolutely con- 
vergent Fourier series with coefficients in Mat(N, R). Let ~W+ be its subalgebras 
whose elements are analytic (antianalytic) in the unit disc. 

Put 

G~r = {ge~/U+ : g(z)eG for z e [  - 1, 1]}, 

N~ = {geG~- : g(O)= l }. 

Clearly, G~r N~ are groups under pointwise multiplication. Put OG~/= G~+ N~.- 

Lemma 19. Suppose ue3CU admits a factorization u = g + n  , g+eG~r n e N ~ .  
' ' g+ eG~r Then it may also be factorized as u = n  g+, n' 6 N ~ ,  ' + and the factors g+, 

g'+, n ,  n'_ are unique. 

Proof. By a theorem of Gohberg and Krein [43, for each u E ~  there exist 
decompositions 

u=cp+ dcp_=@'_d' @+ 

(right and left factorization, respectively) with r q~'+ e r162 d = diag(z~', ..., ~N), d' 
=diag(z ~', ...,ZIN), I i, r i t Z  (by definition, z~=~ -l fo r /<0) .  The integers rl, . . . , r  u, 
l~,..., l N are characteristics of u and are called the right and left indices of u. Let 
p+: ~#/'-,~r be the natural projections. For  ue~/CF define a Toeplitz operator T, 
in ~+ by 

L = e+(ucp). 

Then 

r i = ~ I i = dim coker T,, 
r~>O I~>0 

- Z r, = - = dim ker T., 
r , < 0  / t < 0  

ind T, = ind(det u). 

Thus d = l  implies d ' = l  and vice versa. In this case r and (p'+ are defined 
uniquely up to a constant matrix factor. We normalize then by putting n 
=r n '  =r r (0) -1, g+ =r r g+ =r Hence the exis- 
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tence and uniqueness of the left factorization is proved. If u = n'_ g~ then 1 = det u 
t =de tn '  detg+ whence detn' =const,  de tg~=cons t  (both detn'_ and detg~+ 

being outer functions). Besides, n ' (0 )=  1 so that n' eN~=, g+eG~.' + �9 

Corollary. ~ is a group. 

Proposition 20. Let u,, teR be a smooth curve in ~ let ut=g+(t)n_(t ) be its 
right factorization. Then the curves g+(t), n_(t) are smooth. 

Proof Since g$1f in21=g+l~+  + f i n  -1, one gets g~l~+ =p+(gT_lfn-1), fi n-1 
= ( 1 - P + ) ( g + l f n - 1 ) .  By assumption, fe~/U. Since P+ is bounded, ~+e~,,  ri e~/U. 
The existence of higher derivatives is established in the same way. 

Corollary. The Lie algebra of ~ is 

9~,~= {ue ~/ :  tr u = 0}. 

Proposition 21. The exponential mapping maps 9~ into ~ 

Proof Let ~/g- 1 denote the group of invertible elements of ~ .  The Wiener-L6vy 
theorem implies that for ueg~  expue~r Thus it remains to prove that expu 

- u  . Choose n sufficiently large has zero indices. For any integer n, expu=  exp n 

1 
so that e x p - u  be close to identity. Then from [4, Lemma t.5t] it follows that 

n 
1 o 

e x p - u e  G~r �9 
n 

Now let G c S L ( N , R )  be an arbitrary closed connected subgroup. The 
_ + - -  definitions of G$, N~ remain intact. Put ~ 

Lemma 22. ~ is arcwise connected, i.e. any ue~ may be connected with the 
identity by a smooth curve. 

The proof of this lemma will be omitted. 

Proposition 23. Let ue~ let u=n_g+ be its left factorization in ~ .  Then 
n ~ N ~ , g + e G $ .  

Corollary. ~ is a group. 

Proof of Proposition 23. Let u t be a smooth curve connecting u with the identity, 
te l0 ,1] .  Let u,=n (t)g+(t) be its factorization in ~ .  Then n (0)=g+(0)=l .  
After differentiation one gets 

~,+ gT~l=P+(n2 a fgT~ 1) 

n -~ fi =(1 -P+)(n:  i fig+ t). 

The curves n( t ) ,  g+(t) are the integral curves for L~=n2 ~ fi_, R,=~+ gT_ ~. To 
check that n ( t , z ) ,  g+(t,z) take values in G for all re[0, ll ,  z e [ -  1, 1] it suffices 
to verify that L,(z), R~(z) take values in g. This is clear for t=0.  For all te[0, 1] 
the fact follows from the standard uniqueness theorem for differential 
equations. �9 
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Now let A, B c G  be two subgroups such that AB is open in G and the 
mapping A x B--*AB is one-to-one. Define the subgroups A~ +, B~ of ~ by 

A~ = {g~G+, g(0)~A}, B~ = {g~Gy~, g(0)~B}. 

Proposition 24. The mapping A~ + x B~---+ is one-to-one and A~/B~ is open in ~162 

If G is semisimple, there is an analogue of Bruhat decomposition for ~ 
Let B be the Borel subgroup, W the corresponding Weyl group. For any w~W 
choose its representative in G, denote it by the same letter and consider it as a 
constant function. Put 

B~- = {g e G,~-, g(0)~B}. 

Proposition 25. Let G be semisimple. Then for ~  holds the decomposition ~ 
B~ wB~. 

",v6W 

Proof ~  = ~ N~BwBN.7~ = U B~wB~.  �9 
w e W  w E W  

Now we apply the scheme of n ~ 3 to ~ regarding g* as a subspace of g*r. 
Under the assumptions of Proposition 25 consider the reduction of T* ~ with 
respect to the left action of A~ and the right action of B~ over the point 
( f ,c )Ea*(~b*.  As usually, we suppose f to be a character of a+. The quotient 
space Mr, c contains an open subset isomorphic to the B~-orbit  of c in b*~. Let (9 c 
be this orbit. Let F be an invariant function on g*.. Hamiltonian flow on Mj.c 
generated by the Hamiltonian F coincides with the reduced flow generated by F 
(Proposition 12). 

Proposition 26. Fix a point ~(9  c and let 

exp t dF(~ + f )  = a(t) b(t), 

a(t)~A~r , b(t)~B~ be the factorization of exptdF(~ + f) .  The trajectory with a 
starting point ~ of the reduced dynamical system on (9~ generated by the Hamil- 
tonian F is given by any of the two equivalent formulae 

~(t) = Ad*~ b(t) ~, 

(t) + f = Ado*o~ a (t)- 1 (~ + f).  

Proof. It follows from Propositions 21, 24 that for t sufficiently small the factori- 
zation is well defined. The trajectory formulae were obtained in 
Proposition 12(i). 

In general, there is no reason for the reduced flows on (~c to be complete. We 
note two particular cases. 

Proposition 27. (i) Let G be an arbitrary Lie group. Let f be a character of n~. 
Reduced Hamiltonian flows on orbits of G(~ generated by Hamiltonians P,,I' 
p~I(g), neZ, are always complete. 

(ii) For the generalized periodic Toda lattice all the flows of its integrals of 
motion are complete. 
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Proof (i) is evident because o + Ger=N~ Gg and hence the reduced phase space 
My,c is isomorphic to (9 c. (Here, as usual, c is a point in (g;)*, M/, c is the inverse 
image of (f, c) under the momentum map). A realization of periodic Toda lattice 
in terms of affine Lie algebras is given in [17]. Let G be a real split semisimple 
Lie group, B its Borel subgroup, B ~ =AN its identity component. Recall that the 
periodic Toda lattice is associated with the orbit C r of (B~ - which passes 
through the sum of root vectors corresponding to the simple roots of ,~. Let Q be 
the Killing form on g; for x ~  put I(x)=�89 X))z= 0. The Hamiltonian 
of the Toda lattice is the restriction of I to (9 r. It is not hard to see that all the 
surfaces of constant energy on C r are compact (This distinguishes (9 r from other 
(B~ in the same graded subspace of b*,.) �9 

Remark. The proof  of Proposition 13 does not extend to the present case 
because a direct analogue of B. Kostant 's  theorem [9, Th. 1.2] fails here. 

The factorization problem which solves the reduced equations of motion is a 
direct analogue of the matrix Riemann problem used by V.E. Zakharov and 
A.B. Shabat in their study of "Lax equations with spectral parameter" [19]. It 
would be interesting to obtain explicit formulae for the trajectories by solving 
this problem directly (cf. [11, 12]) 4. 

Appendix 1 

Here we consider Kac-Moody algebras of height 2 which give rise to some 
interesting integrable Hamiltonian systems. In particular, we discuss the rotation 
of an n-dimensional top and the movement  of a point on various flag-manifolds 
in a quadratic potential. We use the notation of n ~ 6. 

Let 0 be Cartan automorphism of a semisimple Lie algebra g, g = f + p the 
corresponding Cartan decomposition. Extend 0 to ~ by putting O(x| 
( - l )"O(x) |  and let go denote the fixed subalgebra of the involution 0: 

90 ~- {2Xk Zk: X2ke[' X2k+ 1Ep}. 

Put 
.q+ +n n �9 o =g_+r~g0, go = g •  n>0 .  

The restriction to go of the invariant bilinear form on ,~ being nondegenerate, 
one may identify g~ with go and (go)* with go ~ (Here again we are dealing with 
the finite duals of our Lie algebras.) We are interested in dynamical systems on 
the orbits of go. As a shift vector (Theorem5')  we take f = a z  -~, Jep. We 
consider some particular cases. 

1. Orbits in the subspace f c go ~ coincide with those of K. Theorem 5' provides a 
family of Poisson commuting functions on [: 

pk.f(g)=Res[zk-lp(n+Jz-l)]z_O, peI(g),  n~t~. 

4 An exhaustive treatment of the finite-dimensional factorization problem for the case of 
(nonperiodic) generalized Toda lattice is given by B. Kostant (see footnote 2) 
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This family was pointed out by Mishchenko and Fomenko in a different setting 
[I3].  The corresponding equations of motion may be written in the Lax form 
d 

L = [L, M], where L = n + J z -  1, M = [z k grad p(n + J z - 1)] + ( + denotes pro- 

jection on g~ along go). 
It turns out ([13]) that the Euler equations of the n-dimensional top fit into 

this framework. For the sake of completeness we write down the corresponding 
formulae. 

Assume g=s l (n ,R) ,  f=so(n) .  Let I ~ p  be a symmetric positively definite 
matrix (the inertia tensor of the top). Let f2: ~ be the inverse of ~--~I n + hi .  

The Euler equations of the top on the orbits in are generated by the 
Hamiltonian 

H(n )=  - � 8 9  n f2(n). 

Now put f = I 2 z  -1, pro(x)= - l~trxm, m>0 .  Functions Pk~y Poisson commute;  it 
m 

turns out that H is a linear combination of the functions Hk=P~ + - 1 1.f which are 
quadratic in n. To check this we may assume I to be diagonal, I 
= diag(a 1 . . . . .  a~). One finds 

2k 2k 
a i - -  a j  

i < j a i - l - a ]  ' i < j  ai--aj 

Setting H = ~ c kH k one gets for c k the following linear system 
k = l  

~ cka2k=ai i = l  . . . . .  n 
k=1 

which is always solvable. The Lax operator M is 

[t 1 M =  - c k z k - I ( r c W I 2 z - 1 )  k 
k = l  4 +  

2. Now consider the orbits of go in the space [ + p z .  Actually these are the 
orbits of gl = go/go z. Denote by Kj  the stationary subgroup of J with respect to 
the action of K in 0. Let r: f*--,f* be the natural projection. Consider the 
reduction of T * K  with respect to the left action of K s. Fix nE[ and let M~ be 
the inverse image of ~=r (n )  under the momentum map, 4"j: T*K--,r~]. Let M~ 
be the quotient manifold, M~ = ( K J ~ \ M ~ .  

Lemma.  The orbit ( 9  + s~ passing through ~r + J z in ~ + p z is isomorphic to M~ as a 
sympIectic K-manifold. 

Proof  Consider the mapping 4": T * K ~ g * ,  4 " ( k , ~ ) = A d k - ~ ( ~ + J z ) .  It is not 
hard to see that 4, may be regarded as the momentum map  of a Hamiltonian 
action of gl on T ' K ,  The left action of K s leaves 4, invariant, so 4, is well 
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m 

defined on the quotient manifold M ,  and q~(M=) is Gl-invariant. Clearly, M=- -K 
x(rc+IJ-) and hence ~ ( M = ) = A d K ( n + f ~ + J z ) .  But n + [ } + d z c ( 9  +j= whence 
4~(M,) = (9~+a=. Moreover, the fibers of the mapping q~: M=~(9=+j~ are precisely 
the (Ka)e-orbits, which accomplishes the proof. 

CorolLary. The orbit (gj~ passing through J z  is isomorphic to T* (K /Kj )  as a 
symplectic K-manifold. 

The orbits (c,, +a= provide another realization for the n-dimensional top 
related to its Lagrange description. We keep to the previous notation. 

Let g = s l(n, R), let the shift vector f be zero. On ~ + p z we have a family of 
Poisson commuting functions 

1 
p~'(~ + s z) = - -- Res [z -  k- 1 tr(~ + s z)m]z = o. 

m 

The Hamiltonian of the top on (9+a= is 

k = l  

d 
The Lax representation is ~ [ L = [ L , M ] ,  L=rr+sze tC +j., M = ( g r a d H ) + .  

Clearly, gradp~+l=z-k - l ( rc+sz )  k, so that k+l (gradPk_0+ =skz and L, Ck sk=sl/2" 
k = l  

Finally, the top equation takes the form 

d 
dt (rC + SZ)=[TC + SZ, Sl/2 z]. 

Let us point out the connection between Lagrange's and Euler's description 
of the top. Both are obtained by reduction of the same dynamical system on 
T* K, the former with respect to the left Ka-action and the latter with respect to 
the right K-action. Using this relation, one may transform the above Lax 
representation into one which refers to Euler equations: 

d 
d-7(rc + I2 z )=[n  +12 z, F2(rc) + I z]. 

This representation was found by Manakov [12]. 

3. Now consider a family of Poisson commuting 
~- T* (K/K j) 

p i ( n + s z ) = p ( g + s z - A z - 1 ) ,  peI('.q). 

This family contains the Hamiltonian 

polynomials o n  (~Jz 

H =  - �89  2 + t r s A  
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which describes a particle on the Riemannian manifold K/Kj  moving in the 
potential Q=trsA.  Let A,J  be diagonal, A=diag(a  t . . . .  ,a,), J=d iag (b  l . . . . .  b,). 
If s = k J k  -1, then sij=~b,,k~,,kjm. In the co-ordinates kij the potential Q is 
quadratic ,, 

Q=~,aib jk  2. 
t ,3 

Thus we have obtained conservation laws for motion on various flag- 
manifolds in a quadratic potential. 

In particular, if J=d iag(1 ,0  .. . .  ,0), then K/Kj=RP"-1 .  Consider the poly- 
nomials 

( -  1) g 
Hk-- k + l  - - - -  Res[z-k tr(1r + s z-- A z-1)k + I]z=O 

= Hk(r~, A) + trsA k. 

Suppose all the eigenvalues of A are distinct. Choose cik SO that Gk aj--fij. 
k = l  

Then F~= ~ qkHk are the integrals discussed by Moser [15]" 
k=l 

Fii = E ~z2 --t- k2i . 
j~i a i - -a j  

Appendix 2 

We suggest a definition of the quantum integrals of motion for quotient systems 
associated with Kac-Moody algebras. Unfortunately, we failed to prove their 
commutativity, though there is some evidence in favour of such a conjecture. 

The main difficulty stems from the fact that "central elements" correspond- 
ing to invariant polynomials p, el(~*) are not contained in U(~). To make the 
definition more clear we first rewrite classical integrals of motion in terms of the 
symmetric algebra of ~. 

Let S(~) be the symmetric algebra of g. Let S N be a subspace of S(~) spanned 
by those IA=x1zkl.. .xszksG-.S(~) for which for some i lkil>N. Put S(~) 
=lim projS(~)/S k. The elements of S(~) define polynomial functions on .~*. Let 
the mapping i.: S(g)--*S(.~) be defined by 

in(XX "'" X s ) :  E Xl zkl "'" Xs zks" 
k l + . . , + k s = n  

Recall that p.eg(~) is defined by p.({)= Res[z-"p(~(z))]z= o, p~S(g), ~e(~*. 

Lemma. i. p = p.. 

Suppose that g is split into a linear sum of two its subalgebras g = a + b and 
let ~ = a+ + b_ be the decomposition defined in n ~ 6. Let of be a character of a+ 
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and let p~: U(g)--+U(b ) be defined as in n~ Let x ( k  1 . . . .  , k s ) = ~ x ~ z  k' ... x , z  k~ 
~y 

be the sum over all permutat ions regarded as an element of  U(g). 

Lemma.  Suppose that f]~_~=0 for  some N > 0 .  I f  for  some i k i < - N ,  then 
p f ( x ( k  t . . . .  , ks) ) = O. 

.N We set iN,(xl ... x s )=  ~ x ( k l , . . . ,  ks) and regard z, as a map of  S(9) into 
k l + . . . + k s - n  

Ik,l<N 
U(g). Due to the lemma the following definition makes sense. 

Definit ion.  p y , , ( u ) =  lim pi(iN,(u)), ucS(g). 
N ~ o c  

It is easy to prove that [pf,o(Ul),pf, o(U2)]=O for all ul, uzeS(g) G. The 
authors suppose that also 

[Pf,m( u 1), Pf, n(U2)] = 0 

for all m, nCZ. 

Acknowledgements. The authors gratefully acknowledge many fruitful discussions with L.D. Faddeev. 
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