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1. Introduction 

In its simplest form, the classical individual (or pointwise) ergodic theorem of 
G.D. Birkhoff states that if (X, 5 ~,#) is a probability measure space, ~ is an 
invertible measure-preserving transformation of X and f is an integrable complex- 
valued function on X, then the averages 

s, ( f )  = 1 ( f +  ~ f +  ~ 2 f + . . .  + an- i f )  

converge almost everywhere to an c~-invariant function f (where , f  is the func- 
tion defined by ~tf(x)=f(~t(x))). If we restrict attention to the case where f is 
bounded, we are dealing with an element of the commutative yon Neumann 
algebra 93=L~(X,p), and c~ gives rise to an automorphism of 93. There is a 
standard way of expressing the almost everywhere convergence intrinsically in 
terms of 9.1 (i.e. without explicit reference to the base space X), and that is to 
make use of Egorov's theorem. In fact, if s, ( f ) ~  f almost everywhere on X, then 
there is a " large" measurable subset of X on which s , ( f ) - -+f  uniformly. If e is 
the characteristic function of this subset then s , ( f ) e - ~ f e  in the L ~176 norm. So we 
can state the ergodic theorem in terms of the algebra 9.1 as follows. 

Theorem. Let 93 be a (commutative) yon Neumann algebra, ~ an automorphism 
of 93 and # a faithful ~-invariant normal state of 93. For each f in 93 and e > 0  there 
is a projection e in A with #(e)> 1 - e  such that 

II(s,(f)-f ')ell --'O as n---, oo. 

The object of this paper is to show that in this form the ergodic theorem is still 
valid if we delete the hypothesis that 93 be commutative (see Theorem 5.7). In 
other words, if ~ is an automorphism of an arbitrary yon Neumann algebra 93 
and there is a faithful ~-invariant normal state of 93 then for any A in 93 the 
averages s.(A) converge "almost uniformly" to an ~-invariant element A. 

All the existing proofs of the (commutative) ergodic theorem seem to make 
use of a result known as the maximal ergodic theorem. This states that, if X, #, 
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are as above and f is real-valued, there is a measurable subset Y of X on which 
s.(f)<O for all n, such that ~ fdla>O. Let K be the Choquet simplex of all 

X \ Y  

probability measures on X. If Y and X'..Y are not null then /~I=/~(Y)-I/~IY 
(where #IY is the restriction of # to Y) and p 2 = / ~ ( X \  y ) - i / ~ I ( X \  Y) are in K 
and/~ is a convex combination of them. Also ~fdla2>O and ~s.(f)dv<O for 

X X 
all n and for all v in the face of K generated b y / q .  In order to prove the non- 
commutative ergodic theorem we have to establish a result of this type for general 
compact convex sets, and this is done in Section 2. Looked at another way, 
Theorem 2.1 says that if the space X above is a compact convex set in some real 
locally convex space, ~ is a bicontinuous affine automorphism of X and/~ is the 
point mass situated at some point z of X (so that 0t(z)=z), then for a continuous 
affine function f we can replace p by another probability measure with resultant 
z in such a way that the set Y above can be chosen to be a face of X. This result 
may possibly point the way to an ergodic theorem for affine automorphisms of 
compact convex sets, but we have not attempted to make any further investigations 
in this direction. 

Returning to the non-commutative situation, let 0t be an automorphism of 
a v o n  Neumann algebra with a faithful ct-invariant normal state. For an element 
A in 92, we wish to show that s.(A)~.4 almost uniformly, and this we do in 
three stages. In Section 3 we present the construction, due to Kovfics and Sziics 
[11], of the map A~-*/]. In Section 4 we show that there is a large linear subspace 
91, of 9.1 in which the convergence s.(A)--*.4 is actually uniform. This result is 
used in Section 5, together with Theorem 2.1, in the proof of the main theorem. 

We assume familiarity with the general theory of operator algebras, as con- 
tained in [4] and [17]. If 92 is a unital C*-algebra then its state space S(91) is a 
compact convex subset of (the selfadjoint part of) the dual space 92* with the 
weak* topology, and every selfadjoint element of 92 defines a continuous affine 
real-valued function on S (92). If ~ is an automorphism of 92 (by which is meant 
an automorphism for the ,-algebra structure) then ct is isometric, and the adjoint 
mapping ~* on 92* gives a bicontinuous affine automorphism of S (92). If 92 is a 
von Neumann algebra, with predual 91,, then ~ is also bicontinuous for the 
ultraweak (or weak*) topology and is therefore the adjoint of an isometric linear 
automorphism % of 92,. 

The second dual 92** of a C*-algebra 92 is a von Neumann algebra (the 
enveloping von Neumann algebra of 92), and every state p of 91 is a normal state 
of 92**. By a slight abuse of notation, we identify 92 with its canonical image 
in 91"* (and in the case ofa  von Neumann algebra we identify 92, with its canonical 
image in 92*). If 9I is a v o n  Neumann algebra then the adjoint of the canonical 
inclusion of 92, in 92* is a normal retraction rt from 92** onto 91. It follows from 
the definition of rt that if p is a normal state of 92 then the composition pn  is 
equal to p. The mapping n is order-preserving so, in particular, if ~ is any subset 
of 91 and A is an upper bound for ~ in 92** then n(A) is an upper bound for 
G i n  92. 

We make essential use of the correspondence (due to Effros [7] and Prosser 
[15]) between the ideal structure of an operator algebra and the facial structure 
of its state space. If 92 is a unital C*-algebra and ~ is a face of S (93) then the norm 
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closure ~ is also a face of S(9.1) (Theorem 4.6 of [7]; the weak* closure of ~ is 
not in general a f a c e -  see w 6 of [7]). The ultraweakly closed left ideal 

{A: p(A*A)=O (p~o~)} 

in 9.I** is equal to 9.I**F for some projection F in 9A** (by Proposition 1.10.1 
of [17]). Let E = I - F ,  then 

~ =  {p~S(~): p(E)= l }. 

Finally, ~ is identified in an obvious way with the normal state space of the 
von Neumann algebra EgA**E, so that if Asg~** and p(A)>O for all p in ~ then 
it follows that EAE >0. 

The main results of this paper  are announced in [12]. 

2. An Ergodic Theorem for Convex Sets 

Let K be a compact  convex subset of a real locally convex Hausdorff linear 
topological space V. For x in K let ~,~-(x) be the face of K generated by x, so that 
u~ ~-(x) if and only if x = 2 u + ( 1 -  2)v for some v in K and some 2 with 0 < 2 < 1. 

Let ct be a bicontinuous affine automorphism of K and suppose there is a 
point z in K such that at(z)= z. Let f be a continuous affine real valued function 
on K and n a positive integer. Define a continuous convex function h on K by 

h = m a x  {O,f , f  +ef ,  .... f + e f  + . . .  q_ ~n-lf}, 

where e f  is the function given by e f (x )=f (e  (x)) (xe K). Let Q = {xE K:h (x)= 0}, 
so Q is a closed convex subset of K. As in Section 3 of [14] we define/] to be the 
infimum of all the continuous affine functions on K which majorize h, so that 

is a concave bounded upper semicontinuous function on K with/~ > h >0 .  

(2.1) Theorem. Either f(z)__>0, or there are points z l , z  2 in K such that z is a 
convex combination 2 zl + (1 - 2) z 2 with ~ ( z  1) c Q and (1 - 2) f(Zz) >= O. 

Proof. We need only consider the case f ( z ) < 0 .  By Proposition3.1 of [14], 
h (z) = sup S h d #, where the supremum is taken over all probability measures on 

K with resultant z. This supremum is moreover attained, because of the weak*- 
compactness of the set of all such measures. So choose # so that S h d # = h (z). 

For  0_< k _  n it follows from the definition of h that 

f +~h>__f +ctf +...+o~kf. 

At each point of K \ Q, there must be at least one value of k for which the func- 
tion on the right hand side of this inequality is positive, and so f+cth>=O on 
K \ Q. Thus f +  ~ h __> h on K \ Q, hence 

~ ' f d p +  ~ ~thdp>= ~ hdp. 
K \ Q  K \ Q  K \ Q  
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On the set Q, we have h = 0  and e h > 0 .  Therefore 

fdp>= ~ hd#- ~ cthdl~ 
K \ Q  K K 

= f h d # - f h d #  ~, 

where p~ is the composition of p with e. But /~" is a probability measure on K 
with resultant z (since e(z)=z)  and it follows from the maximality of ~hdp 

K 
among such measures that the right hand side of the above inequality must be 
non-negative. So ~ f d p >= O. 

By assumption, dp=f(z)<O, from which it follows that ~fdp<O, so that 
K Q 

2=/~(Q)>0.  Thus 2 -1 #lQ is a probability measure on Q, with resultant zl say. 
Suppose h(z l )>0.  From the way in which /~ is defined, there is a continuous 
affine function g on K such that g>/~ and g(z)<h(z)+2h(z O. Then 

/~(z)= Ihd/~= I hdl~ 
K K \ Q  

<_ ~ gdp 
K \ Q  

=~gdg-~gdl~ 
r Q 

=g(z)- -2g(zO 

< [ t ( Z ) +  2 ( f ~ ( Z l ) - - g ( z , ) ) < = h ( Z ) .  

This contradiction shows that h(z l )=0.  Since /~ is concave and nonnegative it 
follows that h = 0  on ~-(za), so that o~(zO~_Q. 

Then either 2 =  1 and z 1 =z,  so that the theorem holds for any choice of zz; 
or 0 < 2 < 1  in which case ( 1 - 2 ) - l / I ] ( K \ Q )  is a probability measure, with re- 
sultant z 2 say, and 

/ ( z 2 ) = ( 1 - 2 )  -1 ~ fdp>=O. 
K...Q 

It is then clear that z=2zl + ( 1 - 2 ) z 2 .  
The second paragraph of the above proof is a modification of Garsia's proof 

(see [-8]) of the maximal ergodic theorem. In fact, if K is a Choquet simplex then, 
as explained in the Introduction, Theorem 2.1 yields a result which looks very 
like the maximal ergodic theorem. We shall see in Section 5 that, in the presence 
of some additional structure, this theorem can be used to prove results which 
are more recognizably like ergodic theorems. In the general case, it is not easy 
to see how to proceed. One obvious question is whether Theorem 2.1 holds with 
~'(Zl) replaced by the closed face generated by z 1 (which is not in general the 
closure of ~- (zl))- 

Notice that if sm ( f )  = 1 ( f +  ~ f +  ... + ~,,_ i f )  then 
m 

h = max {0, s 1 (f), 2 s2 (f) ,  ..., n s, (f)},  
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so that s , , ( f )<O on Q ( l < m < n ) .  In particular, s , , ( f )<O on ~.~(Zl) ( l < m < n ) ,  
and it is this fact that we shall need in Section 5. 

3. Mean Ergodic Theorems for von Neumann Algebras 

Since the appearance of the original noncommutative ergodic theorem of Kovfics 
and Sztics [11], mean ergodicity in yon Neumann algebras has been extensively 
studied (see especially [2, 3, 5, 18]), and the results presented in this section are 
not essentially new. However, in keeping with the theme of the rest of the paper, 
they are formulated in such a way as to draw attention to the way in which the 
averaging operators converge to the conditional expectation, rather than just 
demonstrating the existence of the expectation. 

Let ~ be an automorphism of a v o n  Neumann algebra 21. For A in 2l, define 

sn(A)=I-[A+o~(A)+~Z(A)+'"+o~n-I(A)] (n> l ) ,  
n 

and for ~b in 21,, define 

1 [~b + ~, (qS) + ~2, (c b) + ... + ~,_ 1 (~,b) ] (n> 1). s.(~)=~ 
Let p be a faithful ~-invariant semifinite normal weight on 21 (later in the paper 
we shall require p to be a state, but the results of this section are proved nearly 
as easily for a weight). 

We now establish some notation and recall some of the basic properties of 
weights from [1] and [9]. Let 

92p= {A~21: p(A* A) < 0o} 

and let 210 = 920 ~ 92*. Then 21o is a prehilbert space under the inner product 

(A, B> = p (B* A). 

We denote by H a the Hilbert space completion of 21o, by A a the canonical in- 
jection of 21o in H a and by ~zp the faithful representation of 21 on Hp given by 

rip(A) Ap(B)=Aa(AB) (A~21, B~21o). 

Then Ap (21) is a full left Hilbert algebra with associated left yon Neumann algebra 
7rp(21). Denote by 21~ the associated right Hilbert algebra. Define 

21"= {A~21: c~(A) = A} 

and let ~I be the weak closure of 21" c~ 21o. 

(3.1) Theorem. Let 21, ~, p, 21o, q.I be as above. 

(i) There is a normal retraction A~-~.~ from 21 onto 9_I. 
(ii) For A in 21o, Sn (A)--~ A ultrastrongly as n--~ ~ .  

(iii) For (a in 21,, there is an o~,-invariant (o in 21, such that 

s. (c~)(A) ~ ~o (A) (A ~ 21o). 

(iv) I f  p is bounded then Sn((b)--~ (# in norm. 
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Proof. Since p is ~-invariant, the map 

Ap(A)~-,Ap(~(A)) (A~92o) 

extends to a unitary operator U on Hp which implements the automorphism 
n p ~ p  -1 of ~p(9.I). For th, q2 in 9.I~) we have 

(np(s.(A)) rh, rl2) = (Ao(s, (A)), r12 tl~) 

= Z UJAo(A), rt2n~ ~ (EAp(A), rlzq~) (A~92o) 
j=O 

l n - I  
(where E is the strong limit of the sequence n ~=v Uj' which exists by von Neu- 

mann's ergodic theorem). Thus if 4) in ~ ,  is defined by 

dp(a)=(np(A)ql,q2 } (Aem) 

and A~9.1 o then c~(s.(A)) converges to a limit f (A,  qS) as n - - ~ ,  and 
]f(A, ck)l<llAlh ][4)Jl since ]]s.(A)[] < LIAI]. Since elements of this form are norm- 
dense in ~ .  it follows by a simple approximation argument that e~(s.(A)) con- 
verges to a limit, which we again call f (A ,  ~b), for any ~b in 9.I. and A in ~o- 

For fixed A in 91o, the map c~* f (A ,  c~) defines a bounded linear functional 
on 92., i.e. an element of 9.1, which we call A. Thus 

$(s.(A))---~ dp(.A) ((b~od,, A6gJto). 

Clear ly / i69i  " and 11411 < IM[[- It follows from the calculations above that 

(rip (zi)t/i, t/2 > = (EAo(A), q2 t/~> 

= (n'(th)EAp(A), t/2> (qx, t/2 ~ 9-I()), 

where n' is the right regular representation associated with 9.1~). Since this holds 
for all r/2 in 9.I~, we have 

no(-4)rh =n'(th)EAo(A) (tll~9~'o, a~9Ao). 

Since it is easily seen that A* =(4)*, we also have 

~0 (~i)* ,h = n' ('h) eA~ (A*). 

Since Ap(~o) is full, it follows from Lemma 2.3 of [19] that EAp(A)~Ap(9.1o) and 

n o (A; 1EA o (a)) = n, (.4), 

so t h a t / ] e N o  and Ao(.4)=EAp(A ). 
Next, we show that the map A ~ / ]  is weakly continuous at 0 on the unit ball 

of ~1o- For this, suppose that (A~) is a directed net in the unit ball of 92 o converging 
weakly to zero. Let B, CegVca~lo. Then UAo(B)=Ao(B ), UAo(C)=Ao(C ) and 
~o(A~) ~ 0 weakly. Hence 

(rip (cr (A,)) Ap (n), A a ( C)) = ( U n o (A,) U* A o (B), Ap ( C)) 

=(np  (A~) Ap(B), Ap( C)) 
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and so 

(np(s,(A~)) Ap(B), Ap(C)> = (no(A~)Ap(B), Ap(C)> (all n). 

Hence 

<zcp(.4~) Ap(B), Ap( C) > = (~p (Av)Ap(B), Ap( C)> - 5 ~  O. 

Thus p^(C*.4~ B) --, 0 (B, C ~ 9.V c~ 9.Io). Notice also that A ~ 9 . I ^  ~ c~ 9.1o ~_ ~I. Consider 
=p[9.1. It is a faithful semifinite normal weight on 9.1. Hence the associated 

representation ~,  is faithful, and we know that 

~h (C* A~ B) = Qr~ (2~) Aq, (B), A, (C)> ~ 0. 

Since Iluq,(~]~)l~<l for all 7 it follows that u q , ( A ~ ) ~ 0  weakly and thus (since 
rcq, is faithful) A~--~ 0 weakly in ~t and hence in 9.1. 

It now follows (by Remark 2.2.3 of [10]) that the maping AF-,A extends to an 
ultraweakly continuous mapping from 9.I onto ~l, which is evidently a retraction. 
We show next that, for A in 9.Io, s,(A)--~A ultrastrongly. In fact, given t/in 9.I~), 
we have 

=,(s.(A)),7 = ~'(,7) A.(s . (A))  
1 n-1 

= 7r' (tl) ~ ~, U J Ap (A) 
'~j=O 

---~ ='(q) EAp(A) 

= ~' (q) Ap (4) = up (.4) 11. 

Since Iluo(s,(A))[[__< HAll for all n it follows that up(s,(A))--~up(A) strongly and 
hence ultrastrongly. Therefore s, (A)-~ A ultrastrongly. 

For ~b in 9.1,^and A in 9.1 o define (~ (A)= ~b (.~). If Ar--~ 0 ultraweakly then so 
does Av and so ~b (A~) -~ 0. Thus $ is an ultraweakly continuous linear functional 
on 9.I o and extends by continuity to an element q5 of 9.1,. Since (~ is bounded by 
II~bll on 9.I o, it follows from Kaplansky's density theorem that I1511 =< II~bll. Clearly 

is a,-invariant. 
Finally, let F be a projection in 91 o and define ~b in ~ ,  by 

$(A)=(~p(A)ql,q2> (A+9.1), 

where /11,/~2~[(). Then, for A in ~.I, 

s.(c~)(AF) = QCp(s.(AF)) ql, ~12> 

= (Ap(s.(AF)), q2 q~> 

= ~, UiAp(AF),q2q~ 
r 

=<~zp(A)Ao(F), l ~ U-J(/']2 ~]lb)> 
g/j=O 

--, (np (A) Ap (F), E (t/2 t/~)> = q~ (A F), 
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and the convergence is uniform on the unit ball 921F of 92F. A simple approxima- 
tion argument shows that s , ( ~ b ) ~  uniformly on ~I~F for any ~b in 92.. In 
particular, if p is bounded then 920 = 92 so we can take F to be the identity and 
deduce that s.(~b)--~ ~ in norm. 

Remark. If 92 has no ct-invariant normal states then it is easy to see that ffl = (0). 
Notice that in this case it is possible for s.(A) to converge to a limit different 
from ,4, if Ar (For example, take A to be the identity.) From a probabilistic 
point of view it is thus rather misleading, in this case, to think of the retraction 
A~-,,4 as a "conditional expectation". However, for the remainder of this paper, 
we shall assume that p is bounded, so this situation will not arise. 

4. Uniform Ergodicity 

Let 0t be an automorphism of a v o n  Neumann algebra 9,1 as before, but this time 
let p be a faithful ~-invariant normal state. We wish to investigate whether the 
result of the previous section, that s.(A)-~,4 ultrastrongly for A in 92, can be 
strengthened. In this section we show that any A in 92,1 is the strong* limit of a 
bounded sequence (Ak) in 9,I such that s.(Ak)--~A k in norm, as n ~  ~ .  If (Ak) 
were not required to be bounded, this would be an easy result to prove, but in 
fact the boundedness is essential for the application of the result in the next section. 

We need to use the following lemma, which is concerned with the convergence 
to zero (in the/a-norm) of the averages of an element x in l ~ (Z) under the shift 
operator on 11 (Z). 

(4.1) Lemma. I f  x~P(7Z)and ~ Xk=O then 
k~Z  

r~z nn-~xr_jl ---~0 a s  n - - *  o o .  

j=0  

Proof. Let e > 0  and choose n so that ~ lXkl<�88 Then also I ~, Xkl<�88 For  
] 1 s-lxr_j , ]kl>n tkl<--n 

r in Z, consider aN= N-j~=o where N >  16he -111xllx- If r>_N+n or r <  - n  
1 N - 1  

then aN<~-  ~ Ix~_jl; i f n < r < S - n  then 
j=O 

aN< ~l~(I E xk]+ E Ix~_jl)<�89 
~ Ikl~_n O<J-<N-1 

[ r - j l>n 

while if - n < r < n  or N - n < r < N + n  then aN<N -111xlh. Keeping N fixed, we 
now sum over r to obtain the estimate 

x,_j <= ~lx , - j l+ �89  -lllxllx, 
j=0  

where in the first term on the right hand side the summation is taken over all 
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values of r and j such that 0 < j  < N - 1  and I r - j l  > n. Summing over r first and 
then j, we see that this sum cannot exceed �88 Thus 

1 N-lXr_j <~ 
, ~ z N -  S=~o whenever N >  16ne -1 Ilxlll. 

This completes the proof. 

(4.2) Theorem. Let a be an automorphism of a yon Neumann algebra 9.I, let p 
be a faithful a-invariant normal state of ~ and let 

9.I,={A~gA: tls,(A)-AII ---,O as n---~ oo}. 

For any A in ~ there is a bounded sequence in 9.I~ which converges to A in the 
strong* topology. 

Proof. For x=(x,)  in p(TZ), define x . e =  ~ xr~ r (the sum converges to give a 
r~Z 

bounded linear operator on 9.1). If ~ x. =0 and Ae~.I then s,((x. ~)(A)) converges 
to zero in norm, since 

1 . - 1  1 . - 1  
- E ~ x,'ar(A))= n E E x,~r+J(A) 
n j =  o r ~ l  j =  0 r~Z 

=- Z Z Xk-j ~k(A), 
k E Z  S = 0 / 

so that 
I1 . - 1  I 

IIs.((x" ~)(A))II < ~ n ~ xk_j IIAtl, 
kEZ j =  0 

and this converges to zero as n---, ~ by Lemma 4.1. 
Define a sequence (fk) of functions on the unit circle by 

{10 (,O[<~/k) 
A(ei~ (rc/k <lOl<-_rO. 

Then the Fourier coefficients offk are given by 

[ 1/k (r = O) 

X ( r ) = / 1  sin 7 (r#O). 

Let gk=l- -k ( fk* fk )  (where the star denotes the convolution product), and let 
x(k)=(X~ k)) be the Fourier series of gk, so that 

x~ k' ~ 1 - 1 / k  (r=O) 

= l r-~k2 " ( r + O ) . sin2 r~ T 

Then g, takes the value 0 at 1, 1 at e ~~ whenever 2n/k<[Ol<n and is linear (in 0) 
on the complementary arcs. So (g,) is uniformly bounded and 1--gk converges 
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pointwise to the characteristic function h of {1 }. Also, X (k) is in 11 (Z), with 

Ilx(k)[] 1 < 1 +k  [[J~l]~ = 1 +k  ][fkll~ =2  

(by the Parseval relation: we use the normalized Haar measure on the circle, so 
that ]lfkll 2 = k- t ) ;  and ~ x~ k) =0  since gk(1) =0. 

r~Z 

Now fix A in 9.1 and let A k = d + (x {k). a) (A). It follows from the first part of the 
proof that s.(Ak)---~,4 in norm as n-* 0% so A, e9/..  Also, from the above cal- 
culations, IIA, II < []x{a)[ll I[A[] <2 [IAll, so the sequence (Ak) is bounded. The next 
step in the proof is to show that A k--~ A strongly. Let n o be the (faithful) GNS 
representation of 9/ on H o, with cyclic vector 40, associated with p. Since p is 
a-invariant, there is a unitary U on H o which implements rc o a rc~- x, and 

U 7ro(B ) ~o = Iro(~(B)) ~p (B~ 9/). 

Let U =S 2E(d2) be the spectral representation of U, then for x in 11 (7/) it is easily 
seen that 

na((x �9 ~)(a)) 4o = j~(2) E(d2) rc,(A) 4, 

(where ~ is the inverse Fourier transform of x, so that ~(2) = ~ xr 2r). Also, it is a 

consequence of yon Neumann's mean ergodic theorem that rca(A ) ~p =E~a(A ) 40, 
where E is the projection onto the eigenspace of U corresponding to the eigen- 
value 1, so that E=jh(2)E(d2)  with h as above. Therefore, 

= ~ (h (2) + gk(2)) E(d2) . . (A) 40- 

Since the functions h +gk are uniformly bounded and converge pointwise to 1 
it follows from Corollary X.2.8 of [6] that ~(h(2)+ gk(2))E(d2) converges strongly 
to the identity, so in particular ~rp(Ak)~.---~ 7ro(A ) 4.. Since ~p is separating for 
1to(9/) and the operators 7ro(Ak) form a bounded sequence, we conclude that 
Iro(Ak) converges strongly to up(A) and therefore that A k ~ A strongly, as required. 

Finally, since all the coefficients ~.-(k) are real, we have A* =A* +(x (k) �9 a)(A*), 
and the argument of the previous paragraph applied to A* in place of A shows 
that A~'--* A* strongly. Thus Ak--~ A in the strong* topology, and the proof is 
complete. 

Notice that 9/.i. is a norm-closed selfadjoint linear subspace of 9/(the norm- 
closure follows from Theorem VIII.5.1 of [6]), but there appears to be no reason 
to suppose that it is closed under multiplication. It would be interesting to know 
whether 9/. contains a C*-algebra which is weakly dense in 9/. 

5. The Almost Uniform Ergodic Theorem 

Let 9/be a C*-algebra with identity and let S(9/) denote the state space of 9/with 
the weak* topology. Then S(9/) is compact and convex, and each selfadjoint 
element of 9/corresponds in a natural way to a continuous affine real-valued 
function on S(9/). If a is an automorphism of 92 then a* gives a continuous affine 
automorphism of S(9/). 
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(5.1) Lemma. Let ~ be an automorphism of a unital C*-algebra 91 and let p be a 
faithful ~-invariant state of 91. Suppose that B is a positive element in the unit ball 
of 91 with p(B)=s and that n is a positive integer. Then there is a projection E in 91"* 
such that p(E)>= 1 - e  �89 and 

sm(B)<2e �89  ( l ~ m < n ) .  

Proof If s = 0  then B = 0  (since p is faithful) and we can take E= I .  If e--1 then 
B = I  and we can take E--0. So we may assume 0 < e <  1. 

Let A = B - e ~ I .  Applying Theorem2.1 with K=S(91), z= p  and f equal to 
(the affine function corresponding to) A, we have p(A)=e-e �89  and so there 
are states tr 1, o" 2 of 9.1 such that p is a convex combination 2al + (1 -2 ) t r2 ,  
(1 -2 )a2(A)>O and tr(s,,(A))<O for 1 < m < n  whenever tr is in the face ~- of S(91) 
generated by al. Let J be the norm closure of ~,~ in S(91), then ~ is a face of S(91) 
by Corollary 4.3 of I-7] and so (see Section 1) there is a projection E in 91"* such 
that trl(E)= 1 and Esm(A) E<O for 1 <m<n.  Let F = I - E .  

Since A > - s �89 I, we have tr~ (A) > - e ~ and so 

- ~ = p(A) = ~. ~r~ (A) + (1 - ,~) ~2(A) _-> - ~. e~. 

Hence 2>  1 -e~,  so that p(E)>2al (E)> 1 -e�89 
For  any positive T in 9.1 we have 

T < 2 E T E + 2 F T F  

(since ( E - F )  T ( E - F ) > O ) .  Thus, for 1 <m<-n, 

sm(B)< 2Esm(B) E + 2F sm(B)F 

< 2 e ~ E + 2 F .  

(5.2) Lemma. Let 91.1, ~, p, B, e be as in Lemma 5.1. There is a positive element C 
of 91"* with I1C]] <2  and p (C)<4e  ~ such that s,(B) < C for all n. 

Proof For each n, let E. be the projection obtained in Lemma 5.1. If C , =  
2 e � 8 9  then IIC.I[<2, p (C , )<4e  ~ and s, ,(B)<C, for l<m<_n. The 
sequence (C,) in 91,1"* has a weakly convergent subnet with limit C satisfying all 
the conclusions of the lemma. 

(5.3) Corollary. I f  9I is a yon Neumann algebra and p is normal then we can 
choose C (in Lemma 5.2) in 91. 

Proof Let C be an element of 91"* which satisfies the conclusions of Lemma 5.2, 
then so does the element 7r(C) of 91 (see Section 1), where lr is the natural projection 
from 91"* onto 91. 

Corollary 5.3 tells us that if B is very small (as measured by p) then all of its 
averages s.(B) are fairly small. This (in the commutative case) is intuitively the 
content of the maximal ergodic theorem, and in fact one can obtain Corollary 5.3 
for commutative 92 is an easy consequence of the maximal ergodic theorem (one 
can also take C in the unit ball and replace 4e ~ by the sharper estimate e(1 - l o g  e), 
in this case). 

The next main step in the argument is Lemma 5.6, in the proof of which we 
shall require the following two minor technical results. 
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(5.4) Lemma. Suppose A, B are Hilbert space operators with 0 < A < B < I, E is a 
projection and e > O. Then 

HBEII <~ ~ []AE[] < e L  

Proof. By Lemma 2 in w of [4], there is an operator S with IlSl[ =<1 such that 
A ~ = S B  �89 Thus, if IIBEII <e, we have 

IIB~EII = IIEBEII~<= I[BEII~ < ~ ~, 

so that 

I[AEII = I[a~ SB~ E[I <= IIB~EII < ~ .  

For the next lemma, suppose A is an element of a v o n  Neumann algebra. By 
expressing A in terms of its selfadjoint and skew-adjoint parts and then writing 
each of these as the difference of its positive and negative parts, we obtain 

A =  A 1 - A 2  + i A 3 - i A 4 ,  

where Ai~O and ]laill < Ilall. Define 

A ++ =A1 + A 2 + A 3 + A 4 .  

(5.5) Lemma. Suppose (Bk) is a bounded sequence in the yon Neumann algebra 9.I 
which converges to zero in the strong* topology, then so is (B~k +). 

Proof If Bk=Hk+iKk,  SO that Hk=Bkl--Bk2 and Kk=Bk3--Bk4, then it is clear 
that Hk-*O and Kk--~O (strong*). It is therefore sufficient to consider the case 
where each Bk is selfadjoint and to show that Bkl--,0. However if Bk--~O then 
I Bk] = (B2) ~--+0 and s o  Bkl =I (B  k +lBk])--*O (the convergence in each case being 
strong*). 

(5.6) Lemma. Let ~t be an automorphism of a yon Neumann algebra 9.1 and let p 
be a faithful o~-invariant normal state. Suppose that (BR) is a bounded sequence in 9.1 
which converges to zero in the strong* topology and that e>0.  Then there is a 
subsequence (Bk~) of (Bk) and a projection E in 9.I-such that p ( E ) > l - e  and 
s,(Bk) E ~ 0 in norm as j -* Go, uniformly in n. 

Proof Consider first the case where each B k is positive. We may assume that 
O<=Bk~I. Let gk=p(Bk), then ,~k---~0 as k--~ GO. We apply Corollary 5.3 with B k 
in place of B and write C k for the operator C. Then Sn(Bk)~ C k for all n (and all k), 
(Ck) is a bounded sequence in 9.[ and P(Ck)<4e~k--*O as k--~ GO. Since p is faithful 
it follows that CR~O strongly. Thus we can apply the non-commutative Egorov 
theorem of Saito and Pedersen ([13], [16]), from which we deduce that there is a 
subsequence (CRj) of (CR) and a projection E in A such that p ( E ) > l - e  and 
H Ck~E[]---~0 as j---~ GO. It follows from Lemma 5.4 that IIs.(Bk)EI] --,0 uniformly 
in n, as required. 

To deal with the general case, we observe that by Lemma 5.5 we can apply 
the first part of the proof to the sequence (B~- +) to find a subsequence and a pro- 
jection such that lls,(B~ +)Ell---,0 as j - - ,  GO, uniformly in n. Since 

s,(Bkj,) __< S, (B~ +) (i = 1, 2, 3, 4), 



Ergodic Theorems for Convex Sets 213 

we deduce  from L e m m a  5.4 tha t  IIs,(Buj~)Ell ~ 0  and so IIs,(BR)EI[-~0 as j ~  or, 
un i formly  in n. 

We are now in a pos i t ion  to prove the main result  of this paper ,  the non-  
commuta t ive  version of  the poin twise  ergodic  theorem.  

(5.7) Theorem. Let ~ be an autonwrphism of  a yon Neumann algebra 9.I and let p 
be a faithful ~-invariant normal state. For each A in 9.I and e > 0  there is a projection E 
in 9.I with p ( E ) >  1 - e  such that 

II(s,(A)-A)EII ~ 0  as n--~ ~ .  

Proof  By T h e o r e m  4.2 there is a bounded  sequence (Ak) in 9Ji u which converges  
to A in the strong* topology.  Since A k ~ / ]  (strong*), we can replace A by A - / ] ,  
Ak by A k - A  k and suppose  that  A k = / ] = 0 .  Wri te  B k = A - A  k. Then (Bk) is a 
b o u n d e d  sequence with strong* limit  zero. By L e m m a  5.6 there exists a p ro-  
ject ion E in A with p ( E ) >  1 - e  such that,  given any 6 >0 ,  we can find an index k 
for which [Is,(Bk)E[I <16  for all n. Since AkEC2[u and ~Alk:0 there is an integer N 
such tha t  [Is.(Ak)ll <�89 whenever  n > N. Thus, for n > N, 

Ils.(a)Ell <= Ils,(a~)EII + Ils,(Bk)EII <6.  

This ho lds  for any  6 > 0, so the p r o o f  is complete .  

Remark. Given a finite n u m b e r  of  e lements  A ~x) . . . . .  A ~') of 9,1 and e > 0, it is poss ible  
to find a single p ro jec t ion  E in ~ with p(E)> 1 - e  such that  

II(s ,(A"))-A"))EIt-*O as n ~  

for each i = 1, 2 . . . .  , r. The  reason for this is that,  following the p r o o f  of Theorem 5.7, 
we ob ta in  b o u n d e d  sequences (B~ i)) (1 <i__< r) which converge  strong* to zero. We 

r 

then apply  L e m m a  5.6 to the sequence (Dk), where Dk = ~, B~ ~+ +, to ob ta in  a 

p ro jec t ion  E with p ( E ) >  1 - e  such that  a subsequence  of s.(Dk)E tends to zero 
in norm,  uni formly  in n. The a rgument  of the last p a r a g r a p h  in the p roo f  of  
L e m m a  5.6 then shows that  the same subsequence of  s.(B~))E tends to zero in 
norm,  uni formly  in n, for each i. Wi th  this choice of E, we may resume the p roo f  of  
Theo r em 5.7 to ob ta in  the des i red  conclusion.  

References 

1. Combes, F.: Poids associ6 ~ une alg+bre hilbertienne ~t gauche. Compos. Math. 23, 49-77 (1971) 
2. Combes, F.: Poids et esp6rances conditionelles dans les alg6bres de von Neumann. Bull. Soc. 

Math. France 99, 73-112 (1971) 
3. Dang Ngoc Nghiem: Sur la classification des syst+mes dynamiques non commutatifs, J. Functional 

Analysis 15, 188-201 (1974) 
4. Dixmier, J.: Les alg6bres d'op6rateurs dans respace hilbertien. Paris: Gauthier-Villars 1957 
5. Doplicher, S., Kastler, D., St~rmer, E.: Invariant states and asymptotic abelianness. J. Functional 

Analysis 3, 419-434 (1969) 
6. Dufiford, N., Schwartz, J.: Linear operators I, II. New York: Interscience 1958, 1963 
7. Effros, E.: Order ideals in a C*-algebra and its dual. Duke Math. J. 30, 391-411 (1963) 



214 E.C. Lance 

8. Garsia, A.: A simple proof of E. Hopfs maximal ergodic theorem. J. Math. Mech. 14, 381-382 
(1956) 

9. Haagerup, U.: Normal weights on W*-algebras. J. Functional Analysis 19, 302-317 (1975) 
10. Kadison, R.: Unitary invariants for representations of operator algebras. Ann. of Math. 66, 

304-379 (1957) 
11. Kovics, I., Sziics, J.: Ergodic type theorems in von Neumann algebras. Acta Sci. Math. 27, 233-246 

(1966) 
12. Lance, C.: A strong noncommutative ergodic theorem. To appear in Bull. Amer. Math. Soc. 
13. Pedersen, G.: Operator algebras with weakly closed abelian subalgebras. Bull. London Math. 

Soc. 4, 171-175 (1972) 
14. Phelps, R.: Lectures on Choquet's theorem. Princeton: Van Nostrand 1966 
15. Prosser, R.: On the ideal structure of operator algebras. Memoirs Amer. Math. Soc. 45, 1963 
16. Saito, K.: Non-commutative extension of Lusin's theorem. T6hoku Math. J. 19, 332-340 (1967) 
17. Sakai, S.: C*-algebras and W*-algebras. Berlin-Heidelberg-New York: Springer 1971 
18. Van Daele, A.: The upper envelope of invariant functionals majorized by an invariant weight. 

Pac. J. Math. 46, 283-302 (1973) 
19. Van Daele, A.: A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras. 

J. Functional Analysis 15, 378-393 (1974) 

Received April 17, 1976 


