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w 1. Introduction 

S u p p o s e  D 1 and D 2 a r e  two open sets in r One of the oldest problems in 
complex analysis has been to determine geometric conditions which imply that 
D 1 and D 2 are biholomorphically equivalent. The first step in this direction is 
the Riemann mapping theorem and the well-known classification of simply- 
connected open subsets of 1P 1 in the case n = 1. For  domains in C", n ~  2, this 
problem has been studied by Poincar6 [13], who assumed that D 1 and D 2 had 
smooth boundaries and introduced geometric invariants on the boundary to 
study this equivalence problem, assuming the biholomorphic mapping 
F: D1 ~ D 2 was holomorphic past the boundary. In particular, Poincar6 studied 
perturbations of the unit ball B 2 in C 2 of a particular kind, and found necessary 
and sufficient conditions on a first order perturbation that the perturbed domain 
be biholomorphically equivalent to B 2. Poincar6's paper was very influential 
and ledto a series of developments by Segre [14, 15], E. Cartan [5], Tanaka [16, 
17], and Chern-Moser [7], in which the equivalence problem for CR-structures 
on real hypersurfaces was carefully studied (the survey paper [4] gives a 
discussion of this problem). The fundamental paper of Fefferman [9] showed 
that the biholomorphic equivalence problem for bounded domains with strictly 
pseudoconvex boundaries can be reduced to the CR-hypersurface equivalence 
problem. Namely, a biholomorphic mapping between two strictly pseudoconvex 
domains is smooth up to the boundary, by Fefferman's main theorem, and the 
induced boundary mapping is a CR-equivalence on the boundary. In this paper 
we use this principle to study deformations of complex structure on bounded 
strictly pseudoconvex domains in C". 

Suppose Do is a relatively compact, strictly pseudoconvex domain in the 
complex manifold X, with smooth boundary M defined by {ze UIF(z)= 0}, for 
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some neighborhood U of M and defining function F strictly plurisubharmonic 
on U. Our main result asserts: 

(1.1) Given a closed bal l /~clR k, k arbitrary, there exist functions P=F(z,t) ,  
(z, t)e U x B, so that 

1) ~(z)=ff(z,  t) is arbitrarily close to F in the Ca-topology, uniformly in t. 
If Dr, ~ is the region in X bounded by Mt,~={zlf f(z, t)=6}, teB, 6elR small 

enough, then 

2) Dr. ~ is biholomorphic to Dt,,~, iff t=t',  6=6'. 
Further, the only biholomorphic automorphism of Dt, ~ is the identity. 
For the slightly more precise statement of what we prove, see Theorem 4.1 

below. 
The result is, in principle, obvious "locally" because of all the local in- 

variants attached to bounding hypersurfaces M,,o. We have to tie these local 
invariants together globally, and do this by means of generically defined CR- 
invariant functions on the hypersurfaces, derived from the local normal form 
(equivalently, curvature) invariants. Transversality applied to these curvature 
functions allows us to globally distinguish large families of hypersurfaces, and by 
Fefferman's theorem, the regions they bound. We do not cover here the 
formalizing of "deformation of complex manifold with boundary" or the cor- 
responding "number of moduli". (Cf. [10] or [12] for a discussion of this.) That 
k in (1.1) is arbitrary says that this number of moduli must be infinite. It would 
be interesting to see whether any reasonable structure could be imposed on the 
"moduli space" of a (perhaps generic) strictly pseudoconvex domain by means 
of pseudo-conformal curvature functions. 

The breakdown of the paper is as follows: w records the well-known 
equivalence of biholomorphic classification of smooth, strictly pseudoconvex 
domain in complex manifolds and the CR-equivalence of their boundaries, 
following from Fefferman's theorem. We also include here some tangential 
remarks on slight improvements in the differentiability requirements for such 
arguments. w gives one method for generating scalar CR-invariants on a 
strictly pseudoconvex hypersurface M, directly from Moser's normal form. The 
point here is to give a class of restricted normal forms at a non-umbilic point on 
M which are ambiguous by only a unitary group action. Invariant polynomials 
applied to coefficients of the normal forms yield the desired invariants on M. w 4 
uses these functions and transversality to distinguish generic perturbations of a 
given domain. The main technical point here is to calculate the critical points of 
the curvature functions of w 3 and verify their functional independence. 

In w 5 we describe an alternative method to w 3, using the curvature of the 
pseudoconformal connection associated to M (M as above). We also give an 
extension to higher dimensions of some results of E. Cartan and Moser on 
finding a CR-invariant distinguished frame at a generic point of a hypersurface. 
In the appendix to w 5, we check that an algebraic condition we require on the 
curvature tensor is, indeed, generic. Finally, in w 6, we describe still another 
method for perturbing domains. This is to eliminate all non-trivial global 
symmetries in a family of domains, so that local invariants at a pre-chosen 
boundary point become global invariants. We carry out an example on the unit 
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ball. This method leads most directly to explicit examples, our reason for 
including it here. 

We wish to express our gratitude to the referee of the first version of this 
paper whose suggestion led simultaneously to extensions of our results and 
simplification in their presentation. 

Some of the results here were announced in [3] and [21]. 

w 2. Reduction to the Boundary 

Let M be a real C 1 hypersurface in a complex manifold X, and let H(M) 
= T (M)~JT(M)  be the bundle of holomorphic tangent spaces to M, where J is 
the almost complex tensor given by the complex structure of X, and T(M) is the 
real tangent bundle to M, i.e., for each x~M, Hx(M)~Tx(M ) is the maximal 
complex subspace of Tx(X ) which is contained in Tx(M). The pair (M, H(M)) is 
called a CR-hypersurface, and H ( M ) c  T(M) is called the CR-structure of M 
induced by the inclusion M c X .  Suppose M c X ,  M ' ~ X '  are two CR-hyper- 
surfaces in complex manifolds X and X', then a Cl-mapping 

f: M---~M' 

is called a CR-mapping if dflmM): H(M)---~H(M') is well defined and ~-linear. If 
f: M ~ M' is a diffeomorphism, such that f and f -  1 are CR-mappings, then f is 
called a CR-equivalence. If f: M---~ M is a CR-equivalence, then f is called a 
CR-automorphism. We speak of CR-equivalences or automorphisms of class C K, 
1 <x<co (where C'~ analytic). (Cf. Wells [21] for a discussion of CR- 
function theory.) 

Our major interest in this paper is the biholomorphic equivalence of certain 
classes of open complex manifolds. The following theorem, based on well 
known arguments, allows us to reduce this question to one of CR-equivalence 
on the boundary for nice geometric situations. 

Theorem 2.1. Let D and D' be bounded domains in ~", n > 2, with C ~, strictly 
pseudoconvex boundaries, then D and D' are biholomorphically equivalent if and 
only if aD and aD' are CR-equivalent of class C ~. 

The only if statement follows immediately from C. Fefferman's extension 
theorem I-8]. The converse follows from the Bochner-Hartogs' theorem as 
follows: 

1) Extend f to F: / ) - - -~" ,  F holomorphic, F~C~176 
2) Check dF is invertible on 0D and, hence, on all of D. 
3) F(/)) is compact in C", while F is an open map on D, so F(D)~D'. 
4) Apply the same procedure to f - 1  to find F -  ~ 

We note in passing the following slight improvement of the converse, using 
[11]. 

Proposition 2.2. Let D and D' be bounded domains in C ", n~2, each with a 
connected C ~ boundary, and suppose that f: OD ~ OD' is a CR-equivalence of class 
C ~, then D and D' are biholomorphically equivalent. 

(The usual statement in this context "OD, OD'~ C 2'' and "fe  C2(/))",) 
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Proof The relevant fact from [11] is that f extends to F:/)--~IE", F e O ( 6 ) .  The 
rest follows the outline above. 

The Harvey-Lawson result also permits one to generalize to the case where 
D, D' are bounded normal subvarities of ~" with C<boundaries OD, 0D'. 

w 3. S o m e  Scalar C R  Invariants 

Let M be a smooth strictly pseudoconvex real hypersurface through 0 ~  "+~, 
n>  I. We use the formal theory of [7, w to derive functions on the set of "non- 
degenerate" points of M which are CR invariants of M. We will assume n > 2 
since the reduction for n = i is carried out in w 3 of [7], where a reduced normal 
form is determined up to an action of { + 1}. Given this reduction the coef- 
ficients become scalar invariants on M (with possible_+ indeterminacy). Cartan 
previously had derived scalar invariants by reducing to {_+ 1} the group of the 
structure bundle he had defined. On the structure bundle there exists a Cartan 
connection which when pulled back to the reduced bundle gives rise to a set of 
dependency relations. The coefficients in these equations give Cartan his 9 scalar 
invariants. Using Moser's reduced normal form at a non-umbilic point one can 
explicitly compute these scalar invariants as functions of the coefficients. The 
result is that if M is described near the nonumbilic point p by v-cb(z,u)=O 
where 

1 4 2  1 2 4  J o ~(z,u)=z~+~z ~ +~z z + ~ z ~ :  

+ ~ z 2 : + ~ u z , :  i,~ 
-Tf. i fu:  : 

.~ C26 Z2_-6-- C35 _3--5 , C44 Z4Z-44- C53 5--3 

j C62 6--2 d25 2 5 d34 34-4 ~ z  z + - - u z  ~ + - - u z  z 
215! 3!4! 

d43 4 3 dsz 5 2_1_ e24 u2z2 + ~ u z  ~ + - - u z  ~ 
2!5! - ~  

+ ~ u s z 4 ~2 + O(l(u, z)l 9) 

where ~ and c44 are real, then at p=(0,0) the 9 Cartan invariants 
{~,~,fl, O,O,y, rl, fl,~ } are given by (letting e= _1): 

~c 1 
/~= 2 2732[/[2, 

i i - 2  i - 2  o= -4.~c2~ +U_~CJ) +L--~J), 



Deformations of Strictly Pseudoconvex Domains 241 

1 1 1 
y =  ~ - - . ~ x + ~ R e ( c a s ) + ~ [ j l  2, 

e f ~ d z 5  i - 1 - i - z ) r l= t.- . + 3--~-'6"6Jtc + ~ d 3 4  + 4 - - ~ J ~ [  ~' 

1 1 2 1 L/12 q- 1 im (~ d34) 
( = - 6  Re(ez4)- 3 ~  -x 3.4.628 2 . 3 . 6 ~  

"1 1 3 
2 . 3 . 6 . 8  Im(]dzs) 3 .4 .6z .8  ff[z x - ~ t ] l  4. 

See Cartan [5, I pp. 76-86], in particular formulas (36), (42) and (43). 
We proceed to the case n > 2. By [7, w 2] after a formal biholomorphic change 

of coordinates (i.e. by a formal power series transformation involving (z, w), z 
= (z ~ ... z")eC ", and w = u + i v ~ C )  the Taylor series of a defining function F of M 
may be written 

F = v - ( z , z ) - N  

where we take (z, z ) =  ~, Izatl 2, and N = ~, Np, q. Here Np, q is a polynomial of 
at= 1 p,q>=2 

type (p, q) in z, with coefficients formal power series in the variable u: 

Up,~ = y ,  Nat ....... ~ . . . , o ( u ) r '  . . .  zat- zP' . . .  z~q. 

The Nat ..... ~, ~, ... Z~ are symmetric in the a's and ffs and each may be expanded in 
powers of u: 

Nat~ ..... ~ ...~q = ~ (0 _ u l Nd, .... ~...B~ " 
t>__o 

There are further normalizations on N: 

tr(N2,:) = ~  N~a~p =0, 
P 

tr:  (N~, :)  = y ,  N ~ ,  ~ = O, 

tr3(N3,3)= ~ N~r =0. 
at~ (3.1) 

Furthermore, given any two such formal coordinate systems and normalized F 
for a given M, say (z, w) and F, (z*, w*) and F*, then there exists a unique formal 
biholomorphic transformation 

~:  (C" +*, 0)--, (q:" + ~, 0), 

such that 

F* o ~ = h. F (3.2) 
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where h is a real formal power series with h(0)#0 (i.e., non-zero constant term), 
and ~ = (f, g), 

z* = f(z,  w), 

w* = g(z, w) 

is uniquely specified by: 

3 f  ~ f  0g and --[02g~ 
aw' Re\ w V (3.3) 

- ~ , ( o )  0 The point 0 is called umbilic if l~dp~= , and this is independent of the normal 
form F and normal coordinates (z, w). We assume in this w that ~ (o) 2 IN~p~l +0, 
i.e., 0 is non-umbilic. We wish to impose further restrictions on the normal form 
at a non-umbilic point. 

Lemma 3.1. There exist normal coordinate systems (z, w)for M, non-umbilic at O, 
and corresponding normal forms satisfying 1 : 

1) X~Jnr~~ Z.~ i~,~/~1 = 1 ,  

2) x~ mr(o) mr(o) - 0  Z.~ ~ 'a/~,, ~g .~ '# ~, ,~ ~ - , 

3) ~ ( 1 )  mr(o) --n 

Any two such coordinate systems are related by a (unique) transformation ~ of 
the form w* = w, z* = U. z, where U is a unitary n • n matrix. 

Remark. The above conditions were derived from trying to set 

~ 4 N  12 = constant. 
~ = ~  Oza OzB Oz ~ OZ a 

Conditions 2), 3) simply say grad ~v = 0 at 0. 

Proof It is easy to satisfy condition 1), by dilating a given normal coordinate 
system (z,w) by z*=pz ,  w*=p2w, p>0 .  Then 

Z ~r*(o) 2 - - ~ - 2 ~ - ' l M ( O )  2 

and the proper choice of p guarantees (z*, w*) satisfy 1). For the rest, it is clear 
that c~(z,w)=(U.z,w) preserves 1), 2), 3), so we are done if we show, given a 
normal coordinate system (z, w) and normal form F = v -  (z, z ) -  N, that there is 
a unique transformation r of the form 

z* = z + aw + higher order terms 

w* = w + higher order terms, (3.4) 

/ 32w* \  
where we are free to specify Re~-0--~-w2 )~IR, and a=(a 1 . . . . .  a2)~IE ", such that 

1 This normalization also occurs in [19] 
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F*o~=h .F ,  as in (3.1), with F* satisfying conditions 1)-3) of the lemma, 
assuming F already satisfies 1). 

Solving (3.1) with �9 as in (3.4), we find: 

A) N* ~o) _ ~o~ 

B) Assuming 1) of the lemma for ~rto) . then x~ a/Jy3. 

Hence, there is a unique choice of vector a guaranteeing 2) for N*. 

C) Assuming 1) and 2) of the lemma for N, then 

-" ~'T*(1) AT* (0 ) - -~ -~  AT(I) AT(0) -2t,  

where t =  Re \~-w~ i. Hence, Re |~-~-w2/\ I is also uniquely determined to guarantee 
3). 

We omit the explicit computation of A)-C). It simply requires solving (3.1) 
for relevant terms. This requires examination of (3.2) through terms of degree 
< 6, and weight with respect to (z, w) (i.e., z ~= weight 1, w = weight 2)=<_ 6. 

Call a normal form as in the lemma a restricted normal form. Since they 
differ from one another only by a U(n) action on the z-variable, any U(n)- 
invariant polynomial on the tensor algebra applied to the coefficients 
N~! ..... ~, ...~ will give a CR-invariant number attached to M at 0. It is clear 
from the construction in [7, w 2], and the arguments above, that such invariants 
will vary smoothly with the (non-umbilic) point p~M. 

Finally, we remark that such "U(n)-invariants" obviously do not give all 
possible scalar invariants of a hypersurface M (cf., w 5). 

w 4. Deformations of Pseudoconvex Domains 

In this section M denotes a compact connected strictly pseudoconvex smooth 
real hypersurface in a complex manifold X of dimension n +  1. Let tp be a 
smooth strictly plurisubharmonic function defined near M with ~0 = 0 and dip ~ 0 
on M. Let U = { x e X I - e < q ~ ( x ) < e }  for small e so that 0 is compact and 
smoothly bounded in X. 

Let ~(U) denote the open set in C~ of strictly plurisubharmonic func- 
tions ~k with d~ ix dC~k ̂  (ddCd/)n~ 0 on U. Letting B c lR k be a small ball around 
0, we set ~ ( U x B ) = t h e  set of ~,~C~ such that ~k(x,t)=~t(_x)e~(tJ ) for 
all t~/7. For ~ b ~ ( U x  B) set M,,~={X~UI~t(x)=6}. Note that ~ ( U ) c ~ ( U  xB) 
as functions independent of t. 

Theorem 4.1. There exists an open dense set 3e ' c~(U x B) with tpeoe ~ and a set of 
second category ~ l c ~  such that for every ~k~t, tieB, and 6 i ~  small enough, i 
=1,2, 

1) Mtl,~ 1 is CR-equivalent to Mt~,~ ~ iff t 1 ----t2, 61 = 6  2. 
2) The group of CR-automorphisms of Mt~,~ 2 reduces to the identity transfor- 

mation. 
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For ~be~(UxB), taking teB, 6 ~ ,  small enough, Mr, ~ is a compact, con- 
nected, strictly pseudoconvex hypersurface in X. I f  M bounds the relatively 
compact region D in X, then such an Mr, ~ also bounds a relatively compact region 
D t, ,~. 

C o r o l l a r y  4.2. ~b, ti, 6 i as in the theorem, 
1) Dtl,o I is not biholomorphic to Dt2,o2, unless t 1 =t2, 61 =6  2. 

2) Aut (D,, 0) = {id}. 
The corollary follows directly from the theorem and Fefferman's theorem 

(w 
Note that since k = dim B is arbitrary, the number of moduli of D is indeed 

infinite. 

Proof of the Theorem. The argument is based on Thorn transversality, jN = j N ( 0  ) 
denotes the bundle of N-jets of real-valued functions on 0. Jo N = jN is the open 
set of jets jN(q~), where de? ̂  dCq~ ̂  (ddCq~)n#O and where ~a is plurisubharmonic. 
(Here, and in what follows, N will be assumed large enough for the context, e.g., 
here N>=2 to allow for the formal computation of ddCq~ from N-jet data.) Let 
J~ = Yo N denote the jets jN(~0) such that the hypersurface {r = ~0(p)} is non-umbilic 
at p~O. For q~ with jN(~a)~Y~r we may form the first several (depending on N) 
terms of restricted normal form for q~ at p, and use the method of w 3 to assign 
scalar curvature invariants to jN(q~). For the sake of definiteness, let us consider 
smooth functions K (~ for integers I>0,  p>_>_q~2, 5<=p+q+2l<N, p ,  q '  = - -  --~ 

aG: 

defined by 

K~!~ (jN(~a))= ~ (,) 2 IN~' . . . . .  , , ,  . . . . . .  B~I �9 

Here, N~tl ) ~ ~ ~ are the coefficients of a restricted normal form at p. Thus 
, . . . ~  p ~  p l ~  . . . ~  pq  

K(~ --~---1 on J~. These K~)q, are along each fiber of J2 N given by real algebraic 
functions in the natural jet coordinates. Let op,e(z)~ ~ j~  denote the zero locus of 
K(o.  and set ~(o) _ r N _ r N  

p , q ,  ~ 2 , 2  - - ~ ' 0  " 1  �9 

A) S{~)2 is asmooth submanifold of Jg of codimension: In(n; 1___~)] 2 L e m m a  4 .3 .  
- - n  2 .  

B) S~!~,for l+p+q>=5, is a smooth submanifold of J~ of 

[2(n-F p-- l~ (n+q - 1 )  q:t=p> 3 I \ n - 1  ] \  n-1 

. . _ \ ] p = q > 3  
co&mensmn - ~ n -  1 

I / n + 2 \ / n + l \  

l / n + 2 \  2 
[~n -1 )  - 1 ,  p = q = 3 .  



D e f o r m a t i o n s  o f  S t r ic t ly  P s e u d o c o n v e x  D o m a i n s  245 

Proof First, note that it suffices to prove r ,-,IN is smooth, of the given ~ 2 , 2 '  ' ~O ,x  
codimension, for any x~U, and similarly for the other S~!q. (J~x=fiber of Jo ~ 
over x.) Next, given a fixed set of reference coordinates (z, w) at x, and a fixed 

reference positive hermitian form (z, z) ~ [z~l 2, we denote by = 

~ = 1  

the space of jets whose (z,w)-Taylor expansions are in Moser normal form 
through terms of weight k<N, weight-measured with respect to (z,w) 
(z '=  weight 1, w = weight 2). 

Now JV~(~)(z, w) n S~~ z is clearly smooth, of the required codimension, since it 
is given by 

N~/(ol ~ -  0 all ~, fl, 7, 6, M , o - -  , 

(l) ( N ~  and the like represent coefficients in (z,w)-Taylor expansions). The 
codimension given is the number of independent equations here, given the 

w ~(o)~=0, and the reality condition. (Similar com- normalization condition ~ p ~ p  
t~ 

ments explain the other codimensions given.) 
The lemma will follow from this fact, and the following elementary obser- 

vation: 
Suppose V ~ W are two closed smooth submanifolds of J~,~ and H a smooth 

manifold of transformations of jno,~, leaving ~176176 stable, with dimension H 
=codimension W in V. If W• gives a differmorphism onto a 
neighborhood of W in V,, then S(z~ V is smooth at ,,=~0) n W of codimension , W ~ 2 ,  2 
d in V if and only if '~r176 o2, ~ n W is smooth at q~ of codimension d in W. 

To apply this, we first take J~,x=V1, Wl={q~J~,~lq~(x)=O }, and H = R  
acting on W by ~o-~ ~o + t. Next we take V 2 = W~, and note that we have a group 
G acting in V z =J~,~, G= {(h, ~) lh=N-je t  of a real function with h(x)~:O, and 
=N-jet  of a biholomorphic transformation, ~(x)=x}.  The pair (h,~) in G acts 

S r176 c~ V 2 (as well as the other on V 2 on the right by taking q~sV z to (1/h).cp(~). z,2 
"r c~ V2) is G-stable. Note that by Moser's theorem, V 2 = ~ N Jt~(m. g, and hence Op, q 

g~G 

we have only to show S(2~ (")V 2 is smooth near any N to) qo ~/~(~) c~ $2,2. With that in 
mind, we apply the observation above repeatedly about such a cp. 

1) Take W2= V 2 as {~oEV21d~o=positive real multiple of dr}, 

H= {(1, q~)EGIq~(z, w)=(z +aw, w - ( z , a )  + itw2), a~lF.", t~R}. 

2) V3=W2, W3={q~V3tdqg=dv}, H={(r, Id)6Glr6R+}, 

3) V4=W 3, W~= q~eV 4 ~ = 0 , a , f l = l  . . . .  ,n , 

H = {(1, ~) 6 G[~b (z, w) = (z, w + Q (z)), Q (z) a (holomorphic) quadratic polynomial 
in z}. 

4) V~=W4, W4 =~t~(~)(z, w), H={(1,  ~)~G I q~(z, w)=(Az, w), A a linear trans- 
formation with (Az, z') = (z, Az') and (Az, z)>0}. 
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5) Finally, to pass from V=~/((k~ to W= N Jff((k+l), use the formulation of 
Moser's algorithm given in [4, w 3]. Let H = set of (h, r in G with 

h= 1 + h(k_ 1), 

~(z, w) =(z +f(k), w+g(k+ 1)) 

where h(k_ 1), f(k), g(k+ 1) are homogeneous of weights k - 1 ,  k, k +  1, respectively. 
Then the action W x H ~ V is a diffeomorphism. (Note that for k = 2, we must 

Of 0 2 g(0) 
take ~w w (0)=0;  and for k=  3, we must take Ow 2 = 0 for this diffeomorphism to 

hold.) 
~co) , ~ N  is smooth, we conclude that 0 N $2,2c~J~, is smooth Finally, since ~2, 2 . . . .  (N) x 

and of correct codimension. The same arguments clearly apply as well to the 
other op,~ proving the lemma. 

Proof of Theorem 4.1. We will assume that n>2 .  Let U ~ ( U  xB) be the set of 
all ~O for whichjU(~t)~S (~ for all t~/~. ~ is of second category in ~ ( U  x/~) by 2,2 
Thorn transversality, and moreover since U x B is compact, and S(2~ is closed in 
Jo u, 1~ is open. 

Given a collection {'K 1 . . . . .  K~} of m distinct curvature functions K i =K~ ), q~ 
defined on Ja n earlier, the mapping 

K=(/(1 . . . . .  U 
i = l . . . m  

is of maximal rank. This follows because it is so when restricted to J ~ c ~ ) ( z ,  w) 
in each fiber, and such a set goes through any point of JqU. Consider the map 

K x K: j~l x j~- - .  JR" x ~ "  

and the smooth manifold K x K -  1 (A) of codimension m, where A is the diagonal 
in R "  x P,.'. By Mather's extension of Thorn transversality (cf. [9]), there is a set 
~ = l r  of second category, such that for ~Oe~, [jN(~Ot)xjN(~t)]ch(K x K)-I(A), 
intersections taken in Jo n x Jo N. By taking m > 2  dim(U x B), this guarantees that 
[jN(~,) xjU(~t)] n (K x K) -  I(A) is empty. 

For  ~ e ~ ,  let Z ,=UxB be the umbilic locus, i.e., those (x,t) for which 
jN(~t)xes~O �89 ,F, is a smooth submanifold of U x B, as is Z c~ M~. ~, of codimension 

> - -  - n  2. For  0e~,, we can define K(]~(O)): U x B - 2 ; ~ 1 t  m. 

Suppose Oe ~ ,  and that T : M ~ , , ~ M ~ , ~  is a CR-equivalence, for t~e/~, 
6ieR (we assume M,,~,.t~). On M,,, o,-(Mt, ~ hi;) ,  K(fl(~,,,)) is well-defined, 
and we have K(fl(0~))o T=K(]~(0~,)). Since K separates points on U x B - 2 ; ,  
this implies t~=t 2, Mt,~;=Mt~,~ ~, 61=62. The same argument shows that if 
T:M~,,~-z--~Mt~,~, then T must be the identity on Mt~,~-(~,c~M~,~,), and 
thus on all of M~,, ~. 

Remarks. 1) Lemma 4.3 shows that for n = 2, the umbilic locus is generically a set 
of isolated points, or empty, and is generically empty for n > 3. (For n = 1, it is 
generically a smooth curve, or empty.) 
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2) If n = 1, one can use the 9 scalar invariants of E. Cartan as K 1 . . . . .  g 9 (cf. 

the beginning of w 3). The expression of these scalar invariants in terms of Moser 
normal coordinates gives easily the required functional independence. Alter- 
natively, one can modify the construction given above using the higher order 
terms in order to obtain a suitable set of scalar invariants. Details in this case 
are omitted. 

w 5. A Complete set of Scalar Invariants 

Given further assumptions beyond IINI124,0 for n > 2  on the value at p of the 
.~(o) it is possible to reduce the group transforming the normal tensor N = lvda~o 

forms at p from U(n) to the trivial group consisting of the identity alone. (Note: 
The curvature term S~p~ in [7, w is a nonzero multiple of N~a~.) Once this 
reduction is achieved the normal form at p is uniquely determined and when the 
reduction is carried out on the subset M 0 of M consisting of "non-degenerate" 
points the coefficients of the normal form give a complete set of scalar invariants 
on M 0. 

The reduction is based on the observation that N,a~ defines an endomor- 
phism of the real vector space ~o  of hermitian n x n matrices of trace 0. 

(A~)~-~(N~av~ Ar.~) = (Ba~). 

As a linear transformation N has trace 0 and is symmetric with respect to the 
inner product on ~fo given by (A, B)=tr(AB). Letting 21 >22 > -.. ~2,2_ 1 be the 
eigenvalues of N acting on o~f o and El,  E2, .. . ,  E,2_t the corresponding eigen- 
vectors, the following conditions are generic (see Proposition 5.1 below): 

a) the 2i are distinct, 
b) if Pl >/~2 > "'" > #, are the eigenvalues of E 1 with corresponding eigenvec- 

tors el, e z . . . . .  e, then the #i are distinct and ( E  2 % ei+ 1)=k0. 

For n > 2 the same proof that the p~ are generically distinct shows that the 
IP, I are also. Since initially E 1 is determined only up to _+ 1 we can determine E 1 
uniquely by requiring 1Pll > I~,t. Then we can reduce to a subgroup of the group 
U(n) or equivalently restrict the permissible unitary frames {e 1 . . . . .  e,} for the 
complex tangent space to M at p by requiring that the frame be an eigenbasis as 
in b) above. In this way we reduce to the action of an n-torus T(n). If we make 
the further assumption (E 2 e~, e~+l)>0 the group T(n) is reduced to a circle 
group SL Reducing the circle group requires a higher order assumption since 
the surtace given by v=ltzllZ+N~a~z~zO~'z -r admits a circle action for 

N~ 1, r~ 4= 0 in which case we can arbitrary N, pe~, Such an assumption is given by (0) 
require that the value be positive real. 

For n = 2  alter the argument as follows. Suppose 21>22>23 are the eigen- 
values of N with eigenvectors E~, E2, E 3 determined up to a factor of _ 1 then 
there is a basis (el, ez) for Hp(M) such that 

El=(10 ? 1 )  E2=(~ 1t3) E 3 = ( - 0 i  0)" 
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The basis is determined up to the action 

A-(e~, e2)=(e2, e~), 

B. (ea, e2)=(e~, - e2), 
Ca(e ~, e 2 ) = ( e  ia e~,  e ia e2). 

The matrices A, B, Cu generate a subgroup G of U(2). 

S 1 ).G P~ '~2  X ~ 2  

where p is the restriction of the adjoint map on U(2) to G. Let f~ - ~(o) and f2 - - ' ' 11c t1~  

fl  
--''22at~'--~(0) Assuming f~ and f2 not both 0 the ratio f22 takes values in the 

extended complex plane and assuming f ~ #  + 1, + i  the conditions f_~ < 1 
A __ __ / , e  \ 

R e ( ~ -  1 ) >0  and f2eP~ + reduce G to the identity. These give generic conditions 
\ ~ / , /  

reducing the group acting on normal forms to the identity. 

w 5a. Appendix 

Let ~" be given a positive definite hermitian form (z, z ) =  ~ Iz=l 2. Let ~ be the 
~t=l 

space of n x n hermitian matrices, ~0 the subspace of those with trace 0. Let 
be the space of tensors N,a~ symmetric in ~, fl and also in 7, 6 and satisfying the 
equation N,a~ = N ~ .  Each NeJff  defines an endomorphism of 

A~I J ~ B~  = Z N ~  A~ .  

Define on ~" the real inner product (A,B)=tr(AB).  For NE,Ar, N: J V - - , ~  is 
symmetric with respect to this inner product. ~4/" o is the subspace of NE~A/" with 
trace 0 (equivalently N(I.)=O). Since ~o is orthogonal to I., Ns~oo maps ~o 
into itself. 

Proposition 5.1. For generic N~,/Uo~ N:~o--~Jet~ has distinct eigenvalues 
/~1 >/~2 > ""  >)~n2- i "  I f  A i ~  is the unit )~i-eigenvector (determined up to + 1), 
then all eigenvalues of A~, as an hermitian matrix on C", are generically distinct, 
say I~ 1 > . . .>#, .  I f  e I . . . . .  e, is an orthonormal basis of eigenvectors in ~" for A~, 
Al(ei) =#i ei, then generically, (A2(el), ei+ 1) :~0. 

Proof. The main point is the following lemma. 

Lemma 5.2. Given E, F e~,~t~o linearly independent and A, B~oW o with (A, F)=(E, B), 
then there exists N E ~  o with ~U(E)=A, N (F)= B. 

Proof of the Lemma. Let v~ . . . . .  v, be an orthonormal basis of C", eigenvectors 
for E, and let D = ~ f  ~ be the subspace of all those CE~o for which v~ . . . . .  v, are 
all eigenvectors. Take E o = I  ., E~ =E, E 2 . . . . .  E,_ ~ an orthonormal basis of D. 
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Define inductively: 

~ = {Ne~/;~_, I N(E,)=0}, 

= E , ) = 0 } ,  

with dVo, 3f~o as above. Note that Wi =ker{Ei: sVi_ 1 - - ~ _  1}. 

Claim. The evaluation maps Ei: ~ - 1 - - - ~ - 1 ,  sending N to sV(Ei), are onto, i 
=1, ..., n. If F~D, F: ~ _  1 - - - ~ _  1 is onto. 

The first part of the claim is equivalent to showing that cod {~A~i c.A~/_ 1} 
= d i m 3 ~ / _ l = n 2 - i ,  i=1  . . . . .  n. Since cod{WicWi_l}__<n2-i,  for each i, it 
suffices to show cod{sV~_l~sV'}=n2+(n2-1)+.. .+(n2-n+l).  But sV~_l= 
{NE.W']N(C)=O, any CeD}, and thus N~JV~_~ iff N~B~ satisfies the n 
systems of equations (? = 1 . . . . .  n) 

(Lr): N~rB~ =0. 

To compute the number of independent equations here, note that by the reality 
condition, each L~ consists of n 2 independent equations, of which exactly y - 1  
are dependent on the system of equations L a, 6 < 7, namely: 

Na~=O,  b = l  . . . . .  7 - 1 .  

Thus, cod {A/~_ ~ ~ Y }  is n 2 +(n 2 - 1)+ -.. +(n 2 - n +  1). 
For the second part of the claim, write F = F~, with at least one ~ # fl such 

that F ~ # 0 .  We get equations 

&Y 

Adjoined to the previous equations (L1) . . . . .  (L~_ 1), we get 

We see then that exactly the n independent equations 

~, N~e,~F~=O, g = l  . . . . .  n 

are dependent on the previous equations, proving the claim. 
To prove Lemma 5.2, suppose first that F is in the span of {E~ . . . . .  Ek} but 

not {E~ . . . . .  E k_ ~} for k>2.  Then there exists O ~ o  with (O, E~)=0, i=  1 . . . . .  k 
-1 ,  and (G, F )=  1. By the claim, there is an N~ ~ o  with N~ (E)= N~ (E 0 =.4. Let 
BI=~/~(F ). Then (B-B~, E~)=(B, E~)-(F, A)=0, by assumption. Let Az=  
(B-B~, Ez). G, which is perpendicular to E o, E~. By the claim, there exists 
N26~/~, N2(E2)=A:, and N2(F)=B 2. By construction B E e ~ ,  so B - B ~ - B  z is 
orthogonal to E o, E~, and ( B - B ~ - B 2 ,  E2)=(B-B~, E2)-(Bz,  Ez)=(NE(Ez), F) 
-(N:(F) ,  E2)=0. Continue in this way until we have B - B 1  . . . . .  Bk_ ~ ortho- 
gonal to E~,...,ER_ ~. Write F=F~+F2, where F2 is in the span of 
{E~ ... .  E k_ ~ }, and F 2 ~ _  2. By the claim, since Fz is a non-zero multiple of E k, 
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there is an Nk~- l ,  with Nk(F)=Nk(F: )=B-B 2 . . . . .  Bk_ 1. Hence, N = N  1 
+. . .  + N k satisfies the requirements of the lemma. The case FeD is similar, using 
the second part of the claim. 

Returning to the proof of the proposition, we treat first the case n = 2. Here 
dim ,~0 = 3, the space of symmetric endomorphisms of ~r is 6, dim ~f0 = 5, and it 
is easy to verify that ~ c space of symmetric endomorphisms of trace 0. Equal 
dimensions implies equality and the proposition is immediate from this. 

For n>2 ,  we first consider special N e J V  o of the following form. Suppose A 
=2~ fi~ is a diagonal matrix in ~o- Define N e ~  o by the formula 

If B ~  o is also diagonal, N(B) = tr (B. A).  A. For each i <j, 1 < i, j <= n, Eij= 6~zbil ~ 
+60~6j~, Fi j=l /~- l (h ,  rfi~g-~ar6j~). Then N(Ei, j)=2~2jEi.j, N(F~)=2i)~jFij. 
Now, by taking a suitable sum N =N~ +. . .  + N,_ 1 of such operators associated 
to generic independent diagonal A~ . . . . .  A,_ 1, we have an N ' ~  o such that 
N': D o = D n J t g o ~ D  o and has distinct eigenvalues there. Furthermore, 
N': • • D o --~D o, where it has two eigenvectors E~j, Fij, which span Do ~. By what we 
already know for the case n=2 ,  for fixed i,j, we may find N ~ j ~  o such that 
Nij(Eij) = gij Ei~, N ~ j ( F 0 = - ~ i j  Fi~, and Nij is 0 on the space orthogonal to Eij, 
F~. Here p~j is arbitrary. By adding sums of such/Vii, we can split the multiple 
eigenvalues of N'. Hence, there is a proper real algebraic subvariety ~ ~o,U o, 
such that for N~4~o-  ~ ,  N : ~  o--~ ~ o  has distinct eigenvalues. 

For N o n , o -  ~ ,  the highest unit eigenvector _+E 1 has eigenvalues 
#1 . . . . .  /~,, and I J ( ~ - # ~ )  2 is a real-analytic function of N o. We show its zero 

i * j  

variety is nowhere dense in ~ o - ~ .  Consider a linear perturbation N(O=No 
+ tN1, t~I~, small, and N~ ~ o  to be chosen so that for t:~0, [ J  (#i(t)-I~j(t))2~: O. 

i 4:j 

Let E~ 1~ be any trace-zero hermitian endomorphism commuting with E 1, and 
with distinct eigenvalues p~), ... ,  #~1) Let e~ . . . . .  e, be a orthonormal basis of 
(mutual) eigenvectors for E~ and E~ ~. There are analytic functions 2~(t), E~(t) 
satisfying 

N (t)(E~ (t)) = 2~ (t) e I (0 (5.1) 

with 2~(0)=2~, E~(0)=E~. Differentiating (5.1) at t = 0  gives 

N~ (eO + No(e~) = ~ e~ + ~ e~. (5.2) 

If we chose E' 1 =E(~ 1), 2'1=0, by the lemma, we may choose N 1 so that (5.2) is 
verified, i.e., 

N I ( E O = ( - N  o 2 0 (E(~)). 

With this choice of N~, we have 

Ei(t)=E~ + tE~1}+ h.o.t. 

with eigenvalues #~(t) = #~ + tp~ ~ + h.o.t. 
Now let 5e~ =analytic subvariety of ~ A ~ - ~  given by 1-I(#~-/~j): =0, and 
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assume that N o e J V o - ~ - 6 e  z. Let e 1 . . . . .  e, be an eigen-basis for El,  and 
consider [I(E2 ei, e j) 2, which is an analytic function on JFo-  ~ -SP z. With 

i * j  
N~ eJffo again to be chosen, set N(t )=N O + tN~, and consider showing 

A) N(t)(EO=2E 1, 
B) N(t)(e2(t))=~z(t) E~(O. 

A) holds if N~(E1)=0. B) implies 

B') No(E'2)+(NI(E2))=2 z E~+2~ E 2. 

Similar to the preceding, take 2~=0, and E'z=E~zl) with EtzX)LEx, and 
(E~zX)ei, e j )#0 for every i~-j. We want to choose N 1 so that 

NI (E2) = _ (N O (I) -22)(E 2 ). (5.3) 

But (1) (i) ((No-2z)(E 2 ), EI)=(21 -)~2)(E2 , Ex)=0, so by the ]emma, we may choose 
N I so that A) and (5.3) hold. Then E2(t)=E 2 +tE(zl)+h.o.t., and 

(E 2 (t) ei, e j)= (E z el, e j)+ t(E~21~ el, e j)+ h.o.t. 

This completes the proof of the proposition. 

w "Rigidified" Domains and an Example 

In this w we give another, more or less ad hoc, method for constructing large 
families of distinct perturbations of a given domain. The idea is simply to take a 
bounded, strictly pseudocenvex domain D c C  "+ 1, with real-analytic boundary 
M, and a chosen point p on M, and to perturb M c ~  "+1 only in a small 
neighborhood of p. We want to have p lie in each of the perturbed hyper- 
surfaces, and the geometry is suitably "rigidified" so that any possible global 
equivalence between domains of this restricted type must preserve the point p. 
In this case, local invariants at p become global invariants for the domains. 
Though this could, in principle, be carried through for more general domains we 
will describe briefly here how it works for D =IB "+ 1 = ~ . +  1, the unit ball. 

First, realize IB "+1 as og.+ x= {(z, w)e~"+ 1 [ Im w > [z[} with boundary ~q/.+ 1 
defined by F=v-lz[2=O. It is easy to see (Cayley transform back to IB "+1) that 
perturbing q/,+l near (0, 0) is equivalent to perturbing IB "+ a near a fixed point 
in its boundary. 

Now the automorphism group of q/.+l is the group of fractional linear 
transformations SU(n + 1, 1)/(center). Consider the function f (z ,  w) = u 4 +[z[4, 
and let ~ denote the region { f <  1}. We claim that the only automorphism of 
~ ,+  1 whose boundary values preserve ~r Oq/.+ 1 are those of the form T (z, w) 
=(U.z,w),  UeU(n). To see this note that such a T fixes the points (0, 
+ 1)eSq/. +1, because these are the only two points on { f =  1 } c~ Oq/. + 1 where the 
tangent space is a complex subspace of IE"+, and they cannot be interchanged 
because of orientation considerations. Since T is a complex projective transfor- 
mation, it preserves the complex line through (0, 1) and (0, -1) .  This shows with 

a little computation that T(z, w ) = (  u - z , ' ' "  cw+s]  with UeU(n), c, seR ,  C2--S 2 
\sw+c sw+c]' 
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= 1. But the condition that T: { f =  1 } n c3q/, + 1 ~ { f  = 1 } n ~3~ + 1 shows (after 
another little computation) c = 1, s =0.  

Define the cut-off function 

rp(z, w)-~  exp(- f /1  - f ) '  on ~ ,  
- / 0 ,  on ~ . + 1 _ ~ .  

It is C ~176 real analytic when f 4 : l .  Note  also that if N=N(z,E,u) is a rea l -  
analytic function, convergent and sufficiently small on ~,, then the function F = v 
-Iz12-~o. N is in Moser normal  form at 0, and the hypersurface F = 0  will be a 
strictly pseudoconvex perturbat ion of 0q/,+ 1. This hypersurface is real-analytic 
when f4 :1 .  

Suppose, then, that N 1 and N 2 are two such functions with N 1 ~ 0, F1, F 2 the 
corresponding functions as above, and Di={(z,w) lF/(z, w)>0}. Suppose we 
have an equivalence T: D 1 -->D 2. By Fefferman's theorem, it extends smoothly to 
the boundary. Then T(c~D~ n~W)n ~D 2 n(IE " §  ~r must be empty, for other- 
wise 0D i n ~ would have zero pseudoconformal curvature on an open set, and 
thus everywhere, by analytic continuation, forcing N~ =0.  Similar reasoning 
applied to ( I E " + ~ - ~ ) n ~ D 1  and ~D2n~Cr shows that T(C3DlnW)=c3D2n~# r, 
and T(OD 1 n (CE" § 1 _ ~ ) )  n (0D 2 n (IE" § 1 _ ~ ) )  is non-empty. By a theorem of 
Alexander [1], T must be a fractional-linear transformation, and by the 
observations above, T(z,w)=(U.z, w). At the origin, we have F2o T=h.F~, 
h(0)4:0. Compar ison of terms containing v in Taylor  expansions of both sides 
shows h = l .  Hence, F 2 o T=F1, and then N 2 o T=N 1. This forces T=I,,  if e.g., we 
take the weight 4 and 5 terms of N 1 strongly generic as in w 5. An even simpler 
family is given by the set of all N of the form 

N(z, ~, u) = Izl 8 ~ ( z )  Q(z, ~, u) 

where ~ ( z , z - ) = l + f i x e d  odd polynomial of degree d, such that TeU(n), 
/ \ 

~(Tz, Tz)=~(z,z-)implies T=I,  le.g., ~(z,  z-)= 1 + ~ Re(zj)2i-1}, and Q is any 
\ j = l  / 

even power series in z, ~, u, convergent on W, and sufficiently small there to 
guarantee {v-lzl 2-N=0} is non-singular and strictly pseudoconvex. This is a 
linear space parametrizing perturbations of IB "§ For  N 1 and N 2 from this 
family, DI',D 2 iff there is TeU(n) such that N2o T=N 1. Comparing terms of 

even and odd degree shows ~(Tz, Tz)=~(z, z-) and Q2(Tz, Tz, u)=Ql(z, ~, u). 
Hence, T=I,,  and Q1 =Q2,  unless Q1 = Q 2 - 0 .  
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