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Summary. In this paper we discuss the construction of a spline function for 
a class of singular two-point boundary value problem x-'(x'u')'=f(x,u), 
u(0)=A, u(1)=B, 0<c~< 1 or ~=  1, 2. The boundary conditions may also be 
of the form u'(0)=0, u(1)=B. Three point finite difference methods, using 
the above splines, are obtained for the solution of the boundary value 
problem. These methods are of second order and are illustrated by four 
numerical examples. 

Subject Classifications: AMS(MOS): 65L10; CR: G1.7. 

1. Introduction 

Consider the class of singular two-point boundary value problem 

x-~(x'u')'=f(x,u), 0 < x < l ,  

u(0)=A, u(1)=B 
or 

(1) 

(la) 

Here, ~e(0, 1) or it may take values 1 or 2. If c~=l then (1) becomes a 
cylindrical problem and if e = 2, then it becomes a spherical problem. A and B 
are finite constants. It is well known that (1) has a unique solution if (A) 
f(x,u) is continuous, ~?f/~?u exists and is continuous and Of/c~u>O. For e =  1, 
Russell and Shampine [9] have shown that for linear f(x,u)=au+g(x): 
g~C[O, 1], (1) possesses unique solution if - o o < a < J  g, where Jo is the smal- 
lest positive zero of the Bessel's function Jo(x). For ee(0, 1) and in the linear 
case Jamet [5] considered a standard three point finite difference scheme with 
uniform mesh, for the solution and has shown that the error is O(h 1- ')  in 
maximum norm. Ciarlet [2] considered the application of Rayleigh-Ritz-Galer- 
kin method and have shown that the error is O(h 2-~) in uniform norm. 

u'(O) =0, u(1) =B. (1 b) 
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Gustafsson [3] considered the linear problem in (3, 1) instead of (0, 1) and 
constructed compact second order, fourth order and non-compact fourth order 
methods for its solution. Reddien [-7] and Reddien and Schumaker [-8] used 
certain projection methods and singular splines to solve the linear problem and 
studied the existence, uniqueness and convergence rates of these methods. 
Recently [1] have proposed three point difference methods of second order 
under appropriate conditions using the boundedness of f ' ,  f "  and f '" .  

For ~= 1, Russell and Shampine [9] wrote the differential equation in the 
form (x u')' + x f  (x, u) = 0 and considered the discretization 

--Xk- 1/2 Uk- 1 qt_ 2XRU k _XR + 1/2 Uk+ 1 --h2xk fk + Tk(h) = 0 

where Tk(h ) is O(h4). The case a =  1 is often encountered in electro hydrody- 
namics and the theory of thermal explosions. 

In the present paper, in Sect. 2 we construct splines and the three point 
finite difference methods using these splines for the solution of (1) in the cases 
~ ( 0 ,  1) and , = 1, 2. In Sect. 3, we show that these schemes are of O(h 2) under 
appropriate conditions. The advantage of the spline approximation is that (1) 
may be solved with a particular steplength h and the intermediate values, if 
required, can be computed using the spline. It is shown through numerical 
computations that these spline solutions are of the same accuracy as the two 
neighbouring finite difference solutions. In Sect. 4, the three point methods are 
applied on four examples. Some solutions obtained by the spline approxima- 
tion are also given. These numerical results show that the methods are robust 
and the spline gives good approximation at the intermediate points. 

2. Splines and Finite Difference Methods 

Consider first the case a~(0, 1). We consider a general non-uniform mesh 0 
= x o < x I < x 2 < . . .  < xN = 1. Denote u s = u(xj) and fj = f (x j, us) etc. We write 

where hj-~xj--xj_ 1. I t  is obvious that 

[X-~ =Mj= fj 
and 

[x-~'(x~'u')']x, , = M j - 1  =fj--1 

Integrating (2) twice and setting the interpolating conditions u(xj_ 1)= u j_ 1 and 
u(xj) = uj we get the spline approximation as 

~ ( x )  = - s i  [ % x 7 _  1 - u s_  1 xT) - x ~  - us- 1)] a 

+ [S*x2 {2x(l +oO--a(2+oOXj_l}+a~Ja xa+a*] M j 

+[S*x2{3(2+oOxj-2x(l +ot)}+b~Ja Xa+b*]Mj_ 1, Xj_I < X < X  j (3) 
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where 

a = l - ~  

a 1 
Ss -  x~a-xj_l" , S*-6hj(1 +c0(2+c 0 -  

a,i = -SiS* [~ x} (2 x s - 3 x s_l)+ 2 x } (xj - 3 x s_l)+ x3-1 (~ + 4)] 

b~=_S,iS,[(ot+4 3 2 _2xE l(3x,i_x~_l)] )xj - ex,i_ 1 ( 3 x i -  2xs- 1) 

S.S*. 2 a 
a* = -J -J [ x i  x s -1  { 2 (1 + ct) x j  - 3 (2 + ~) x,i_ t } + (~ + 4) x } _ l  x~.] 

a 

b*= [(e+ 4)xj3xi_ " 1 -xjx~_" 2 1 {3(2+cQxs_2(1 +e)xs_l}]" 

Setting j=j + 1 in (3) we get the spline valid in the interval (xs, xs+ 1)- If we now 
require that u'(x) be continuous at the node x,i we get 

- - S j u j _  1 q - ( S j - } - S j + l ) u j - S j + l u j +  1 =AiMs+I +BiMi+ C j M j _ I ,  

j =  1 , 2 , . . . , U -  1 (4) 
where 

2 + ot_l - , 2+c t  As=-6S*+lx j _as+ i , C s = - 6 S j x  s -b,i, 

B s = 6 x~ += [(2 + c0(x s +1 S*+1 + xs-1 S*) - (1 + c0 x s(S*+I + S*)] 

+ (bs + 1 - a,i)- 

Setting M,i_ 1 = f j  1 etc., we have the three-point finite difference approxima- 
tion 

--  Sj lI j  1 -}-(Sj-I- Sj+ I ) U j -  Sj+ I l l j + l  = A j f  s+ l + B,if s + C.if j-1, 
j =  1, 2,. . . ,  N - 1 .  (5) 

Consider now a non-uniform mesh by considering the mesh ratio parameter a s 
=hs+jh s. We find Xs_l=Xs-h,i, x,i+l=xs+hs+l=xs+ash,i. When a,i---1, it 
reduces to the uniform mesh case. This non-uniform mesh has been success- 
fully used by Jain, Iyengar and Subramanyam [4] in solving two point singular 
perturbation boundary value problems. Substituting the expressions for 
xs-1, x~+ 1 and expanding in Taylor's series, we get 

-- [ l + P t X ' + P 2 ( X ' ) 2 + p 3 ( x ' ) 3 + p 4 ( x ' ) 4 + . . .  ] ss-X~J 

x ~. 
- -  J X *  Sa+ 1 - ~  [1 -Pl +P2(X*)z-P3(X*)3+p4(x*) 4- ' ' ' ]  

1 [ ~ ~(2-c  0 ] 
As=-gxsash s l + ~ x *  120 (x*)2 + ' ' "  (6a) 

1 C~x, ~(2--~) (X,)2 + ... ] 
CS= -6xsh'i[ 1 -4  120 

1 [ ~ ( 1 - a  s +o "2) ~ (2 -  g)(X,)2 + ...] 
Bi=--6 x~(l+aj)h'i [ 2 - 4  (1 - gs)x' -t 120 l 
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~z 
where P a -  2' P 2 = - ~ ( 2 - ~ ) / 1 2 '  P 3 = - ~ ( 2 - ~ ) / 2 4 '  P 4 = - ~ ( 2 - ~ ) ( 1 8 + 2 7  

- 72)/720, x' = h j/x j, x* = a t hj/xj. 
Substituting (6a) in (5) and simplifying, we find the truncation error in the 

difference method (5) to be 

t~l '(h')=lx~(1 + a3)h3 t[u54' + ~xj (u}"- 2~ u~ + ~  uS)] + x ,  "'" 

1 
= - -  tTjjnj jj + .... (6b) 24 x](1 + 3,-3 * ' , ,  

Substituting aj=l  in (6b), we get the truncation error in (5), in the case of 
uniform mesh, as 

t(1)(h * - - k  (6c) 3 , , -  12 x~'h3fj'+ .... 

When ~ = 0, the method (5) reduces to 
h 2 

U j - 1 - - 2 U j - + - U j + l = ~ - ( f j _ l + 4 f j + f j + l )  (7) 

which is same as the scheme obtained by a cubic spline for u"=f (x ,  u). 

Cylindrical case. For ~ = 1, we write (1) in the form 

Write 

1 
- (ru')' = f ( r ,  u). (8) 
r 

r dr \ dr] _ _ ( r j - r ) +  "J (r-rj-1)'  

where hj = r j -  rj_ 1. Integrating twice, we get 

r j_ l<r<r~  

u ( r ) = ~  (~r2rj r3\ Mj - ~ ) + - ~ ] ( r ~ - ~ r Z r j - 1 )  

+ Cj log r + Dj (9) 

Cj and D r are arbitrary constants to be determined. In the interval where 
ro<r< q, finiteness at the origin requires C1=0  and Dl=u(O)=u o. For the 
remaining intervals, using the interpolating conditions u(rj_O=uj_ 1 and u(rj) 
= uj we get 

u (r) = Sj [(uj - u  j_ 1) log r + u j_ 1 log rj - uj log rj_ 1] 

+ ~  [r2(9rj - 4 r ) - S j  log r(rj- ~_ 1) ( 5r2 + 5rjrj_ 1-4r2-1) 
J 

-Sj{r~_ 1 (9t ) -  4rj_ 1)log r j -  5r~ 3 log 1)_ 1}] 

+ ~  [rZ(4r - 9rj_ 1) -- Sj log r(rj - rj_ 1) (4~) 2 - 5rjrj-1 - 5r2- 1) 
d 

+Sj{5t)Sllogrj+r~(4rj-9~)_Olog~)_l}], rj_l <r<rj (10) 
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where Sj=l/log(rj/rj_l). Setting j = j + l  in (10) we get the spline valid in 
(rj, rj+l). If we now require that u'(r) be continuous at the node rj we obtain 

- -S jb l j_  1 -}- (Sj -~- Sj+ 1)uj - S t +  1 u j+ 1 = A ~  Mj+ ~ + B* Mj + C* mj_ 1, 

j = 2 , 3  . . . . .  N - 1  (11) 
where 

1 +4r j  3 ,)], C * -  6hj[r:-SJ-(Sr~-9rjr2_l 

1 [r~ + ~ - ( 4 r f + - 9 r 2 + l r j + S r ~ ) ] ,  
A* - 6hj+ 1 , 

l [ r 2 ( 3 r j + ,  Sj+I 3 , + 4r3)] Bf=6hj+ 1 -2 r j ) -~ - (5r j+~-9r j+  r 2 

Sj 3 2 1 [4(2r j_3r i_ l )_~(4r  j --9rj rj_ 1 +5rj3_l)]. 
6hj 

Setting Mr_ ~ =f~- i  etc., we get the three-point finite difference approximation 

- -  * * C *  - S j u j - l + ( S j + S j + l ) u j - S j + l U j + l - A j f j - l + B j f j - { -  j f j -  1, 

j = 2 , 3  . . . . .  N - 1 .  (12) 

Expanding in Taylor series, the truncation error in the case of uniform mesh, is 
obtained as 

h 3 rj [ U;' 
t} 2) (h) - [u}') + rj 

h a 
- -  r f "  - - ~  j a j  -}- . . . .  

2u; 2u)q 
r;  V3] +''" 

(13) 

The difference scheme (12) cannot be used at j =  1 as S~ is not defined. In the 
case of uniform mesh, the following interpolating approximation may be used. 

19 49 h 2 
68 u~ + u1-6-8 uz = - 1 7  (7fl +f2). (14) 

The truncation error at j = 1 is 

1 t]E)(h) = - ] ~  h4ul')(rl) + .... (15) 

Spherical case. For c~=2, we write (1) in the form 

1 
r~- (r z u')' = f (r, u). (16) 

Following the above procedure, we get 

u(r)=MJ[ -1 [r2 1"3' M1 [ra r2 ~-CJ +D,, <r<rj (17) 
~ r j - ~ + - f f f  t ~ - 6  rj+a] r rj_~ h~ 
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where Cj and Dj are arbitrary constants to be determined from the interpo- 
latory conditions. In the interval ro<r<r~, finiteness at the origin requires C 1 
=0, D l = u ( O ) = u  o. For the remaining intervals, interpolating conditions give 
the spline as 

1 S. Mj a [r2(2rj u(r)=~(ujrj-uj_lrj_a)-r(Uj-Uj_x)+ ~ ~ --r) 

+SJ(rj-rj-1)(r/r +rjrj-l-r2-1)-~j (r~-2rjr)-I + rj4- 0]  

4-~[r2(r--2rj_l)h-~ff-(rj--~_l)(r/--rjrj_l--r/_l) 

1 
( r ; - - e r / 9 - 1 + ~  1)], 5-~<r<rj (lS) hj 

where 

Sj -rjrj-1 and hj=rj-~_ 1. 
h~ 

Setting j=j+ 1 in (18) we get the spline valid in the interval (rj, rj+ i). Requiring 
that u'(r) be continuous at rj we get the difference method 

h 2 
rj_luj_l --2rjuj+rj+lUj+a =~[(rj+rj_Ofj_l +8rjfj 

+(rj+rj+x)fj+l], j = l ,  2 . . . . .  N--1. (19) 

In the case of uniform mesh, the truncation error in (19) is obtained as 

h 4 
t} 3) (h)= - - -  r. f : '  + .. (20) 

12 JJ~ "" 

3. Convergence of the Spline Difference Methods 

All the three difference schemes (5), (12) and (19) can be written in the form 

S U + M f + T = R  

where S and M are suitably defined and 

U = [ u l u  2...uN_I] r, T = [ t l t 2 . . .  tN_l] T, 
f = [ L f ~ . . . / N _ , ]  T, R=[(S1A+CIfo)O...O(SNB+ANfN)]L 

(21) 

For the scheme (5) we have 
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I S  1 -~-S 2 

2 

M-- 

while for the scheme (19) we have 

-S 2 
$2~-S 3 

- S  3 

- A  1 

- B  2 

- C  3 

2r I - - F  2 

--r I 2r z 

S ~ - - r  2 

0 

8 r 1 ra + r 2 

h lrl r 
M = I ~  r2 +. r3 

-$3 0 ] 
$3+$4 - $ 4  , 

- SN_I  S N I +SNA 

-A2 0 ] 
- - B  3 - A  3 , 

- C ~ - 1  --BN 1 

- r3  0 1 
2r 3 - r  4 , 

�9 . 

--rN_2 2rN 1A 

r2 + r3 0 1 
8 r 3 r 3 + r 4[. 

rN_2+rN_1 8rN 1A 

For the difference scheme (12), M is defined by the starred quantities. We note 
that 

Si>O, Aj<O, Bj<O, Cj<O, 

At<0, B <0, C <0. 
Hence we have, M > 0  in all the cases�9 Dropping the truncation error in (21) we 
get 

S U + M f ( U ) - - R  (22) 

where I2 denotes the numerical solution. 
Subtracting (21) from (22), we have 

(S + M F ) E  = T  (23) 

t~f2 ] Note [ ~ f l  ~fN-1 
where E = f S - U  and FE=f (15 ) - f (U)  and F = d i a g  [~ul 0u 2 ... DuN_ 1 �9 

that we have assumed v J>_0. Hence F > 0  and M F > 0 � 9  We have ~ u -  - = 

S + M F > S .  (24) 



370 S .R.K.  l y e n g a r  a n d  P. J a i n  

S is irreducible and m o n o t o n e  and M F  >0.  Therefore, 

( S + M F ) - I < S  -1. 

F r o m  (23), we find 

I IEII - -H(S+MF)-~TII  < IIS-111 IITII. (25) 

Consider  now the spline difference scheme (5). Denote  S-1  = (S*) ,  a = 1 - ~ .  We 
find for j =  1, 2 . . . .  , i - 1  

S ' j =  ~ $1, j -  (xa-x~.), i = I ( 1 ) N - 1 ,  i>=j 

1 
s* - [ ( ~  -x~,_ 1)(x~_ 2 -x~) - (x~  - x ~ _  2)(x~_ 1 - x  9] 

1, j -  aD 

( ~ 1 1 )  a ( X N - 2 t a  a D =  ( x ~ - x ~ _  2 ) -  (x~-xN_I) .  
\ x 1 ! 

(26) 

For  j = i, i + 1, ..., N - 1, we have 

We find 

and 

s *  = { X , ~ a r  ,,j ~xl] ol,j, i<=j 

1 
s *  = Ixa~- -xg lx~- -~7_~)  

1,j aD 1 

D1 = j a a ( x ~ - x j _  1) - ( x ~ - x ) .  
\ x  l / 

Z S *  - - -  [ ( x ~ + x ~ +  + x  a 1 ) - ( i - ] ) x ~ / ]  1 , j -  . --  - 
j =  1 a \ x  N / 

N-1 ( tan-1 ~, S*,j--1 x I ~ (x~-x~).  
j=i - a  \xN/ j=l 

The row sum is obtained as 

(27) 

Z S*.-,,, - ( N - i ) x ~ +  Z x ~ -  x 
i=1 - a  i=1 \xN/ j=t  

where we have used x N = 1. 
Consider now a uniform mesh x~ =jh. Then from (28), we have 

Z S * ' = I  ( N - i + l ) x ' ~ +  " xi x~ j = l  "J a x j -  . 
j= \xN I j= 1 

(28) 

(29) 

It is known that  
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and 

Hence from (29) 

ia+ 1 
la + 2" + ... +(i  - 1)" < - -  (30) 

a + l  

Na+ 1 
l~+2"+  "'" + N ~ >  a +~-i-" (31) 

N-1 ! [  haia+l (xitahaNa+l ] 
Z S ' j <  (N- i+ l ) x~ -~  (32) 

j=l ' a + l  \xN! a + l  

ta+ t 
< (33) 

a(a + 1)h 

where t is the point at which maximum occurs for the expression on the right 
hand side of (32) and is given by 

Hence 
t=[a+(a+ 1)h]/a+ 1. 

ta+ l 
IlEII <a(a+ 1)h Iltill 

t a+1 h3x~. 
< If"l =a(a+l)h  12 

( a ~a+l h2M (34) 
< ~ !  a(a + 1) 

where x~[f"l <M. We have 

Theorem 1. Assume that f satisfies (A) and x~[f"l<M. Then for the spline 
difference scheme (5) with xi=Jh, we have IIEII = 0(h 2) for sufficiently small h. 

Consider now the spline difference scheme (19) for uniform mesh. Write S 
=hS* where 

- ( j - l )  

0 

The inverse S*- I  of S* is obtained to be 

2 - 2  0 

- 1  4 - 3  

- 2  6 - 4  
�9 . " .  

2j - ( j +  1) 
�9 . " , .  

- ( N - Z )  2 ( N - l ) _  

(35) 

S_ 1 j ( N - i )  
i,j - Ni  ' i>j  

N - j  
- i < j .  

N ' 
(36) 
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The ith row sum is 

Hence, 

and 

N-1 i N--1 
Z 8 - 1  = -1 -1  

i,m 2 Si,m-I- 2 Si, m 
m = l  m = l  m = i + l  

( N - i ) ( i + l )  ( N - i ) ( N - i - 1 )  
- q 

2N 2N 
N - i  

2 
(37) 

1 
Ils * - 1  II < - -  (38) 

=2h  

1 
ItS -x  II < (39) 

=2h  2- 

From (25), we get 

< 1 h 2 
blElI = 2 h  2 Iltjlt ~ N  (40) 

where ]rjf"l <N. We have 

Theorem 2. Assume that f satisfies (A) and let f "eC{(0 ,  1] xlR} and rjlf"] < N. 
Then, for the spline difference scheme (19) with rj=jh, we have, ]IE]] =O(h2), for 
sufficiently small h. 

4. Computational Experiments 

If the left boundary condition is u'(0)=0, then we need an extra difference 
equation valid at j = 0 .  In the limit, at j = 0 ,  the differential Eq. (1) may be 
written as 

0 +~)u"=f(0, u). (41) 

A suitable approximation to (41) along with an approximation to u '(0)=0 may 
be combined to get the difference equation at j =0. Alternately, j = 0  may be 
avoided and a suitable approximation may be written at j = 1. For example, in 
the cylindrical case, to go along with the difference scheme (12), we may write 
in the case of uniform mesh 

h 2 

u~ - u  2 + ~ -  (5f~ - 2 f 2 ) = 0  (42) 

with the truncation error 

19 h3 ,,, t~Ih)=-~  u, + . . . .  (43) 

Equations (12) along with (42) give a ( N - 1 ) •  ( N - 1 )  system of equations for 
the unknowns u~,u2,...,uN_ x. The solution at r = 0  may be determined by 
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using any difference approximation to 

~2u 

2 ~-rz =f(O,  u) (44) 

and the computed solutions. 
The difference Eq. (19) is valid for j =  1, 2 . . . . .  N - 1 .  At j - 0 ,  we have in the 

spherical case 

~2 u 

3 ~r z- = f (0, u). (45) 

Again a suitable O(h 2) approximation to (45) may be written to combine with 
(19). Application of the above difference schemes to (1) generally produces a 
nonlinear tridiagonal system of equations. This nonlinear system may be 
solved by Newton's iteration. The Jacobian in this case is again a tridiagonal 
matrix, so that one tridiagonal system is to be solved for each iteration. 

We illustrate the above methods on the following boundary value prob- 
lems. 

Example 1. (Gustafsson [3]). 

u" + a_ u' = - x 1 - "  cos x - (2 - a)x -  ~ sin x, 
X 

u(0)=0, u(1)=cos l .  

The exact solution is u(x)=x  1-" cos x. 
Gustafsson [3] considered the above problem in (6, 1) instead Of (0,1) and 

constructed compact second order, compact fourth order and noncompact 
fourth order methods for its solution. We have solved the above problem using 
the method (5) for a =  1/2. The results are tabulated in Table 1. Our results are 
superior to the results obtained by the compact second order method of 
Gustafsson. The results also verify the second order convergence of (5). 
The computational implementation of the non-uniform mesh using o-j=hj+ 1~hi 
was given in Jain [4]. We have also implemented this procedure for this 
problem using N=20 ,  40, 80, 160 for o- j=constant=a o and various values of 
ao>  1. We found that these results are accurate and show the second order 
convergence of (5). 

Example 2 (Chawla and Katti [1]). 

(X~U')'=flX~+fl-2[(O~q-fl--1)q-flX#]U, u(0)= 1, u(1)=e. 

The exact solution is u(x)=exp(xP). 
We solved this example using the method (5) for two sets of values ~=0.5, 

fl=4.0; ~=0.75, fl=3.75 with h = 2  -k, k=4(1)7. The maximum absolute errors 
in the results along with the maximum absolute errors in the results obtained 
by the methods M 1 and M 2 of [1] are given in Table 2. The results obtained 
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Table 1. Maximum absolute errors. Example 1 

S.R.K. Iyengar and P. Jain 

N Spline Scheme (5) 

a = 1/2 

Gustafsson [3], a=  1/2, 6=0.1 

compact second compact fourth 
order order 

20 2.7 ( -4 )  
40 6.6 (--5) 
80 1.6 ( - 5 )  

160 3.9 (--6) 

7.7 ( -4 )  1.5 ( -5 )  
1.7 ( -4 )  7.2 ( -5 )  
4.0 ( -5 )  4.0 ( -8 )  

Table 2. Maximum absolute errors in Example 2 

N Spline scheme (5) 
c~ =0.5, fl=4.0 

Chawla and Katti [1] 
e =0.5, fl=4.0 

Method M 1 Method M 3 

16 1.0 ( -2 )  4.3 ( -2 )  1.2 ( - 2 )  
32 2.5 ( -3 )  1.1 ( -2 )  3.0 ( - 3 )  
64 6.2 ( -4 )  2.9 ( -3 )  7.3 ( -4 )  

128 1.6 ( -4 )  7.2 ( -4 )  1.8 ( -4 )  

c~=0.75, fl=3.75 e=0.75, /3=3.75 

Method M t Method M 3 

16 8.9 ( - 3 )  1.4 ( -1 )  1.2 ( - 2 )  
32 2.2 (--3) 4.1 ( -2 )  2.9 ( -3 )  
64 5.5 (--4) 1.1 ( -2 )  7.2 ( - 4 )  

128 1.4 (--4) 2.7 ( -3 )  1.8 ( - 4 )  

Table3. Maximum absolute errors in the solution of the Bessel's equa- 
tion. Example 3 

N 10 20 40 80 

7.2 (--5) 2.6 ( -5 )  8.5 ( -6 )  2.3 (--6) 

by our method are superior as compared to the results of [1]. The results also 
show the second order convergence of the method (5). 

Example 3. Bessel's equation of order zero 

(xu')'+xu=O, u'(0)=0, u(1)= 1. 

The exact solution is u(x)=do(X)/Yo(1 ). 
This example is solved by the method (12) and (42) with h = 1/10, 1/20, 1/40 

and 1/80. The maximum absolute errors are given in Table 3. 
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Table4.  Maximum absolute errors in Example 4. 
Error tolerance = 1.0 • 10 -8 

N 8 16 32 64 
6 

- 1 . 0  8.6 ( - 5 )  2.0 ( - 5 )  6.4 ( - 6 )  1.7 ( - 6 )  
0.5 6.7 ( - 5 )  7.1 ( - 6 )  2.7 ( - 6 )  7.6 ( - 7 )  
1.0 4.7 ( - 4 )  3.1 ( - 5 )  1.4 ( - 5 )  4.0 ( - 6 )  

Table 5. Errors in spline solution. Example 4. 8 = -1 .0 ,  h = 1/8 

8" 9 10 11 12 a 

32 32 32 32 32 

1.9 ( - 5 )  8.2 ( - 6 )  - 6 . 5  ( - 7 )  -8 .1  ( - 6 )  - l . 4  ( - 5 )  

24 ~ 25 26 27 28 a 

32 32 32 32 32 

-3 .5  ( - 5 )  - 3 . 3  ( - 5 )  - 3 . 0  ( - 5 )  - 2 . 6  ( - 5 )  - 2 . 2  ( - 5 )  

Errors in finite difference solution 

Example 4 (Kubi&k and Hlavfi~ek [6]). 

U ! 

u" + - - =  -be",  u'(O)=O, u(1) =0.  
x 

The exact solution is given by 

[ 8B/,~ ] 
u ( x ) - -  In  

[ ( B x  2 + 1)2J  

8B/b 
where - - - 1 .  

(S + 1) 2 

This problem has no solution for 6>2 .  For b = 2  it has a unique solution. 
For b < 2  it has two solutions. The numerical methods approximate smaller of 
the two solutions in this case. This example is solved by the method (12) and 
(42) with h = 2  -k, k=  3(1)6. The resulting nonlinear equations are solved by the 
Newton's method. The starting values for the solution are arbitrarily taken as 
ui= 1-ih,  i=1 ,  2 . . . . .  N and the iteration is stopped when the tolerance 10 -8 is 
achieved. Maximum absolute errors for b = -1 .0 ,  0.5, 1.0, are given in Table 4. 
We have also tested the efficiency of the spline functions to find the in- 
termediate solutions using the computed numerical solutions. We have used 
the spline (10) to find solutions at three equidistant points inside the intervals 
used to find the numerical solution. Errors in the spline solution for 6 = -1 .0 ,  
h = 1/8 for the intervals (1/4, 3/8) and (3/4, 7/8) are given in Table 5. The results 
show that the spline solution at intermediate points are atleast of the same 
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a c c u r a c y  as t he  n e i g h b o u r i n g  n u m e r i c a l  s o l u t i o n s .  T h e  s a m e  b e h a v i o u r  is s een  

in al l  t h e  o t h e r  i n t e r v a l s  a n d  for  o t h e r  v a l u e s  o f  6. 
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