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Summary. Approximate solutions of the linear integral equation eigenvalue
problem can be obtained by the replacement of the integral by a numerical
quadrature formula and then collocation to obtain a linear algebraic eigenvalue
problem. This method is often called the Nystrom method and its convergence
was discussed in {7]. In this paper computable error bounds and dominant
error terms are derived for the approximation of simple eigenvalues of
nonsymmetric kernels.

Subject Classifications, AMS (MOS): 65R05; CR: 5.18.

1. Introduction

In an earlier paper [7] the author discussed the convergence of the Nystrém
method (quadrature method) for the approximate solution of the integral equation

Ax(s) =§ k(s, t) x(t) dt (1

where a and b are finite, k(s, t) is known in C[a, b]x[a,b] and A and x(s) are
unknowns. Equation (1) can be written

Ax=Kx 2

where xe X, a linear space, and K: X — X. Under certain conditions on k(s, t) and
with an appropriate norm on X, K is a compact operator in a Banach space X.

To obtain approximations to the solutions of (2), a related matrix equation can
be set up using a quadrature rule to approximate the integral in (1), i.e.

YO =K, u 3)

where ueE,, Euclidean n-space, and K,: E, — E,,.
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In [5] and [7] a framework for an error analysis of the above approach was
described. Prolongation and restriction operators, p,: E, —» X and r,: X — E, were
used to show that the solutions of (2) satisfy

Ar, x=[K,+B,(A)] r,x (4)
where

B,()=r, Kp,~K,+1,K(1-0,)"' Q,p, %)
and

Q,=(1-p,n)K (6)
provided

11> 1Q,l- ()

The importance of {7) is illustrated in Table 1.

Equation (4) is the key equation. If we can choose p, and r, so that
1% Kp,—K,l| =0 as n— o0, and [|@,|| =0 as n— oo then for a fixed 4, [|B,(4)[—0
as n— oo and the matrix in (4) can be regarded as a perturbation of the matrix in
(3). A convergence analysis using this approach is given in [7]. It was proved that
(provided K in (1) is compact) for a simple eigenvalue of (1) there is a simple
eigenvalue, v say, of (3) such that

[A—=¥"| 0 as n—oo.
1fu, is the corresponding eigenvector of v, suitably normalised, then
lr,x—u, >0 as - (8)
and
Ip,u,—x||—»0 as n—o0.
We assume that, for all n

Pl =0, linl =1 ©

Such operators are said to be stable.

Most of the previous analysis for the Nystrom method has relied on the kernel
being symmetric or normal, notably Wielandt [11], Brakhage [2], and Keller [4].
Recently however results for non-hermitian kernels have been given by Atkinson
[1], Bramble and Osborn [3], and Vainikko [ 10]. The results in this paper provide
convergence rates and rigorous error bounds in a constructive manner which
allows bounds and error terms to be readily estimated.

In Section 2 of this paper we obtain rigorous error bounds for the quantities
|A—v"] and ||, x —u,|| which can be readily estimated. These bounds provide a
convergence theorem for the numerical solution of (1) using the Nystrém method.
Dominant error terms are obtained in Section 3. In Sections 4-6 the theory is
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illustrated by the analysis of the trapezoidal rule method applied to a certain

integral equation. The bounds and error terms are explicitly calculated and their
numerical performance discussed.

2. Error Bounds

Assume K, has distinct eigenvalues v{” i=1, ..., n with right and left eigenvectors u,
and v respectively. (As we note later, this assumption is easily weakened.) It is
known that quantities s; i=1, ..., n exist which satisfy

5,40 i=j
v‘a“f”{o i%].

If the eigenvectors are normalised by
ful,=1 and [v,=1 (10)

then |s;|=|v w;| £v;|l, lull, = 1. For a Hermitian matrix we can find eigenvectors
such that s;=1i=1, ..., n and all the eigenvalues are “well conditioned”. If an s, is
nearly zero then the eigenvalue is “badly conditioned”. (See Wilkinson [12].) From
now on |.{ will mean ||.| ., and any other norms will be explicitly labelled.
Consider any simple eigenvalue 4; of (4) satisfying (7) with corresponding
eigenvector 1, x;=Xx;. Since {u;}7_, span E,, x; can be expressed in the form

X =+ o (11)

where the prime indicates that the term j =1 is omitted from the sum and where u; is
the eigenvector corresponding to v in (3). [Equation (11) normalises x; and so,
from (8), a;; 0 as n—o0).]

Substitute (11) in (4) and forming the inner product of the result with v, we
obtain (dropping the superscript n from v{")

(Ai—v) Sizbii(’li)"'z, bij(’li) & (12)
oA —vy) sk=bki(li)+2’ b (A)oy; k=1,...,i—1, i+1,...,n, (13)

where b, (A)=vY B, (1) u,.
These equations are used to provide rigorous bounds for |4, —v,} and a;; (i=).
Make the following change of variables.

Vi =(4—v)s; (14
=v;=v) s, 0, k=1..,i-1,i+1,...,n (15)
bpq ('Ii)=bpq(vi+yi/si)=cpq(yi) D, q= 1’ s (16)

Equations (12) and (13) become

b= calr)+ Y (iw )

vi—v)s;
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ij(?i))’j_ Vi Vi
(vi—v)s; (vi—v)s;

Ye=Cui(p)+ k=1,..,i—1i+1,...,n

which we write as
y=c¢;(y)+H(y)y+M(y)y (18)

where y=[y4, ..., 7,17, (0 =[cu(?), ..., u()]T

Cpq(vi) .
PR 4 S, q ='= i
[H(Y)]pq = (vi - Vq) Sq
0 otherwise
Y4 .
————— p=q=*i
[M(y)]pq = (vi - Vq) S‘I
0 otherwise.

To obtain bounds for ||y|| we use the result of the following lemma.

Lemma. Let y, e(y)eE,, Euclidean n space, and H(y) and M(y) be n x n matrices
with elements depending on .
Assume D is the closed ball

0
e )

where

(i) c(y), H(y) and M(y) satisfy Lipschitz conditions in D with Lipschitz
constants C,, H,, M, respectively,
(ii) [[H(0)| =H, and M(0)=0,
(iij) 1—C,—H,>0,
2(H, + M;) [c(O)]| 1

<=~ and w(g)zl:_.____,___ “_2‘3

(1-C,—Hp* 2 g

(iv) g=
Then

y=c(y)+H(y)y+ M)y

has a unique solution in D.

Proof. Introduce F, a mapping on E,, defined by

F(y)=c(y)+H(y)y+M(y) 7.

It is straightforward to show
(i) F(D)=D,
(ii) F is a contraction mapping on D
and a standard theorem [6, p. 120] gives the required result. Q.E.D.

To apply the result of this lemma we need to find | ¢,(0){| ., C;, Ho, H; and M;.
Using (14) and (16) we have
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[e:(y)—¢; ()] = Vf [B,(v;+7i/s)— B, (v, +n/s)]

=0 ~y) Vi 1, K(v;+,/s,—Q,)~ Yvitndsi—Q)! 0, P,y
using {5). ™

Assuming |v;| >~——' | +11Q,ll for ye D then there exists a constant §, independent
S
of n such that

le: () —e; )l =B, 1Q, powill ly—nl.
Thus we take
Ci=B.11Q, P, uil. (19)

Note: We shall introduce various quantities §,,i=1, ..., 6, to make the analysis less

complicated. In practical calculation they are replaced by specific expressions.
Also

e (0l = 1B, (v) wi (20)
and there is a constant f, say, independent of n, such that

H,=||H@O)| =b B, |B,(v)I @1
where

b=3"|(v,—v) s;]7*. (22)
Finally

H, b B, [1Q, pal (23)
and

M, = max |(vi—v) s/~ 10 since v, is simple. (24

j*i

M, +H i
fg= 2((1 ! +C ) l}';‘;? )l <% then the result of the lemma gives
1o

”B,,(Vi) ui”
M S = 0 il —n B BT

If n{B,(v)] =0 as n— o0 then there is a bounded quantity B3 such that
Iyl < B 1B, (v) ).
Using (14), (15) and (11) we obtain

Mi_viléﬁaﬂil(:%ﬂ’ (25)

(vi—v)s;

(8)-

o | = B4 (26)
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and

% —ull B3 b B, (v) uyfl. 27)

In fact (27) is unsatisfactory since b depends on n but we see later [Eq. (32)] that a
more satisfactory expression for the rate of convergence can be obtained.
Finally in this section we obtain a bound for the rate of convergence of p, uto x.

lx—p, ull S llx —p, x| + || p,(x —m)}}. (28)
Now from (2},
Al=p,r)x=(1—-p,1) Kx=(1—p, 1) Kp, 7, x+(1 =p, 1) K1 =p, 1) x.
If|A|> (1 —p, 1) Kl =Q,| then
(A-p,r)x=(A-0,)""Q,p,x
and there is a bounded quantity 8, such that
(1 —p, 1) xll =lx —p, x|l <B4 [, P, X
Thus, writing x =(x —u) +-u and using (28) there is a bounded quantity f such that
Ix; = pa wlt S Bs b [B,(v) ufl.

Computational experience indicates that if the kernel is smooth enough then for
simple eigenvalues

[4; ~v;| =0 (error in quadrature rule).

Clearly, from (27), to give a meaningful error analysis of the Nystrém method we
must choose p, and 7, such that

IB,(v) u;{ = O (error in quadrature rule)

with B_(v;) given by (5). In Section 4 this is discussed in detail for the trapezoidal
rule. Briefly this can be done if k(s, 1} is smooth enough. If k(s, ) is not smooth
enough or even weakly singular then product integration should be used and a
slightly different analysis is required. This is discussed briefly in Section 4 in [ 7] and
in more detail in [8].

3. Dominant Error Terms and Their Estimation

Equation (18) also furnishes estimates of error and bounds for the estimates.
Write (28) as

y—¢;(0)=¢;(y) —¢;(0)+ H{y) y +M(y) y.
Thus
ly — (O S C, Iyl +Ho it + Hy v >+ M, |1y)?
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using (i) and (ii) of the lemma. The bounds (19)-(24) give
ly—c: ()l <b Bs |B,(v) u,}? (29)

for some bounded constant f.
Thus using (15) and (16) we obtain

<b Be IIB,(v) ui“2
(v —vi) sl

Vf Bn(vi) u;

(Vi — Vi) 8,

ik

s

and, using (11) we obtain
fIx;—(u; + po B,(v) u)l <b? Be 1B, (v) “i”2 (30

where

u v

PO=Y

i*j(vi—vj) Sj.

€3]

Hence, using (10),
PO <Y |(v,— v)s;|mt=b  (see (22)).

i*j

It turns out that, for a simple eigenvalue v,, even if | P?|| becomes unbounded as
n—oo,

IPYB,(v)ull=0 (IB,(v)w]}) (see Table 2).

Thus the term b in (29) and (30) is misleading. A better expression for the rate of
convergence of u; to x; is

Ix;—u;| = O (PP B,(v;) u]]). (32)
Finally, it is straightforward to show using (29), (17), (14), and (16) that the dominant
error term for the eigenvalue is given by

vi B,(v) u; i
’/1.-‘ (14 R ) .=0(1|P‘ B, () - [By(v) w) (33)
Clearly it is difficult to calculate B,(v,) u; because of the term (v, — Q,) ! (see (5)).

Let us define the matrix

1
Gn(vi)=rn Kpn_Kn+;—rn KQn Du- (34)

Using the result
1
v~v=-Q) '= . -0, 0,
provided |v;|>[|Q,ll, we have

IB,(v) w,— G, (v) w| =0 (107 p, wil). (35)
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Thus we shall estimate B,(v)) u; by G,(v;) u; in (30) and (33) and (35) implies that
the rate of convergence will not be altered since ||Q, p, u;|| £ |B,(v;) u,|.

The assumption at the beginning of Secction 2 that K, has distinct eigenvalues
can easily be overcome. The important requirement for the analysis of Section 2 is
the existence of two sets of linearly independent eigenvectors {v¥}, {u,} satisfying
vi w;=s; 6,;. Assume that K, has a simple eigenvalue v but that the other
eigenvalues can be multiple. Clearly there is no difficulty if K, has a full set of
linearly independent eigenvectors, however, if K, does not we can include
generalised eigenvectors to produce two sets of vectors satisfying the required
condition. An analysis similar to that in Section 2 follows. The dominant error term
for (4, —v,) remains the same, but the expression for x; —u; is altered, however, only
by terms of order {|B,(v;) u;}|. Thus the overall rate of convergence is not altered.
Details of this approach can be found in [8].

4. p, and r, for the Trapezoidal Rule

Consider the numerical solution of (1) using the repeated trapezoidal rule. For a
given ntake h=(b—a)(n—1); w;=h,i=2,....,n—1L,w,=w,=h/2, t;=a+(i—1) h,i
=1,...,n

Assume that k(s, t)e C*[a, b] x [a, b] and so the matrix in (3) has the form

(K,)ij=w; k(t;, ).

The error in the repeated trapezoidal rule is O(h?) provided the integrand is
smooth enough and so to give a satisfactory error analysis p, and r, must be chosen
so that ||B,(v,)| = O(h?). This can be done under the above assumption on k(s, f).
Take

ryX= [x(tlﬂ), s x(t,)] -
and
Puti= 2, 950 (37)
where
o= _‘t-;ltjl te[tj_l, t,-H]ﬁ[a,b] -
J
0 elsewhere.

p, u is the piecewise linear function formed by joining the points (¢, u)).
If xe C*[a, b] then p, r, x is the linear interpolating polynomial and

2

h
L =p, ) x| =2 lIx"]l- 39

It is easy to show, using (39), that
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hz
1Qul =l(t=p, ) K]l =3 1Kl

2
where K, is the integral operator with kernel 8—;(s, t).
N

To show that ||, Kp,—K,| = 0(h?) consider
b
A Kpn"Kn]ij:j k(t;, t) ¢j(t) dt—wj k(t;, tj)
b
={ ¢, [k(t;, ) ~k(t;, t)] dt
using the relation
b
w;={ ¢,(t) dt.
It is easy to show

2

I Kp,—K,| é% {IK,.ll + max(|k,(s, a)| + [k,(s, b))} -

2

Clearly if |vi|>% 1Kl =10,ll then (5) implies

1B(v:) uill = O (h?).

141

(40)

1)

Thus the p, and r, defined by (36) and (37) are suitable for a satisfactory error
analysis of the Trapezoidal rule. (In {8] p, and r, are found which allow a
satisfactory analysis of the mid-point rule and Simpson’s rule methods. In [9] the

Simpson’s rule method is discussed for equations of the second kind.)

Equations (25) and (32) with (41) show
14; =¥ =0(h?)
and
1%, —w;[| = 0(h?)
(see Tables 2 and 3).
Example. The integral Equation (1) with k(s, t) given by
k(s,t)=s5+32(8s*—s)(t*—%
with a=0, b=1 has solutions

A=2 x,(s5)=s>,
A,=0.5  x,(s)=s.

42)

(43)
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Table 1

h2
no o'~k Ratio A Ratio Q)= |K,]

3 3.8995 —2.74444 2.538
3.6 36.2

5 1.0915 0.07573 0.634
3.8 29

9 0.2855 0.02602 0.159
39 3.6

17 0.0725 0.00728 0.040
4.0 39

33 0.0182 0.00188 0.010
4.0 4.0

65 0.0046 0.00047 0.003

The columns headed “Ratio” give the ratios of successive errors

The trapezium rule was used to provide numerical approximations. Table 1
supports (42) and also illustrates the importance of the condition |1|> ||Q,]| [Egs.
(7) and (40)]. Now |Q, ]| >|4,]=0.5 for n=3, 5 and we note that O(h?®) convergence
of v to A, is evident for n=17, 33, 65. The approximations v{" to 4; show O(h?)
convergence for smaller n since |1,|> [|Q,] for n=5. Note that the absolute errors
A, — v are smaller than the corresponding A, —v{” for n=5. This is due to the
greater smoothness of x,.

5. Calculation of G,(v)) u;

As was mentioned at the end of Section 3 we replace B,(v;) u; in (30) and (33) by
G,(v) u; given by (34). We need to calculate (r, Kp,—K,) w;and r, KQ, p, u;. Let us
assume that k(s, £)e C*[s, t] x s, £].

Yor any zeE,

b n
[rn Kpn z]j=.f k(tj’ t) Z ‘bP(t) ZP dt

n—1ti4+

=Y | Kkt 0[¢0 2+ 1)z ] dt

i=1

using (34).
Using Simpson’s rule to evaluate the integrand over each subinterval we obtain,
after rearrangement,

[n.Kp, z:l,-=g ke, 8) +2k(z), t5)} 2, + {2k(2, 1, )+ (25, 1)) 2]

n—1
+l31- Y {k(, t_y) H k(@ 1)+ k(E, )} 2+ O(RY). (44)
i=2

Clearly [(r, Kp,—~K,) z]; is easily calculated.
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To estimate r, KQ, p,z=r, K(1—p,r,) K p,z we look firstly at r, K(1—p,r) f
where feC*[a, b] Writing f (t,)=f, we have

[ KO =P, f1= 3 | Thw,o (r0-3 5 gu(01,) d
2 n 1
T L Kt ) Uiy =3t i )1+ OO @5)

again using Simpson’s rule over each subinterval. For i=2, ...,n—2, we use

fi+Jf_%(fi+fi+1)=ﬁ(“fi—1+fi+fi+1_fi+2)+0(h4)
and for i=1,
fi+a}“%(ﬁ+ﬁ+l)=%( 3f1+7f2"5f3+f4)+0(h4)

with similar modification for i=n—1.

To estimate [r, K(1—p,r,) Kp, z]; we use (45) with (44) giving the required
quantities [K p, z],_,,-

We suggested that P B,(v) u,|| =O(||B,(v;) wll) (=0(h?) for the trapezoidal
rule).

This is confirmed by the results in Table 2. As h is halved, [PVB,(v{V)u, || is
quartered, even although |P™)|| depends on n.

Table 2

n [P B,(vy) ]| (B,(vy)uyl 1Py
5 0.1939 E-1 0.2590 1.42
9 0.1325E-1 0.4860E-1 2.65

17 0.4738 E-2 0.1106 E-1 6.77

33 0.1310E-2 0.2696 E-2 14.59

65 0.3361 E-3 0.6701 E-3 99.42

viB,(v)y
Equation (37) implies that | 4,— (vi+'—';(v')—u')

i

=0(h*). Table 3 supports

this result. As h is halved the ratio of errors in successive corrected values is
tending to 16 —an indication of O(h*) convergence.

Note that the correction produces a marked improvement in all cases even for
small n.

Finally in this section we present the results for the estimation of the
cigenvector. Clearly, from Table 4, ||x,—u, | =O0(h?) and ||x,—(u, + P B,(v;) u))|
=0(h*). The theoretical bounds (27) and (30) do not predict such a rapid rate of
convergence (since b depends on 1) but the presence of the b term is misleading
and more detailed analysis gives (32) and

1%, —(uy + PO B,(v)) uy)| =O(IPV B, (vy) w1 %).

These theoretical results agree with the computed results.
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Table 3. The estimation of 4,=2

n ¥ v{® +correction  Ratio
of errors
in successive
corrected values

5 3.09152 2.0293809
7.4
9 2.28545 2.0039899
123
17 2.07248 2.0003252
14.8
33 2.01820 2.0000219
15.6
65 2.00455 2.0000014
Table 4. The estimation of x,(s)=5>
n lIx; —uy iy Ratio Ix; ~(@; + PO B, (v )uy)l, Ratio
5 0.18337E-1 0.69082 E-2
2.7 6.5
9 0.69009 E-2 0.10621 E-3
3.5 11.5
17 0.19870 E-2 091958 E-4
39 14.6
33 0.51510E-3 0.62885E-5
40 15.6
65 0.13011 E-3 0.40269 E-6

6. Numerical Performance of the Bounds of Section 3

Using the techniques of the previous section to estimate G,(v;)u; we can
approximate the quantities C,, H,, H,, M, and [/c,(0) and hence estimate the
bounds given in Section 2. The following results were obtained for the example at
the end of Section 4.

Table §

n fie: () o H, H, M, b2
5 0.259 0.357E-2 1.45 0.113E-1 1.54 (iii) of lemma violated
9 0.486 E-1 0.207 E-2 0.131 0.958 E-3 3.20 0.695E-1

17 0.111E-1 0.668 E-3 0.118 0.276 E-3 413 0.132E-1

33 0.270E-2 0.179E-3 0.449E-1 0.284E-4 4.43 0.286 E-2
65 0.670E-3 0.455E-4 0.206 E-1 0.154E-4 4.51 0.676 E-3
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Table 6

n True error=|4, —w"|  Bound from (25)
S 1.092 (iii) of lemma violated
9 0.285 0.402

17 0.725E-1 0.860 E-1

33 0.182E-1 0.193E-1

65 0.456 E-2 0.459E-2

These results show that M, is approximately constant, H, and H, show O(h)
convergence, and ||¢;(0)], C,, |7l show O(h?) convergence. This is in agreement
with the theoretical results in Section 2. The numerical performance of the bound
(25) is illustrated in the Table 6.

Clearly the bounds obtained for this example are very good. Asymptotically we
have

|A=vPIS(1+o(n™") max |vff B,(v) u;l/s;.
k

If the maximum occurs for k=i then the bound becomes
|4, — v <(1+o0(n~ 1)) (the dominant error term given by (33)).

This is the case in the above example.

In this paper the bounds are calculated as accurately as possible. For example
we calculate |c;(0))) in Table 5 from |c;(0)] =max|v? B,(v)u,| instead of
lc,(0)i =|B,(v)ull. The latter is cheaper of course but less sharp. However the
bounds are expensive to calculate. In particular all the eigenvalues with their
corresponding left and right eigenvectors have to be found. Also we have to
calculate the matrix with (p, g)-th component v:’ G,(v) u, [see (34)], ie.

1 . H
qu+;qu with X, =v, (. K,p,—K,)u,

and Y, =virK(1-p,r)Kp,u,.

This is very expensive. However once X ,, and Y, are calculated they can be
used to provide bounds and estimates for all the simple eigenvalues and
eigenvectors (provided the conditions of the lemma hold). If bounds are required
for several eigenvalues and eigenvectors then we would be justified in doing the
work. If we are interested in only one eigenvalue then the bounds would probably
be too expensive to calculate. Note however that the estimate of the error given by
(33) requires only the calculation of v; and s,.

The eigenvalues and right eigenvectors are calculated using QR as described in
[13, contributions 11/14 and II/15]. The left eigenvectors are found by calculating
the left eigenvectors of the 2 x 2 block triangular matrix obtained in QR and
transforming in the usual manner. Note that if k(s, t) is symmetric then we can solve
a symmetric eigenvalue problem and the left eigenvectors are identically the right
eigenvectors.

We give below the timings for various stages in the calculation of the estimates
and bounds. We define the times T, i=1, ..., 5 as follows.
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Table 7
n T, T, T, T T,

S 0.06 0.04 0.05 0.002 -

9 0.43 0.29 0.33 0.006 0.008
17 2.70 1.85 2.12 0.019 0.027

33 15.19 10.71 14.67 0.069 0.101
65 10445 74.75 116.80 0.260 0.385

The times are given in seconds on the ICL System 4-70 at
University College, Cardiff, Wales

T, =time to calculate v\, u; i=1,...,n,

T, =time to calculate the left eigenvectors v, i=1, ..., n,

T, =time to calculate vi G,(v)u, p,g=1,...,n,

T,=time to calculate estimates (33) and (30) appearing in Tables 3 and 4,

Ty =time to calculate bounds in Tables 5 and 6.

The calculation of the n” elements v} G,(v)) u, takes about the same time as the
solution of the eigenvalue problem. Once these have been calculated estimates and
bounds are easily obtained.

7. Concluding Remarks

In this paper rigorous error bounds and dominant error terms have been obtained
for approximations to the solutions of (1) obtained using the Nystrdm method. In
Sections 5 and 6 it was demonstrated how these bounds and estimates may be
calculated. In all cases considered in [8] the addition of the correction terms shown
in (30) and (33) produced a significant improvement of the original approximation.

Finally we note that the dominant term in the correction of the eigenvalue,
given by (33), is-almost that given by the Rayleigh quotient approach. If we regard u,
as an approximation to x; then the Rayleigh quotient correction for the eigenvalue
is

HB,(J)u,
VALK, + B, ()] s, = 4 2R

13
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