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Summary. This paper analyses the convergence of spline collocation meth- 
ods for singular integro-differential equations over the interval (0, I). As 
trial functions we utilize smooth polynomial splines the degree of which 
coincides with the order of the equation. Depending on the choice of 
collocation points we obtain sufficient and even necessary conditions for 
the convergence in Sobolev norms. We give asymptotic error estimates and 
some numerical results. 
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1. Introduction 

1.1. In this paper we consider the approximate solution by splines of singular 
integro-differential equations of the form 

m 

1 

+~Kk(x,y)u(k)(y)dy)=f(x), xe[0,  1], (1.1) 
0 

m - 1  

(Bu)j= ~ (Pjk U(k)(O)+qjku(k)(l))=Vj, j = 0  . . . . .  m--1. 
k = 0  

Here the right-hand side f, the continuous functions a k, b k, K k and the numbers 
P~k, qjk, vj are given, u is the unknown function and the first integrals are to be 
interpreted as Cauchy principal values. There is a considerable engineering 
interest in solving such equations, which stems from the fact that a large 
number of boundary value problems in aerodynamics, elasticity, electromag- 
netics and many other fields of mechanics and engineering can be reduced to 
equations of the form (1.1). Here we mention only the famous Prandtl integro- 
differential equation of wing theory (cf. [9]). 
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It is well known (cf. [9, w 117]) that (1.1) is equivalent to a singular integral 
equation of the form 

am(X) V(x)+bm(x ) 1 v(y) . 1 
z~i ]o Y L ~ a y +  S (1.2) 

where v(x)=u~ Approximation methods for (1.2), which are based on 
special polynomials, have been studied for many years. The probably most 
complete analysis of such methods was given in Junghanns and Silbermann 
[7]. In the last years other methods were proposed, which use splines and 
special finite elements at the endpoints as trial functions. Here we mention the 
papers of Washizu and Ikegawa [15], Dang and Norrie [1], Gerasoulis and 
Srivastav [4], Jen and Srivastav [6], Gerasoulis [3], which deal mainly with 
collocation methods for (1.2) with a m - 0  and b , , -1 .  The obtained numerical 
results show a high efficiency of these methods, but up to now no convergence 
results have been proved. A first rigorous analysis for the L2-convergence of 
Galerkin methods with splines of arbitrary degree was given by Elschner [2]. 
He proved in particular that Galerkin's method for (1.2) converges in L z if the 
corresponding operator is invertible and strongly elliptic, i.e., the coefficients 
satisfy a,,(x)+2bm(x)#O, x~[0,1] ,  2 ~ [ - 1 , 1 ] .  Later on it was proved in 
Pr6Bdorf and Rathsfeld [11] that these conditions are necessary and sufficient 
for the L2-convergence of a collocation method, which seeks the approximate 
solution as a piecewise linear function vanishing at the endpoints and which 
collocates (1.2) at the uniformly distributed mesh points. 

In this paper we shall analyse collocation methods for (1.1) using smooth 
polynomial splines of degree m on a quasiuniform mesh as trial functions. 
Depending on the choice of collocation knots we obtain sufficient conditions 
for the convergence in Sobolev norms. These conditions show in particular 
that collocation methods can converge when the function am(X ) vanishes inside 
the interval (0, 1). 

1.2. We write (1.1) in the form 

,~ 'u=  , where d =  : H m ~ @ .  (1.3) 
Cm 

Here H"  denotes the usual Sobolev space of order m on (0, 1) and L 2 =L2(0, 1). 
As usual we define the norm of 

f L 2  by [kfll~2+ - -  2 2 := Ilvllr ~ Ivjl 2. 
j = o  

Obviously, ~ is bounded. We associate with this operator the symbol 

o~,(x,z)=a,.(x)+b,.(x)z, (x, z)Er0, 

where F o is the oriented boundary of the rectangle {0=<x< 1, - 1  < z <  1} in the 
x -z -p l ane ,  and we denote by indroa d the winding number of this closed 
oriented curve around the origin. With the assumptions o~(x,z)=t=O, (x,z)eF o, 
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indroa.~=0 and d i m k e r s r  we have that for any f c L  2, ~eff~m the problem 
(1.1) has a unique solution u e H  '~. This follows from the theory of singular 
integral equations (cf. [5]) and the fact that the operator 

1 m - - 1  

s 0 "~ Y) u ~ dY + _ (a (xt u' 'ix) 

"~ bk(X) i u(k,(y) dy 1 y) + ~ K~(x, y) U(k)(y) d (1.4) 
nt  o y - x  o 

maps H m compactly into L 2. 
We shall analyse the following collocation method for (1.1). Let 

7(x)~ C ~ [0, 1] with 7(J)=J, J =0, 1, and 7'(x)> 0. For h =n-1 ,  noN, S~' denotes 
the space of ( m - l )  times continuously differentiable polynomial splines of 
degree m subordinate to the mesh {y(rh)}~"=o. In addition, we fix e,e(0, 1) and 
set x~=7((r+e,)h), r =0, . . . , n - 1 .  The collocation method under consideration 
defines Uh ES ~ by 

AUh(Xr)=f(xr) , r=O . . . . .  n-- l ,  
(1.5) 

(B Uh) j = VS, j = 0 . . . . .  m - 1. 

Since dim S~"=n+m, we may ask for conditions ensuring, for given e, the 
existence of approximate solutions UheS' ~ for all n large enough and their 
convergence to the exact solution u in H m as n ~ oo, 

In order to formulate this condition, we introduce the function 

1-~ s in2ny  1~ cos2ny  
~ . ( 2 )  = ~' = d y - i  ~ d y ,  2 ~ [ - 1 ,  1]. (1.6) 

_~ s l n ~ y  e s t o r e y  

We note that, for fixed ee(O, 1), we have (b~e C ~ [ -  1, 1] with 45(j)=j, j = -1 ,  1, 
and {@~/2(2): 2 e [ - 1 , 1 ] }  = [ - 1 , 1 ] .  

L 2 

T h e o r e m  1. Assume that d : H m--* (~  is invertible and that C~ 

am(x ) + ~ ( 2 )  bm(x ) :~ O, 
(1.7) 

am(j) + tb0(2) bin(j) 4: O, 

where x6(0,1), 2 6 [ - 1 , 1 ] ,  j=0 ,1 ,O~[c ,  1/2]. Then the linear system (1.5) is 
uniquely solvable Jor any n large enough and for any bounded and Riemann 
integrable function f and ~ "  one has Ilu - - U h l l n ~ O  as n--* oo. 

2. P r e l i m i n a r y  R e s u l t s  

2.1. Theorem 1 can be proved by using recently obtained results on the 
convergence of spline collocation for pseudodifferential equations with piece- 
wise continuous coefficients on a closed curve (cf. [13, 14]). In this section we 
give simple proofs of the required results. 
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We start with a simple closed C~~ F, which contains the interval 
[0,1] and is given by a parametrization z=z(x), xe[0 ,2] ,  such that z'(x)#:O, 
z(0)=z(2) and z(x)=7(x), xe[0 ,1] .  On this curve we' consider a singular in- 
tegral operator L defined by 

Lq)(z) =a(z) qg(z) + ~ i  q)(~) ,~ . ! ~ z - a ; ,  (2.1) 
with 

zEF, 

= fam(7(x)), z =7(x)e[0,  1]; 
a ( z )  

(1, zer\[0,13; 
= J'b,,(7(x)), z = 7(x)e[0,1];  b(z) (0, zeF\[O, 13. 

Under the assumptions on % and b m this operator is invertible in L2(F) ([5]) 
and we represent it in the form 

L~o(z) =a(z)qg(z)+b(z)Sqg(z)+b(z)K~o(z), z~F, (2.2) 

where 

[2 q~(z(y)) dy, x~[0, 2], (2.3) Sq~(z(x)):= 1 - e x p ( n i ( x - y ) )  

and the operator 

1 2 xi  
Kq)(z(x)):=~i ! q)(z(Y)) (~\z(y)-z(x) z'(y) 1 -exp(rti(x-y))) dy 

maps L2(F) compactly into the space of continuous functions C(F). 
We consider the so-called e-collocation for the equation 

Lq~=O. (2.4) 

For  h =n -x, n~N, X h denotes the set of piecewise constant functions on F with 
the break points z(kh), k = 0  . . . . .  2 n - 1 .  We seek q~hEXh such that 

Lq~h(zr) = ~(zr), z~=z((r+e)h), r = 0  . . . . .  2n - 1 .  (2.5) 

It is well known (cf. [5]) that for any 

+oo 2 

q)(z(x))= ~ q3jexp(~ijx)EL2(O, 2) with ~bj=�89 ScP(x )exp( -~ i jx )dx  
j =  - oo 0 

o n e  h a s  + oo - 1 

Sq)(z(x))= ~ ~exp(~i jx) -  ~, ~exp(nijx). (2.6) 
j = O  j =  - ~  

Simple facts on Fourier series imply that for 

Ok(z(x))={1, x~[kh,(k + l)h) (2.7) 
O, xr k = 0  .... , 2 n - l ,  

sin rc j h /2 S O k (z~) = hi2 + ~ exp(~ ij h (r - k  + e - 1/2)). 
o*j~z r~ljl 
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Then the matr ix S,: 2.-1 =IISOk(Z)L,k=O is a circulant and, by the known formula 
for its eigenvalues ~2 ~2.- 1, t m=o we obtain 

i.e. 

2 n - - 1  

2 t=  ~ exp(7~ilkh)SOk(zo)=fi~o 
k = O  

2 n - 1  

+ ~ sinrtjh/Zexp(z~ijh(e-1/2)) ~ exp(Tzijk(l-j)) 
o*~z  rtljl k=o 

sin n h(l + 2j n)/2 
= 6 z o + 2 n  

~z 7zll + 2jnl 
exp(~ i h(1 + 2j n)(e - 1/2)), 

Since 

~0 ~ 1~ 

sin ~ I h/2 - -  exp(rt i I h(e - 1/2) ~, exp(2 zt ij e) 
j~z [j + l h/21 ' 

z exp( -27~  i z ( e -  1/2) = ~ exp(2rcije) 
s innz  j~z J + z  ' 

by (2.6) we derive 

2 z = 2 i  exp(ni lh(e-y) )  d 

I=1  . . . . .  2 n - 1 .  

z~(O, 1), 

l = 0 , . . . , 2 n - - 1 .  

Setting l h/2 ~ z and remarking that 

exp(2niz(e -y))  
2 

o J 1 -exp(27z i(e-y))  
1-,  exp(lt i ( 1 - 2 z ) y )  dy, 

d y = - i  ~ sin rt y 

by (1.6) we obtain 

L e m m a  1. The eigenvalues of  S, S 0 2,- 1 = II k(Z,)llr, k= o are 

2 t = ~ ( 1 - 1 h ) ,  1=0  . . . . .  2 n - 1 .  

Moreover, S,=V.q~,~V*,, where r  ~= 116k1r  -lh)llk, t=o2n-1 and 
V,=(2n) -1/2 Ilexp(z i k l h)llk, t= o.2"-1 

2.2. By using the theory of project ion methods,  we can now analyse the 
convergence of z-collocation. To  this end we introduce the or thogonal  pro- 

2n - -1  

jections Ph: L2(F)~Xh and the interpolat ion projections Qh$(z)= ~ ~b(z r) Or(z). 
Then the collocation Eqs. (2.5) can be written as ,= o 

QhLqgh=Qh ~, ~DhEX h . (2.8) 

Let  us state some propert ies of the operators  QhLIxh: X h --~X h. 

L e m m a 2 .  1) Ph ~ I  as h ~ O  (strong convergence in L2(F)). 
2) lt(I -Qh) ~ltL~r~--' 0 for any bounded and Riemann integrable function ~ on 

r (~g(r)). 
3) QhLPh-, L as h~O. 
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Proof 1) follows from the density of step functions. 
2) is an immediate consequence of 1 

2 n -  1 (k+  1)h 
N(I-Qh) 2 _-- OllL~(r~ F, ~ I~'(z(x))--~(Zk)121z'(x)[dx 

k =  0 kh 

2 n - - 1  

=<c supl~O(z)[ ~ h sup It~(z(x))-~b(z(y))l. 
z E F  k = O  kh<=x ,Y<=(k+l )h  

To prove 3) we remark that 

2 n - 1  2 n - 1  [12 2 n - 1  

clh ~ kOkl 2< ~ ~OkOk(Z) <c2h ~ ](Ok[ 2, (2.9) 
k = 0 k = 0 L2(F) k = 0 

where cl,c 2 do not depend on n and tPh~X h. Hence, for ~ R ( F )  we have 
I](I--Qh)~ PhHL2w) <c and 

2n- -1  (k+  1)h 

II(l-Qh)~Qhexp(nijx)U~2w)= ~ ~ IO(z(x))-q,(zk)lEIz'(x)ldx, 
k = O  kh 

which prove that (I--Qh) qJPh ~ O. Moreover, from Lemma 1 and (2.9) we know 
that ][QhSPhI[L2tF)<C max ]q~(2)] and that 

~.~[ - 1, 1] 

QhSQhexp(~zijx)=~(1 -jh)Qhexp(Tzijx), 0 < j < 2 n ;  
[ ~ ( -  1 -jh)Qhexp(~ijx), -2n<j<__ -1.  

Thus QhSPh--~S, which together with N(I--Qh)KIIL~tr)-~O proves the third 
assertion. []  

It is well known that Lemma 2 together with the stability of the operators 
QhLPhh proves the L2-convergence of the e-collocation when the right-hand side 
OeR(F). Here stability means that 

IIQhLPhq~llL2(r~>=c IIPhq~ll L~r~ 

for all n large enough and all q~eLE(F) with a constant c independent of n and 
p. 

In order to study the stability of QhLPh, for any ~eF we relate with L an 
operator L~ defined by 

L~ q~(z): =a(~)qg(z)+b(~)S~o(z), ~ oeO, 1, 
and 

Ljqg(z): =(a,.(j)p(z)+q(z))qg(z)+b,.(j)p(z)S~o(z), j = 0 ,  1, 

where p (z )= l ,  zE[0, 1], p(z) =0, z~F\[O, 1] and q ( z ) = l - p ( z ) ,  and analyse the 
stability of QhLcPh, (~F. 2n- 1 

Seeking the solution of QhLr in the form q~h(Z)---- ~ ~OkOR(Z), 
for ~ ~e0, 1 we get a linear system with the matrix k= 0 

L~,. =a(() I. + b(f) S. =- V. U6k~(a(O + b(() cI'~(1- l h)l[ka= 2.- ~o V. *, 

H e r e  a n d  in  t h e  f o l l o w i n g  c , q ,  . . .  d e n o t e  g e n e r i c  c o n s t a n t s  h a v i n g  d i f f e r e n t  v a l u e s  a t  d i f f e r e n t  

p l a c e s  
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I.  denoting the 2n x 2n identity matrix. By (2.9), QhL;Ph, ~4:0, 1, is stable if and 
only if a(~)+b(0q~()04:0,  2 e [ - 1 , 1 ] .  If ~ = j = 0 , 1 ,  then the matrix of the 
linear system is 

L j.,, =(am(j) p,, + q.) I. + b,.(j) p. S., 

where p.=llbk~ 2.-1 P(Zr)l[k,~=o, q.=I.--p. .  After multiplying the transposed matrix 
E j,. by V* we obtain 

V* Ej,. =(am(j) + b.,(j) ~., ~) V* p. + V.* q.. 

Therefore the k-th coordinate of the vector V* Ej,.q~. ~ =(~o o . . . . .  ~o2._t)e~ 2", 
equals 

* , =(2n)_ 1/2 ~" . -1  (V. E~,.Co)k [a,.(j)+bm(j)q)~(1-kh)] ~ qo~exp(-ltikrh) 
( r = O  

2n--1 } 

+ ~ ~p~exp(-rcikrh) =(2n)-l/2exp(rcik(n-1)h) 
r = n  

n - - [  

x [a,.(j)+b,.(j)q)~(1-kh)] ~ q) . . . .  ~ exp(nikrh) 
r = O  

At this point we utilize a nice result on collocation methods via trigonometric 
polynomials for singular integral equations on the unit circle. Consider a 
singular integral equation with piecewise continuous coefficients 

Mj,~ O (exp (2 n i z)) = (a m (j) + b m (j) g~(exp (27r i z)) P ~9 (exp (2 n i z)) 

+Qtp(exp(2niz))=z(exp(2rcir)), 0 < z < l ,  

with P=(I+S)/2, Q = I - P  (cf. (2.6)) and g , ( exp(27z i~ ) )=4~(1 -2r ) .  By seeking 
an approximate solution in the form 

n--I  
~9.(exp(2niz))= ~ (p . . . .  l e x p ( 2 n i r r )  

r~ --n 

such that 
Mj,~n(exp(~ikh))=z(exp(~ikh)) , k=O .. . . .  2 n - l ,  

we get a linear system, whose matrix coincides with (2n) 1/2 D~IV~ * Ej,., where 
D =jl6krexp(rtikh( n 2n-1 --1))llk,r=O. It was proved in Junghanns and Silbermann 
[8] that 

2 n -  I 2 n -  1 
IMj,~b.(exp(nikh))[2>c(2n) ~ Iq~kl 2 

k=O k=O 

for all n large enough, where c does not depend on n and ~9, if and only if the 
operator Mj,~ is invertible in L 2, i.e. (cf. I-5]) 

am(j) + b,.(j) ~(2 )  4= O, 

a.,(j)+2b,.(j)+-O, 2 ~ [ - 1 ,  1], 
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and the winding number of the curve consisting of these two pieces around the 
origin equals zero. Since the matrices D. and F, are unitary, we conclude that 
QhL~Ph, j = 0 , 1 ,  are stable if and only if the numbers am(j) and bin(j), j = 0 ,  1, 
satisfy (1.7). By standard perturbation theorems for projection methods we 
derive 

Lemma3.  The operators Qh(L;+K)Ph, ~ F ,  are stable if and only if the con- 
ditions (1.7) are satisfied. 

Now we are in position to establish the stability of QhLPh. Obviously, for 
any 6 > 0  and any ( e F  there exists a nonnegative C oo function g~(z) with small 
support and &(~)= 1 such that 

t1Qh g; (L - L; - K) Ph I1 t2tr) < 6 

for all n large enough. Hence, if (1.7) holds, then there exists a sequence of 
uniformly bounded operators De, h: Xh---~X h so that 

Q h gr LPh Or Ph = Qh g~ Ph. (2.10) 
N 

After choosing a finite number of points (1 . . . . .  (N such that ~ g~j(z)>0 we 
introduce J= 

N 

Gh'= E QhgjDj, heh w i t h  gj=g;j, Dj, h=DG, h. 
j=l 

Then 
N N 

QhLGhPh = ~ QhLQhgjOj, hPh = ~ QhgjLPhD~,hPh 
j = l  j = l  

N 

+ ~, Qh(LQhg~--gjL)PhDj, hPh. 
j=l 

N 
By (2.10), the first sum equals Qh ~ gjPh, which is invertible in X h. To handle 

j=l 
the second term we note that 

IIQhS(Qh--l)gjPhllL2W)<__chllnh[ (cf. [12-]) 

and that L g j - g j L  maps L2(F) compactly into C(F). Hence, 

N 

Qh(LQhg~--gjL)PhD~,hPh=QhM'Ph + Mh 
j=l 

with compact M': L2(F)~C(F) and IIMhllL~tr)~O as h ~ 0 .  Thus we have 
shown that, if (1.7) holds, then there exist uniformly bounded operators G~: 
X h ~ X h such that, for all n large enough, 

QhLGhPh=Ph +QhM Ph, 

where M: L 2 ( F ) ~  C(F) is compact. Setting F h = G' h -PhL-1M Ph we obtain 

QhLFhPh =QhLG'h Ph --QhLPh L-1MPh 

=Ph +(Oh--QhLPh L- ') M Ph. 
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By Lemma 2, Q h L P h L - I ~ I  and, therefore, 

II(Qh--QhLPhL-1)MPhlILz(r)---~O as h --, 0. 

Consequently, for all sufficiently large n there exist uniformly bounded oper- 
ators F~,: Xh--*X h such that QhLPhF~Ph=Ph. Thus, we have proved 

Lemma 4. The operators QhLPh are stable if (1.7) holds. 

Remark. This proof uses a local principle developed in [10] for a more general 
situation. By this method one can also show that the conditions (1.7) are even 
necessary for the stability of QhLPh (cf. [14]). 

Now we consider the matrix of the system (2.5) when % is sought in the 
2 n - - I  

form q~h(z)= ~ ~OkOk(Z ). By (2.1), we have LOk(Z,)=O, O < k < n < r < 2 n - 1 ,  and 
k = O  

LOk(Z,)=6kr, n<k,  r < 2 n - 1 .  Hence 

with the n x n matrices A , =  IlLOk(Zr)ll~-k~= o, the identity matrix I ,  and the zero 
matrix 0,. From Lemma 4 and (2.9) we conclude 

Corollary 1. I f  the conditions (1.7) are satisfied, then the matrices A, are in- 
vertible for all n large enough and 

n--1  n - -1  

Z I(A,~)kl 2>c  F, Iq~k[ 2 
k = O  k = O  

for all ~p =(q~o . . . . .  tp._ 1)~C" with a constant c independent of n and Cp. 

3. Proof of Theorem 1 

3.1. In this section we shall prove Theorem 1 and make some remarks concern- 
ing error estimates. 

We begin by analysing the equations 

Ao Uh(X,) =f(xr) ,  r =0  . . . . .  n -- 1, 

(B Uh) ~ = V j, j = 0 .. . . .  m -- 1, 

where AoU(X):=(A-T)u(x)=am(x)u(m)(x)+bm(x) i u(")(Y) dy. Letting Qhf(x) 
n--1  7~1 0 y - - x  

(3.1) 

= ~ f(Xk)Ok(7(X)) (cf. (2.7)), (3.1) can be written in the form (cf. (1.3)) 
k = 0  

(Qh 0 ) , i ,  " denoting the identity mapping in II?'. Hence, (3.1) can where ~h = I,, 

be considered as a projection method and 
s~ ~ 

ahdo: S;"-* | 



3 4 6  G .  S c h m i d t  

n + m - 1  

k = 0  

By using the results of Sect. 2 it is easy to establish the properties of the 
operators ~h XUColSr, which are needed for the convergence analysis of (3.1). 

First, for any u e H  m, UheS" ~ with IlUh--UNHm~O we have 

II~hdoUh--doUllo--*O as h ---~ 0. (3.3) 

Indeed, the third assertion of Lemma 2 ensures that for ~ocL2(cL2(F))  and 
( t O h ~ S O ( c T - S h )  with I l q ) - - q ) h l t L 2 - - - - ~ 0  o n e  has [IQhL~Oh--LqgIIL2-"*O. Setting q~=u (m), 
~Oh=U~ ") we obtain [[QhAoUh--AoUllL2~O , which together with BUh---~Bu estab- 
lishes (3.3). This together with the Banach-Steinhaus-Theorem yields, in partic- 

L 2 

ular, that the mappings ~h ZgoISr: H" ~ @  are uniformly bounded. 
Cm 

Furthermore, these mappings are stable if the conditions (1.7) are satisfied. 
To prove this assertion, we introduce the norm 

m - 1  1 

Ilull~ ~= ~ I(B u)jI 2 + f lu(m)(x)l z dx,  
j = O  0 

which is, in view of dimker~r equivalent to the usual Sobolev norm 
ll'llnm. Besides this, we construct a special basis of S~'. Since the m-th de- 
rivative of u h is a step function on [0, 1] with break points at ?(kh), we may 
find Sk~S'~, k=0 , . ,  n - l ,  such that ~(,,)-t~ Obviously, these functions are �9 ' ~k - -  ~ k '  

linearly independent and form together with the functions Sk (N)"~-X  k - n ,  

k = n , . . . , n + m - 1 ,  a basis of S~'. On seeking the solution of (3.1) in the form 

u k Sk(X), we get a linear system with the matrix 

where 

, Bm] 

• i  dy  , - 1  A ,  = %(xr )  6k~ + Ok (y) 
Y - - x r  r,k=O 

B - k m - 1  m - l , n - 1  m--II(Bx )jll~,~= o, Cm,.= II(Bs~)jllj=o,~=0 and 0,,,, denotes the n x m zero ma- 
trix, since A o s k(x) - O, k = n . . . .  , n + m - 1. 

The notation A, for the n x n matrix is justified since 

[ILO (z,)]],~ ~ 1 
k , = 0  

b,,(7((r + h)) ),((k + 1)h)  

= a,.(~((r + 0 h)) 5k~-~ J 
7z i ?(kh) 

(~k~+ i y _ x  r r,k=O 
dy  

0 

~--7((r+e) h) ~,a= 

From Corollary 1 we know that A, is invertible for any sufficiently large n if 
(1.7) holds. Since dimkers~r the matrix B m is nonsingular. Hence, for n 
large enough (3.2) is uniquely solvable. Then Corollary 1 and (2.9) lead to 
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1 m--1  n - I  

I[~'~h~ffo Uh H2 =~ ]QhAoUhl 2 dX q- Z ](BUh)jl2~s h ~ ](Anbt)k[ 2 
0 j = O  k = 0  

m- -1  n - -1  m - - 1  

d- E ](BUh)j[2~C2 h E lak 12"~" Z I(BUh)j[ 2 
j = O  k = O  j = O  

n - - 1  1 m--1  

>e3 ~ ~ [uks~"~(x)12 dx + ~ I(Buh)jl2>elluhtt~, 
k = O  0 j = O  

which proves the stability of ~h ~oiS~. 
Now we denote 

Since 

IlU--UhlI,~G inf (NU--Whll~ + Ilu h-whlIm) 
wheS~ 

_-< inf (]lu --WhI[mACC [l~.~h,~Tffo U -- O~,~h,~ffo Wh[lO ) 

< inf (llU--Whtl~+e IIdoU--~hdoWhlJO)+C Ik(l--Qh)fliL~, 
~hes~ 

by (3.3) and the well-known approximation property of splines (cf. [2]) we have 

IlU--Uhll,, <e H(I --Qh)fllL2 + O(1). 

Thus we have proved 

Lemma5.  Under the hypotheses of Theorem 1 the Eqs. (3.1) are uniquely 
solvable for all n large enough. Moreover, for any f ~ U  with IIQhf-fLlL2~O 
and any ~ C "  we have [[U--UhIIHm ~O as n--* ~ .  

Now Theorem 1 is an immediate consequence of Lemma 5 and standard 
perturbation technique for projection methods. Indeed, from (1.4) we obtain 

where 

1 m - 1  

Tu(x) =~i  k ~-To [bk(x)(u(k)(1) ln(1 -- x) -- u(k)(o) in x)] + T" u(x), 

m - - I  1 

L: 
+ii Kk(X,y)u (y) dy. 

k = 0 0  

(3.4) 

(3.5) 

Obviously, T" maps H" compactly into C. 
Now let d(x)~ C. Then 
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n -  1 v((k+ 1)h) 

[](I-Qh)d(x)lnx][22 = ~ ~ ]d(x)lnx--d(xk)lnXk] 2 dx 
k = 0  y(kh) 

n - -1  ),((k + 1)h) 

<2 ~ ~ ([d(x)--d(Xk)12(lnx)2 +ld(xk)lZ(lnx--lnxk)2)dx 
k= 0 ~,(kh) 

<=c(~ + ~ f In dx , 
k = 0  kh 

where oJ(yh,d):= sup [d(y(x))-d(y(y))l~0 as h ~ 0 ,  and 
[ x - y l < h  

with 

. - 1  ~ ,+ , ,  ( ( k @ ~ )  h): . -1  2 ~ In dx=ch 2 dk 
k=O kh k = O  

k + ~ ]  2 (1 " k+e\2 d k = ( k + l ) ( l + l n ~ - ~ ] - k  + l n - ~ )  +1 ( l -e )3  ~3 
3(k+ 1)~ + 3 ~  -+  O(k3)" 

Therefore II(I-Qh)d(x)lnxl[22 ~ 0  as h ~0 .  Hence, II(I --Qh) T[Iu~.L~ ~ 0 ,  which 
implies 

I l d u - ~ h ~ u h l l o ~ O  for u~H% uh~S' ~ with Ilu--uhltm--->O. (3.6) 

From Lemma 5 we conclude that 

[ l ( ~ o  - 1  - - ( '~h  ~ o [ S ' ~ ) -  1 ~h )  ~--t[Hm--H m ~ O, 

where ~-'= : Hm--,@. Since d is assumed to be invertible, the mappings 
O "  

I+(.~hdolsr)-l~hY-: H"-~H m are invertible for all n large enough. Thus we 
derive 

I[ ~h d Uh II 0 = II-~h(~o + ~ )  Uh II 0 : II ~h ~o(I + (~h do lSr)- 1 ~h Y Uh)II o ~ c II uh II H- 

for all n large enough and all ua~S' ~. This together with (3.6) and Lemma 2 
proves Theorem 1. 

We note that conditions (1.7) are also necessary for the stability of .~a~]s;~. 

3.2. In these concluding remarks we shall assume that am, br,~H 1 and that the 
operator T" defined by (3.5) maps H m boundedly into H 1. Then by [2, Corol- 
lary 2.3] we deduce that if the conditions of Theorem 1 are satisfied, then d o 

H s 

maps H m+s isomorphically onto @, where 0 <=s <rain {Re K o, Re K1} + 1/2, K o 
=0(0), K 1 =--0(1), r 

0 , ,  1 am(x)+bm(x ) ix) = - -  m 
2~i am(X )-bm(x ) 

and In denotes the continuous branch of the logarithm in ~ \ ( - o % 0 ]  which 
takes real values on the positive real axis. Notice that, by (1.7), 
- 1 /2<Re~c j< l /2 ,  j=0 ,1 .  Since the operator T defined by (3.4) maps H m 
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H s 

compact ly  into H t, 0 =< t < 1/2, we obtain that  d :  H S + " ~  @ is an isomorphism 

for 0_-<s<min{Re~co, R e x l , 0 } + l / 2 .  Hence,  for f e l l  1 the solution of (1.1) 
u~H re+s, in general. Using the approximat ion properties of splines (cf. [2]) we 
obtain 

Theorem 2. Suppose the conditions of Theorem 1 to be satisfied and let f e H  1. 
Then the approximate solutions Uh~S" ~ of (1.5) converge to the exact solution u 
with the rate 

liu--uhllm,<ch S IIf IIn, (3.7) 

with 0 < s < min { Re ~c0, Re x 1,0} + 1/2. 
I f  the coefficients ba(x), k = 0  . . . .  , m -  1, satisfy bk(j)=0, j =0,  1, the estimation 

(3.7) holds with 0 <s < m i n  {Re to0, Re tq} + 1/2. If, additionally, bin(j) =0, j =0,  1, 
then the approximate solutions u h converge with optimal order to the exact 
solution 

I[u-unllHm<ch Ibf lira' 

Proof. By PhUeS"~ we denote  the or thogonal  projection of u with respect to the 
scalar product  ( ' ,  ")m given by (v, v)m = Ilvlk~, v e i l  m. Analogously to the proof  
of L e m m a  5 we obtain 

Llu--uhLIm < [lu - ~  ULIm + C II~h d U-- ~h Sg Ph Ullo 

= Ilu --Ph ullm + C IIQhZu --QhAPhulIL2, 
since B Ph u = B u. 

As ment ioned before in the first case we have uEH ~+s, 
0 < s < min { Re Xo, Re xl ,  0} + 1/2, such that 

I l u -  ~ ulL~<-_c h ~ Ilull,, . . . .  

Fur thermore  by (3.4) 

IIQhZ(U --Phu)IIL= < IIQhAo(u -Ph U)IIL2 + NQh T'(U -- Ph U)IIL2 + IIQh r"(u--P~u)llL=. 

In [14] we have proved that 

IIQh Zo(U -Ph u)ll L= < c Ilu t '~ --(Ph u)~"~ II L~ <= chs IlUlIH . . . .  

--Qh) r II,m~L= <Ch, such Since b k e H  1, k = O  . . . . .  m - l ,  from (3.6) we obtain II(I , 2 
that  

}IQa T'(U--Ph U)IIL: <= I1(I --Qa) r ' (u --Ph U)IIL~ + Jl T'(u--Ph U)IIL~ 

< C 1 h 1/2 Ilu -- Ph ull~ + c2 IlU - Ph Ullm< c h s IIUltH . . . .  

Since T" eL(H m, H ~) we obtain 

+ s  U IIQhT"(U--PhU)IIL~ <chl tl IIH . . . .  
Finally 

]lu --Uhllnm <=cl h ~ Ilutl,m+~ <ch  ~ Ilfllm. 
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In the second case we have T'u(j)=O, j = 0 ,  1, such that d maps H "+S iSO- 
H s 

morphically onto (~), where 0 < s < min { Re ~c o, Re ~c 1 } + 1/2. Hence 
Cm 

Ilu-uhllnm<chSllfllnl with 0 < s  < min{Re ~:0, Re ~c1} + 1/2. 

If in addition bin(j) =0, j =0, 1, then (1.1) can be considered as the restriction on 
(0, 1) of a singular integro-differential equation with sufficiently smooth coef- 
ficients on the closed curve F. Hence, d is an isomorphism from H m+l onto 
Hx 

(~), therefore the exact solution u~H m+l and ]jU--Uhllnm<ch/Ifl]n,. []  
C,n 

Remark. The presence of singularities of the solution u for smooth right-hand 
sides f indicates that estimate (3.7) cannot be improved even if higher degree 
splines on quasiuniform meshes are used. An improvement of (3.7) for spline 
collocation methods is possible by using special nonuniform meshes or by 
adding special finite elements representing the singularities of the solution to 
the spline base. But up to now the stability analysis of such collocation 
methods is an open problem. 

3.3. Numerical Results 

The spline collocation method has been used to solve a number of singular 
integral and integro-differential equations, including the following: 

(a(xZ-1)-l)u'(x) +1 i u'(y) dy=_a(l_xZ)3/4(l_x)l/Z_lf~ 
-1 y -x  

u(1) =0,  a~ l l ,  (3.8) 

which have the exact solution 

u(x)= i 
-1  \ l + x l  

From Theorem 1 we conclude that e-collocation with piecewise linear trial 
functions converges in the norm of H 1 iff 

e>llarctanexp(-(l+a)n/2) for a < 0 ,  

arctan exp ( - n/2) for a > 0. 

Note that for a < - 1  Eq. (3.8) is not strongly elliptic, such that Galerkin 
methods do not converge, in general. 

The obtained numerical results confirm the statements of Theorem 1 and, 
for uniform partitions, of Theorem 2, too. The tables below collect some results 
for different values of a, e, and x with n = 80, A denotes the maximale difference 
between the exact and approximate solution in mesh points. 
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a = 0 ;  T h e o r e m  1 p r o v e s  c o n v e r g e n c e  in H 1 i r e > 0 , 1 3 0 5  

e =0 .25  e = 0 . 5  e =0 .75  

- 0 . 8  - 1.7592 - 1.7583 - 1.7503 

- 0 . 2  - 0 . 9 4 7 3  - 0 , 9 4 7 2  - 0 . 9 4 3 4  
0.2 - 0 . 5 4 4 7  - 0 . 5 4 4 2  - 0 . 5 4 3 2  

0.8 - 0 . 0 9 1 5  - 0 . 0 9 1 4  - 0 . 0 9 1 0  

A 0.0092 0.0075 0.0027 

exac t  

- 1 . 7 5 2 4  

- 0 . 9 4 4 4  

- 0 . 5 4 3 7  
- 0 . 0 9 1 3  

a =  - l ;  T h e o r e m  1 p r o v e s  c o n v e r g e n c e  in H 1 if e > 0 . 5  

- 0 . 8  

- 0 . 2  
0.2 

0.8 

A 

~, =0 .25  

- 1.7607 

- 0.9466 
- 0.5844 

- 1 9 . 4 6 6 8  

66.3646 

= 0 . 5  

- 1 . 7 6 5 3  
- 0 . 9 4 4 7  

- 0 . 5 4 3 7  

- 0 . 0 9 1 3  

0.0228 

=0 .75  

- 1 . 7 5 4 9  

- 0 . 9 4 3 7  
- 0 . 5 4 2 9  

- 0 . 0 9 1 2  

0.0048 

a =  - 2 ;  T h e o r e m  1 p r o v e s  c o n v e r g e n c e  in H 1 if e > 0 . 8 7  

e =0 .5  ~ =0 .75  ~ =0 .9  

exac t  

- 1 . 7 5 2 4  

- 0 . 9 4 4 4  

- 0 . 5 4 3 7  
- 0 . 0 9 1 3  

exac t  

- 0 . 8  

- 0 . 2  

0.2 

0.8 

A 

- 1 . 7 4 9 1  

- 0 . 9 4 9 9  

- 0 . 5 2 8 3  
78.8829 

324.2297 

- -1 .7629 
- 0 . 9 3 2 9  

- 0 . 5 3 3 3  

6.7821 

22.8431 

-- 1.7582 

- 0 . 9 4 1 4  

- 0 . 5 4 3 5  

- 0 . 0 9 5 1  

0.0068 

- 1 . 7 5 2 4  

- 0 . 9 4 4 4  
- 0 . 5 4 3 7  

- 0 . 0 9 1 3  
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