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Summary. Approximate solutions of the linear integral equation eigenvalue 
problem can be obtained by the replacement of the integral by a numerical 
quadrature formula and then collocation to obtain a linear algebraic eigenvalue 
problem. This method is often called the Nystr6m method and its convergence 
was discussed in [7]. In this paper computable error bounds and dominant 
error terms are derived for the approximation of simple eigenvalues of 
nonsymmetric kernels. 

Subject Classifications. AMS (MOS): 65 R05; CR: 5.18. 

1. Introduction 

In an earlier paper [7] the author discussed the convergence of the Nystr6m 
method (quadrature method) for the approximate solution of the integral equation 

b 
,~ x(s) =~ k(s, t) x(t) dt (1) 

a 

where a and b are finite, k(s, t) is known in C [a, b] x [a, b] and 2 and x(s) are 
unknowns. Equation (1) can be written 

2 x = K x  (2) 

where xeX,  a linear space, and K: X ~ X. Under certain conditions on k(s, t) and 
with an appropriate norm on X, K is a compact operator in a Banach space X. 

To obtain approximations to the solutions of (2), a related matrix equation can 
be set up using a quadrature rule to approximate the integral in (1), i.e. 

v (") u = K. u (3) 

where u~E., Euclidean n-space, and K,: E,--, E,. 
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In [5] and [7] a framework for an error analysis of the above approach was 
described. Prolongation and restriction operators, p.: E, ~ X and r,: X --, E.  were 
used to show that the solutions of (2) satisfy 

2 r, x = [K, +B.(2)] r, x (4) 

where 

B.(2) = rn Kpn-Kn+rn K ( 2 -  Q.) -~ QnPn 

and 

(5) 

Q.=(1 -p .  r.)K 

provided 

(6) 

121> IIQ,II. (7) 

The importance of (7) is illustrated in Table 1. 
Equation (4) is the key equation. If we can choose p. and r. so that 

lit, Kp, -K, [ I - -*0  as n ~ m ,  and IIQJ ~ 0  as n-- ,m then for a fixed 2, IIB,(R)I[~0 
as n ~ ~ and the matrix in (4) can be regarded as a perturbation of the matrix in 
(3). A convergence analysis using this approach is given in [7]. It was proved that 
(provided K in (1) is compact) for a simple eigenvalue of (1) there is a simple 
eigenvalue, v (") say, of (3) such that 

J2-r as n ~ .  

If u, is the corresponding eigenvector of v ("~, suitably normalised, then 

lit. x - u . l l ~ 0  as n - - * @  (8) 

and 

lip, u . -x [ j  ~ 0  as n--* or. 

We assume that, for all n 

Ilp, ll ~p,  Jtr, Jl ~r.  (9) 

Such operators are said to be stable. 
Most of the previous analysis for the Nystr6m method has relied on the kernel 

being symmetric or normal, notably Wielandt [11], Brakhage [2], and Keller [4]. 
Recently however results for non-hermitian kernels have been given by Atkinson 
[1], Bramble and Osborn [3], and Vainikko [10]. The results in this paper provide 
convergence rates and rigorous error bounds in a constructive manner which 
allows bounds and error terms to be readily estimated. 

In Section 2 of this paper we obtain rigorous error bounds for the quantities 
12-v~")l and lit. x-u.II which can be readily estimated. These bounds provide a 
convergence theorem for the numerical solution of (1) using the Nystr6m method. 
Dominant error terms are obtained in Section 3. In Sections 4-6 the theory is 
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illustrated by the analysis of the t rapezoidal  rule me thod  applied to a certain 
integral equation.  The  bounds  and error terms are explicitly calculated and their 
numerical  pe r formance  discussed. 

2. Error Bounds 

Assume K, has distinct eigenvalues vl "~ i = 1 . . . .  , n with right and left eigenvectors u~ 
and v~ n respectively. (As we note later, this assumpt ion  is easily weakened.) It  is 
known that  quanti t ies s~ i =  1 . . . . .  n exist which satisfy 

i=j 
v~/u j=(~  :#0 i#j. 

If the eigenvectors are normal ised by 

l lu i t l~=l  and llv~lh = I (10) 

then Isil = Iv nuil  ~ llvglh tlu~ll 0~ = 1. For  a Hermi t i an  matr ix  we can find eigenvectors 
such tha t  s i = 1 i =  1, ..., n and all the eigenvalues are "well  condi t ioned".  If  an si is 
nearly zero then the eigenvalue is "bad ly  condi t ioned".  (See Wilkinson [ 12].) F r o m  
now on tl. II will mean  II. II ~ and any other  norms  will be explicitly labelled. 

Consider  any simple eigenvalue 2~ of (4) satisfying (7) with corresponding 
eigenvector r, x~ = x~. Since {ufl~= ~ span E,,  x~ can be expressed in the form 

x i = u i + ~ '  ~i~ u~ (11) 

where the pr ime indicates that  the t e r m j  = i is omi t ted  from the sum and where u i is 
the eigenvector  corresponding to vl "} in (3). [Equa t ion  (11) normalises  xi and so, 
from (8), %--* 0 as n ~ o0).] 

Substi tute (11) in (4) and forming the inner p roduc t  of the result with v k we 
obtain (dropping the superscript  n f rom v) "}) 

( ~ i  - -  Vi)  Si = bii(2i) + ~ '  bij(2i) ctil (12) 

Ctik(2i--Vk) Sk=bki(2i)+~'bk;(2i)ai2 k = l , . . . , i - 1 ,  i + 1  . . . . .  n, (13) 

where b pq(2i)= v~ Bn(2i) Uq. 
These  equat ions  are used to provide  r igorous bounds  for t2 i - v i i  and c~i~ (i #j) .  

Make the following change of variables. 

~'i = O . i -  vi) si 

?k=(Vi--Vk) Sk~ik k =  1, . . . ,  i - 1 ,  i + l , . . . , n  

bpq (2i) = bpq(v i + ?i/si) = cpq(?i) p, q = 1 . . . . .  n. 

Equat ions (12) and (13) become 

(14) 

(15) 
(16) 

%(73 ~j 
~i = c.(~3 + ~ '  ( v i -  v j) sj' (17) 
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Ckj(~i) ~)j ?i ?k k = 1, . . . ,  i -  1, i + 1 . . . .  , n ~/k=Cki(?i)+Z'(vi--vj) S~ (Vi--Vk) Si 

which we write as 

? = e,(?) + H(?)  ? + M(~,) ? 

where ? = [?a . . . .  , ?.]T, CI(?) = [Cai(Ti) . . . .  , C.i(?i)] r 

Cpq(?i) q ~ i 
[H(~,)],q = (v~-  vq) Sq 

0 otherwise 

- ? q  p=q=6 i  
[M(?)]pq = ( v , - vq )  sq 

0 otherwise.  

(18) 

To obta in  bounds  for [lY[I we use the result of  the following lemma.  

L e m m a .  Let  ?, e(?)~E n, Euclidean n space, and H(?) and M(?) be n x n matr ices 
with elements depending on ?. 

Assume D is the closed ball  

D={?: I[?ll <= 1 -']c(0)[[C1 - H o  w(g)} 

where 

(i) c(?), H(?)  and M(?) satisfy Lipschitz condit ions in D with Lipschitz 
constants  Ca,/-/1, M 1 respectively, 

(ii) IIH(0)t] = H o  and M ( 0 ) = 0 ,  
(iii) 1 - C a - H o > 0, 

2(Ha +Ma)IIc(0)ll <1 and w(g)=  l - l / ~ Z - 2 g  (iv) g = (-~-_- ~ ~ - H - ~  ~ g 

Then 

? = e(?) + H(V) ? + M(?)  ? 

has a unique solut ion in D. 

Proof. In t roduce  F, a m a p p i n g  on E, ,  defined by 

F(?) = c(?) + H(?) ? + M(?) ?. 

It  is s t ra ightforward to  show 

(i) F ( D ) = D ,  
(ii) F is a cont rac t ion  m a p p i n g  on D 

and a s tandard  theorem [6, p. 120] gives the required result. Q.E.D. 

To  apply  the result of  this l e m m a  we need to find Ilei(0)ll | C a, H o, H a and M r  
Using (14) and (16) we have 
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[ e i ( r )  - -  e i ( ; / ) ]  k = Vf  [ B n ( v  i q- ~;i/si) - B n ( v  i -F rli/sl) ] U i 

= (rli - -  ~/i) V~ f rn K ( v i  q- ~)i/si - Q n ) -  l (v i  + rli/Sl - Qn) - 1 Q. p. ui 
using (5). 

Assuming Iv,[ > If?[[ + �9 ~ IIQ.tl for 7~D then there exists a constant  fll independent 

of n such that 

Ile,(~')-c~(~/)ll < # 1  IIQ. p.  u~ll ll~'-r/ll.  

Thus we take 

C1 =/~1 tlQ, p, uill. (19) 

Note: We shall introduce various quantities #~, i = 1, ..., 6, to make the analysis less 
complicated. In practical calculation they are replaced by specific expressions. 

Also 

lle~(0)l[ < IIB.(v~) u~li (20) 

and there is a constant  #2 say, independent  of  n, such that 

n o  = IIH(0)II < b  #2 ]lB,(v~)lt (21) 

where 

b = ~ '  }(vi-v~) sj1-1. (22) 

Finally 

n 1 < b  #1 IIQ, p.II (23) 
and 

M 1 = max I(vi-  v j) sil- 1 =t = 0 since v~ is simple. (24) 
j , i  

2 ( M I + H 0  IIc,(0)ll 1 
If g = ( i  22 C ~ -  H J 0 )  2 < 2 then the result of  the lemma gives 

IIB.(vi) uill 
tlrll < l _ f l l  I[Q,p, uill - n  f12 IIn.(~)ll w(g). 

If n tlB.(v~)l}-+0 as n-+oc then there is a bounded  quanti ty #3 such that 

II~l[ ~/~3 I[n,(vl) uill. 

Using (14), (15) and (11) we obtain 

i~.i_vil<fl a Iln.(vl) uil I 
= Is, I ' 

i~ikl<fl3 IlB,(vi) uill 
( v , -  v j) sj 

(25) 

(26) 



138 

a n d  

A. Spence 

IlXl--Ui[I ~f13 b IIBn(vi) nil ] . (27) 

In fact (27) is unsatisfactory since b depends on n but we see later [Eq. (32)] that a 
more satisfactory expression for the rate of convergence can be obtained. 

Finally in this section we obtain a bound for the rate of convergence ofp. u to x. 

I lx-p .  nil < H x - p .  xl] + Ilp.(x-n)ll. (28) 

Now from (2), 

2(1 - p .  r.) x =(1 - p .  r.) K x =(1 - p .  r.) Kp .  r. x +(1 - p .  r.) K(1 - p .  r.) x. 

If 12l > II(1 - p .  r.) K[] = {IQ.II then 

(1 - p .  r . ) x = ( X - Q . )  -1 Q. p. x 

and there is a bounded quantity f14 such that 

I[(1 - p .  r.) xlL = t lx -p ,  xll <f1411(2. P. xll. 

Thus, writing x = ( x -  n) + u and using (28) there is a bounded quantity f15 such that 

i I x i -p ,  uill ~f15 b IIB.(vi) ulH. 

Computational experience indicates that if the kernel is smooth enough then for 
simple eigenvalues 

]2i-  vi] = O (error in quadrature rule). 

Clearly, from (27), to give a meaningful error analysis of the NystrOm method we 
must choose p.. and r. such that 

]lB.(vl) ui ]l = O (error in quadrature rule) 

with B.(v~) given by (5). In Section 4 this is discussed in detail for the trapezoidal 
rule. Briefly this can be done if k(s, t) is smooth enough. If k(s, t) is not smooth 
enough or even weakly singular then product integration should be used and a 
slightly different analysis is required. This is discussed briefly in Section 4 in [7] and 
in more detail in [8]. 

3. D o m i n a n t  Error Terms  and Their Est imation 

Equation (18) also furnishes estimates of error and bounds for the estimates. 
Write (28) as 

~, - c,(O) = e i ( ? ) -  ei(O) + H(~) ~ + M(?) ~,. 

Thus 

Hy-ci(0)[] < Ca []~'[I +Ho I]~[] +Ht  []yll2 +M~ []~,ll 2 
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using (i) and (ii) of the lemma. The bounds  (19)-(24) give 

l ie-c , (0) l l  __<b f16 IIBn(v,) u, It 2 (29) 

for some bounded  constant  f16. 
Thus using (15) and (16) we obtain 

I n Bn(vl)u / < b f l 6 t l B , ( v i ) u i l l  2 Vk 

and, using (11) we obtain 

II x i -  (us + p(i) Bn (Vi) Ui) ll _-_- b2 f16 [I nn (Vs) Hill 2 (30) 

where 

p ( s )_  ~-' u i v~ (31) 

Hence, using (10), 

IIW)tl < ~ I(v/-v~)s~l -x =b  (see (22)). 
i*j  

It turns out that, for a simple eigenvalue vs, even if II P")II becomes unbounded  as 
/I--->o0, 

lip "~ Bn(vs) usl I = 0 (llBn(Vs) uilt) (see Table 2). 

Thus the term b in (29) and (30) is misleading. A better  expression for the rate of 
convergence of a s to x s is 

II xs - us II = O (11 pti) B~ (vi) u s II). (32) 

Finally, it is straightforward to show using (29), (17), (14), and (16) that the dominant  
error term for the eigenvalue is given by 

2 ~ - ( v  s v~ Bn(v~) us t -~ ~ ! =O(11Pts) B~(vs) usll" I[nn(vs) ustl). (33) 

Clearly it is difficult to calculate B~(vs)  u s because of the term (v s - Q.)-  1 (see (5)). 
Let us define the matrix 

K p n - K ~ +  1 rn KQ.  p~. G ~ ( v i ) = r ,  (34) 

Using the result 
1 

1/v i  _ (v  i _ Q ~ ) -  1 _ (v s _ Q , ) -  1 Qn 
Vi 

pr~ I vii > I] Q.[I, we have 

l[B~(vi) u i - Gn(vl) uil I = O (Jl Q2 p~ ui[l). (35) 



140 A. Spence 

Thus we shall estimate B.(vi) u i by G,(v~) u i in (30) and (33) and (35) implies that 
the rate of convergence will not be altered since IIQ. p. uill < IIB,(Vl)uil[. 

The assumption at the beginning of Secction 2 ttiat K, has distinct eigenvalues 
can easily be overcome. The important requirement for the analysis of Section 2 is 
the existence of two sets of linearly independent eigenvectors {v~n}, {u~} satisfying 
v~ uj=s i 6 w Assume that K, has a simple eigenvalue vl ") but that the other 
eigenvalues can be multiple. Clearly there is no difficulty if K, has a full set of 
linearly independent eigenvectors, however, if K, does not we can include 
generalised eigenvectors to produce two sets of vectors satisfying the required 
condition. An analysis similar to that in Section 2 follows. The dominant error term 
for (2~ - v~) remains the same, but the expression for x~ - u~ is altered, however, only 
by terms of order IlB,(v~)u, rl. Thus the overall rate of convergence is not altered. 
Details of this approach can be found in [8]. 

4. p. and r. for the Trapezoidal Rule 

Consider the numerical solution of (1) using the repeated trapezoidal rule. For a 
given n take h = ( b - a ) / ( n -  1); wi=h, i = 2  . . . .  , n -  1; w 1 =w,=h/2,  t i = a + ( i -  1) h, i 
=1 , . . . ,  n. 

Assume that k(s, t)e C 2 [a, b] x [a, b] and so the matrix in (3) has the form 

(K,)i~ = w ~ k(t,, t j). 

The error in the repeated trapezoidal rule is O(h 2) provided the integrand is 
smooth enough and so to give a satisfactory error analysis p, and r, must be chosen 
so that IIB.(v3LI = O(h2). This can be done under the above assumption on k (s, t). 
Take 

r, x = [x(tx), ..., x(t,)] 

and 

p. u = ~ q~j(t) uj 
j = l  

where 

[l_lt-t t 
4g(t) = !0 h 

(36) 

(37) 

t~[tj_l, tj+x] c~ [a, b] (38) 

elsewhere. 

p, u is the piecewise linear function formed by joining the points (tj, uj). 
If x~ C 2 [a, b] then p, r, x is the linear interpolating polynomial and 

h 2 
I[( 1 --Pn rn)XI[ =-~ - I IX ' I I  �9 (39) 

It is easy to show, using (39), th~it 
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h 2 
IIO.II = I1(1 - p .  r~) KII = y  ItKssl[ 

0 z k 
where Ks~ is the integral operator with kernel ~5-s2 (s, t). 

To show that lit. Kp. -K. [ I  =O(h 2) consider 

(40) 

b 

It, K p . - K , ] i j =  ~ k(ti, t) qbj(t) d t - w  i k(tl, tj) 
a 

b 

=~ qbj(t) [k(ti, t )-k(t i ,  tj)] dt 
a 

using the relation 

b 

w j= S c~j(t) dt. 
a 

It is easy to show 

h 2 
lit. g p . - K . [ [  <-6- {[]gnL [ +max(lkt(s, a)[ + ]k,(s, b)[)}. 

h 2 
Clearly if [vii> Y IIK==II = ]IQ.II then (5) implies 

liB.(v,) uilI = O(h2). (41) 

Thus the p. and r. defined by (36) and (37) are suitable for a satisfactory error 
analysis of the Trapezoidal rule. (In [8] p. and r. are found which allow a 
satisfactory analysis of the mid-point rule and Simpson's rule methods. In [9] the 
Simpson's rule method is discussed for equations of the second kind.) 

Equations (25) and (32) with (41) show 

12i -- v~")l = O (h 2) 

and 

(42) 

II x ,  - u, II = O (h z) 

(see Tables 2 and 3). 

Example. The integral Equation (1) with k(s, t) given by 

(43) 

k(s, t) = s + ~  (8s 3 - s)(t 3 _2) 

with a =0,  b = 1 has solutions 

21 = 2  xt(s)=s a, 
22 =0.5 Xe(S)=S. 
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Table 1 

h 2 
n v~")-21 Ratio 2z-v~z ") Ratio {10.(I = y  IIK~s(I 

3 3.8995 - 2.74444 2.538 
3.6 36.2 

5 1.0915 0.07573 0,634 
3.8 2.9 

9 0.2855 0.02602 0.159 
3.9 3.6 

17 0.0725 0.00728 0.040 
4.0 3,9 

33 0.0182 0.00188 0.010 
4.0 4.0 

65 0.0046 0.00047 0.003 

The columns headed "Ratio" give the ratios of successive errors 

The trapezium rule was used to provide numerical approximations. Table 1 
supports (42) and also illustrates the importance of the condition [21> I[ Q.]I [Eqs. 
(7) and (40)]. Now I[ Q. [] >122] = 0.5 for n = 3, 5 and we note that O(h 2) convergence 
of v~z ") to 22 is evident for n = 17, 33, 65. The approximations v] ") to 2 a show O(h 2) 
convergence for smaller n since i221> IL Q.]I for n > 5. Note that the absolute errors 
22 -v~  ") are smaller than the corresponding 21 - v ]  ") for n>  5. This is due to the 
greater smoothness of x 2. 

5. Calculation of  G.(v~) u i 

As was mentioned at the end of Section 3 we replace B,(vi) n~ in (30) and (33) by 
G,(vi) u i given by (34). We need to calculate (r. Kp,  - K , )  ui and r, KQ, p, u i. Let us 
assume that k(s, t)~ C4[s, t ]x  Is, t]. 

For any z~E, 

b 

[I". Kp. z] j=  I k(tj. t) ~ c~,(t) z, dt 
a p = l  

n - 1  t t + l  

i= 1 tl 
using (34). 

Using Simpson's rule to evaluate the integrand over each subinterval we obtain, 
after rearrangement, 

h 
[r. Kp.  z ] j = g  [{k(tj, tO+ Zk(t j, t~)} z x + {2k(tj, t._�89 t.)} z,] 

h n - 1  
+ -  ~ {k(tj, t i_ �89 + k(tj, t~) + k(tj, t i + �89 z i + O (h4). (44) 

3 i=2 

Clearly [(r. Kp. - K.) z]j is easily calculated. 
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To estimate r. KQ. p. z = r. K(1 - p. r.) K p. z we look firstly at r. K(1 - p. r.) f 
where f ~  C 4 [a, b]. Writing f(tp) =fp we have 

[r. K(1 -pn  r . ) f ] j=  ~, ~ k(tj, t) (t)- (op(t) at 
i = l  ti p = l  

2 h . - 1  
=~- i~=t k(tj, t,+�89 [fi+�89 - �89 +fi+ 1)] + O(h4) (45) 

again using Simpson's rule over each subinterval. For i=  2 . . . .  , n - 2 ,  we use 

f/+4x -- �89 f /+ 1) = ~ 6 (  - - f / - ,  q-f/"~-f/+ 1 - - f /+  2) -[- O(h4) 
and for i = 1, 

f~+~-�89 (f~ +f~+ ,) = ~-tg ( -  3fl +7f2 -5fa+f.)+O(h 4) 

with similar modification for i=  n - 1 .  
To estimate [r. K ( 1 - p .  r.)Kp, z]j we use (45) with (44) giving the required 

quantities [K p. z]s = t. 
We suggested that liP m Bn(vi)u/I]-=O(llBn(vi) uilt) ( - - O ( h  2) for the trapezoidal 

rule). 
This is confirmed by the results in Table 2. As h is halved, lip (1) B.(v~ 1)) u 1 tt is 

quartered, even although IIP")II depends on n. 

Table 2 

n }tPm B.(v0 utl[ IqB.(v0 ux[ I IlP(1)b[ 

5 0.1939 E- 1 0.2590 1.42 
9 0.1325E-1 0.4860E-1 2.65 

17 0.4738 E-2 0.1106E-1 6.77 
33 0.1310E-2 0.2696 E-2 14.59 
65 0.3361 E-3 0.6701 E-3 99.42 

1 ( v~B"(vi)u~) =O(h4)" Equation (37) implies that J-i- vi§ Table 3 supports 
s i  

this result. As h is halved the ratio of errors in successive corrected values is 
tending to 16 - an indication of O(h 4) convergence. 

Note that the correction produces a marked improvement in all cases even for 
small n. 

Finally in this section we present the results for the estimation of the 
eigenvector. Clearly, from Table 4, [I x l -  ul II -- o(h2)  and [I x l -  (Ul + pc1) B. (vl) ul)II 
= O(h4). The theoretical bounds (27) and (30) do not predict such a rapid rate of 
convergence (since b depends on n) but the presence of the b term is misleading 
and more detailed analysis gives (32) and 

llxx -(ux +pm B,(vx) ux)ll = 0 (liP m B.(vl) ux II 2). 

These theoretical results agree with the computed results. 
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Table 3. The estimation of 21= 2 

n v~ ") v~ "~ + correction Ratio 
of errors 
in successive 
corrected values 

5 3 . 0 9 1 5 2  2.0293809 
7.4 

9 2 . 2 8 5 4 5  2.0039899 
12.3 

17 2 . 0 7 2 4 8  2.0003252 
14.8 

33 2 . 0 1 8 2 0  2.0000219 
15.6 

65 2 . 0 0 4 5 5  2.0000014 

Table 4. The estimation of xl(s)=s a 

n IlXl-Ulkl~ Ratio Ilxl - (u l  + Pr B.(vx) u011 ~ Ratio 

5 0.18337 E-1 0.69082 E-2 
2.7 6.5 

9 0.69009 E-2 0.10621 E-3 
3.5 11.5 

17 0.19870 E-2 0.91958 E-4 
3.9 14.6 

33 0.51510 E-3 0.62885 E-5 
4.0 15.6 

65 0.13011 E-3 0.40269 E-6 

6. Numerical Performance of the Bounds of Section 3 

U s i n g  the  t e c h n i q u e s  o f  t he  p r e v i o u s  sec t ion  to  e s t i m a t e  G , ( v i ) u  ~ we can  

a p p r o x i m a t e  t he  q u a n t i t i e s  C1, H e ,  H1, M1 a n d  Ile~(0)ll a n d  hence  e s t i m a t e  the 
b o u n d s  g iven  in Sec t i on  2. T h e  f o l l o w i n g  resul t s  were  o b t a i n e d  for the  e x a m p l e  at 

the  end  of  Sec t ion  4. 

Table 5 

n Itc~(0)tl Cx He H1 M1 I1~1t 

5 0.259 0.357 E-2 1.45 0.113 E-1 1.54 
9 0.486 E-1 0.207 E-2 0.131 0.958 E-3 3.20 

17 0.111E-I 0.668 E-3 0.118 0.276 E-3 4.13 
33 0.270 E-2 0.179 E-3 0.449 E-1 0.284 E-4 4.43 
65 0.670E-3 0.455 E-4 0.206 E-1 0.154E-4 4.51 

(iii) of lemma violated 
0.695 E-1 
0.132E-1 
0.286 E-2 
0.676 E-3 



Error Bounds and Estimates for Eigenvalues of Integral Equations 

Table 6 

n True error=121 -v]")l Bound from (25) 

5 1.092 (iii) of lemma violated 
9 0.285 0.402 

17 0.725 E-1 0.860 E-1 
33 0.182E-1 0.193E-1 
65 0.456 E-2 0.459 E-2 
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These results show that M~ is approximately constant, H 0 and H 1 show O(h) 
convergence, and [[ei(0)][, C1, [IV[[ show O(h 2) convergence. This is in agreement 
with the theoretical results in Section 2. The numerical performance of the bound 
(25) is illustrated in the Table 6. 

Clearly the bounds obtained for this example are very good. Asymptotically we 
have 

[2-vl")[ <(1 + o(n-1)) max ]V~k Bn(vl) ui[/s i. 
k 

If the maximum occurs for k = i then the bound becomes 

12 i -  vl")[ <(1 + o(n-1)) (the dominant error term given by (33)). 

This is the case in the above example. 
In this paper the bounds are calculated as accurately as possible. For example 

we calculate []ci(0)[j in Table5 from [[c~(0)][=mkax[v~B,(vi)u~[ instead of 
[[ci(0)l [ < ][B,(Vl)ui[[. The latter is cheaper of course but less sharp. However the 
bounds are expensive to calculate. In particular all the eigenvalues with their 
corresponding left and right eigenvectors have to be found. Also we have to 

n G,(vi) uq [see (34)], i.e. calculate the matrix with (p, q)-th component vp 

Xpq+lYp~ with Xp~=vnp(r.K.p.-K.)uq 

and _ n K(1 -p . r . )Kp .  r,,~- vp r. % 

This is very expensive. However once Xp~ and Ypq are calculated they can be 
used to provide bounds and estimates for all the simple eigenvalues and 
eigenvectors (provided the conditions of the lemma hold). If bounds are required 
for several eigenvalues and eigenvectors then we would be justified in doing the 
work. If we are interested in only one eigenvalue then the bounds would probably 
be too expensive to calculate. Note however that the estimate of the error given by 
(33) requires only the calculation of v~ and s~. 

The eigenvalues and right eigenvectors are calculated using QR as described in 
[13, contributions II/14 and II/15]. The left eigenvectors are found by calculating 
the left eigenvectors of the 2 x 2 block triangular matrix obtained in QR and 
transforming in the usual manner. Note that if k(s, t) is symmetric then we can solve 
a symmetric eigenvalue problem and the left eigenvectors are identically the right 
eigenvectors. 

We give below the timings for various stages in the calculation of the estimates 
and bounds. We define the times T~ i=  1, ..., 5 as follows. 



146 A. Spence 

Table 7 

n T 1 T 2 T 3 T 4 T 5 

5 0.06 0.04 0.05 0.002 - 
9 0.43 0.29 0.33 0.006 0.008 

17 2.70 1.85 2.12 0.019 0.027 
33 15.19 10.71 14.67 0.069 0.101 
65 104.45 74.75 116.80 0.260 0.385 

The times are given in seconds on the ICL System 4-70 at 
University College, Cardiff, Wales 

T~ = time to calculate vl n~, u~ i = 1 . . . . .  n, 
T 2 = time to calculate the left eigenvectors v i i=  1 . . . . .  n, 

n G.(vi)  uq p, q = 1 . . . . .  n, T 3 = time to calculate vp 
T 4 = time to calculate estimates (33) and (30) appearing in Tables 3 and 4, 
T 5 = time to calculate bounds in Tables 5 and 6. 
The calculation of the n 2 elements vp n G.(vl) u~ takes about  the same time as the 

solution of the eigenvalue problem. Once these have been calculated estimates and 
bounds are easily obtained. 

7. Concluding  R e m a r k s  

In this paper rigorous error bounds and dominant  error terms have been obtained 
for approximations to the solutions of ( l )  obtained using the Nystr6m method. In 
Sections 5 and 6 it was demonstrated how these bounds and estimates may be 
calculated. In all cases considered in [8] the addition of the correction terms shown 
in (30) and (33) produced a significant improvement  of the original approximation. 

Finally we note that the dominant  term in the correction of the eigenvalue, 
given by (33), is-almost that given by the Rayleigh quotient approach. If we regard u i 
as an approximation to x i then the Rayleigh quotient correction for the eigenvalue 
is 

v~ [K n + Bn(2)] u J s  i = vl n) -~ v~ B n (2) u i 
si 

Acknowledgments. I would like to express my sincere appreciation to Professor Ben Noble, my thesis 
supervisor, for his guidance and encouragement throughout my research at Oxford. During that time I 
was supported by the Science Research Council of Great Britain. 

References  

1. Atkinson, K.E.: Convergence rates for approximate eigenvalues of compact integral operators. 
SIAM J. Numer. Anal. 12, 213-222 (1975) 

2. Brakhage, H.: Zur Fehlerabsch~itzung f'tir die numerische Eigenwertbestimmung bei Integralglei- 
chungen. Numer. Math. 3, 174-179 (1961) 

3, Bramble, J.H., Osborn, J.E.: Rate of convergence estimates for nonself-adjoint eigenvalue 
approximations. Math. Comput. 27, 525-549 (1973) 



Error Bounds and Estimates for Eigenvalues of Integral Equations 147 

4. Keller, H.B.: On the accuracy of finite difference approximations to the eigenvalues of differential 
and integral operators. Numer. Math. 7, 412-419 (1965) 

5. Noble, B.: Error analysis of collocation methods for solving Fredholm integral equations. In: Topics 
in numerical analysis (J.J.H. Miller, ed.), pp. 211-232. London: Academic Press 1973 

6. Ortega, J.M., Rheinbolt, W.C.: Iterative solution of nonlinear equations in several variables. New 
York: Academic Press 1970 

7. Spence, A.: On the convergence of the Nystr6m method for the integral equation eigenvalue 
problem. Numer. Math. 25, 57-66 (1975) 

8. Spence, A.: The numerical solution of the integral equation eigenvalue problem. D. Phil. Thesis, 
Oxford, 1974 

9. Thomas, K.: On the numerical solution of an integral equation by Simpson's rule. To appear 
10. Vainikko, G.M.: On the speed of convergence of approximate methods in the eigenvalue problem. 

U.S.S.R. Computational Math. and Math. Phys. 7, 18-32 (1967) 
11. Wielandt, H.: Error bounds for eigenvalues of symmetric integral equations. Proc. Sympos. Appl. 

Math., Vol. 6. Providence, R.I.: Amer. Math. Soc. 1956 
12. Wilkinson, J.H.: The algebraic eigenvalue problem. London: O.U.P. 1965 
13. Wilkinson, J.H., Reinsch, C.: Handbook for automatic computation, Vol. II. In: Linear algebra. 

Berlin-Heidelberg-New York: Springer 1971 

Received June 7, 1976 


