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1. Introduction 

Whitney's extension theorem [14] provides a continuous linear extension 
operator from the space of coo,, Whitney fields (m < oo) on a closed subset X of 
IR", to the space of cgm functions on ~".  Though cg| Whitney fields on X extend 
to cg~ functions on IR", there does not exist a continuous linear extension 
operator for every closed subset X. Let g(X) be the Fr6chet space of cgoo 
Whitney fields on X. Then g(R") identifies with the space of cgoo functions on 
IR". The following extension problem arises: Under what conditions on X is 
there an extension operator E: g(X)--*g(IR")? An extension operator means, of 
course, a continuous linear operator E: 8 ( X ) ~ g ( F , " )  such that g(F) IX=F for 
all F~g(X). Seeley [11] and Mityagin [10] showed that an extension operator 
exists if X is a closed half-space IH". Stein [12] proved that an extension 
operator exists when X is a domain with boundary which is locally the graph of 
a function of Lipschitz class 1. 

In this paper we prove two extension theorems. Our main theorem resolves 
the extension problem for subanalytic sets (hence, in particular, for semianalytic 
sets). 

Theorem I. Let N be a real analytic manifold and X a closed subanalytic subset of 
N. Then there exists an extension operator 

E: ~ (X)-~ e (N) 

if and only if the interior of X is dense in X. 

The necessity of the hypothesis follows easily from the classical example X 
=point .  Though the theorem is local in nature, we have stated it for a 
subanalytic subset of a real analytic manifold since the proof  will involve 
working in this context (see Remark 2.3). We will prove the theorem using 
Hironaka's resolution of singularities, by induction on the lengths of the finite 
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sequences of local blowings-up with smooth centers needed locally to rec- 
tilinearize the singularities on the boundary of X. 

Our second theorem, which in fact will be used in the proof of Theorem I, is 
a generalization of Stein's extension theorem, for cg~ Whitney fields, to the case 
of a domain with boundary which is Lipschitz of any order. 

Let ~b: IR"- 1 ~ lR be a function which satisfies a Lipschitz condition of order 
7, 0 < 7 < 1 ; i.e. there is a constant M > 0 such that 

Iq5 (x) - ~b (x')l < M Ix - x'l v 

for all x,x 'alR "-1. We consider points in IR" as pairs (x,y), xe lR "-1, yslR. The 
open subset 

{(x, y)~lR"l y > 4~(x)} 

is called a special Lipschitz domain of class Lip 7. A rotation of such a domain 
will also b~ called a special Lipschitz domain. 

Let f2 be an open subset of IR", and 012 its boundary. We say, more generally, 
that  f2 is a Lipschitz domain if for each point a in 00, there exists an open 
neighborhood U, of a in IR", and a special Lipschitz domain f2,, such that 
O n U, = f2 a n U a. If each f2, is of class Lip 7 (independent of a), then we say I2 is 
a Lipschitz domain of class Lip V. 

Theorem II. I f  X is the closure of a Lipschitz domain f2, then there exists an 
extension operator 

E: e ( x ) - ,  g (~"). 

I f  f2 is of class Lip l/k, for some positive integer k, then E may be chosen so that 
for every compact subset L of ~",  there exists a compact subset K of X such 
that E satisfies the following estimates. For each m~N,  there is a positive 
constant C such that 

IE(F)I~ < C IVl~ 

for all F ~ g ( X )  (the seminorms will-be" defined in Section 2). 
For a Lipschitz domain f2 of class Lip 1, Stein actually defines an extension 

operator which maps the Sobolov spaces L~(f2) into /_gk(F,.") for all k~lN and 
1 < p < ~ .  Theorem II illustrates an important distinction between the extension 
problems for the spaces of smooth functions, and for the Sobolov spaces. In the 
latter case, the Lipschitz condition of order 1 for the boundary of the domain is 
in the nature of the best possible 1-12, p. 182]. 

We will actually prove more than the assertions of Theorems I and II. The 
formulas of both Seeley and Stein simultaneously extend all classes of differen- 
tiability. We will show that in each of our theorems we may also choose an 
extension operator E which is universal in this sense; E may be induced (locally) 
by a sequence of extension operators on the Whitney fields of finite differentia- 
bility, but with a certain loss of differentiability depending on the singularities of 
the closed set X. These more precise formulations of Theorems I and II will be 
stated in Section 3 as Theorem I' and II'. The loss of differentiability in extend- 
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ing from a Lipschitz domain of class Lip l /k,  for example, is exactly that 
indicated in the estimates of Theorem II. 

The proofs of both theorems use an extension lemma from [1], generalized 
in Section 4 to handle all classes of differentiability. In Section 5 we recall the 
definitions of semianalytic and subanalytic sets, and some lemmas of Loja- 
siewicz that will be used in the sequel. Theorem II' will be proved in Section 7, 
using the "averaging" Proposition 6.1. Theorem I' will be proved in Section 9, 
but in Section 8 we will give a short elementary proof in the 2-dimensional 
semianalytic case, which motivated the general approach of the following 
section. These two sections are independent (we will see, in fact, that Proposition 
6.1, which is used also in Section8, is not needed for the special case of 
Theorem II' which is used in the proof of Theorem I'). 

In an earlier manuscript of this paper, "Extension of cg| Whitney fields from 
semianalytic sets", our extension operators were defined only on the spaces of 
cgo~ Whitney fields. The author is indebted to Jean-Jacques Risler for suggesting 
that the universal nature of the operators be made explicit. The author profitted 
also from conversations with Bernard Tessier (on subanalytic sets) and with 
Hugh Miller and Pierre Milman (the latter, in particular, pointed out an error in 
the proof of Theorem II in the earlier version). 

2. P r e l i m i n a r i e s  

If k = ( k l , . . . , k , ) e N " ,  x = ( x l  . . . . .  x,)elR", then we write I k l=k l  + . . . + k , ,  k! 
= k l !  . . .k,,!,  x k - x ]  ' -  ... x,k'~. N" is partially ordered by the relation: k < l  if and 

(D " (0 only if ki<=l~, j = l  . . . . .  n. We write - k ! ( l - k ) ~  if k<=l, =0  otherwise. Ix[ 

denotes the Euclidean norm Ixl--(x~+--. +x~)~, and d(x,y)  the Euclidean dis- 
tance d(x, y) = Ix - Yl. 

If m e n  and U is an open subset of IR", then Nm(U) denotes the space of ~'~ 
functions on U. ~m(U) is a Fr6chet space; its topology is defined by the 
seminorms 

 ,k,f 
Ikl_-<m 

where K c U is compact. 
Let X be a closed subset of U. A jet  of order m on X is a sequence of 

continuous functions F=(Fk)lkl=, . on X.  J ' ( X )  denotes the space of such jets. 
We write [FIR= sup [Fk(x)[ if K c X  is compact, and F ( x ) = F ~  x e X .  

x ~ K  
Ikl Z_m 

There is a linear map Jr": g ' ( U ) ~ J m ( X ) ,  associating to each f e g ' ( U )  the jet 
, , ,  / 0  ikl fl \ 

s (f)=/~xx~lX/ <.  For each Ikl<-m, there is a linear map Dk: 
\ /Ikl=m 

Jm(X)--.Jra-lkl(x),  defined by DkF=(Fk+l)llt<m_lk I. W e  also denote by D k the 

= ~lklf map of gin(U) into ~m-lkl(U) given by D k f = . ,  k" This should cause no 
confusion since D k o J "  = j m -  Ikl o D k. o x 
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If a~X and F~J"~(X), then the Taylor polynomial (of order m) of F at a is the 
polynomial 

T" F (x) = lkl~<=m ~ " (x -- a)k 

of degree <m. We define R T F = F - J m ( T ~ F ) ,  so that 

Fk+Z(a) . (x--a) z 
(R~F)k(x)=Fk(x)-  ~" l! 

Itl ~ m -  ]k] 

if Ikl ~ m. 
We say that FeJm(X) is a Whitney field of class c~ on X if for each 4k] <m, 

(R~'F) k (y) = o(Ix - el m-" Ikl) 
t 

as Ix-y]  --~ O, x, y~X. ~m(X)cJm(X) denotes the subspace of Whitney fields of 
class c~. Cm(X ) is a Fr6chet space, with the seminorms 

liRr~ f)~ (y)l 
Iltll~=lFl~X+ x,supr~r ~ '  

x * y  
Ikl <ra 

where K c X  is compact. If r is a non-negative rational number, then gr(X) will 
mean gt'l(X), where [r] is the greatest integer <r .  Likewise I" Iff will denote the 
seminorm I" tlX, r 

Remark 2.1. If FeJm(U) and for all xe  U, Ikl < m  we have 

. I(R~F)k(y)l n 
lm ~ = , , ,  

r ~  I x - y l  - 

then there exists feSta(U) such that F=Jm(f) .  This simple converse of Taylor's 
theorem shows, in particular, that the two spaces we have denoted era(U) are 
equivalent. On ~m(u), the topologies.defined by the seminorms I'1~, It" I1~ are 
equivalent (by the open mapping theorem). 

Let rein, m+ I:Jm+I(X)--~J'~(X) be the projection which associates to each jet 
(Fk)lkl = m + 1 the jet ( F k ) i k l  < rn" Clearly nm. m + 1 (gr~ + ~ (X)) c ~'~ (X). The projective 
limit J ( X ) =  lim Jm(X) is the space of jets of infinite order on X. The projective 

limit g ( X ) =  li_mm 8re(X) identifies with a subspace of J(X). An element F of 8(X) 

is a Whitney field of class ~ on X. g(X) has the structure of a Fr6chet space 
defined by the seminorms HFll~, where m~bl and K = X  is compact. 

Remark 2.2. Neither 6~m(x) nor g(X) is in general complete in the topology 
defined by the seminorms 1" I~ x. Let p be a positive integer. A compact subset K 
of IR" is called p-regular if it is connected by rectifiable arcs, and there exists a 
positive constant C such that 

[x - Y[ >---- C ~5(x, y)P 
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or all x,y~K (6 denotes the geodesic distance on K). If K is p-regular, then for 
each m~IN, there exists a constant C,, such that K x IlFl[m<CmlFlpm for all 
F~gPm(K) [13, IV, 3.11]. In particular if K is 1-regular, then the norms 1" I~ and 
II" I1~ are equivalent on gin(K). 

We say that X is regular if it is connected, and for all aeX there exists a 
positive integer p and a p-regular compact neighborhood of a in X (X is p- 
regular if p is independent of a). In this case the topology of 8(X) is defined by 
the seminorms [. 1~, where m~N and K = X  is compact. 

A closed set which satisfies the hypotheses of either Theorem I or 
Theorem II is regular. In fact any closed subanalytic set is regular (cf. [6, Section 
18]; the regularity of a closed subset of a cg~ manifold may, of course, be 
expressed locally using a coordinate system). It is easy to check that a Lipschitz 
domain with boundary of class Lip 1/p, where p is a positive integer, is p-regular. 

Remark 2.3. Wewill  also work with Whitney fields defined on closed subsets of a 
cgoo manifold. Let N be a cg~ manifold, and X a closed subset of N. We denote 
by J"(X) the space of continuous sections over X of the bundle of jets of order 
m of co~ functions on N. The subspace g"(X)=J"(X) of Whitney fields of class 
cgm may be defined as above, using a local coordinate system, o~m(x) has the 
structure of a Fr6chet space, with the seminorms defined as before, using 
compact subsets of coordinate charts. If X=N,  then gin(N) identifies with the 
space of cg,, functions on N. By Whitney's extension theorem, we may identify 
g"(X) with the quotient of g"(N) by the ideal J ' ( X ;  N) of c~  functions which 
are m-flat on X. 

For each m~N, there is a canonical projection j m + l ( x ) ~ J ' ( X ) .  Let J(X) 
(respectively g(X)) be the projective limit limmJ"(X ) (respectively lim g"(X)). 
8(X) is the space of Whitney fields of class c~o~ on X. 

Let U, U' be open subsets of F,", ~"' ,  and X, X' closed subsets of U, U' 
(respectively). If ~=(~1 . . . . .  re,): U'--~ U is a cs mapping such that ~ (X ' )cX,  
then ~ induces an lR-algebra homomorphism ~*(F)=Fo(n[X') from g(X) to 
g(X'). Suppose a~X' and b=n(a), b=(b 1 . . . . .  b,). If TbF~IR[[y 1 - b  1 . . . . .  y , - b , ] ]  
is the formal Taylor series of F at b; i.e. 

-- Fk(b) b k 
TbF=k~.N,~--. "(Y-- ), 

then Ta(n*(F)) is obtained by substituting for each yj in TbF, the formal Taylor 
series at a of the function r~j. We likewise define re*: gm(X)-*gm(X'). If 
F~8~(X), then Ta~(rt*(F)) is obtained by substituting the Taylor polynomial 
T~nj(x) for each yj in the Taylor polynomial T~bF(y), and dropping terms of 
degree > m in x - a. 

It will sometimes be convenient to use the index m for either a natural 
number or + ~ ,  and to write g ( X ) = ~ ( X ) ,  Ta = T~ ~, etc. 

3. Simultaneous Extension of all Classes of Differentiability 

Theorem I'. Let N be a real analytic manifold, and X a compact subanalytic subset 
of N. Assume that the interior of X is dense in X. Then there exists a positive 
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integer k, and for each m~lN an extension operator 

Em: 8"(X)---~8"/k(N) 

< , such that the following diagram commutes for all m= m : 

8"(X)  E,- ~ 8"/k(N) 

U U 
8m,(x )  Era' , 8"/k(N) 

In particular, an extension operator E: 8 ( X ) ~ 8 ( N )  is obtained as the pro- 
jective limit of the operators E' .  

Remark 3.1. Theorem I' will be proved by induction on the lengths of the finite 
sequences 9f local blowings-up with smooth centers needed locally to rec- 
tilinearize the singularities on the boundary of X. The order of differentiability 
will be divided by 8 for each local blowing-up (Proposition 9.1). 

Theorem II'. Let O c l R  n be a Lipschitz domain of class Lip 1/k, and X=f2w~f2 .  
Then for each m~]N there exists an extension operator 

E ' :  8 "  (X) --> 8 m/k (]R n) 

such that 

(1) the following diagram commutes for all m <= m' : 

e ' (x )  E'~ ,e'/k0R~ 

U U 
e"(x)  Era', 8"/k0R"); 

(2) for every compact subset L of IR", there exists a compact subset K of  X 
such that E" satisfies the following estimates for each m ~ l .  There exists a 
positive constant C such that 

IE'(F)I~/~ < CIFl~ 

for all F~8"(X) .  
In particular, the extension operator E" 8(X)-~8(IR n) of Theorem II  may be 

realized as the projective limit of the operators E ' .  

Remark 3.2. We will abbreviate notation throughout the paper by saying that 
the operators E" form a projective system, rather than giving the commutative 
diagrams. 

4. Technical Extension Lemmas 

Lemmas 4.1 and 4.2 of this section, which will be used in the proofs of 
Theorems I' and II' (respectively), are variants of the lifting theorem of [1] and 
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one of its corollaries. The argument in [1] applies directly to all classes of 
differentiability, so that we refer to [1] for the proofs of these lemmas. The 
precise estimates in Lemma 4.2 follow from the proof in [1]. 

Lemma 4.1. Let X, Y be closed subsets of IR", R p (respectively), and k a positive 
integer. Let Gin: 8m(x)-~m/k(Y), mEIN, be a projective system of continuous 
linear mappings. Suppose that for each beY, there is a projective system of 
continuous linear mappings G"~: gm(x)--~ 8m/k(~ p) such that 

(1) G~(F)l(b)=Gr~(F)l(b) for all me'q, le]N p with Ill <m/k, and Fegm(x); 
(2) for each me~I and Lc IR  p compact, there exists K =K(m, L ) ~ X  compact 

and a constant c=c(m, L) such that 

m L IGb (F)lm/k < c IIFIl~ 

for all FeSta(X) and b e y  
Then there exists a projective system of continuous linear mappings din: 

gm(x)~gm/k(lR') such that dm(F)l Y= Gm(F) for all m e n  and FeSta(X). 

Lemma 4.2. Let k be a positive integer, and X a k-regular closed subset of IR". 
Suppose that for each point a in the frontier of X, there is a projective system W~: 
em(x)--~ ~m/k(lRn), meN, of continuous linear mappings such that 

(1) W~(F)t(a)=Ft(a) for all me,q, l eN ~ with Ill <m/k, and F e S t a ( X ) ;  

(2) for every L~IR" compact, there exists K c K  compact such that the 
following uniformity condition is satisfied. For each meN, there exists a con- 
stant c = c(m) such that 

m L K 
IW~ (F) lm/k~  c IFlm 

for all Feem(x)  and a in the frontier of X. 
Then there exists a projective system of extension operators W m: 

r such that W m satisfies the following estimates for all meN. 
For every L ~ ~" compact, there exists K = K(L) ~ X compact and a constant c' 
= c'(m) such that 

[Wm(F)[L/k < C' IFl~ 

for all Fegm(X). 

Remark 4.3. The operators d m and W m of Lemmas 4.1 and 4.2 induce continuous 
linear mappings on the spaces of cgo~ Whitney fields. If we work directly in the 
cgo~ case, however, the statements of the lemmas may be strengthened by 
replacing each projective system of continuous linear mappings by a continuous 
linear mapping between the corresponding spaces of ~oo Whitney fields [1]. 

5. Lemmas of Lojasiewicz 

In this section we recall some results of Lojasiewicz [6-8] which will be used in 
the rest of the paper. 

Let U be an open subset of IR", and X, Y closed subsets of U. 
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Definition 5.1. X, Y are regularly situated if for all a e X n  Y, there exists a 
neighborhood V of a, and constants C>O, ~ > 0  such that for all x e E  

d(x, X) + d(x, Y)_-> C d(x, X n Y)% 

Definition 5.2. Let A be a subset of a real analytic manifold N. We say A is 
semianalytic in N if for each point xeN,  there exists an open neighborhood U of 
x in N and a finite number of real analytic functions gu, fu on U such that 

A n U = U {gu = o, fu > 0 for all j}. 

Lemma 5.3 [6, Section 18]. Let U be an open subset of IR". Then any pair of 
closed semianalytic subsets of U is regularly situated. 

We will also need Hironaka's generalization of Lemma 5.3 to subanalytic 
sets [3, Section 9]. 

Definition 5.4. A subset A of a real analytic manifold N is subanalytic if for each 
xeN,  there exists an open neighborhood U of x in N, and a finite system of 
proper real analytic maps fu: Nu -~ U (j = 1, 2), such that 

A n U = y (Ira f/1 - Imfi 2)- 

A semianalytic set is subanalytic [3, 5]. The interior, closure and frontier of a 
semianalytic (respectively subanalytic) set are semianalytic (respectively sub- 
analytic). 

The following lemma will be used for glueing together Whitney fields defined 
on closed sets. 

Lemma 5.5 (cf. [13, IV, Section 4]). Let U be an open subset of IR", and X, Y 
closed subsets of U. Suppose that for all aeX  n Y, there exists a neighborhood V of 
a, and a constant C > 0  such that for all xeV, 

d(x, X)+d(x,  Y)> Cd(x, X n Y). 

Then: 
(1) There exists a function ~ b e r  Y)) which has the following proper- 

ties: 
(a) ~b=0 in a neighborhood of X - ( X n  Y); 
(b) dp= 1 in a neighborhood of Y - ( X n  Y); 
(c) for all leN" and K c U compact, there exists a constant C' > 0 such that 

In t r <-_ C' d(x, X n  Y)-I,r 

when x e K - ( X n  Y). 
(2) Let m e n  or m= +oo. I f  f eJm(X n Y; U), then the function ~9 . f  extends 

uniquely to a function (also denoted q~ . f )  which is gm on U and m-flat on X n Y. 
The mapping f~--~dp . f of J ~ ( X n  Y; U) to itself is continuous and linear. 
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(3) Let p be the epimorphism p ( f , g ) = f [ X ~ Y - g I X c ~ Y  of em(u)~sm(U) 
onto ~m(Xc~ Y). Then the mapping a: kerp-~g"(U) defined by a( f ,g ) - - f -~b . (g  
- f )  is a continuous linear mapping such that a(f, g ) - f  (respectively a(f, g) -g)  
is m-fiat on X (respectively Y)for all (f, g)eker p. 

(4) Let 6 be the diagonal injection 6(F)=(FIX, FIY) of 8~ (X w Y)  into 
or Let n be the epimorphism ~(F ,G)=FIXc~Y-G[Xc~Y of 
g~(X)OCm(Y) onto r Y). Then the following sequence is exact: 

O-~Sm(XuY)  . ~ ~m(X) O~m(Y) ~ , 8 " ( X n Y ) - * 0 .  

Remark 5.6. Suppose that the closed subsets X, Y in Lemma 5.5 are merely 
regularly situated, but that m = + ~ .  Then there exists q ~ e g ( U - ( X n  Y)) satisfy- 
ing (1)(a), (b) and (2); hence (3), (4) are valid. If mzN, however, then (3), (4) 
involve a loss of differentiability depending on ~ in Definition 5.1. 

The remainder of this section will be used only in the proof of Proposition 
6.1. The relationship of Proposition 6.1 with the proofs of our main theorems 
will be discussed in Remark 6.2. 

Let X be a closed subset of F,", and 8" (X, r  the space of complex valued 
cg,, Whitney fields (meN) on X; i.e. the set of F = F  1 +iF 2, where F, ,F2eS ' (X  ). 
We give g ' (X ,  ~) the structure of a Fr6chet space defined by the seminorms 
I t r I I~  " " = tIF~ If,,+ llF2tt,,, where K c X  is compact. 

We denote by (z, t) =(zl .... , z,, tl ... . .  tp) (zj=x]+ iyj) a point in r  x F, p. Let 
X be a closed subset of r 2 1 5  and FE~m(x,~.). To each point a~X, we 
associate the Taylor expansion T~"Fr162 [x, y, t] (of order m) of F at a: 

FJ'k'l(a). xJykt l 
T ~ f  = ~ j !k! l l  " 

[j:[ kE~q n, leNP 
+lkl+lZl<m 

Definition 5.7. F z g " ( X , ~ )  is formally holomorphic (in the variables z) if F 
satisfies the Cauchy-Riemann equations 

OF OF 
- - = - - - ,  j = l , . . . , n ;  i Oxj Oyj 

i.e. the Taylor expansion of F at each point of X belongs to r [z, t]. 

Let ~ " ( X )  be the set of formally holomorphic ~g" Whitney fields on X. 
~ " ( X )  is a dosed subalgebra of 8"(X, C), hence a Fr6chet space in the induced 
topology. We also define 8(X, ~ ) =  li~m g"(X, C) and ~f(X)= lira acg"(X). 

Now let m~lq or m= + ~ .  Let X be a closed subset of R " x  IRPcr  x~,  ~. 
We associate to each F ~ g " ( X c ~ , " x ~ , ~ , r  its formal complexification 
_F~9(C"(X). At each ar T,"~ is obtained by substituting the variables z~ for the 
variables x~ in T,'F; i.e. 

F~' t(a), (x + iy) ~ t ~. 
kcN", t e n  p �9 ' 
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The mapping F~-~ff of g " ( X c R " x ~ P , ~ )  to 9fe"~(X) is an isomorphism of 
topological algebras with derivation. 

Let L be a real linear automorphism of 112" x IR p which is holomorphic with 
respect to the variables zj, j = l  . . . . .  n. Then L defines a Fr6chet space 
isomorphism L*(F) =F o L from ~"~(X) to 3 r 1 7 6  - 1 (X));  i.e. T~- ~)(L* (F))(z, t) 
= ~"  F(L(z, t)). 

We say that a subspace H of C" x RP is real situated if H is the inverse image 
of IR" x IR p by a real linear automorphism L which is holomorphic with respect 
to z ~ " .  The following lemma is a simple consequence of Lemma 5.5. 

Lemma 5.8 (cf. [13, IV, 5.4, 5.5]). Let 11 be a real situated subspace o f t "  • 
and X,  Y closed subsets of 1-1 which satisfy the hypothesis of Lemma 5.5. Then for 
m~lN or m = + ~ we have: 

(1) Let p: 9f~'(H)O gf"(H)  ~ g f~ (X  c~ Y) be the surjection p(F, G)= F [X c~ Y 
- G [ X c ~ Y  Then there exists a continuous linear map t r : k e r p - ~ " ( H )  such 
that a(F, G)= F on X, tr(F, G)=G on Y, for all (F, G)~kerp. As in Lemma 5.5 (3), 
the mappings ~ are defined simultaneously for all m. 

(2) The following sequence is exact: 

0-~  ~ ' ( x  u r) ~ ~ ' ( x )  | ~ " ( r )  -~ ~ " ( x  c~ r ) -~  0. 

Lemma 5.9 (cf. [13, IV, 5.6]). Let H 1 . . . . .  H . . . . . .  H s be real situated subspaces of 
• "x lR  p. Then there exists a projective system of extension operators 

6. Averaging a Real Function Over the k'th Roots of Unity 

Let k be a positive integer, and n: ~,+p__~R,+v the mapping defined by zc(x, t) 
=(x  k . . . . .  xk, tl  . . . . .  tp), where ( x , t ) = ( x l , . . . , x , , t  1 . . . . .  tv) denotes a point of the 
source. Let U be an open neighborhood of the origin in the target, U'=n-I (U) ,  
and X , X '  closed subsets of U, U' such that X ' = n - I ( X ) .  For  each m~IN or m =  
+ 0% we let (n*8"(X))  ̂  be the subalgebra of g"(X')  of Whitney fields F with the 
property that for all b~X, there exists G~g"(X)  such that F - n * ( G )  is m-flat on 
n-l(b).  (n*g"(X))  ̂  is closed in g"(X')  since it may be characterized as the 
subalgebra of Whitney fields F such that 

(1) if l=(l 1 . . . . .  l,+p)~]N "+v, Ill<m, and I i is not divisible by k for some i 
=1 . . . . .  n, then DtF(x, t )=0  for all (x, t) such that x i=0 ;  

(2) if k is even, then F is even in each coordinate xl. 
Let g " ( U ' ; X , n )  be the closed subspace of g ' (U ' )  of functions f such that 

f lX'~(n* 8"(X)) ^. We ask whether there exists a continuous linear mapping of 
drm(U'; X, n) to (r~* g"(U))  ̂  which induces the identity on (g* ~m(x)) ̂ . If k=2 ,  
then such a mapping may be defined simply by taking the even part with respect 
to each coordinate x i, i =  1 . . . . .  n. In general, however, there does not exist a 
continuous linear projection operator from functions of (x, t) to functions of 
(x~ . . . . .  x, k, t) [9]. Instead, the required mapping will be constructed (under 
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suitable conditions on X') by extension to a formally holomorphic Whitney field 
on a union of real situated subspaces of C" x IR p, followed by averaging over the 
k'th roots of unity in each copy of C. 

Proposition 6.1. Suppose that for each i = 1 . . . . .  n, X' and the intersection with U' 
of the hyperplane {x i = 0} satisfy the hypothesis of Lemma 5.5 in U'. Then there 
exists a projective system of continuous linear operators 

A m = A m ( X ,  rt): ~m(U'; X, ~t)~rt* ~"(U) 

such that Am(f)IX' = f l  X' for all f~g ' (U ' ;  X, 7z). 

Proof For convenience of notation we assume U=IR "+p. Let Z k be the group of 
k'th roots of unity e 2~it/k, 1=0 . . . . .  k - 1 .  Then (Zk)" =Z k x ... x Z k (n copies) acts 
on II~" x IR p by the real linear automorphisms Lr defined by 

L~(z, t) = (e  2ni l f fk  z 1 . . . . .  e 2nit"/k 7,n, t l . . . .  , tp), 

where 7 = ( e2"iz'/k . . . . .  e 2~it"/k) and (z, t)= (x + iy, 0~C" x ~P. Each L r is holomor- 
phic in (z I . . . .  , z,). 

We order the elements ~ =(e 2~itl/k . . . . .  e 2~ig"/k) of (Zk) ~ lexicographically with 
respect to (l 1 . . . . .  l,), and write 7=7i, j = 0  . . . . .  k " - l ,  for the elements in this 
order. We also write Lj=L7j, j = 0  . . . . .  k " -1 .  Let Hj=L~I(R"x  R p) and Xj 
=L~I(X'),j=O . . . . .  k " - i  (so that H o = R "  xlRr, Xo=X'  ). 

Given f~o~m(IR"+P; X, n), let f ~ m ( H o  ) be the formal complexification o f f  
For each j = 0  . . . . .  k " - l ,  let Fj=L*(f)~J/g"(II~) (so that Fo=f). Since 
f lX'~(n* gin(X))^, then 

Fj IX j~Xt=Ft IX jnXt ,  j , l=O . . . . .  k " - l .  

By Lemma 5.8(2), there exists a unique Fe~ ' ( l - l ow  U Xj) such that F I / / o = f  
J 

and F IXj=FiIXj, j = 0  . . . . .  k " - l .  It is clear that F] U Xj is invariant under 
substitution of the elements of ( Z k )  n. 3 

We now extend F to F ' ~ ' ( U H j ) .  By induction on /=1 . . . . .  k " - l ,  we 
J 

assume that F has been extended to F l - l ~ " ( ~ )  X y  U By Lemma 5.9, 
there exists an extension operator J_-__~-Hj). 

~: ~ ' ( j  ~_ ~//j)--, ~e"(i~ ~//i)" 

Let Pt:~ctam(l'II)~m(I-lt) '- '~Oet~ r U IIj) be the surjection p~(G,H) 
j<t-~ 

= G [ ( X ~  ~ H j ) - H [ ( X , ~  ~ H#), (G,H)e~m(H~)~m(H~).  Then there 
j < l - 1  j < l - 1  

exists a continuous linear map th: k e r p ~ ' ( H ~ )  such that at(G, H)=G on X~ 
and th(G, H)=H on H ~  ~ H~, for all (G, H)ekerp~, by Lemma 5.8(1). Let Ht 

j__<~-~ 

be the restriction of ~t(F ~- ~ ] ~ H#) to Hr. Since U- ~ [ U X# is invariant under 
j < = l - 1  ,I 
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the action of (Zk)", then (Ft, H/)eker Pt. Define F t on ? Xjw~<__t H i by 

F ' = F  '-1 on ~. Xjwj<_,_U 1Hi 

F l = al (Fl, Hi) on H t. 

Then F%Yg"(I.) X j u  [,_) Hj) by Lemma 5.8(2). F'=Fk"-I~Ygm(U Ilj) is a con- 
j j_<l j 

tinuous linear extension of F. 

Define F" 1 * ' F' . . = ~  ,~j 12,j(F ). Since [ U Xj  = F I U Xj  is (Zk)"-invariant, then 
J J 

F" I U Xj  = F [ ~ Xj.  F" 111o is the formal complexification of a unique Whitney 
J J 

field F '"eS"(IR" • RP, ~)  such that Re F'"IX'  = f  IX'. Since F" is (Zk)"-invariant, 
then Re F'"~(n* d""(U)) ̂ . The required operator is A " ( f ) = R e F ' " .  The oper- 
ators A m clearly form a projective system. 

Remark 6.2. Proposition 6.1 will be used in the proof of Theorem II' and in 
"Section 8. It is not needed, however, for the special case (k=2)  of Theorem II' 
which will be used in the proof of Theorem I'. In fact Theorem II' with k = 2 z, 
leVI, may be proved by induction on l, replacing the argument of Proposition 
6.1 by merely projecting onto the even part with respect to each coordinate x i, i 
= 1, ..., n. F rom the cases k = 2  z of Theorem II', we can deduce Theorem II' for 
any positive integer k, but with less precise estimates on the loss of differentia- 
bility when k =1=2 ~, l~]N. 

Proposition 6.1 remains valid in the cg~ case under the weaker assumption 
that X' is regularly situated with respect to the hyperplanes {x i = 0}, i = 1 . . . . .  n. 
Our stronger assumption is needed in order to obtain the precise estimates of 
Theorem II. 

7. Proof  of  Theorem II' 

It suffices to prove Theorem II' in-the case of a special Lipschitz domain. The 
general case follows using a partition of unity. 

It will be convenient to work in R "+ 1 instead of IR". We consider points in 
R "+1 as pairs (x,y), where x = ( x l  . . . . .  x,)~IR" and y~R.  Let q~: IR"~IR be a 
function which satisfies a Lipschitz condition of order 1/k, where k is a positive 
integer; i.e. there is a positive constant M such that 

Iq~ (x) - ~b (x')l < M Ix - x'] l/k (,) 

for all x, x ' eR" .  Let t2 be the special Lipschitz domain 

fl = {(x, y)~IR "+ 1 l Y > 4'(x)}, 

and let X = f l w a O .  We will prove the following theorem. 

Theorem 7.1. There exists a projective system of extension operators 

E": " g,n (X)--~ g,,/k (F," + 1) 
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which satisfy the following estimates for all meN. For every compact subset L of 
~,+1, there exists a compact subset K = K ( L )  of X and a positive constant C 
(depending only on n, k, m and the bound M in the Lipschitz inequality (.)) such 
that 

IEm(t)l~/k < C IFl~ 

for all FeSta(X). 

Remark 7.2. In the following proof we may, in fact, take m = + oo directly. 

Proof of Theorem 7.1. Let F be the (upper) half cone with vertex at the origin of 
~n+l  (with coordinates (t, y)=(tl,  ..., t,, y)) defined by 

r = {(t, y)elR "+1 [ y > M  Itl}. 

We define a mapping re: IR n+ 1--~IR n+l by (x~ . . . . .  x, ,  y )=n ( t  1 . . . . .  t,, y) 
=( t  k, ..., t k, y). The Lipschitz condition (.) implies that if a=(x', dp(x')) is any 
point in 8f2, then 

{(x, y)ea+~(r) l lx-x ' l  < 1} ~ X  

(a+rc(F) denotes n(F) translated so that its vertex is a). 

Lemma 7.3. There exists a projective system of extension operators 

"+ 1) 

which satisfy the following estimates for all me~q. For every L~P~ ~+ 1 compact, 
there exists K = K(L)~  re(F) compact and a constant C' (depending only on n, k, m 
and M )  such that 

m L t K IEo(F)l.,/k < C IFIm 

for all Fegm(rc(F)). 

We will prove Lemma 7.3 shortly. To obtain Theorem 7.1 from the lemma, 
let p e r  "+ 1) be a function with support in the unit ball centered at the origin, 
such that p =  1 in a neighborhood of 0. For each aedt2, define pa(U)=p(u-a), 
uelR n+l. For  each meN,  let E~':r "+1) be the operator 
obtained by translating E~ to a. If Fegm(x),  then supp Pa" F lies in the unit ball 
with center a, so we may assume that Pa" F restricts to a ~m Whitney field 
on a+n(F). The operators wam:r ~+~) defined by w~m(F) 
=p~.Em(p~.F) satisfy the hypotheses of Lemma 4.2, so that Theorem 7.1 
follows. 

The following two elementary lemmas will be used in the proof  of Lem- 
ma 7.3. 

Lemma 7.4. Let U be an open subset of ]R p+I (with coordinates (t,y) 
=(t, yl, . . . ,yp) ). Given q, me]N with q~m,  let J ~  be the ideal in r  of 

~ f  functions f such that ~ z  (0, y)=O whenever (0, y )eU and l <q. Then J ~  is closed in 
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~m(u), and for each c~eJ~', there exists a unique ~=t~'(~b)eo~"-q(U) such that 
r (t, y) = t q ~b (t, y) for all (t, y) e U. The mapping l'~: J ~ ' ~  gin- q (U) is continuous and 
linear. 

Proof. In any open ball in U with center on the hyperplane {t=O}, the mapping 
~ may be defined by Hadamard's formula z'~(r where ~0(t,y) 
=r  y) and 

~(t, y ) = !  '- (st, x)ds, l<_i<_q. 

Lemma 7.5. Let k be a positive integer, and ~: IR"+P-,IR n§ the mapping defined 
by g(t, y) =(t~ . . . . .  t~, Yl . . . . .  yp), where (t, y)=( t  1 . . . . .  tn, Yl . . . . .  yp) denotes a point 
of the source. Then for each m e n  and f e(g* ~/(rc(IR"+P))) ^, there exists a unique 
g=?m(f)e~m/k(n(IR"+V)) such that f(t,  y)=g(t k . . . . .  tkn, y) for all (t, y)elR "+v. The 
mappings ,?m:(n*r162 me]N, are continuous linear 
operators which form a projective system. 

Proof. For each l eN  n+v with [l[<m/k, we may use Lemma 7.4 to define 
ht(t, y)e(rc* 8 m- I'lk(n(lR~+P))) ̂  as follows: 

ho(t, y)=f(t,  y), 

Ohl(t'Y)=k~-lhz+~o(t,y), l<_i<_n, 
Ot~ 

Ohz(t, y) 
ayj =h~+(,+j)(t,y), 1 <j<p 

((/) denotes the multiindex whose t'th component is 1 and whose other com- 
ponents are 0). On the other hand, there exists a unique geN~ such 
that g is c6m outside the images of the hyperplanes {t~=0}, i=1  . . . . .  n, andf ( t ,  y) 
=g( t  k . . . . .  t k, y) outside the hyperplanes {ti=0}. Hence for each Ill <m/k, ht(t, y) 
=(Dlg)(t k . . . . .  tk~, y) outside the hyperplanes {ti=0}, so that Dig may be con- 
tinued up to the boundary of n(P,."+P). It follows that ger The 
remaining assertions also follow from Lemma 7.4. 

Proof of Lemma 7.3. By Stein's extension theorem (or by Seeley's extension 
theorem together with Lemma 4.2), there exists a projective system of extension 
operators sm: 8 m ( F ) ~ m ( ~  "+~) which satisfy the following estimates for all 
meN. There exists a constant C" (depending only on n, m and M), and for every 
compact subset L of ~ ,+1  a compact subset K=K(L)  of F, such that ]Sm(F)l~ 
< C" IFl~ for all FeS~(Fj. 

Given Fer let F'=S~(n*(F))er "+ 1). Then F'IF=n*(F), so that 
F' lies in the closed subspace 8m(IR"+ 1; n(F), n) of em(lR"+ 1) of functions f such 
that f I re(n* r ^. We let G = ?m(Am(F'))edm/k(n(~"+ 1)), where 

Am: em(R~.n+ 1 ; 7C(/'), ~)---+(~* 8m(n(~ n+ 1))) ̂ , 

~,.,: (~. ~m(~(p.+ ~)))^__,~m/~(~(lR.+ ~)) 
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are the operators given by Proposition 6.1 and Lemma 7.5 (respectively). If k is 
odd, then n (R  "+ 1)=IR,+ x, and we define E~'(F)= G. If k is even, then 

rt(P,'+ l)= {(x, y)~lR "+1 [ xi>O, i=1  . . . .  , n}. 

In this case E~(F) is obtained by extending G to IR "+1 using Seeley's or Stein's 
theorem. In either case E~ is a continuous linear operator which satisfies the 
conditions of Lemma 7.3. 

8. Theorem I in the 2-Dimensional Semianalytie Case 

Let X C ~ 2  be a semianalytic set which is the closure of an open set. To prove 
that there exists an extension operator g(X)--+g(IR2), it suffices to show that for 
each point a in the frontier of X, there exists an open neighborhood U a of a in 
lR 2, and an extension operator E,: ,~(Xc~Ua)--',g(Ua) (the following argument 
actually applies simultaneously to the extension of all classes of differentiability). 

Suppose the origin 0 lies in the frontier of X. There exists an open 
neighborhood U" of 0 in IR 2, and a real analytic curve Yin U" such that Xc~U" 
is the closure in U" of a union of components of the complement of Y. By 
Remark 4.3 (or Remark 5.6), it suffices to assume that X n  U" is the closure in 
U" of a single component ~2 of the complement of Y. 

After a linear change of coordinates, we can find open neighborhoods U 1, U 2 
of 0 in IR such that 

(1) Y is the zero set of a Weierstrass polynomial 

"._L 
g (y,  t) : t n -~ Z Ci (Y) tn i 

i=1 

in V= U 1 x U2, with coefficients ci(y ) which are analytic in U1 and vanish at 0; 

(2) for all yosU1, all real roots of g(Yo, t ) = 0  lie in U2; 

(3) the discriminant D of g vanishes at most at 0. 

By adding some extra branches to Y, we may in fact assume that 
X c~ V c {y > 0}, so that D vanishes exactly at 0, and f2n V is the region between 
two adjacent analytic sheets 2;1, X 2 of the Weierstrass polynomial g. 

Let k=n!. There exists 5 > 0  and real power series yl(x), y2(x) which 
converge in the interval ( - 5 ,  5) such that 

(1) (_ek, ek)c U1 ; 
(2) 2; 1, 272 are given by the Puiseux expansions t=71(yl/k), t=?2(y l/k) for 

y~(0, ~). 
Define r~: ( - 5 ,  5) • U2~  U 1 x U 2 by n(x, t )=(x  k, t). After the analytic coor- 

dinate change 

X t = X, 

t' = t -- �89 (7 i (x) + ~2 (x)), 
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there is an open neighborhood U' of 0 in ( - e ,  e) x U2, such that X'=Tr- l(X)c~ U' 
is the closure of the region above the graph of a continuous function x '=  ~b(t'). 
The function 4> satisfies a Lipschitz condition locally, so that by Theorem II 
there is an extension operator E': 8 (X ' )~8(U ' ) .  

We may choose U' such that U' =n-~(U),  where U is an open neighborhood 
of 0 in IR 2. We can now deduce the existence of an extension operator 
E: 8(Xc~U)--*8(U), using Proposition 6.1 and Lemma 7.5. 

Remark 8.1. The method of this section may be used in any dimension to prove 
Theorem I, provided that X is a semianalytic set which may be expressed locally 
as a finite union U Xj of sets of the following type. Each Xj is the closure of a 

J 

component of the complement of a hypersurface which has only quasi-ordinary 
singularities. This means that the hypersurface is locally the zero set of a 
Weierstrass polynomial such that the discriminant variety of its complexification 
has only normal crossings (cf. [15]). 

9. Proof of Theorem I' 

Let N be a real analytic manifold of dimension n, and ~r the sheaf of real 
analytic functions on N. Let X be a compact subanalytic subset of N such that 
the interior of X is dense in X. We will show there exists a positive integer k, 
and for each m e n  (or m =  + ~ )  an extension operator Em:8"(X)-~8"/k(N) 
(defined universally for all m). It suffices to show that for each xeX, there exists 
an open neighborhood U of x in N, and a (universal) extension operator 
8" (X n U ) ~  8 "/~(U). 

We first assume that X is semianalytic. Let xeX. We can find an open 
neighborhood V of x in N, and a finite system of real analytic functions f~ on V 
such that 

Xc~V=? {f~=>O for all j}. 

We may assume that none of the fu is identically zero. We then apply 
Hironaka's desingularization theorem [4, main theorem II] (see also [3, 5.11 
and 7.2]) to the ideal sheaf J= ( / / i ,  jf~)~cN[ V. According to the desingulari- 
za t ion theorem, there exists an open neighborhood U of x in V, and a real 
analytic mapping n: N'---~ U which has the following properties: 

(1) N' is smooth. 
(2) rr is surjective and proper. In fact n is obtained by composing a finite 

sequence of blowings-up with non-singular centers. 
(3) If Y is the closed real analytic subspace of V defined by J, then N' 

- n - x ( y )  is dense in N', and n induces an isomorphism N ' - r r - 1  ( y ) ~  U -  Y. 
(4) 7t-I(Y) has only normal crossings; i.e. for each x'~N', there exists a 

coordinate system (zl . . . . .  z,) of N' centered at x', such that J~CN,. x, is generated 
by a monomial z] ~ ... z a" with non-negative integers a i. 
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It follows that there exists a closed semianalytic subset X' of N' such that 
(1) n ( X ' ) = X n U ;  
(2) the interior of X' is dense in X'; 
(3) X' may be defined locally by linear inequalities. 

Hence by Seeley's extension theorem and Lojasiewicz's glueing lemma 5.5(3) 
(or Lemma 4.1), there exists a (universal) extension operator 8 " ( X ' ) - ~ 8 " ( N ' ) .  
Theorem I' (in the semianalytic case) wilt follow from Proposition 9.1 below, by 
induction on the number of blowings-up of which the mapping ~: N ' ~ U  is 
composed. 

Now we suppose X is subanalytic. Let x ~ X .  There exists a finite number of 
real analytic mappings ~i: N ~ N  with the following properties: 

(1) each N~ is smooth. 
(2) There exists a compact subset K i of N/, for each i, such that U rq(Ki) is a 

neighborhood of x in N. 
(3) For each i, rc i is obtained by composing a finite sequence of local 

blowings-up with non-singular centers. 
(4) For each i, ~i-1 (X) is semianalytic in N/. 

We recall that a local blowing-up over a real analytic space Z is the 
composition of a blowing-up over an open subset U of Z, with the inclusion 
U~--~Z. Hironaka [3, 7.3] states the above result with each rq obtained by a finite 
sequence of local blowings-up whose centers are nowhere dense in their re- 
spective ambient spaces, but perhaps singular. Given such mappings rti, we may 
obtain the stronger statement using the desingularization theorem cited above 
(each ~z~ is dominated over n~(Ki) by a finite number of perhaps longer finite 
sequences of local blowings-up with smooth centers). 

Suppose we have a finite number of real analytic mappings hi: Ni--~N with 
the properties (1)-{4). For each i, let B i be a compact semianalytic neighborhood 
of K~ in Nz, and let X i be the closure in Ni of the interior of Tz~ l (X)nBi .  Then Xi 
is semianalytic, and ~. rci(Xi) is a neighborhood of x in X. Hence Theorem I' 

may be reduced to the semianalytic case, using Lemma 4.1 and Proposition 9.1 
below. 

Local Blowing-up. Let 1~ denote real projective space of dimension r. There is a 
natural mapping po: IR"-{0} ~IP"-1  such that for each ~IP"-1 ,  Po i (~)w {0} is 
a line through the origin in IR". By assigning to each ~elP"-1 the line obtained 
in this way, we get a real line bundle p: L ~ I P  "-1, and a natural mapping 
no: L~IR" which is isomorphic outside the zero section of p, and such that the 
zero section is mapped to the origin of IR". 

With the coordinate system (Yl . . . . .  y,) for JR", the real analytic manifold L is 

constructed as follows: L =  ~)Li, where L , = R "  with coordinate system 
i=1 

(t,l . . . . .  ti,), and no lL  i is defined by 

{ tit if j =  i 
YJ~176 tutlj  if  j=l=i. 
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The mapping no: L - , I R  n is the blowing-up of IR n with center O. 
Let lR p be a linear subspace of lRq. Write IR q = IR p x IR n. With zc o as above, 

the mapping ~ = id~p x n o is the blowing-up of lRq with center ~P. 
Though the cg~o case of our main theorem follows from the cases of finite 

differentiability class, we may, in fact, prove the ~o~ case directly, so we make it 
explicit in the following proposition. 

Proposition 9.1. Let  X '  be a non-empty compact subanalytic subset o f  IR p x L, and 
let X=Tz(X'). Suppose there exists  a positive integer k and a projective system o f  
extension operators em(X' ) - - -~m/k(~ p X L), m~lN (respectively an extension opera- 
tor g(X')--~8(lR p x L)). Then there exists a projective system o f  extension oper- 
ators s (respectively an extension operator ~(X)-+g(lRq)) .  

Remarks  9.2. The definition of our extension operators will be universal, so we 
will neglect to say explicitly that we are working with projective systems at 
every stage of the proof. We will allow m to denote either a natural number or 
+ ~ .  We also adopt the following convention. Suppose that Z is a closed subset 
of a real analytic manifold, and that F e ~ ( Z ) ,  Ger  where m < m ' .  If the 
image of G in 8re(Z) cdincides with F, we will write F = G. 

Proof  o f  Proposition 9.1. For each i=  1 . . . .  , n, we let X'  i be the intersection of X '  
with the closed subset of IR p x L i defined by [tij[ < 1 for all j 4: i. Let X i = n(X'i). 
Then X i, X'  i are compact subanalytic subsets of X, X'  (respectively), such that X 

= 0 X , ,  X ' =  0 X'i. We also let X;+ (respectively X;_) be the subset of X' io f  
i=1  i = l  

points such that t ,  > 0 (respectively ti~ ~0), and let Xi+ =n(X'~+), X i_ = n(X'~_). 
Then X i = X i +  u X  i_ and X'i=X'i+ u X ' i _ ,  i=1  . . . . .  n. By Lemma 4.1, it suffices 
to show that for each i=1  . . . . .  n, there exist (universal) continuous linear 
operators 

E m E m .~m(X)--4,~m/8k(lRq ) 
i+ '  ~ -  

such that E~'+ (F) I Xi + = F ] X i + and E'~_ (F) l X i -  = F [ Xi  - for all F e v ~m (X). 
We fix i, and show there exists a (universal) continuous linear operator 

Era: o~m(x)--~Ym/8*(~ q) such that EmiF)l Xi+ = F I X i +  for all F ~ m ( x )  (the same 
argument works for X i_ by symmetry). 

For convenience we relabel the coordinates (x 1 . . . . .  xp, t~, . . . . .  tin ) of P,.P x L i 
by x =(x  1 . . . . .  xp+n) as follows: 

Xp+ 1 : tii ,  

xp+j=ti ,  j_ 1 , 1 <j<~,  

Xp+ j = t i j  , i < j  <n. 

Coordinates y=(y~  . . . . .  yq) for ~ are chosen so that r c i = n l ~ "  x L i is given by 

(y, . . . . .  yq)=(x 1 . . . . .  xp, xp+ 1, xp+ i xp+ 2 . . . . .  xp+ , xp+~). 

In the new coordinates, any point of X'i+ satisfies the inequalities xp+, > 0  and 
I x j l < l , j = p + 2  . . . . .  q. 
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Let C' be the truncated half-cone defined by (x~+ 2 2 �9 .. + x p + x p + 2 + . - .  
+xvZ+,)~<xp+l<l .  For  any point x with xp+ l>0 ,  we denote by C'(x) the 
truncated half-cone with vertex x obtained from C' by translating the origin to 
the point x: 

C'(x)=x+C'. 

Any line parallel to the xp+ 1-axis is mapped by ni to a straight line in Rq. 
Let C be the compact semialgebraic subset of IR q defined by 

-L1~2 ~�89 <1172 O~ (Y2+'"+Y~+YZp+2+'"-yp+,,  = 5• -Yp+x<�89 �9 

For any point x with Xp+ 1 >0, we denote by C(x) the unique compact semi- 
algebraic subset of IR q which is obtained from C by a rigid motion of R ~ taking 
the positive y~+ 1-axis to the image under n i of the half-line {(x x . . . . .  xp, xp+ 1 
+4, xp+2, ..., Xp+,)l~ >0}- A straightforward calculation shows that if 
O<xp+l <1 and Ix i l< l  for p + 2 < j < p + n ,  then 

C(x)=~,(C'(x)). 

Now let Z = I R  q (with coordinates ~=(~1 . . . . .  ~q)) be the truncated solid 
~l +"'+~p+~p+2+'"+~p+n~l. Let cylinder defined by 0 < ~p+ 1 < 1 and 2 2 2 2 

Y '=  IR p x L i be the image of {x~X'~+[O < xp+ ~ < 1} by the mapping 

(x, ~ )~ (x l  + ~ +  1 ~l . . . . .  x~ + ~ +  1 ~ ,  xp+ 1 

"~p+l 'Xp+2 +~p+l ~p+2 . . . . .  Xp+n +~p+l ~p+n) 

of (IR p x L 3 x Z into IR p • L i (Y' is the union of the truncated cones C'(x) for 
each x~X'~+ with xp+ t < 1). Then Y' is a compact subanalytic subset of IR" x L~ 
(if X'~+ is semialgebraic, then Y' is semialgebraic, but Y' needn't be semianalytic 
if X'~+ is semianalytic). Note that Y' intersects the hyperplane {Xp+x=0 } only in 
points of X'i+. 

Let Y= rq(Y')=IR q. Then Y is a compact subanalytic subset of IR q containing 
C(x) for each point xeX'~+ with X p + l < l  (in particular Y contains 
X/+ ~{yp+ 1 =< 1}). 

Let ~m: ~m(x)__~m/k(y, ) be the continuous linear mapping obtained by 
composing the algebra homomorphism re*: g"(X)--'F,m(x'), the extension opera- 
tor gm(x')---'gm/k(lRP X L) of the hypothesis of Proposition 9.1, and the restric- 
tion operator ~m/t(IRP x L)---~d~m/k(Y'). The mapping rc~ induces an algebra ho- 
momorphism ~u,, = n*: ~m(y)___, ~m(y,). 

Proposition 9.3. For all Fs~"(X),  there exists a unique GeSm/*k(Y) such that 
�9 " ( F ) =  7m/*~(G). The mapping Ore: gm(X)-->~m/gk(Y) thus defined is continuous 
and linear. 

We will prove Proposition 9.3 below. To obtain Proposition 9.1 from 
Proposition 9.3, we first note that Ore(F) coincides with (the (rn/4k)-jet of) F on 
Xi+ ~ {y,+ 1 < 1} for all Fegm(x). 

By Theorem II' there exists a (universal) extension operator 
E~: gm(C)--,gm/2(]Rq). By a rigid motion of P-~, E~ induces an extension opera- 
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tor Era(x):,~ra(C(x))--~gra/2(IR q) for any point x. For  each point 
xeX ' i+n{xp+l<l} ,  let Gra(x): 8ra(X)~g"lSk(IR q) be the operator obtained by 
following Ora with the restriction to C(x), and then with Eml4k(x). By Lemma 4.1 
there exists a continuous linear operator dra: gra(X)~ gm/8k(lRq) such that GIn(F) 
coincides with F on Xi+n{yp+l_=l  } for all FeSta(X). Since n~ is isomorphic 
outside {xv+l=0},  then there exists a continuous linear operator 
E ra: o~ra(X)--q~gra/Sk(]R_ q) such that Em(F) IX~+ =F[Xi+ for all Fegm(X). 

Remark 9.4. In the c ~  case, we can do better than Proposition 9.3. We denote 
by ~(r the set of FeS(Y ' )  such that for all beY, there exists Ger with 
the property that ~P(G)-F is flat on n / - l (b )nY' ;  i.e. ~P(r is the subalgebra 
of ov(Y ') of Whitney fields which are formally in ~(r 

Proposition 9.5. Let Y=ni(Y'), where Y' is any closed subanalytic subset of IR p 
X L i such that nit Y' is proper. Then 

~Y(8(Y)) = ~ ( 8 ( r ) )  = ~Y(8(Y)). 

Hence in Proposition 9.1 in the ~| case, ~(d~(Y)) is closed and 
~: 8(Y)--~8(Y') induces a Fr6chet space isomorphism onto ~(d~(Y)) by the 
open mapping theorem. Since �9 (d ~ (X)) c ~ (d ~ (Y)) ̂  = ~ (d ~ (Y)), then O = ~ -  1 o ~. 

The following lemma (as well as its proof) will be used in the proofs of 
Propositions 9.3 and 9.5 (cf. [2], [-13, IX, Section 1]). For  convenience we now 
write n for ~i. If be Y, then ~ denotes the R-algebra of formal Taylor series at b 
of elements in d~(Y), and fit b its maximal ideal. ~ is isomorphic to 
P'[[-Yl . . . . .  yq]]. Let Tb: ~ ( Y ) - * ~  be the projection associating to each Whitney 
field its formal Taylor series at b. Wc write G o = T b G for Geo~(Y). If ae  Y' and b 

^* ~ - - - ~  such that T~ ~Y=~* T v. =n(a), then n induces a homomorphism n~ : o o 

Lemma 9.6. For all reiN, n~^*-I (m~̂ 2~) c mb. ^~ In particular, the homomorphism ~* is 
injective. 

Proof. We consider a=(a~, ..., aq) with %+ 1 = 0  (the assertion of the lemma is 
obvious at other points a e Y'). Then b = n(a)= (a 1 . . . . .  %, 0, . . . ,  0). In coordinate 
systems (x 1 . . . . .  xq) and (Yl . . . . .  yq) translated to the points a and b (respectively), 
the mapping n is given by 

(Yt . . . . .  yq) = (x 1 . . . . .  xv, xv + 1, xv + 1 (% + z + xv + 2) . . . . .  xp + 1 (% +, + xp +,)). 

Since n~.̂ *" ~ is a local homomorphism, then r2a*-~(rfi2)=rfib. We suppose 
r > l  and argue by induction on r. Let S e ~  such that S ^ ^2, o n~emo . We differenti- 
ate So z~ with respect to x~ . . . . .  xq: 

15_ ',. . . . . . . . . . . . . . . . . . . . . . . . . .  \ 
[ 1 0 ... 0 ~  , 

" 1  ',av+2+xv+2 xv+ 1 ... 0 ] e ( ~ l C l  z'-lj:l..." "~" 

\ ,, o. .+x.. '  o...x./ 
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(Here I v denotes the p x p identity matrix.) Multiplying on the right by the 
matrix 

( '- '-i . . . . . . . . . . . . . . . . . . . . .  \ xv+ a 0 ... O ~  

I - - a  + - - - x  + -  1 0 ]  

1 : : "'. : /  
'~ --a~+,--x~+, 0 ... 1 

we see that xp+~. oz~, efft 2"- j = l ,  ,q. Hence - - o ~ , ~ . . . ,  , so that 
"'" Oy j  

~S ^,_~ 
v -  emb by induction. Since S(0)=0, then Serfi~. 
t~ y j  

Proof of Proposition 9.5. It is easy to show that ~v(d~(Y))~7~(g(Y))^ 
(cf. [13, IX, 1.3]). We will prove that ho(g(Y)) ^ ~ ~(d~(Y)). Let F ~ ( g ( Y ) )  ^. By 
Lemma 9.6 there exists a unique field of formal series G on Y such that G o ~ = F 
(to simplify the notation, we write merely ~ for =] Y'). 

We will show that for each l~]N q, (DtG)o~reg(Y'). By hypothesis Go~z 
= Fr It suffices to prove the following lemma. 

Lemma 9.7. Let ~b be afield of formal series on Y, such that ~boTze~(Y'). Then for 
aO 

each j = 1 . . . . .  q, ~yjo ~e~(Y') .  

Proof. Let 7j=~:-,. o zc, j = l  . . . . .  q. By hypothesis there exists ~eg(Y') such that 
~yj 

0~(~)O~x=~x for all xeY ' .  We differentiate this equation with respect to 
x 1 . . . . .  Xq, and argue as in the proof of Lemma 9.6 to obtain Sx. 7j, x = ~j,~, where 
6(x)=xv+ 1 and ~jer In other words, ~j belongs pointwise to the ideal in 
8(Y' )  generated by the function 6(x)=xp+ 1. By Lemma 9.8 below it follows 
that ~j=6.Vj., for some 7j~r We necessarily have ~j=~j, so that 
0~ 
- - o  ltsS(Y') as required. 
0yj 

Lemma 9.8. Let Z be a closed subset of ~k  + ~ (with coordinates (t, x) = (t, x 1, ..., Xk)), 
which is regularly situated with respect to the hyperplane {t=0}. Let r 
and q be a positive integer. I f  c~ belongs pointwise to the ideal generated by 
the monomial t q in 8(Z),  then c~ belongs to this ideal. 

Proof. Let W = Z c ~  {t=0}. There is a unique field of formal series ~J on W such 
that ~b I W = t q r 

We will show first that r Let (0,a)=(0,a~ . . . . .  ak)eW. Then 
T~o,, ) ~b(t, x) = t q T~o,, ) r x) and T~+~ ~b(t, x) = t ~ Tt~' ,.) q/(t, x) for all meN. On the 
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other hand if m~lN and (0, a), (0, b) are points in 14'; then 

m+q T(o,a ) ~ ) ( t , X ) -  m+q T~o,~ 4)(t,x) 

tq+ J ( x  - - a ) t  �9 D q+ j ' l  o { T m  +q th - -  T m+q rh~(~ a) 
= ~" I! v ~*(o,a~." *(O,b)'r,w, 

j+ltl=<,. (q+J)! 
tJ(x--a) 1 .~q+j.l ...m+q 

=tq~+l,l__ <mE (q+j)!  l! ' z '  ~ 

_ .q  ~ tJ(x--a)  I r 

Let K be a compact subset of I4.: There exists a modulus of continuity ~ such 
that if (0,a), (0, b)~K and j +  Ill =<m, then 

I(R~'0+ff) d~) q+j" '(0, a)1< la -b]  m-r Itl)0q (la - bl). 

.(We recall that a modulus of continuity is a continuous increasing function fl: 
[0, oo)~  [0, c~) such that fl is concave downwards and fl(0)=0.) Hence if (0, a), 
(0, b ) e K  and (t, x ) ~ R  *+ 1, 

m+q +q I T~o.o) 4'(t, x ) -  ~ ,  ~ r x)l 
I t l~lx-at  z 

<=ltl q ~, "]a-bl~-~+l l l~ .~l ( la-b l )  
./+ttl=<m (q +J)! t[ 

<Cl ttl q ~ It[ ~ I x - b l  ~- j"  ~ ( l a - b l )  
j < m  

for some constant Cl, provided that ] x - a t < l x - b ] .  If ] x - b [ < l x - a ] ,  then there 
is a constant c 2 such that 

T(m + q O,a) ~(t, X)-- m+q T~o, bl r x)l 

<c21tl q ~, l t l J lx -a lm-J .~ l  ( l a -b l ) .  
j < m  

Hence there is a modulus of continuity ~r such that 

T(m + q o,o~ 4)(t, x ) -  ~,+d 4)(t, ~)I 
ttt q o~([a - bt). (](t, x) - (0, a)l ~ + I(t, x) - (0, b)l m) 

for all (O,a), (O,b)~K, ( t , x ) ~ R  k+1. It follows that 

I ~ , ~  ~(t, x ) -  ~ , ~  ~(t, x)l 
~([a -b l ) .  (l(t, x) - (0 ,  a)l m + I(t, x) - (0 ,  b)l m) 

for all (0,a), (0,b)eK, (t, x)~P,, k+ ~. Hence ~b~d~(W). 
Now let ~ be a Whitney field on {t=0} such that ~]W=~b. Let q~'=t~r Then 

~k' is a Whitney field on {t=0} such that ~b']W=~blW. Since Z and {t=0} are 
regularly situated, then by Remark 5.6 there exists f~g( lR  ~+~) such that f J { t  
= 0} = q~' and f [ Z  = ~b. By Hadamard's  lemma, f belongs to the ideal in ~f(lR k+ ~) 
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generated by t q. Hence ~b belongs to the ideal generated by t q in 8(Z). This 
proves Lemma 9.8, and hence completes the proof of Lemma 9.7. 

Returning to the proof of Proposition 9.5, we have shown that 
(DZG)oTt~g(Y ') for all l~lNq. Since r~] Y' is proper, it follows that the mapping 
GZ: Y--~ IR is continuous for each l~]N ~. We, may now proceed as in [2] to show 
that G is a Whitney field on I(. Here we use the fact that Y' x Y' is a subanalytic 
subset of IR q • IR q, and Hironaka's result that two closed subanalytic sets are 
regularly situated. This completes the proof of Proposition 9.5, and hence of 
Theorem I. 

Proof of Proposition 9.3. From now on m~lN. Let F~r By Lemma 9.6 there 
exists a unique field G of Taylor polynomials of order m/2k on Y, such that 
�9 m(F)= G orc (in t~m/2k(y')). We will first show that 

(1) (D' G) o n ~ / 2  k- Itl(y,) for all Ill < m/2 k (in particular G ~ is continuous); 
(2) for all Ill <m/2k, the mapping F~--~(D t G)o ~ of ~'~(X) into gm/2k-t~l(y,) is 

continuous and linear. 
These assertions must be proved by an argument somewhat different from 

that used in Proposition 9.5, in order to avoid an unnecessary loss of differentia- 
bility involved in applying Lojasiewicz's glueing theorem as in Lemma 9.8. 

Lemma 9.9. For all x' ~ Y', 

d(x', x'~+ • (x~+ 1 = 0})__>~ d(x', x'~+). 

Proof Let x"~X'  i + w {xp + 1 = 0} such that Ix' - x"] = d(x', X'i + w {xp + 1 = 0}). If 
x"~X'i+, then d(x', X~+)=d(x', X'i+ u {xp+ 1 =0}). If x"~{xp+ 1 =0}, then Ix ' -x"]  
=x'p+ 1, where x '=(x '  1 .... x'q). But x' ~C'(a), for some point a=(a l . . . . .  aq)~X'i+. 

Hence d(x,  X i +)= Ix - a l  =lf2(xp+ 1 - ap+  1)=lf2xp+ 1 �9 

Now let W' be a cube with sides parallel to the coordinate axes in the 
hyperplane {xp+ ~ =0}, big enough so that Y' lies in the product Z' of W' with the 
interval 0 < xp + 1 < 2 in the xp + ~-axis. 

To prove assertions (1) and (2), we first use Whitney's extension theorem to 
extend F to ff~g"(IRq). (The mappings O" are defined in a universal way; we are 
allowed to use Whitney's theorem to prove they are continuous.) Note that 
~z*(P)lX'i+ =~m(F)tX'i+, so that by Lemma 9.9 and Lemma 5.5(4), ~'~(F) and 
n*(ff)l W' c:X'i+ together define a unique element of 8" /k(W'u Y') which depends 
in a continuous linear way on F. Using Whitney's extension theorem again, we 
obtain H'~Sm/k(Z ') such that H'IY '=  ~'(F),  H ' IW'=  ~t*(ff)[ W', and F~--~H' is a 
continuous linear mapping of g"(X) into 8m/k(z'). By Lemma 9.6 there exists a 
unique field H of Taylor polynomials of order m/2k on Z=rc(Z') such that H' 
= H o ~ (in particular H IY = G). To prove assertions (1) and (2) it suffices to show 
that 

(1') (D~H) o 7~e~ ra/zk- Ill(z,) for all Ill < m/2k; 

(2') for all Ill<m/2k, the mapping H'~--~(D~H)ort of (n*d~'/k(Z)) ^ into 
~rn/2k-ltI(Z') is continuous and linear, with respect to the subspace topology of 
(~*,~,,:~(z))^ = e,./~(z'). 

Assertions (1') and (2') are consequences of the following lemma. 
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L e m m a  9.10. Let ~ be a field of Taylor polynomials of order m on Z, such that 
a~ 

~/o~e~m(Z'). Then ~v.O~ZeSm-2(Z'), j - - 1  . . . . .  q. I f  {~/i} is a sequence of fields of 
. , j  

Taylor polynomials of order m on Z, such that {~bloTz} is a Cauchy sequence in 

8m(Z'), then ~ Ooi } [cty~ o ~ is a Cauchy sequence in d~ 

We may prove L e m m a  9.10 using the a rgumen t  of L e m m a  9.7, replacing 
L e m m a  9.8 by the analogue  of L e m m a  7.4 for 8m(z'), with q = 1. 

We have now verified assertions (1) and  (2), and  may proceed as in [2] or 
[13, IX, Section 1] to show that  the (m/4k)ojet of G is a Whi tney  field on E The 
same compu ta t i on  also shows that  the mapp ing  O m is cont inuous .  The following 
lemma,  which may be established by a s traightforward calculat ion,  is used in the 
a rgumen t  and  accounts  for the further loss of differentiability. 

L e m m a  9.11. There exists a positive constant c such that for every pair of points a, 
xeY' ,  there exist points a', x' eY '  such that ~(a')=~z(x') and 

Ilr (a) - Ir (x)l 1/2 > c(l'a - a'l + Ix - x'l). 

This completes the proof  of Propos i t ion  9.3, and  hence of Theorem I'. 
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