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1. Introduction

Whitney’s extension theorem [14] provides a continuous linear extension
operator from the space of ¥ Whitney fields (m<o0) on a closed subset X of
IR”, to the space of €™ functions on IR". Though ¥* Whitney fields on X extend
to €~ functions on RR”, there does not exist a continuous linear extension
operator for every closed subset X. Let &§(X) be the Fréchet space of €~
Whitney fields on X. Then &(IR") identifies with the space of ¥* functions on
IR". The following extension problem arises: Under what conditions on X is
there an extension operator E: £(X)— &(IR")? An extension operator means, of
course, a continuous linear operator E: §(X)— &(IR") such that &(F)| X =F for
all Fe&(X). Seeley [11] and Mityagin [10] showed that an extension operator
exists if X is a closed half-space IH". Stein [12] proved that an extension
operator exists when X is a domain with boundary which is locally the graph of
a function of Lipschitz class 1.

In this paper we prove two extension theorems. Our main theorem resolves
the extension problem for subanalytic sets (hence, in particular, for semianalytic
sets).

Theorem 1. Let N be a real analytic manifold and X a closed subanalytic subset of
N. Then there exists an extension operator

E: £(X)—&(N)
if and only if the interior of X is dense in X.

The necessity of the hypothesis follows easily from the classical example X
=point. Though the theorem is local in nature, we have stated it for a
subanalytic subset of a real analytic manifold since the proof will involve
working in this context (see Remark 2.3). We will prove the theorem using
Hironaka’s resolution of singularities, by induction on the lengths of the finite

*  Partially supported by National Research Council (Canada) grant A9070



278 E. Bierstone

sequences of local blowings-up with smooth centers needed locally to rec-
tilinearize the singularities on the boundary of X.

Our second theorem, which in fact will be used in the proof of Theorem I, is
a generalization of Stein’s extension theorem, for ¥ Whitney fields, to the case
of a domain with boundary which is Lipschitz of any order.

Let ¢: R*" 'R be a function which satisfies a Lipschitz condition of order
y, 0<y=1; ie. there is a constant M >0 such that

lp(x)—p(x) =MIx —x|"

for all x,x'elR"~ . We consider points in R” as pairs (x, ), xeR"~!, yeR. The
open subset

{(x, »)eR"|y>¢(x)}

is called a special Lipschitz domain of class Lipy. A rotation of such a domain
will also bé called a special Lipschitz domain.

Let Q be an open subset of IR”, and 0Q its boundary. We say, more generally,
that Q is a Lipschitz domain if for each point a in 99, there exists an open
neighborhood U, of a in IR", and a special Lipschitz domain ,, such that
QnU,=Q,nU,. If each Q, is of class Lip y (independent of a), then we say Q is
a Lipschitz domain of class Lip y.

Theorem II. If X is the closure of a Lipschitz domain §, then there exists an
extension operator

E: £(X)- &(R").

If Q is of class Lip 1/k, for some positive integer k, then E may be chosen so that
Jor every compact subset L of R", there exists a compact subset K of X such
that E satisfies the following estimates. For each meN, there is a positive
constant C such that

|E(F)ly, < CIFIg,

for all Fe&(X) (the seminorms will be defined in Section 2).

For a Lipschitz domain Q of class Lip 1, Stein actually defines an extension
operator which maps the Sobolov spaces If () into I5(IR") for all keIN and
1=p=< . Theorem II illustrates an important distinction between the extension
problems for the spaces of smooth functions, and for the Sobolov spaces. In the
latter case, the Lipschitz condition of order 1 for the boundary of the domain is
in the nature of the best possible [12, p. 182].

We will actually prove more than the assertions of Theorems I and II. The
formulas of both Seeley and Stein simultaneously extend all classes of differen-
tiability. We will show that in each of our theorems we may also choose an
extension operator E which is universal in this sense; E may be induced (locally)
by a sequence of extension operators on the Whitney fields of finite differentia-
bility, but with a certain loss of differentiability depending on the singularities of
the closed set X. These more precise formulations of TheoremsI and II will be
stated in Section 3 as Theorem I' and II'. The loss of differentiability in extend-
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ing from a Lipschitz domain of class Lip 1/k, for example, is exactly that
indicated in the estimates of Theorem II.

The proofs of both theorems use an extension lemma from [1], generalized
in Section 4 to handle all classes of differentiability. In Section 5 we recall the
definitions of semianalytic and subanalytic sets, and some lemmas of Loja-
siewicz that will be used in the sequel. Théorem I’ will be proved in Section 7,
using the “averaging” Proposition 6.1. Theorem I’ will be proved in Section 9,
but in Section8 we will give a short elementary proof in the 2-dimensional
semianalytic case, which motivated the general approach of the following
section. These two sections are independent (we will see, in fact, that Proposition
6.1, which is used also in Section 8, is not needed for the special case of
Theorem II' which is used in the proof of Theorem I').

In an earlier manuscript of this paper, “Extension of ¥ Whitney fields from
semianalytic sets”, our extension operators were defined only on the spaces of
%~ Whitney fields. The author is indebted to Jean-Jacques Risler for suggesting
that the universal nature of the operators be made explicit. The author profitted
also from conversations with Bernard Tessier (on subanalytic sets) and with
Hugh Miller and Pierre Milman (the latter, in particular, pointed out an error in
the proof of Theorem II in the earlier version).

2. Preliminaries

If k=(k,, ..., k)e]N" —( 1,...,x,,)elR", then we write |k|=k,+---+k,, k!

=k!.. k!, xk=xk . IN" is partially ordered by the relation: k<! if and
l I
if k. <1, j=1,...,n. i < = ise.
only if k;<1;, j=1,...,n. We write (k) k'(l—k)' if k<1, (k) 0 otherwise. |x|

denotes the Euclidean norm |x|=(x?+---+x2)}, and d(x, y) the Euclidean dis-
tance d(x,y)=|x—y|.

If meN and U is an open subset of R”, then "(U) denotes the space of ¢™
functions on U. &™(U) is a Fréchet space; its topology is defined by the
seminorms

M f
Iflx= sup )

Jk| =m

where K< U is compact.

Let X be a closed subset of U. A jet of order m on X is a sequence of
continuous functions F=(F* Jk=m o0 X. J™(X) denotes the space of such jets.
We write |F|X = sup |F¥(x)| if K =X is compact, and F(x)=F°(x), xeX.

There is a llnear map J™: &"(U)— J"(X), associating to each fe&™(U) the jet

Py
J™(f)= ——f . For each |k|<m, there is a linear map D*:

jkjsm

J"‘(X)——»J"l l(X), defined by D"F=(F"+’)|,‘<m_|k|. We also denote by D* the

map of &"(U) into 6™~ k(U) given by Df=
confusion since D* o J™=Jm~ Ikl Dk,
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If acX and FeJ™(X), then the Taylor polynomial (of order m) of F at a is the
polynomial

Fk
'}';mF(x) - Z k(’a)
kigm B

(x—a)*

of degree <m. We define R[F=F —J™(T"F), so that

RIFF)=Fp— Y @

w1

(x—a)

if [kl sm.
We say that FeJ™(X) is a Whitney field of class €™ on X if for each |k|=m,

(RTFY(y)=o0(|x —y|" "))

as }x—yl——; 0, x,yeX. &"(X)<J™{X) denotes the subspace of Whitney fields of
class €™ £™(X) is a Fréchet space, with the seminorms
(RFY:(7)
Flg=IFlg+ sup ——=50,
gE [3 x ny Ix ___y!m 1k}
xky
ki <m
where K < X is compact. If r is a non-negative rational number, then £"(X) will
mean &Y(X), where [r] is the greatest integer <r. Likewise || will denote the
seminorm |- |f).

Remark 2.1. If FeJ™(U) and for all xeU, |k|<m we have

R™F)
i EEEY O _
y—x [x =y Ikl

0,

then there exists fe&™(U) such that F=J"(f). This simple converse of Taylor’s
theorem shows, in particular, that the two spaces we have denoted £™(U) are
equivalent. On &™(U), the topologies.defined by the seminorms |*|%, ||*||X are
equivalent (by the open mapping theorem).

Let m, 41t J™T1H(X)—J"(X) be the projection which associates to each jet
(Fsm+1 the jet (F¥y . Clearly =, .. (6" (X))=€™(X). The projective
limit J (X)=E_@J’”(X) 1s the space of jets of infinite order on X. The projective

limit £(X)= Erp__&’“ (X) identifies with a subspace of J(X). An ¢lement F of £(X)

is a Whitney field of class €™ on X. £(X) has the structure of a Fréchet space
defined by the seminorms [|F|X, where meN and K < X is compact.

Remark 2.2. Neither £™(X) nor &(X) is in general complete in the topology
defined by the seminorms |+ |X. Let p be a positive integer. A compact subset K
of R” is called p-regular if it is connected by rectifiable arcs, and there exists a
positive constant C such that

lx—yl= Co(x, y)¥
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or all x,yeK (J denotes the geodesic distance on K). If K is p-regular, then for
each meN, there exists a constant C, such that |F(X<C,|FIX, for all
Feé&P™(K) [13, 1V, 3.11]. In particular if K is 1-regular, then the norms |-|X and
|- |IX are equivalent on &™(K).

We say that X is regular if it is connected, and for all aeX there exists a
positive integer p and a p-regular compact neighborhood of a in X (X is p-
regular if p is independent of a). In this case the topology of &(X) is defined by
the seminorms |- |X, where meN and K = X is compact.

A closed set which satisfies the hypotheses of either Theorem I or
Theorem II is regular. In fact any closed subanalytic set is regular (cf. [6, Section
18]; the regularity of a closed subset of a ¥ manifold may, of course, be
expressed locally using a coordinate system). It is easy to check that a Lipschitz
domain with boundary of class Lip 1/p, where p is a positive integer, is p-regular.

Remark 2.3. We will also work with Whitney fields defined on closed subsets of a
%> manifold. Let N be a ¥ manifold, and X a closed subset of N. We denote
by J™(X) the space of continuous sections over X of the bundle of jets of order
m of ¥™ functions on N. The subspace £™(X)<J™(X) of Whitney fields of class
%™ may be defined as above, using a local coordinate system. £™(X) has the
structure of a Fréchet space, with the seminorms defined as before, using
compact subsets of coordinate charts. If X =N, then &™(N) identifies with the
space of €™ functions on N. By Whitney’s extension theorem, we may identify
&™(X) with the quotient of £™(N) by the ideal #™(X; N) of €™ functions which
are m-flat on X. )

For each meN, there is a canonical projection J™*!(X)—J™(X). Let J(X)
(respectively £(X)) be the projective limit li_nlJ"‘(X) (respectively l(i_nlé”"'(X)).
&(X) is the space of Whitney fields of class ¥~ on X.

Let U,U’ be open subsets of R, R", and X, X’ closed subsets of U, U’
(respectively). If n=(n,,...,n,): U—U is a ¥° mapping such that n(X')c X,
then = induces an R-algebra homomorphism #*(F)=F o(r|X’) from &(X) to
&(X'). Suppose ae X’ and b=n(a), b=(b,,...,b,). f T,FeR[[y,—b,,...,¥,—b,1]
is the formal Taylor series of F at b; i.e.

=y B

o k!

(y=b),

then T,(n*(F)) is obtained by substituting for each y; in T, F, the formal Taylor
series at a of the function n;. We likewise define n*: £™(X)—&™(X"). If
Fe&™(X), then T*(n*(F)) is obtained by substituting the Taylor polynomial
17n;(x) for each y; in the Taylor polynomial T;"F(y), and dropping terms of
degree >m in x —a.

It will sometimes be convenient to use the index m for either a natural
number or + oo, and to write £(X)=&*(X), T,=T,”, etc.

3. Simultaneous Extension of all Classes of Differentiability

Theorem I'. Let N be a real analytic manifold, and X a compact subanalytic subset
of N. Assume that the interior of X is dense in X. Then there exists a positive
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integer k, and for each melN an extension operator
E™:. &™(X)— &™*(N)

such that the following diagram commutes for all m<m':

E"(X) " E"M(N)
U U
8™ (X)——— ™ (N)
In particular, an extension operator E:&(X)—>&(N) is obtained as the pro-
Jjective limit of the operators E™.

Remark 3.1. Theorem I’ will be proved by induction on the lengths of the finite
sequences of local blowings-up with smooth centers needed locally to rec-
tilinearize the singularities on the boundary of X. The order of differentiability
will be divided by 8 for each local blowing-up (Proposition 9.1).

Theorem II'. Let Q< R” be a Lipschitz domain of class Lip 1/k, and X =Q L 0Q.
Then for each meNN there exists an extension operator

E™: éam(X)_)é»m/k(IRn)

such that
(1) the following diagram commutes for all m=<m’:

E™(X)—"— MR
U U
™ (X)—"— E"HR");

(2) for every compact subset L of R", there exists a compact subset K of X
such that E™ satisfies the following estimates for each meN. There exists a
positive constant C such that

|E™ (F)lmy < CIFly,

for all Fe&™(X).
In particular, the extension operator E: §(X)—&(R") of Theorem II may be
realized as the projective limit of the operators E™,

Remark 3.2. We will abbreviate notation throughout the paper by saying that
the operators E™ form a projective system, rather than giving the commutative
diagrams.

4. Technical Extension Lemmas

Lemmas 4.1 and 4.2 of this section, which will be used in the proofs of
Theorems I’ and II' (respectively), are variants of the lifting theorem of [1] and
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one of its corollaries. The argument in [1] applies directly to all classes of
differentiability, so that we refer to [1] for the proofs of these lemmas. The
precise estimates in Lemma 4.2 follow from the proof in [1].

Lemma 4.1. Let X, Y be closed subsets of R", R? (respectively), and k a positive
integer. Let G™: &™(X)-—>&™*(Y), meN, be a projective system of continuous
linear mappings. Suppose that for each beY, there is a projective system of
continuous linear mappings G7': &™(X)— &™*(IR?) such that

(1) GR(F)'(b)=G™(F)\(b) for all meN, leN? with |l| <m/k, and Fe&™(X);

(2) for each meN and L<=IRP compact, there exists K=K(m, L)c X compact
and a constant ¢=c(m, L) such that

|Gy (F)lmu=clIFI%

mik =

for all Fe&™(X) and beY. .
Then there exists a projective system of continuous linear mappings G™:
E™(X) - E™ (IRP) such that G™(F)|Y=G™(F) for all meN and Fe&™(X).

Lemma 4.2. Let k be a positive integer, and X a k-regular closed subset of IR".
Suppose that for each point a in the frontier of X, thereis a projective system W™:
E™(X)— &™*(R"), meN, of continuous linear mappings such that

(1) W™(FY(a)=F'(a) for all meN, leN" with |l| <m/k, and Fe&™(X);

(2) for every L<IR™ compact, there exists K< K compact such that the
following uniformity condition is satisfied. For each meN, there exists a con-
stant ¢ =c(m) such that

(W (F) S clFIx

mik =

for all Fe&™(X) and a in the frontier of X.

Then there exists a projective system of extension operators W™:
E™(X)—E™*(R") such that W™ satisfies the following estimates for all meNN.
For every L<IR" compact, there exists K=K(L)c X compact and a constant ¢
= ¢'(m) such that

W (F)mp < |FIR

mik =

for all Fe&™(X).

Remark 4.3. The operators G™ and W™ of Lemmas 4.1 and 4.2 induce continuous
linear mappings on the spaces of ¥ Whitney fields. If we work directly in the
%™ case, however, the statements of the lemmas may be strengthened by
replacing each projective system of continuous linear mappings by a continuous
linear mapping between the corresponding spaces of €° Whitney fields [1].

5. Lemmas of Lojasiewicz

In this section we recall some results of Lojasiewicz [6-8] which will be used in
the rest of the paper.

Let U be an open subset of R", and X, Y closed subsets of U.
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Definition 5.1. X,Y are regularly situated if for all aeX Y, there exists a
neighborhood V of a, and constants C >0, «=0 such that for all xeV,

dx, X)+d(x, )= Cd(x, X nY)~

Definition 5.2. Let A be a subset of a real analytic manifold N. We say 4 is
semianalytic in N if for each point xeN, there exists an open neighborhood U of
x in N and a finite number of real analytic functions g;;, f;; on U such that

AnU:U {g:;=0, f;;>0 for all j}.

Lemma 5.3 [6, Section 18]. Let U be an open subset of IR". Then any pair of
closed semianalytic subsets of U is regularly situated.

We will also need Hironaka’s generalization of Lemma 5.3 to subanalytic
sets [3, Section 9].

[
Definition 5.4. A subset A of a real analytic manifold N is subanalytic if for each
xeN, there exists an open neighborhood U of x in N, and a finite system of
proper real analytic maps f;;: N;;— U (j=1, 2), such that

AnU={)(Imf;; —Imf,).

A semianalytic set is subanalytic [3, 5]. The interior, closure and frontier of a
semianalytic (respectively subanalytic) set are semianalytic (respectively sub-
analytic).

The following lemma will be used for glueing together Whitney fields defined
on closed sets.

Lemma 5.5 (cf. [13, 1V, Section 4]). Let U be an open subset of R", and X,Y
closed subsets of U. Suppose that for all acX Y, there exists a neighborhood V of
a, and a constant C >0 such that for all xeV,

dix, X)+d(x, )= Cd(x, XnY).

Then:

(1) There exists a function ¢e&(U —(XNY)) which has the following proper-
ties:

(a) ¢=0in a neighborhood of X —(XnY);

(b) ¢ =1 in a neighborhood of Y—(XY);

(c) for all IeN" and K< U compact, there exists a constant C' >0 such that

ID' $(x)|S C'd(x, XA Y)~ !

when xe K —~(XnY).

(2) Let meN or m=+o0. If feI™(XNY; U), then the function ¢ - f extends
uniguely to a function (also denoted ¢ - f) which is & on U and m-flat on XY,
The mapping frs¢ - f of F™(X NY; U) to itself is continuous and linear.
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(3) Let p be the epimorphism p(f,g)=f|1XnY—g|XnY of &"(U)®E™(U)
onto §™(X Y). Then the mapping o: ker p—»&™(U) defined by o(f, g)=f—¢ (g
—f) is a continuous linear mapping such that a(f, g)—f (respectively o(f, g)—g)
is m-flat on X (respectively Y) for all ({, gicker p.

(4) Let 6 be the diagonal injection S(F)=(F|X,F|Y) of &(XUY) into
EMX)YDE™(Y). Let n be the epimorphism n(F,G)=F|XnY-G|XnY of
EMX)YDEM(Y) onto E™(X Y). Then the following sequence is exact:

0 E™(X UY)—2 8™(X) @ E™(Y)—2> E™(X N Y) 0.

Remark 5.6. Suppose that the closed subsets X, Y in Lemmab5.5 are merely
regularly situated, but that m= + co. Then there exists pe&(U — (X nY)) satisfy-
ing (1)(a), (b) and (2); hence (3), (4) are valid. If meN, however, then (3), (4)
involve a loss of differentiability depending on « in Definition 5.1.

The remainder of this section will be used only in the proof of Proposition
6.1. The relationship of Proposition 6.1 with the proofs of our main theorems
will be discussed in Remark 6.2.

Let X be a closed subset of R”, and £™(X,C) the space of complex valued
%™ Whitney fields (meIN) on X; ie. the set of F=F, +iF,, where F,, F,e&™(X).
We give £™(X, €) the structure of a Fréchet space defined by the seminorms
|FiX=||F,I|X+|F,|X, where K <X is compact.

We denote by (z,1)=(zy,...,2,, 1y, ...,t,) (z;=x;+iy;) a point in C" x R?. Let
X be a closed subset of €"xIR? and Fe&™(X,T). To each point acX, we
associate the Taylor expansion T"Fe@[x, y,t] (of order m) of F at a:

Fi+'(a)

j, keNF, leNP Jrktit
lJI+|kI+ll|<m

J ktl

T"F =

Definition 5.7. Feé™(X,C) is formally holomorphic (in the variables z) if F
satisfies the Cauchy-Riemann equations

('3F oF
6x “ay;

}
ie. the Taylor expansion of F at each point of X belongs to C[z,1].

Let #™(X) be the set of formally holomorphic ¥™ Whitney fields on X.
H™(X) is a closed subalgebra of £"(X, ), hence a Fréchet space in the induced
topology. We also define £(X, C)=£i_r£é"’"(X, €) and %(X)=1§_@3¢’”‘(X).

Now let meN or m= +o0. Let X be a closed subset of R”" x RP < C® x R?.
We associate to each Fed™(X<R"xR?,C) its formal complexification
Fes#™(X). At each aeX, T,"F is obtained by substituting the variables z ; for the
variables x; in T,"F; ie.

Fkl()

kelN”, le NP k' l‘
|k|+|l|5m

T;'"F—

(x+iykt.
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The mapping Fi—F of &"(X cR"xR? ) to #™(X) is an isomorphism of
topological algebras with derivation.

Let L be a real linear automorphism of C” x R? which is holomorphic with
respect to the variables z;, j=1,...,n. Then L defines a Fréchet space
isomorphism I*(F)=FoL from #™(X) to #™(L 1(X)); ie. T, (L*(F)(z1)
=T F(L(z, ).

We say that a subspace IT of €" x R? is real situated if IT is the inverse image
of IR” x R? by a real linear automorphism L which is holomorphic with respect
to zeC". The following lemma is a simple consequence of Lemma 5.5.

Lemma 5.8 (cf. [13, 1V, 5.4, 557]). Let II be a real situated subspace of C"xR",
and X, Y closed subsets of IT which satisfy the hypothesis of Lemma 5.5. Then for
melN or m= 4+ 0 we have:

(1) Let p: A™(IDN@HA™(II) > H#™(XNY) be the surjection p(F,G)=F|XnY
—G|XNY. Then there exists a continuous linear map o:ker p—#™(II) such
that o(F,G)=F on X, o(F,G)=G on Y, for all (F, G)eker p. As in Lemma 5.5 (3),
the mappings o are defined simultaneously for all m,

(2) The following sequence is exact:

0— H™(X U Y) o H™X)® H™(Y)— #™(X A Y)—0.

Lemma 5.9 (cf. [13, IV, 5.6]). Let I, ..., I1,,..., I, be real situated subspaces of
C"xR?. Then there exists a projective system of extension operators

" (in H;) - (x'gl H')

6. Averaging a Real Function Over the k’th Roots of Unity

Let k be a positive integer, and n: R"*?— R"*? the mapping defined by n(x, 1)
=(x{,....,xk s, ..., 1,), where (X,8)=(Xy,...,X,,t;,...,t,) denotes a point of the
source. Let U be an open neighborhood of the origin in the target, U =n"1(U),
and X, X’ closed subsets of U, U’ such that X'=n"1(X). For each meN or m=
+ oo, we let (n* &™(X))" be the subalgebra of &™(X') of Whitney fields F with the
property that for all be X, there exists Ge&™(X) such that F —n*(G) is m-flat on
" b). (n*E™(X))" is closed in £™(X’) since it may be characterized as the
subalgebra of Whitney fields F such that

() if 1=y, ..., L, )eN""? |l|<m, and ; is not divisible by k for some i
=1, ..., n, then D'F(x, {)=0 for all (x, ¢) such that x,=0;

(2) if k is even, then F is even in each coordinate x;.

Let &™(U’; X, n) be the closed subspace of £™(U") of functions f such that
1 X e(n* &™(X))~. We ask whether there exists a continuous linear mapping of
E™(U"; X, n) to (n* &*(U))* which induces the identity on {z* £&"(X)". If k=2,
then such a mapping may be defined simply by taking the even part with respect
to each coordinate x;, i=1, ..., n In general, however, there does not exist a
continuous linear projection operator from functions of (x, ¢} to functions of
(%, ..., x%, 1) [9]. Instead, the required mapping will be constructed (under
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suitable conditions on X’) by extension to a formally holomorphic Whitney field
on a union of real situated subspaces of C" x R?, followed by averaging over the
I’th roots of unity in each copy of C.

Proposition 6.1. Suppose that for each i=1, ..., n, X' and the intersection with U’
of the hyperplane {x,=0} satisfy the hypothesis of Lemma 5.5 in U'. Then there
exists a projective system of continuous linear operators

/\
A" =A"(X, n): §™(U’; X, n)—>n* £™(U)
such that A™(f)|X'=f| X' for all fe&™(U'; X, n).
Proof. For convenience of notation we assume U=IR"*?, Let Z, be the group of

K’th roots of unity 2™ =0, ...,k—1. Then (Z,)"=Z, x --- x Z, (n copies) acts
on C" x IR? by the real linear automorphisms L, defined by

Lz, t)=(e2""kz,, .. 2"z 1, 1),

where y=(e*"", ., e2""¥) and (z, t)=(x +iy, t)eC" x R?. Each L, is holomor-
phic in (z4, ..., z,).

We order the elements y=(e2™"/  e"ilwk) of (Z,)" lexicographically with

respect to (Iy, ..., 1), and write y=7y;, j=0,...,k"—1, for the elements in this
order. We also write L;=L,, j=0,...,k"—1. Let II;=L;'(R"xR”) and X
=L;'(X"), j=0,. k"——l(sothatH0 ]R"xIR" Xo=X").

leen f eé""‘(lR"*" X, n), let fesr™(I1 o) be the formal complexification of f.
For each j=0,..,k"—1, let F,=IL%(f)e#™(l,) (so that Fy=f). Since
f1X e(n* é”"‘(X))“, then

F |l X;nX,=F|X;nX;, j1=0,....,k"—1.
By Lemma 5.8(2), there exists a unique Fe#™(II,u U X ;) such that F{II, =f

and F|X;=F;|X;, j=0,...,k"—1. It is clear that F| U X; is invariant under
substltutxon of the elements of (Z,)".
We now extend F to F'es#™ UH) By induction on I=1,...,k"—1, we

assume that F has been extended to F'- 1@9’{""((w ) X;u g) IT). By Lemma 5.9,
there exists an extension operator igl-1

o A U mpy—-am(\ ).
jsi-1 st

Let p;: %’"(H,)(—B%’"(H,)—»Jf"’(X,m g) II) be the surjection p(G, H)
=610 |) M)=HIXin |) H) (G, Hye#™(I1)@® #™(I1,). Then there

exists a contmuous linear map o ker p,—#™(I1)) such that ¢,(G, H)=G on X,
and ¢,(G, H)=H on II,n g) I1;, for all (G, H)eker p,, by Lemma 5.8(1). Let H,

be the restriction of oz,(F' 1 U 1)) to II,. Since F'~1| U X, is invariant under

jsl
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the action of (Z,)", then (F,, H))eker p,. Define F' on () X,u () II, by
7

jsi
F'=F'"' on {JX,u 1,
7 jst-1

F'=0¢,(F,H) on II,.

Then Fle#™(| ) X;u | IT) by Lemma 58(2). F'=F"~'es#™(| ) II)) is a con-
i Jsi j
tinuous linear extension of F.
1 . . .

Define F” -G X, I}(F'). Since F'| LJ) X,=F| LJ) X; is (Z,)-invariant, then

F'I\JX,=F|\JX;,. F'|1, is the formal complexification of a unique Whitney
j j

field F"e&™(IR" x R?, C) such that Re F"" | X'=f | X". Since F" is (Z,)"-invariant,

then Re F""e(n* &™(U))". The required operator is A™(f)=Re F"”. The oper-
ators A™ clearly form a projective system.

Remark 6.2. Proposition 6.1 will be used in the proof of Theorem II' and in
‘Section 8. It is not needed, however, for the special case (k=2) of Theorem II'
which will be used in the proof of TheoremI'. In fact Theorem I with k=2,
leN, may be proved by induction on I/, replacing the argument of Proposition
6.1 by merely projecting onto the even part with respect to each coordinate x;, i
=1, ..., n. From the cases k=2' of Theorem II', we can deduce Theorem II' for
any positive integer k, but with less precise estimates on the loss of differentia-
bility when k42, leN.

Proposition 6.1 remains valid in the ¥ case under the weaker assumption
that X’ is regularly situated with respect to the hyperplanes {x;=0}, i=1, ..., n.
Our stronger assumption is needed in order to obtain the precise estimates of
Theorem II.

7. Proof of Theorem II’

It suffices to prove Theorem II' in-the case of a special Lipschitz domain. The
general case follows using a partition of unity.

It will be convenient to work in R"*? instead of R". We consider points in
R"*! as pairs (x, y), where x=(x,, ..., x,)eR" and yelR. Let ¢:R">R be a
function which satisfies a Lipschitz condition of order 1/k, where k is a positive
integer; i.e. there is a positive constant M such that

lp(x) —p(N=M |x — x| (%)
for all x, x'eIR". Let Q be the special Lipschitz domain
Q={(x, y)eR""{y>d(x)},

and let X =QuU0dQ. We will prove the following theorem.

Theorem 7.1. There exists a projective system of extension operators

Em:‘gm(X)_’Jm/k(]Rn+ 1)
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which satisfy the following estimates for all meN. For every compact subset L of
R"* 1 there exists a compact subset K=K(L) of X and a positive constant C
(depending only on n, k, m and the bound M in the Lipschitz inequality ()} such
that

|E™(F)|muS C IFIn

mik =
Jor all Fe&™(X).
Remark 7.2. In the following proof we may, in fact, take m= + oo directly.

Proof of Theorem 7.1. Let I be the (upper) half cone with vertex at the origin of
R"*! (with coordinates (t, y)=(t,, ..., t,, ) defined by

r={¢ yeR"*{yzM|}.

We define a mapping n: R"*'->R"*! by (x,, ..., X, Y)=7n(t{s ..., I, V)
=(t%, ..., t5, y). The Lipschitz condition () implies that if a=(x', (x')) is any
point in 0Q, then

{x, peat+n)|x—x'|s1}cX
(a+n(I') denotes n(I') translated so that its vertex is a).

Lemma 7.3. There exists a projective system of extension operators
E?: &™(n(I))— ™ (R 1)

which satisfy the following estimates for all meN. For every L<IR"*! compact,
there exists K=K(L)cn(I') compact and a constant C' (depending only on n, k, m
and M) such that

|ES(F)lm = C'IF I

mfk =

for all Fe&™(n(I')).

We will prove Lemma 7.3 shortly. To obtain Theorem 7.1 from the lemma,
let pe&(R"* 1) be a function with support in the unit ball centered at the origin,
such that p=1 in a neighborhood of 0. For each aedQ, define p (u)=p(u—a),
ueR"*!, For each meNN, let E™ &™(a+n(I))—&™*(R"*') be the operator
obtained by translating E7 to a. If Fe&™(X), then supp p, - F lies in the unit ball
with center a, so we may assume that p,- F restricts to a ¥™ Whitney field
on a+n(l). The operators W™ &"(X)—>&E™*(R"*!) defined by W™(F)
=p,  EX(p, F) satisfy the hypotheses of Lemma 4.2, so that Theorem 7.1
follows.

The following two elementary lemmas will be used in the proof of Lem-
ma 7.3.

Lemma 74. Let U be an open subset of RFP*! (with coordinates (t,y)
=(t, Y15+, ¥,). Given q,meN with q=m, let S be the ideal in &(U) of
!

0
functions f such that 5{1- (0, y)=0 whenever (0, y)eU and 1 <q. Then S is closed in
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&™(U), and for each ¢pe S, there exists a unique =17 (p)e&™ 4(U) such that
$(t, y)=t1y (¢, y) for all (t, y)eU. The mapping 17: £"— &™4(U) is continuous and
linear.

Proof. In any open ball in U with center on the hyperplane {t=0}, the mapping
17 may be defined by Hadamard’s formula 17'(¢)(t, y)=¢, (¢, y), where £,(2, y)

q

=¢(t, y) and
&(t, )= j‘ '1(stx)ds 1<i<q.

Lemma 7.5. Let k be a positive integer, and n: R"*?—R**? the mapping defined
by n(t, y)=(t, ..., th, ¥4, ..., ¥,), where (t, y)=(t,, ..., t,, ¥y, ..., ¥,) denotes a point
of the source. Then for each meN and fe(n* &™(n(IR"*F)))*, there exists a unique
g=y"(f)e&™*(n(R"*P)) such that f(t, y)=g(t", ..., t%, y) for all (¢, y)eR"*P. The
mappings vy™: (n* & (n(R"*?)))* - &™*(n(R"* 7)), meN, are continuous linear
operators which form a projective system.

'Proof. For each leN"*? with |[|<m/k, we may use Lemma 7.4 to define
h(t, y)e(r* & Me(m(R"*P))* as follows:

ho(t, ) =11, y),

Ot y) _, 4 .
_laoti—‘=kﬁ; 1hl+(l')(t’y)a 1<ign,
Ohy(t
,(,y)=h,+(,.+,.)(t,y), 1<j<p
0y;

((i) denotes the multiindex whose i"th component is 1 and whose other com-
ponents are 0). On the other hand, there exists a unique ge&°(n(R"*?)) such
that g is €™ outside the images of the hyperplanes {t,=0}, i=1, ..., n, and f(t, y)
=g(th, ..., 5y ) outside the hyperplanes {t;=0}. Hence for each |l| <m/k, h(t, y)
=(D* g)(t ..., t*,y) outside the hyperplanes {t;=0}, so that D'g may be con-
tinued up to the boundary of n(IR**?). It follows that ge&™*(n(IR"*P?)). The
remaining assertions also follow from Lemma 7.4.

Proof of Lemma 7.3. By Stein’s extension theorem (or by Seeley’s extension
theorem together with Lemma 4.2), there exists a projective system of extension
operators S™: &™(I)— &™(IR"*!) which satisfy the following estimates for all
meNN. There exists a constant C” (depending only on n, m and M), and for every
compact subset L of R"*! a compact subset K=K(L) of I, such that |S™(F)|%
S C'|F|X for all Fe&™(T).

Given Fe&™(n(I)), let F'=8™(n*(F))e&™(R"*?). Then F'|I"=n*(F), so that
F' lies in the closed subspace £™(R"*!; n(I'), n) of &™(IR"*!) of functions f such
that f | Fe(n* &™(n(I))". We let G=y"(A"(F))e&™*(n(R"* 1)), where

Am: R (D), T (2% S (R 1)),

Y (1% Em (R 1)) —> £ (R )
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are the operators given by Proposition 6.1 and Lemma 7.5 (respectively). If k is
odd, then n(R"*')=IR"*!, and we define E?(F)=G. If k is even, then

n(R"™ )= {(x, )eR"* ! | x,20,i=1,...,n}.

In this case E7(F) is obtained by extending G to R"*! using Seeley’s or Stein’s
theorem. In either case Ef is a continuous linear operator which satisfies the
conditions of Lemma 7.3.

8. Theorem I in the 2-Dimensional Semianalytic Case

Let X <R? be a semianalytic set which is the closure of an open set. To prove
that there exists an extension operator &€(X)— &(R?), it suffices to show that for
each point a in the frontier of X, there exists an open neighborhood U, of @ in
IR?, and an extension operator E,: &(XnU)—&(U,) (the following argument
actually applies simultaneously to the extension of all classes of differentiability).

Suppose the origin O lies in the frontier of X. There exists an open
neighborhood U” of 0 in R?, and a real analytic curve Y in U” such that XnU”
is the closure in U” of a union of components of the complement of Y. By
Remark 4.3 (or Remark 5.6), it suffices to assume that X nU" is the closure in
U” of a single component Q of the complement of Y.

After a linear change of coordinates, we can find open neighborhoods U;, U,
of 0 in R such that

(1) Y is the zero set of a Weierstrass polynomial

g ="+ 3 ¢y "
i=1
in V=U, x U,, with coefficients c,(y) which are analytic in U, and vanish at 0;
(2) for all y,eUj, all real roots of g(y,, )=0 lie in U,;
(3) the discriminant D of g vanishes at most at 0.

By adding some extra branches to Y, we may in fact assume that
XNV c{yz=0}, so that D vanishes exactly at 0, and QnV is the region between
two adjacent analytic sheets X,, 2, of the Weierstrass polynomial g.

Let k=n! There exists £¢>0 and real power series 7y,(x), y,(x) which
converge in the interval (—¢, &) such that

(1) (=&, Y=Uy;

(2) Z,, X, are given by the Puiseux expansions t=y,(y'*), t=y,(y'/*) for
ye(0, &)

Define n:(—¢,&)x U,— U, x U, by =n(x, t)=(x* t). After the analytic coor-
dinate change

x' =x,
t'=t—3(,(x)+7,(x)),
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there is an open neighborhood U’ of 0 in (—¢, &) x U,, such that X'=n"Y(X)nU’
is the closure of the region above the graph of a continuous function x'= ¢ ().
The function ¢ satisfies a Lipschitz condition locally, so that by Theorem II
there is an extension operator E': §(X")— & (U").

We may choose U’ such that U'=="*(U), where U is an open neighborhood
of 0 in R2 We can now deduce the existence of an extension operator
E: £(XnU)—&(U), using Proposition 6.1 and Lemma 7.5.

Remark 8.1. The method of this section may be used in any dimension to prove
Theorem I, provided that X is a semianalytic set which may be expressed locally
as a finite union U X; of sets of the following type. Each X is the closure of a

component of thejcomplement of a hypersurface which has only quasi-ordinary
singularities. This means that the hypersurface is locally the zero set of a
Weierstrass polynomial such that the discriminant variety of its complexification
has only normal crossings (cf. [15]).

9. Proof of Theorem I’

Let N be a real analytic manifold of dimension n, and &/, the sheaf of real
analytic functions on N. Let X be a compact subanalytic subset of N such that
the interior of X is dense in X. We will show there exists a positive integer k,
and for each meN (or m= +00) an extension operator E™: &™(X)— &™*(N)
(defined universally for all m). It suffices to show that for each xeX, there exists
an open neighborhood U of x in N, and a (universal) extension operator
E™(X N U)—&™ (V).

We first assume that X is semianalytic. Let xeX. We can find an open
neighborhood V of x in N, and a finite system of real analytic functions f;; on V
such that

Xnv=J) {£;20 for all j}.

We may assume that none of the f;; is identically zero. We then apply
Hironaka’s desingularization theorem [4, main theorem II] (see also [3, 5.11
and 7.2]) to the ideal sheaf J=(II, ; f;;) &y | V. According to the desingulari-
zation theorem, there exists an open neighborhood U of x in V, and a real
analytic mapping n: N'— U which has the following properties:

(1) N’ is smooth.

(2) = is surjective and proper. In fact n is obtained by composing a finite
sequence of blowings-up with non-singular centers.

(3) If Y is the closed real analytic subspace of V defined by J, then N’
—n~1(Y) is dense in N’, and = induces an isomorphism N'—z~}(Y)-»U-Y.

(4) =~ 1(Y) has only normal crossings; ie. for each x'eN’, there exists a
coordinate system (z, ..., z,) of N’ centered at x', such that J.o¢y. .. is generated
by a monomial z{' ... zi» with non-negative integers a;.
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It follows that there exists a closed semianalytic subset X’ of N’ such that
1) n(XV=XnU;

(2) the interior of X’ is dense in X';

(3) X’ may be defined locally by linear inequalities.

Hence by Seeley’s extension theorem and Lojasiewicz’s glueing lemma 5.5(3)
{or Lemma 4.1), there exists a (universal) extension operator &™(X')-+&™(N').
Theorem I’ (in the semianalytic case) will follow from Proposition 9.1 below, by
induction on the number of blowings-up of which the mapping n: N'—U is
composed.

Now we suppose X is subanalytic. Let xeX. There exists a finite number of
real analytic mappings =;: N,— N with the following properties:

(1) each N, is smooth.

(2) There exists a compact subset K; of N;, for each i, such that { ] n,(K)) is a

neighborhood of x in N.

(3) For each i, n; is obtained by composing a finite sequence of local
blowings-up with non-singular centers.

(4) For each i, n; 1(X) is semianalytic in N,.

We recall that a local blowing-up over a real analytic space Z is the
composition of a blowing-up over an open subset U of Z, with the inclusion
U=Z. Hironaka [3, 7.3] states the above result with each =, obtained by a finite
sequence of local blowings-up whose centers are nowhere dense in their re-
spective ambient spaces, but perhaps singular. Given such mappings =;, we may
obtain the stronger statement using the desingularization theorem cited above
{each 7; is dominated over m;(K;) by a finite number of perhaps longer finite
sequences of local blowings-up with smooth centers).

Suppose we have a finite number of real analytic mappings 7;: N;— N with
the properties (1)~(4). For each i, let B; be a compact semianalytic neighborhood
of K, in N;, and let X, be the closure in N; of the interior of n; *(X)nB,. Then X
is semianalytic, and | n;(X,) is a neighborhood of x in X. Hence TheoremI'

may be reduced to the semianalytic case, using Lemma 4.1 and Proposition 9.1
below.

Local Blowing-up. Let IP" denote real projective space of dimension r. There is a
natural mapping py: R"— {0} —>IP"~! such that for each £elP"" !, pg (&)U {0} is
a line through the origin in R". By assigning to each £elP""! the line obtained
in this way, we get a real line bundle p: L—IP""!, and a natural mapping
ny: L—IR" which is isomorphic outside the zero section of p, and such that the
zero section is mapped to the origin of R”",

With the coordinate system (y, ..., y,) for R", the real analytic manifold L is
constructed as follows: L=|JL; where L,=R" with coordinate system
i=1
(t;1, ..., 1), and 75| L; is defined by

i t;; if j=i
£ O m
Yi®To tpt; if jEi
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The mapping n,: L—R" is the blowing-up of R" with center 0.

Let IR? be a linear subspace of R?. Write R?=R? xIR". With &, as above,
the mapping n=idg, X 7, is the blowing-up of R with center R?.

Though the ¥ case of our main theorem follows from the cases of finite
differentiability class, we may, in fact, prove the €* case directly, so we make it
explicit in the following proposition.

Proposition 9.1. Let X' be a non-empty compact subanalytic subset of R? x L, and
let X =n(X'). Suppose there exists a positive integer k and a projective system of
extension operators &™(X')— &™*(IR? x L), meNN (respectively an extension opera-
tor £(X')—>&(R? x L)). Then there exists a projective system of extension oper-
ators ™(X)— &™8*(RY) (respectively an extension operator &(X)— & (R)).

Remarks 9.2. The definition of our extension operators will be universal, so we
will neglect to say explicitly that we are working with projective systems at
every stage of the proof. We will allow m to denote either a natural number or
+ o0. We also adopt the following convention. Suppose that Z is a closed subset
of a real analytic manifold, and that Fe&™(Z), Ge&™ (Z), where m<m'. If the
image of G in £™(Z) coincides with F, we will write F=G.

Proof of Proposition 9.1. For each i=1, ..., n, we let X; be the intersection of X’
with the closed subset of R? x L, defined by |t;;| <1 for all j#i. Let X;=n(X}).
Then X;, X; are compact subanalytic subsets of X, X' (respectively), such that X

=JX;, X’=J X|. We also let X, (respectively X;_) be the subset of X;of
i=1 i=1
points such that t,;=0 (respectively ¢,;<0), and let X,, =n(X},), X;_ =n(X;_).

1=
Then X, =X, , uX,_ and X=X, uX, ,i=1,...,n By Lemma 4.1, it suffices
to show that for each i=1,...,n, there exist (universal) continuous linear

operators
E"  E™ : &™(X)— &85 (IRY)

such that EI" (F)| X;,, =F|X,, and E}' (F)|X,_=F|X,_ for all Fe&™(X).

We fix i, and show there exists a (universal) continuous linear operator
E™: £™(X)— &™8*(RY) such that E™(F)| X,, =F| X, for all Fe&™(X) (the same
argument works for X, _ by symmetry).

For convenience we relabel the coordinates (x,, ..., x,, t;;, ..., t;,) of R? x L;
by x=(xy, ..., X,,) as follows:

Xpi1=lips
Xpr; =t o1 1<jZi
X, i=t i<j<n.

ptiT tijy

Coordinates y=(y,, ..., y,) for R? are chosen so that n;=n|R” x L, is given by
D15 oo V)= gs s Xy Xt 1s Xyt Xptas ooes Xpiat Xpin)

In the new coordinates, any point of X;, satisfies the inequalities x,, ; =0 and
Ix|s1,j=p+2,....,q
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Let C' be the truncated half-cone defined by (x%+--+x2 +xp w2t
+x2,)¥<x,,,<1. For any point x with x,,,>=0, we denote by C'(x) the
truncated half-cone with vertex x obtained from C’ by translating the origin to
the point x:

C'x)=x+C.

Any line parallel to the x,, ;-axis is mapped by =; to a straight line in R%.
Let C be the compact semialgebraic subset of IR? defined by

Gi+- Yty t oty Syi, 05y, S5

For any point x with x,,,;20, we denote by C(x) the unique compact semi-
algebraic subset of R? which is obtained from C by a rigid motion of IR? taking
the positive yp +1-axis to the image under =; of the half-line {(x,,...,x,, X,
+& Xph0s 0 X4 [ E20) A straightforward  calculation shows that if
0=x,,,=1 and |x;| =1 for p+2<j<p-+n, then

Cx)en(C'(x)).

Now let Z<IR? (with coordinates ¢=(¢y,...,¢,) be the truncated solid
cylinder defined by 0<¢,,,<1 and &}+- +4‘2+§ ot +§P+,,<1 Let
Y'=R? x L, be the image of {xeX;, |0=x,,, =<1} by the mapping

(xa é)}_’(x1+§p+1 51’ "':xp+ép+1 éps xp+1
+ép+1’xp+2+£p+1 £p+27 e xp+n+§p+l ép‘i-n)

of (R?xL)xZ into R? x L; (Y’ is the union of the truncated cones C'(x) for
each xeX;, with x,, ; <1). Then Y’ is a compact subanalytic subset of R? x L,
(if X, is semialgebraic, then Y’ is semialgebraic, but Y’ needn’t be semlanalytlc
if X;, is semianalytic). Note that Y intersects the hyperplane {x,, , =0} only in
points of X, .

Let Y=n,(Y')cIR% Then Y is a compact subanalytic subset of R? containing
C(x) for each point xeX;, with x,.;<1 (in particular Y contains

Xy, S1).

Let &™: &™(X)—&™*(Y') be the continuous linear mapping obtained by
composing the algebra homomorphism n*: £™(X)— 6™ (X’), the extension opera-
tor &™(X')— ™ (R x L) of the hypothesis of Proposition 9.1, and the restric-
tion operator &™*(R? x L)—&™*(Y’). The mapping =; induces an algebra ho-
momorphism ¥"=gr¥*: §"(Y)—E™(Y).

Proposition 9.3. For all Fe&™(X), there exists a unique Ge&™**(Y) such that
@™ (F)=P™**(G). The mapping O@™: E™(X)—>E™**(Y) thus defined is continuous
and linear.

We will prove Proposition 9.3 below. To obtain Proposition 9.1 from
Proposition 9.3, we first note that @™(F) coincides with (the (m/4k)-jet of) F on
Xy 0 {y,+ 11} for all Fe&™(X).

By Theorem II' there exists a (universal) extension operator
Em: &™(C)— &™*(RY). By a rigid motion of IR%, E7 induces an extension opera-
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tor E™(x): &"(C(x))—»&™*(RY for any point x. For each point
xeXi, n{x,,; £1}, let G™(x): &™(X)— £™**(R?) be the operator obtained by
following @™ with the restriction to C(x), and then with E™**(x). By Lemma 4.1
there exists a continuous linear operator G™: &™(X)— &™®*(RY) such that G"(F)
coincides with F on X;, n{y,, =1} for all Feé™(X). Since m; is isomorphic
outside {x,.,=0}, then there exists a continuous linear operator
E™: £7(X)—> &™®*(R) such that E*(F)| X,, =F| X,, for all Fe&™(X).

Remark 9.4. In the ¥® case, we can do better than Proposition 9.3. We denote
by Y(&(Y))" the set of Fe&(Y’) such that for all beY, there exists Ge&(Y) with
the property that ¥(G)—F is flat on ;' (b))~ Y’; i.e. ¥(£(Y))" is the subalgebra
of £(Y’) of Whitney fields which are formally in ¥(&(Y)).

Proposition 9.5. Let Y=n,(Y’), where Y’ is any closed subanalytic subset of R?
x L; such that ;| Y' is proper. Then

YY) =F(E(Y) = P(#(Y)).

Hence in Proposition 9.1 in the #® case, ¥(&(Y) is closed and
Y:£8(Y)-&(Y') induces a Fréchet space isomorphism onto ¥(£(Y)) by the
open mapping theorem. Since @(& (X)) = P(S(Y)* =P(E(Y)), then O=¥P 1o

The following lemma (as well as its proof) will be used in the proofs of
Propositions 9.3 and 9.5 (cf. [2], [13, IX, Section 1]). For convenience we now
write 7 for n;. If beY, then %, denotes the R-algebra of formal Taylor series at b
of elements in &(Y), and m, its maximal ideal. %, is isomorphic to
R[[y,,....y, 1) Let T,: & (Y)—»J'b be the projection associating to each Whitney
field its formal Taylor series at b. We write G, =T, G for Ge&(Y). If acY’ and b
=m(a), then n induces a homomorphism 7*: 971, %, such that T,c ¥ =1%o T,.

Lemma 9.6. For all reN, #* ' (ifi2")<iis. In particular, the homomorphism * is
injective.

Proof. We consider a=(a,, ..., a)) with a,, ;=0 (the assertion of the lemma is
obvious at other points aeY’). Then b=n(a)=(a,, ..., a,,0,...,0). In coordinate
systems (x4, ..., x,;) and (y,, ..., y,) translated to the points a and b (respectively),
the mapping = is given by

(ylz ERRE yq)z(xl’ ey xpa xp+1’ xp+1(ap+2+xp+2)’ MR xp+ 1(ap+n+xp+n))'

Since #*: #,— Z, is a local homomorphism, then #*~!(1fi2) =1i,. We suppose
r>1 and argue by induction on r. Let Se#, such that S o 7,e1t2". We differenti-
ate S o 7, with respect to x,, ..., x,:

¥
(as o asw)

T Mgy ey " T,

0y, 3y,

I

P
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(Here I, denotes the p x p identity matrix.) Multiplying on the right by the
matrix

I I
P e
i Xpi1 0...0
I
L =Gy = Xpe 1.0 ),
1 .
' :
i
1 —-ap+n—xp+n 0..1

os .\ . . oS . .
we see that x,,, ( on,,) efi2r~1 j=1,...,q. Hence —— o #,eMt?" "2, so that
dy; dy;

as
ay

i

etfi;”! by induction. Since S(0)=0, then Seti.

Proof of Proposition 9.5. It is easy to show that P(&(Y)=¥P(&(Y)"
(cf. [13, 1X, 1.3]). We will prove that P(&(Y))" <« P(£(Y)). Let Fe?(£(Y))". By
Lemma 9.6 there exists a unique field of formal series G on Y such that Gon=F
(to simplify the notation, we write merely = for n| Y’).

We will show that for each IeIN% (D'G)oneé(Y’). By hypothesis Gorn
=Fed(Y’). It suffices to prove the following lemma.

Lemma 9.7. Let i be a field of formal series on Y, such that yyone&(Y'). Then for

id one&(Y').

each j=1,...,q,
ayj

0
Proof. Let y,= a;{lon j=1,...,q. By hypothesis there exists €& (Y} such that

lpn(x)on —é for Ja11 xeY’'. We differentiate this equatlon with respect to
Xy,...,X,, and argue as in the proof of Lemma 9.6 to obtain 5,9, ix = j. x> Where
d(x)= xp +1 and &;e€(Y’). In other words, £; belongs pointwise to the ideal in
&(Y') generated by the function 6(x)=x,,,. By Lemma 9.8 below it follows
that ¢;=4-y;, for some y,e€(Y'). We necessarily have y;=y;, so that

0
v one&(Y') as required.
0y;
Lemma 9.8. Let Z be a closed subset of R¥* ! (with coordinates (t, x)=(t, X, ..., X)),
which is regularly situated with respect to the hyperplane {t=0}. Let ¢peé(Z)

and q be a positive integer. If ¢ belongs pointwise to the ideal generated by
the monomial t? in &(Z), then ¢ belongs to this ideal.

Proof. Let W=Z n {t=0}. There is a unique field of formal series  on W such
that ¢ |W =174,

We will show first that ye&(W). Let (0,a)=(0,a,,...,a,)eW. Then
To,0 0t X)=t1T ,, ¥(t,x) and TG f d(t, x)=t"Ty , ¥ (t,x) for all melN. On the
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other hand if meN and (0, q), (0,b) are points in W, then

To.a &6, )= TG 3 & (t,x)

1+ (x —a) . ” .
= Tqag DT 9-TE 4109
t{x —a) )
= % (q(+j)u)v'Dq”’l°(R¥'6T§>¢"RI'6T«?>¢)(0,“)
J+ilEm
H(x—a) R™ )
= Z<m(q+1)m (R 5 #1710, a).

Let K be a compact subset of W. There exists a modulus of continuity &, such
that if (0,a), (0,b)eK and j+{lj<m, then

I(REHA )2 10, a) | <la—b|™ "YU Mg (Ja—b).

(We recall that a modulus of continuity is a continuous increasing function f:
{0, o0)— [0, o) such that g is concave downwards and $(0)=0.) Hence if (0, a),
(0,b)eK and (t,x)e R**?,

115 9t x)— Tig 3 o2, x)|

[t} |x —aff
j+iem (@D
Sl Y it lx—b" - oy (la~bl)

igm

S

. }a_blm_(j'*'fz!) .al(ta_bm

for some constant c,, provided that |x —a]<|x —b|. If [x—b/=Z[x—a|, then there
is a constant ¢, such that
1T o (2, )~ Tig 3 (2, %)
st Z {tVix—al™ 7o, (la—b]).

jsm

Hence there is a modulus of continuity « such that

TG, o (8, ) — T3 3 B (2, )]
=t afla—bl)- (I(t, ) — (0, @)™ +(t, x) — (0, b))

for all (0,a), (0,b)eK, (t,x)eR** !, It follows that

T3 o V(8 %)~ T34, W (2, %)]
<a(la—bl)-(I(t, ) (0, @)™ + It, x)— (0, b))

for all (0,a), (0,b)eK, (t,x)eR***, Hence yre&(W).

Now let £ be 2 Whitney field on {t=0} such that £|W=y. Let ¢'=14¢. Then
¢’ is a Whitney field on {t=0} such that ¢'|W=¢|W. Since Z and {r=0} are
regularly situated, then by Remark 5.6 there exists fe&(R**') such that f}{t
=0} =¢' and f|Z =¢. By Hadamard’s lemma, f belongs to the ideal in &#(IR**1)
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generated by t%. Hence ¢ belongs to the ideal generated by t? in &(Z). This
proves Lemma 9.8, and hence completes the proof of Lemma 9.7.

Returning to the proof of Proposition 9.5, we have shown that
(D'G)one&(Y’) for all leN% Since n|Y’ is proper, it follows that the mapping
G': Y- R is continuous for each leN% We.may now proceed as in [2] to show
that G is a Whitney field on Y. Here we use the fact that Y' x Y’ is a subanalytic
subset of R?x IR and Hironaka’s result that two closed subanalytic sets are
regularly situated. This completes the proof of Proposition 9.5, and hence of
Theorem 1.

Proof of Proposition 9.3. From now on melN. Let Fe£™(X). By Lemma 9.6 there
exists a unique field G of Taylor polynomials of order m/2k on Y, such that
P"(F)=Gon (in £™2*(Y")). We will first show that

(1) (D'G)omes™2* (Y’ for all || £m/2k (in particular G' is continuous);

(2) for all |{li<m/2k, the mapping Fi—(D' G)onr of &™(X) into &2% (Y} is
continuous and linear.

These assertions must be proved by an argument somewhat different from
that used in Proposition 9.5, in order to avoid an unnecessary loss of differentia-
bility involved in applying Lojasiewicz’s glueing theorem as in Lemma 9.8.

Lemma 9.9. For all x'eY’,

A, X;y 03,01 =0]) 2 -d(xxn

V2

Proof. Let x"eX;, u{x,, =0} such that |x'—x"|=d(x, X[, u{x,,;=0}). If
x"eX:+, then d(x', X[, )=d(x’, X}, u{x,,,=0}). If x"e{x,, =0}, then [x'—x"
=X, .1, Where X'=(x] ...,x). But x'eC'(a), for some point a=(a,,...,a)eX],

Hence d(x', X{+}§ix’—ai§ﬁ(x;+l—~ap+,)§1/§x’p+1.

Now let W’ be a cube with sides parallel to the coordinate axes in the
hyperplane {x,, , =0}, big enough so that ¥’ lies in the product Z’ of W’ with the
interval 0=x,,, <2 in the x,, ,-axis.

To prove assertions (1) and (2), we first use Whitney’s extension theorem to
extend F to Fe&™(IRY). (The mappings @™ are defined in a universal way; we are
allowed to use Whitney’s theorem to prove they are continuous.) Note that
n*(F)]X’ =@™(F)|X;,, so that by Lemma 9.9 and Lemma 5.5(4), $"(F) and
n*(F)|W' U X}, together define a unique element of &™*(W’ U Y") which depends
in a continuous linear way on F. Using Whitney's extension theorem again, we
obtain H'e&™*(Z’) such that H'|Y' =&™(F), H'|W'=a*(F)|W’, and F—~H' is a
continuous linear mapping of &™(X) into &™*(Z’). By Lemma 9.6 there exists a
unique field H of Taylor polynomials of order m/2k on Z =n(Z’) such that H’
=H o n (in particular H|Y =G). To prove assertions (1) and (2) it suffices to show
that

(1) (D'H)ome&™?*~1(Z') for all || Sm/2k;

(2) for all [l|<m/2k, the mapping H'+—(D'H)on of (n*&™*(Z)" into
&™**~M(Z") is continuous and linear, with respect to the subspace topology of
(TE* é‘"”/k(Z))" C(S’m/k(Z')‘

Assertions (1) and (2') are consequences of the following lemma.
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Lemma 9.10. Let s be a field of Taylor polynomials of order m on Z, such that

0
Yorned™(Z'). Then af omed™ U2, j=1,...,q. If {i,} is a sequence of fields of
j
Taylor polynomials of order m on Z, such that {,on} is a Cauchy sequence in
E™(Z'), then {g;/j’ 0 n} is a Cauchy sequence in §™ %(Z").

i

We may prove Lemma 9.10 using the argument of Lemma 9.7, replacing
Lemma 9.8 by the analogue of Lemma 7.4 for £™(Z'), with g=1.

We have now verified assertions (1) and (2), and may proceed as in [2] or
[13, IX, Section 1] to show that the (m/4k)-jet of G is a Whitney field on Y. The
same computation also shows that the mapping @™ is continuous. The following
lemma, which may be established by a straightforward calculation, is used in the
argument and accounts for the further loss of differentiability.

Lemma 9.11. There exists a positive constant ¢ such that for every pair of points a,
xeY’, there exist points a’, x'e€Y' such that n(a')=n(x") and

In(a)—n(x)|'? zc(la—a'|+]x—x).
This completes the proof of Proposition 9.3, and hence of Theorem I'.
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