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1. Introduction 

In another work [1] the authors employed a cohomological index (see also 
Yang [2,3], Conner-Floyd [4] and Holm-Spanier [5]) in place of the usual 
notion of genus [6, 7] which is useful in symmetric situations with the group of 
symmetry being 7/2, e.g., in the consideration of (odd) maps f such that f ( - x ) =  
-f(x). Replacing genus by this cohomological index was dictated by the need of 
additional p r o p e r t y - t h e  piercing property (Proposition (3.9)). In this paper we 
extend this idea of cohomological index to the general situation where the 
symmetry group is an arbitrary compact Lie group G. It turns out that any 
cohomology class c~H*(Bo), where B e is the universal classifying space for G, 
gives rise to an integer, index, X, where X is an arbitrary paracompact free G- 
space, and this index enjoys (w 3), quite generally, the usual notions required of 
such a theory, including the piercing property. Section 4 is devoted to three 
important special cases, namely when c~ is specialized to the generator of the 
cohomology o f iFP  ~, infinite projective space, where IF is either the reals F,,, the 
complex numbers ~,  or the quaternions IH, and the group G is the unit sphere in 
IF. We use the notation index~ X, index e X, index~ X, for these three cases. The 
first, index~ X, is equivalent in a restricted category, to the cohomological index 
of Yang E2, 3]. This is the index employed in [1] and it is designated in Conner- 
Floyd 1-4] by co-indexz2 X. In Section 5 we reformulate the theory in the setting 
of a normed linear space ~ over IF using the notion Index r X = index r X + 1. 

In applications of interest, where the underlying group of symmetry is S 1, the 
resulting action may not be free due to the presence of isotropy subgroups of 
arbitrary order. Accordingly, in Section 6, we employ the index theory develop- 
ed for free G-spaces, to define index theories in the general situation, namely the 
category of paracompact G-spaces without the assumption of a free action. The 
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basic idea here is to use the equivariant cohomology H~(X) of Borel [8,9] 
rather than the cohomology H*(X/G) of the orbit space which is used in the free 
case. Section 7 is devoted to the special cases of non-free actions which arise in 
our applications. 

In our earlier paper [1], the index theory given there (for a free Z 2 action) 
was used to help obtain lower bounds for the number of zeroes an odd potential 
operator possesses near a bifurcation point as a function of an eigenvalue 
parameter. In w 8 (Theorem (8.4)) we shall show how the constructions of [1] in 
conjunction with the index theories developed here (for a non-free S ~ action) 
give similar lower bounds in problems involving the bifurcation of time periodic 
solutions from an equilibrium point for Hamiltonian systems of ordinary differen- 
tial equations. Bifurcation questions for Hamiltonian systems have been studied 
recently by Weinstein [10] and Moser [11] from another point of view. While 
completing the final draft of this paper, we learned of the work of Chow and 
Mallet-Paret 1-12] who also observed that the methods of [1] can be applied as 
we do in w In particular they obtain a special case of Theorem (8.4) cor- 
responding to a free S ~ action. 

2. Preliminaries 

Let G denote a compact Lie Group and f f  the category of paracompact free G- 
spaces. More precisely, an object in f f  is a paracompact (Hausdorff) space X 
together with a continuous (left) action #: G x X--~X (where #(g,x) is written 
gx) such that gx =x,  geG, xeX ,  implies g = 1, the identity of G. The morphisms 
of ~- are equivariant maps f :  X ~ Y, i.e.,f(gx)= gf(x). Given an object X s ~ ,  set 

= X/G, the corresponding orbit space with the identification topology and let 
p:X--~ .~ denote the associated identification map. 

This category ~- may be identified with the category Prin G of locally trivial 
principal G-bundles with paracompact base by means of the functor 

~:X--*(X,p,2,G).  

To see this requires a few remarks. First, we recall the ingredients of a locally 
trivial principal G-bundle with paracompact base, i.e., an object in Prin G: 

(2.1) Definition. A locally trivial principal G-bundle ~ =(X,p,B, G) with para- 
compact base is: 

(i) A triple (X,p,B) where p : X ~ B  is a surjective map of topological 
spaces and B is paracompact. 

(ii) A free right action ~ k : X •  (with ~b(x,g) written xg and x g = x  
only when g =  1) such that: 

(iii) Let A={(x ,x2)~XxX:p(x l )=p(x2)} .  Then (xl,x2)~A if, and only if, 
there is a (unique) g=~(xl,x2) in G such that x l g = x  2 and the function 
~t: A ---, G is continuous. 

(iv) p admits local sections, i.e., there is an open cover { Uj} of B and maps 
a~: U~---~ X such that ptrj(b)=b, b~Uj. 
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Recall also that for ~=(X,p,B,G)ePrinG, all the fibers p-a(x), x~X,  are 
homeomorphic to G and we have a local product structure 

1 r ) p-(Uj)~qt/UjxG 

Vj 

given by q0j(x) = (p(x), c~(aj(p(x)), x)), tpj(b, g) = aj(b) g. 
Returning to the functor N: ~ - - ,  Prin G we transform the left G-space X to a 

right space in the conventional manner by setting xg = g -1 x. Thus, ~ = (X, p, J~, G) 
satisfies (i) and (ii), leaving the paracompactness of )~ aside for the moment. 
Since X is afor t ior i  completely regular, the now classical cross section theorem 
of Gleason [13] applies to give both (iii) and (iv). Now that ~ is locally trivial, 
it is a simple exercise to show that )( is paracompact using the paracom- 
pactness of X and the compactness of G. Thus, ~ provides a bijective corre- 
spondence on the category ~ as asserted. We might note that in both ~ and 
Prin G we are identifying equivalent objects where the morphisms in ~ are 
equivariant maps and those in Prin G are bundle maps. 

In the presence of paracompactness of the base B, every ~ = (X, p, B, G)e Prin G 
is a numerable principal G-bundle in the sense of Dold [14] and hence there is a 
universal numerable principal G-bundle q = (EG, q, BG, G) giving rise to a natural 
equivalence 

T: [B, Bo] ~ Prin~B 

where [B, Ba] is the set of homotopy classes of maps from B to B a and PrinaB 
is the set of (equivalence classes of) principal G-bundles with base B (see [14]). 
The transformation T assigns to f :  B-~ B~ the induced bundle f*(r/) over B. 
Thus, given a principal G-bundle r = (E, p, B, G), there is a map f:  B ~ B G, called 
the classifying map which induces ~ (up to equivalence) and f is unique up to 
homotopy. 

In our case G is a compact Lie group and a universal G-bundle q = (E~, q, B G, G) 
may be constructed as follows. First realize G as a subgroup of some orthogonal 
group (9(k) for k sufficiently large. Let V,, k denote the space of orthonormal 
k-frames in ]R n+k SO that 

VO, k C__VI,k C__'"C--V.,k C--"'. 

Then, V| k = U V., k is the total space of the universal (~(k)-bundle ~ =(Vow, k, Po~, 
n_>O 

G~,k,(~(k)), where Go~,k is the union of the Grassmannians G.,k=V.,k/(;(k ). 
Vo~,k is paracompact and contractible and G| k is a CW-complex [15, 16]. 
GcO(k)  acts freely on the total space Vo~,k and hence if we set EG=V~o,k 
and BG=V~o,k/G with identification map q: E ~ B ~ ,  we have a principal 
G-bundle q=(E~,q,B~, G) which is numerable because B G is paracompact; and 
universal for arbitrary numerable principal G-bundles because E G is contractible 
[14]. In particular, because V| k and G are locally contractible so is B~ and 
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hence the singular cohomology of B G and the ~ech-Alexander-Spanier coho- 
mology of Ba are isomorphic [17]. 

The cohomology employed, unless otherwise stated, will be Cech-Alexander- 
Spanier [17]. 

3. T h e  ~ - I n d e x  

Let G denote a compact Lie group and choose an element (characteristic class) c~ 
in the cohomology group Hq(B~, A), where B G = Vo~.k/G is the base space of the 
universal bundle t/described at the end of the previous section; and A is a (non- 
trivial) principal ideal domain serving as (simple) coefficients. 

(3.1) Definition. Let X e ~  denote a paracompact free G-space. Let ~(X)  
=(X,p,X,G) denote the corresponding principal G-bundle and let f :  J ( -~B~ 
denote a classifying map for N(X). Set 

index~ X = max (k :f* (~k) d[= 0, k > 0). 

(3.2) Remarks. H*()(,A) and H*(B6,A ) are rings with the usual cup product 
structure [17] and f*  above is a ring homomorphism. We set ~o= 1, the unit 
element, so that when X is non-empty f*(1)=  1 ~ 0  and hence index~X>0 for 
X4:~. If X = ~  we set i n d e x ~ X = - 1 .  If f*(ctk)4:0 for infinitely many k, we set 
index, X = oo. Notice, also that index~ X is independent of f since classifying 
maps for equivalent bundles are homotopic. 

We now proceed to verify the basic properties of index~. 

(3.3) P r o p o s i t i o n  (Monotonicity). Let to: X--* Y denote a morphism of ~ ,  i.e., to 
is an equivariant map of paracompact free G-spaces. Then, 

index~ X N index~ Y. 

Proof. Let f denote a classifying map for ~(Y) =(Y, Pr, Y,, G). Then to induces a 
bundle map and a diagram 

X ~ i 

�9 ' Y  ' G 

PX IPY 
, Y ,B~ 

with f ~  serving as a classifying map for ~ X  =(X, px, X, G). Thus, q~* f,(ek)4:0 
implies f ,(ek) 4:0 SO that 

index~X __< index~ Y 

(3.4) Corollary. Let tO: X--* Y denote an equivalence in o~, i.e. an equivariant 
homeomorphism. Then, index~ X -- index~ Y. 

(3.5) P r o p o s i t i o n  (Continuity). Let X denote an object in o~ and A a closed 
invariant subset of X, i.e., gaeA, aeA, geG. Then, there exists a closed invariant 
neighborhood N of A such that index~ N = index= A. 
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Proof. Let J f  denote the family of invariant neighborhoods of A directed by 
inclusion and let ~ denote the subfamily of paracompact invariant neigh- 
borhoods of A. Given any Ne~, ,  let C denote a closed neighborhood of A such 
that A c C ~ N. Since G is compact GC is again a closed neighborhood of A and 
being closed GC is paracompact with A c G C c N .  This shows that ~ is cofinal 
in ~,, and hence [17, p. 316] 

(1) lim Hq(IV)~Hq(.,~). 
s9 ) 

Since for Ne~,  A ~ N ,  we have index~N>index,  A. If index, A=oo,  then for 
every N ~ ,  index, N = oe so that we may assume index, A = k  < oo. Let f denote 
a classifying map for (N, pN, N,G), Ne~ ,  and consider the maps 

i ) ]Q fre  

with i*f*(~k+l)=O. Using the isomorphism (1) there must exist an N o ~  such 
that fU*o(C~k+I)=0 SO that index~No<k. Thus, index~No=k and the proposition 
follows. 

(3.6) Proposition (Subadditivity). Let X denote an object in ~ and A and B 
closed invariant subsets of X such that X =A w B. Then 

index~(A u B) < index~ A + index~ B + 1. 

Proof The proof will make use of the cup product in Alexander-Spanier 
cohomology ([17], p. 315) 

n ~(X, A) | n ~ (X, B)--~ H" + ~(X, A ~ B) 

which requires that the interiors of A and B cover X. However, in view of 
Proposition (3.5) we may assume without loss of generality that this is the case 
and proceed. Observe also that we need only concern ourselves with the case 
when index~ A = a and index~ B = b are finite. Consider the diagram 

2 : . ~  'BG 

B 

where i l ,  i 2 are inclusions and f is a classifying map for (X, Px, X, G). Then, 
i*f*(~"+')=O=i*f*(a b+l) so that if j 1 : 2 ~ ( 2 , . , ~ ) ,  j2:2---,(X,/~) are also 
inclusions f *  (e" + 1) and f *  (eb + l) pull back under j* and j*, respectively and then 
the diagram 

H'(2, ,4)| ~) , H'+~(2,/i u/~) 

H'(2)| , H"+s(2) 
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with r =(a + 1) dim ~, s =(b + 1) dim ~ shows that f*(~a+b+2)=O SO that index, 
X < a + b + l  

(3.7) Proposition (Normalization). index, G = 0. 

Proof This is immediate because G is a point. 

(3.8) Proposition (Dimension). I f  X E ~ ,  X = X/G, then 

(index, X) (dim ~) < dim ~'. 

Proof This is immediate also because the cohomology of X vanishes in 
dimensions bigger than dim X ([17], p. 359). 

(3.9) Proposition (Piercing Property). Let X ~ ~ and suppose X = X o w X 1 where 
X o and X I  are closed invariant subsets. Suppose further that A ~  and go: A 
• I - -~X is equivariant imbedding, i.e., go(ga, t)=ggo(a, t), gEG, a~A, t e l =  [0, 1]. 
We assume also that go(A x 1) is closed in X.  I f  Ao=go(A • {0})~X o and A 1 =go(A 
x {1})cX1, then 

index, go (A x I) n X o ~ X i = index~ A. 

Proof  First, there is no loss of generality in assuming that A 0 =A and go(a, 0)=a, 
a6A. Let y=proja o go- a: go(A x l)---} A x l--~ A, C =go(A x I ) c ~ X o n X  a and 7c 
= y I C :  C ~ A  and observe that the maps 7 and 7c are equivariant. Thus, index, 
C<index,  A. Now, to prove equality it suffices to show that Vc induces 
injections ~ :  Hq(A) --} Hq(C) for all q, where ,4 = A/G and C = C/G. This is done 
as follows. Introduce the notation B o = X o ~ go(A x I), B~ = X~ c~ go(A x I) and the 
inclusion maps 

ko ka 
A o 'Bo A a >B t 

B o u B  t B o w B i  

lo: C ~ B  o l~: C c B ~  

where Boo, B1 = C. All these sets and maps are equivariant and working in the 
corresponding orbit spaces Ao=Ao/G,  etc. we have a Mayer-Vietoris Sequence 

...__.Hq(/~oU/~0 ~ ,Ha(~o)(~Hq(~l)  ~ ,Hq(/~or~/~l)___}... 

where (=(/o*, -r~'), ~/= J'~' +r~'. We assert first that [* is an injection for suppose 
rg'(x)=0. This implies that tl(x, 0)=0 and hence ((y)=(x, 0) for some 
yeHq(/~oU/~0. This forces r~'(y)=0 and hence f~(y)=0.  But Jl and hence 
J~:A1--'/~o u/~l are homotopy equivalences which forces y =  0 and hence i~(y) 
= x = 0 .  Thus r* is an injection. Finally, let ? o = 7 l B o : B o - - , A  which is a 
retraction of Bo to A. The diagram 
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Hq(/~o ) 7~ , n q ( ~  ) 

Hq(~) 

then exhibits ,~ as the composition of injections and the proof is complete. 

(3.10) Corollary. I f  in Proposition (3.9), we assume only that ~o is an equivariant 
map (not necessarily an imbedding), then 

index~ q~(A x I) • Xo c~ X 1 > index~ A. 

Proof. Let Y=A x I ,  Yo=~o-l(Xo), Yl=~o-l(X1). Then, 

qo: Yoc~ Y1--~qg(A • I ) ~ X o c ~ X  1 

is equivariant and 

index~ Y0c~ Y1 < index~ ~o(Ax I )nXoC~X 1 . 

By applying Proposition (3.9) to (Y, Yo, )11) we obtain 

index~ Y0 c~ Yt = index~ A 

and the required inequality. 

(3.11) Remark. As pointed to us by L. Sonneborn, the result in Corollary (3.10) 
for the special case of a free 7Z2-action , is proved and employed by Yang in the 
proof of his Generalized Kakutani-Yamabe-Yujob6 Theorem [18]. 

4. Specializations 

We now consider three special cases of the a-index where the compact Lie 
Group G is S ~ S 1 or S 3, i.e. G is the unit sphere in IF where IF = R ,  r  IH, i.e. IF 
is the reals, complex numbers or quaternions. 

(4.1) Definition. Define index r in the three cases IF = R ,  C, IH as follows: 
(a) IF = R .  Here G=S~  and o~ is the category of paracompact spaces on 

which Z 2 acts freely. The coefficient ring A is Z z and the universal classifying 
space Bz2 is IRP ~ with H*(IRP~ 7~2) the polynomial ring on a single generator 
w~HI( RP~, 7/2). We set 

index~ X = index w X, X e 

(b) I F = ~ .  Here G=S ~, the complex numbers of norm 1, and ~ is the 
category of paracompact spaces on which S 1 acts freely. The coefficient ring A is 
7/ and the universal classifying space Bsl is ~po~ with H*(~P |  the poly- 
nomial ring on a single generator c~H2(II~P ~, 7/). We set 

indexcX = index~ X. 
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(c) IF=IH.  Here G=S 3 the group of quaternions of norm I, and ~ is the 
category of free paracompact  S3-spaces. The coefficient ring A is 7Z and the 
universal classifying space Bs3 is IHP ~ with H*(IHP ~, 7/) the polynomial ring on 
a single generator aeH4(1HP | 7Z). We set 

index~ X = index~ X, X s ~ .  

(4.2) Remarks. The first case (a) is equivalent, in a restricted category to the 
index of Yang [2, 3]. It appears also in Conner-Floyd [4] where it is denoted by 
co-indexz2 X and also in Holm-Spanier [5]. An alternative development which 
includes a variant form of the "piercing property" (Proposition (3.9)) along with 
an application to a bifurcation theorem is contained in I-1]. 

Furthermore, the class w in (a) is the first universal Stiefel-Whitney class, 
while c in (b) is the first universal Chern class [19]. 

We now proceed to prove some special properties of index F where IF = R, C, 
IH. 

(4.3) Proposition (Stability). Let G denote the unit sphere in IF. Then, if X e~, let 
X o G denote the join of X and G with G acting by g(x, t, y)=(gx, t, gy), x6X,  
yeG, t e l  Then, if X is locally contractible 

index r X o G = index r X + 1. 

Proof. First we remark that X o G is paracompact ,  and following a suggestion of 
K. Kunen, a proof  of this result may be effected using a result of Michael [20]. 
Furthermore,  X o G is easily seen to be locally contractible. This forces the orbit 
spaces .~ =X/G and /~ = X  o G/G to be paracompact  and locally contractible. 
Then index F X o G is defined and we may equivalently employ singular coho- 
mology ([17]) in dealing with the notion of index F. Now, we have the following 
inequalities 

index r X < index r X o G < index F X + 1. 

The first holds because X equivariantly imbeds in X o G and the second because 
X o G can be written as the union of two closed invariant subsets A 0 and A 1 
with index r A 0 = indexF X and index F A ~ = 0 and Proposition (3.6) applies. To 
complete the proof  we make use of a standard argument using the Gysin 
sequence ([17], p. 260). Recall that our G-bundles are now orientable sphere 
bundles since G is 0-connected when I F = •  or IH and we are using 7z 2- 
coefficients when IF = R. Let B = X o G and consider the following diagram of 
Gysin sequences for the bundles (X, Px, X, G), (B, PB, B, G), where i: X ~ B is the 
inclusion map i(x)= [x, 0, G], and d = d i m  G. 

,H~+~(:~) ~',, ,Hk . (X)  ,Hk(.~) ~'~, ,Hk+~+,(~) , . . .  

,Hk+d(~) "*~ ,Hk+d(B) ,Hk(B) ~'~ ,Hk+,~+~(/}) , . . .  
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Suppose, as we may, that index F X =index F B = k < oo. Then, we would have a 
non-zero element u~Hk(B) such that ~*(u )=0  and hence which pulls back to 
H k +d(B) and which also has the property that i'* (u)+ 0. This forces i* to be non- 
trivial. But when k + d > 0, i* is trivial which is a contradiction unless k = 0, d = 0. 
This special case is disposed by observing that B contains S~ S ~  1 as an 
invariant subset, and indexeS1= 1. 

(4.4) Remark. Proposition (4.3) in the case IF =]R and X is compact is due to 
Conner-Floyd [4]. The proof  is a simple adaptation of theirs. 

(4.5) Corollary. indexrS(d+l)"+d=n, where S (d+ l)"+~ is the unit sphere in IF,+1 
and d = dim G. 

Corollary (4.5) has the following extension. The special case IF = R  is similar 
to a result of Holm and Spanier [5]. Our proof is different making use of the 
transfer map [21]. The action on IF "+ ~ is scalar multiplication. 

(4.6) Proposition (Boundary of Invariant Neighborhoods). Let M denote a 
topological G-manifold of dimension (d + l) (n + l) = dim IF "+1, and U an open 
invariant set in M with compact closure. Let IF"+' denote Euclidean (n+ 1)-space 
over IF and ~o: (U, ~?U)-~(IF"+I, IF "+1-0)  an equivariant map, where OU repre- 
sents the boundary of U and G acts freely on ~ U. Then, if the degree of q~ is ~= 0 
(using 7/2 in case IF =IR), 

index F 8 U = n. 

Proof We may assume without loss of generality that ~o is defined on an 
equivariant neighborhood V of U and q~-1(S)= ~ U where S is the unit sphere 
in IF"+~. Thus, we have q~:(V, V - O U ) - - , ( t r . ' + I , ~ ' + I - S )  and ~0 has non-zero 
degree 6 by assumption, i.e. if B = 0 U and o n and o s are respectively fundamen- 
tal classes, (p.(on)=6Os. Thus, we are in a position to apply the transfer map 
t: H* (B)--, H* (S) with tcp* = 6(id). Thus ~0" : H* (S) ~ H* (B) injects. Now, look at 
the bundle map 

B ~ ~S 

B Co , IFp,  

where B=B/G and, of course, IFP"=S/G. Now a simple Gysin sequence 
argument (over 7/1 in case IF =IR) tells us that in the top dimension r = ( d +  1) n, 
(p* : Hr(IFP ") -~ Hr(B) injects which forces index~, ~ U -- n. 

(4.7) Remark. C. Conley pointed out to us that the special case of Proposition 
(4.6) for M = I F  "+a and U a bounded open set containing the origin follows 
immediately from the Piercing Property (Proposition (3.9)). 
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5. A Reformulation 

Let N denote a normal  linear space over IF = R ,  ~ ,  or  IH. Furthermore,  if ~ ,  
= ~ - { 0 }  and G is the unit sphere in IF, G acts freely on ~ , .  Let ~ denote the 
family of  invariant  subsets of ~ , .  Then, each X e #  is a pa racompac t  free G- 
space and we define 

Index F X = index r X + 1. 

Letting N denote the non-negative integers we may summarize the contents of  
the previous sections in this setting as follows: 

(5.1) Theorem. The function IndexF: ~--~ N possesses the following properties; 
where X, Y, . . .e~:  

1 ~ If X=J~, I n d e x F X = 0 ;  if X 4=g[, I n d e x F X >  1 

2 ~ (Normalizat ion) Index F G = 1 

3 ~ (Dimension) Index F X .  dim IF < dim X 

4 ~ (Monotonici ty)  ~k: X - *  Y equivariant  implies that  Index F X < Index F Y In 
particular, equality holds if ~k is also a homeomorphism.  

5 ~ (Continuity.) If  X is closed, there exists a closed invariant ne ighborhood  
N of  X such that  

Index r X = Index r Y 

for any invariant  set Y, X c Y c N. If  X is compact  N may be chosen as a 
uniform ne ighborhood  

N , ~ ( X ) = { b ~ :  Ilb-XLI <_-~}. 

6 ~ (Subadditivity.) Index r (X u Y) < Index F X + Index F Y 

7 ~ (Neighborhood  of  Zero.) If  ~ = I F " +  1 and U is a bounded open invariant  
ne ighborhood  of  0, then 

Index F d U = n + 1. 

8 ~ (Stability.) If  X is closed, and X o G is the join of  X with G, realized in 
~ I F ,  then 

Index F X o G = Index F X + 1. 

9 ~ (Piercing Property.) Let Xo, X1, A, denote closed subsets in 8 and q~: 
A • I ~ X o u X 1 an equivariant imbedding, i.e. q~(ga, t) = gq~(a, t). Suppose further 
that q~(A • I) is a closed subset and q~(A • { 0 } ) c X  o and q~(A • { 1 } ) c X  1. Then 

Index F q~(A x I) c~ X 0 n X 1 = Index F A. 

10 ~ (Infinity.) If  & has infinite dimension and S is the unit sphere in ~ ;  then 
Index F S = ~ .  
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(5.2) We need to make a remark about 8 ~ since we did not assume that X was 
locally contractible. This is because 5 ~ allows us to replace X by a locally 
convex neighborhood. Also 10 ~ follows because Index r S is certainly defined and 
S contains invariant spheres of arbitrarily high (finite) dimensions. 

6. ~-lndex for Non-Free Actions 

In this section we develop the general theory for actions which are not 
necessarily free. Our compact Lie Group will be fixed throughout this section 
and the notation for our principal G-bundle t/= (E~, q, B G, G) (Section 2) will be 
shortened to t /=(E, q, B). We note the important fact that our universal total 
space E is V~. k which is the union of countably many compact sets (a-compact). 
Hence, ([20]) E x X is paracompact,  whenever X is paracompact.  Accordingly, 
we let o~. denote the category of all paracompact  (Hausdorff) G-spaces X, 
making no asumptions that the action be free or even non-trivial. We also fix 
once and for all an element ~eHq(B, A), where A is a (simple) coefficient ring. 

(6.1) Remark. If one wanted to extend these ideas to include more general 
topological groups G, the G-space X would have to be restricted to have the 
property that if E G is paracompact,  then E G x X is also paracompact.  This is the 
case, e.g., when X is locally compact or a-compact  (see Dugundji [22] and 
Michael [20, 23]). 

Now, take a G-space X~o~,. Then, G acts freely on E x G by the usual action 

g(e,x)=(eg-l, gx), geG, e~E, x~X. 

The resulting orbit space (E x X)/G which is usually designated by E x ~X is the 
total space of the associated bundle (E x ~ X, Px, B), where Px is induced by q J1 
where Jl:  E x X ~ E is projection on the first factor. Notice then that E x X, 
with this free G-action, belongs to our category ~- of Section 3 and we may 
introduce the following definition. 

(6.2) Definition. For  Xso~, ,  set 

index* X = index~ E x X 

where index~ E x X is as defined in w 3. Alternatively, consider the diagram 

Jl E x X  ,E  

x I 1 
E x G X  px ~B 

where Jl is projection on the first factor and set 

index* X = max {k: p~(~k) ~: O, k > 0}. 

Before we investigate the properties of index*: f f , - -~Z 
consistency. 

we first check 
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(6.3) Lemma. If X ~  

inde G X = index* X. 

Proof. Consider the diagram 

X~ J~ E x X  

X/G , E x o X  

where J2 is (equivariant) projection on X. Then, one shows easily that  J2 is a 
locally trivial map  with contractible fiber E. This forces f2 to be a h o m o t o p y  
equivalence 1-14] and hence inde G X = inde G E x G X = index* X. 

We now proceed to verify the properties of  this index on ~,~,. 

(6.4) Proposition (Monotonicity).  Let q9: X--~ Y denote a morphism of  ~ , ,  i.e., r 
is an equivariant map of  paracompact G-spaces. Then, 

index* X < index* Y. 

Proof Immediate,  since 1 x r E x X --* E x Y is equivariant. 

Before we establish the Cont inui ty  Theorem in this setting we recall [24, 25] 
that our  universal space E = V~o ' k has the proper ty  that E is the ascending union 
of  compact  manifolds 

El c E 2 c . . . c E m c E  ~+1 ~ . . .  

with the following properties, where X ~ , ,  

a) The h o m o t o p y  groups ni(E m) = 0, i < m. 
b) The inclusion map E " ~  E m § 1 induces isomorphisms (any coefficients) 

Hq(E m+l xaX)--~Hq(E m xGX),  q<m.  

C) Since E x a X is pa racompac t  

lim Hq(E m x a X)  ~ Hq(E x ~ X) 
( 

so that the inclusion map induces 

d) H ~ (E ~ x a X) ~ H q (E x a X), q < m. 

(6.5) Proposition (Continuity). Let X denote an object in ~ ,  and A a closed 
invariant subset of  X,  i.e., g a e A  when a~A and geG. Then, there exists a closed 
invariant neighborhood N on A such that index* N = index* A. 

Proof The proposi t ion is obvious for index* A = 0% so we may assume that  
index* A < c~. 

First choose a closed invariant  ne ighborhood  V of  A in X. Then E x A is a 
closed invariant  subset of  E x Ve~ .  By the Cont inui ty  Theorem for free actions 
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(Proposi t ion  (3.5)), there is a closed invariant  ne ighborhood W of E • A in E • V 
such that  

index,  E • A = index,  W. 

In particular,  if ~eHd(B, A) and index* A = k, for a classifying m a p  

f :  W/G ---*B 

we have f*(cck+')=0. Choose m>d(k+ I). Using the fact that E m is compact, we 
can find a closed invariant neighborhood N of A in X (NOV) such that 
E m x N c W. Now, using the diagram 

E x A  ~ W - - + E x V  ,E  

E m x N  ~ExN 

and the fact that Hq(E m xGN)~Hq(E xoN) for q<m we see that the classifying 
map 

f:ExGN-*B 

has the property that f,(aa+,)= 0 and hence 

index* N = index~ E x N = index~ E x A = index* A. 

(6.6) Proposition (Subadditivity). Let X denote an object in ~, and A and B 
closed invariant subsets of X such that X = A  w B. Then, 

index* (A u B) < index* A + index* B + 1. 

Proof 

index* (A u B) = index~ E x (A ~ B) = index,(E • A) w (E • B) 

< index~ E x A + index,  E x B + 1 

< index* A + index* B + 1. 

(6.7) Proposition (Normalizat ion) .  index* G = 0. 

Proof By L e m m a  (6.3), index* G = index ,  G =0 ,  using Proposi t ion (3.7). 

(6.8) Remark. The fact that  X/G is finite dimensional  will not  guarantee  that  
index* X is finite. Fo r  this reason we don ' t  have a direct analogue of the 
Dimens ion  Proper ty  (3.8). We will explore this question further, however,  at the 
end of  this section. 

(6.9) Proposition (Piercing Property).  Let X e ~ ,  and suppose X = X o u X 1 ,  
where X o and X 1 a re  closed invariant subsets. Suppose further that A~o~, and 
q~: A x I - * X  is an equivariant imbedding, i.e., q~(ga, t)=g~o(a, t), g~G, aeA, t e I  
= [0, 1]. We assume also that q)(A x I) is closed in X.  I f  A o = (p(A x {0})c X o and 
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A 1 =q~(A • {1})cX1,  then 

index* q~(A x I) n X o n X 1 = index* A. 

Proof. If  cp: A x I--~ X is an equivariant imbedding, 1 • cp: E x A x I--* E x X is 
also and we apply the Piercing Property Proposition (3.9) to this situation to 
obtain 

index= E x [q~(A • I) n X o n X1] = index~ (E • A) 

which gives the desired result. 

(6.10) Corollary. I f  in Proposition (6.9), we assume only that ~o is an equivariant 
map (not necessarily an imbedding) then 

index* qg(A x 1) n X o n X 1 = index* A. 

Contrary to the free situation, where index= X is finite when the dimension of 
X is finite, index*X may be infinite even when X is compact and finite 
dimensional. In fact, consider the case where the Lie group G=S 1, the circle 
group, and we take as coefficients A = Q ,  the additive group of rationals. 
Furthermore,  let ~H2(IEP~~ denote a generator. Suppose X ~ ,  has a non- 
empty fixed point set Fc_X, i.e. x~F, if and only if, g x = x  for every geS ~. Then, 
on one hand 

index* F_<_ index* X 

and furthermore E • GF=B x F, where E=S  ~, B = ~ P  ~176 and the diagram 

E x F  ~E 

1 l 
B x F  v ~B 

where p = projection, tells us that p*: H*(B, (l~) ~ H*(B x F, Q) is an injection so 
that p*(c<k),O for all k >  1, forcing 

index* F = oe = index* X. 

Thus, index* X may not prove useful in the presence of fixed points belonging to 
X. However, index~X is finite quite often, in particular when the isotropy 
groups are finite. Recall that for xeX,  the isotropy group G x is defined by 

Gx={g~G:gx=x}.  

Thus, G x = G implies that xeF, the fixed point set of the action. 

(6.11) Lemma.  Suppose X ~ ,  and all the isotropy groups Gx, x6X,  are finite. 
Then, the map f : E x G X - - , X / G ,  induced by projection j :ExX---~X,  induces 
isomorphisms 

f* : Hq(X/G, ~)--~ Hq(E x G X, Q) 

in all dimensions q, over the field of rationals ~ .  
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Proof The proof we give is standard and is 
venience. We again make use of the filtration 

E 1 c E  2 c . . . ~ E m ~ E  m+l ~ . . .  

included for the reader's con- 

of our universal total space E as in the proof of Proposition (6.5). We consider 
the diagram, for each m, 

E ' x X  :" ~X 

E m x oX ~ X/G 

Note thaW" (induced by the projection jm) is a closed map because E" is compact 
and furthermore the preimage sets (fibers) o f f  m are all of the form Em/Gx, where 
G x is a finite isotropy group. Applying the Vietoris-Begle mapping theorem [17] 
and noting that Hq(E"/Gx, II~)= 0 for q < m, we have isomorphisms induced by f"  

Hq(X/G,~)--~Hq(E " x ~X,O.), q <m. 

Then, j* is just the composition of this isomorphism and the isomorphism 
Hq(E "~ x G X, II~)~ Hq(E x ~ X, ll~), q < m. 

We are now in a position to state the analogue of the "dimension property", 
Proposition (3.8). 

(6.12) Proposition (Dimension). Suppose X 6 ~ ,  and all the isotropy groups G~ 
are finite. Let dim X/G denote the covering dimension of the orbit space X/G. 
Then, over the rational field ff~, 

(index* X)(dim c 0 < dim X/G. 

Proof We may assume d i m X / G <  ~ .  Then, by the above lemma, ttq(E x ~X, ff~) 
= 0  for q>dimX/G.  Thus, if ~ H d ( B , ~ ) ,  and f: E • GX--*B is a classifying map, 
we have f .(~k) = 0 for kd > dim X/G. Thus, 

(index* X) (dim ~) < dim X/G. 

(6.13) Remark. Note that under the hypotheses of Proposition (6.12), we have 
for m > dim X/G, 

index*X = index, E" x X. 

In fact, this equality holds for m sufficiently large whenever index* X is finite. 

(6.14) Perhaps the simplest criterion for X/G to be finite dimensional is 
obtained under the hypothesis that X is a separable metric space. Then, X/G is 
again a separable metric space and dim X/G ~d im X (see [26]), so that X/G is 
finite dimensional whenever X is. 
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(6.15) Just as in the free case it is sometimes convenient to increase the index 
by one and set 

Index* X = index* X + 1. 

It is a simple matter to restate the properties of index* in terms of Index*. The 
monotone, continuity and piercing properties are verbatim the same, just 
capitalize the i. Just as in the free case, we have the following alterations in the 
others. 

(Subadditivity) Index* (A u B) < Index* A + Index* B 

(Normalization) Index* G = 1 

(Dimension) (Index* X) dim ~ < dim X/G + dim 

whenever X has only finite isotropy groups. 

(6.16) Remark. We close this section with a simple observation to be used later. 
When Index*X > 1 and all the isotropy groups G~ are finite, then X/G must be 
an infinite set. 

7. Some Special Cases 

We consider now three examples which will be employed in our applications. 
Throughout  this section our Lie group G is the circle group S 1 and thus our 
category ~ ,  is paracompact  spaces with an Sl-action. Furthermore our uni- 
versal Sl-bundle (E, p, B) is the inductive limit of the classical Hopf-fibrations 

$ 3 c  S 5 C . . . C s 2 n + I ~ . . .  

S 2 c C p E c . . . ~  II~p ~ ~ . . .  

i.e. E = S ~ and B =tEP ~176 Notice also that if X is an S ' -space and x e X ,  either the 
isotropy group G x is finite or Gx=S 1. We employ rational coefficients Q for 
cohomology and ~ will not be displayed when rational coefficients are under- 
stood. Finally, our index theory will be based on the universal Chern class 
cl~H2(ff~p2,7Z) and so we choose c6H2(CP ~176 corresponding to this class. 
Following the notation in section 4 set 

Index~ X = Index* X, X e ~ , .  

(7.1) Notation. Given a G-space X, set F ix (X)=  {x:gx =x ,  g~G}. Fix (X) is thus 
the set of  points fixed under the action. (It is also denoted by X G in the 
literature.) 

(7.2) Proposition. l f  X ~ ~ ,  and the orbit space X /S  x is finite dimensional (e.g. X 
is separable metric and finite dimensional), then Index~X is finite if and only if 
F i x X =  ~). 
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Proof.  This is immediate from Proposition (6.12) and remarks made preceding 
this proposition. 

Just as in the free case (w 4), Index,  satisfies a stability condition which we 
formulate as follows. Let X o S  ~ denote the join of Xeo~, with S ~ and let k 
denote a non-zero integer. Define an S ~ action on X o S  ~ by 

g ( x , t , z ) = ( g x ,  t, gkz), x E X ,  z ~ S  1, t e l  

where gkz is ordinary multiplication. 

(7.3) Proposition. I f  X is locally contract ible  and X E ~ , ,  then 

Index* X o S  1 = Index* X + 1. 

Proof.  The proof  is almost identical with the proof  of Proposition (4.3) so we 
content ourselves with a brief sketch. First of all X o S  ~ ~ , ~ ,  and X o S  ~ is locally 
contractible. Hence E • X, E • (XoS 1) are both locally contractible and singular 
cohomology may be employed in our argument. We also note that we may 
assume that Index~:X is finite so that all the isotropy subgroups S~, x ~ X  are 
finite. 

Just as in (4.3), 

Index* X ____ Index,  X o S  1 <= Index,  X + 1 

where a simple computation shows that Index,  S1= 1 and where S ~ is given the 
action g z = g k z ,  k=[=O. 

Now, use the diagram of Gysin sequences as in (4.3) with the following 
replacements 

replace X by E x X, 

replace )( by E • sl X, 

replace B by E x(XoS1), 

replace/~ by E x s , ( X o S  1) 

to show that the inequality Index* X = I n d e x ,  Xo S 1 is impossible. 

E x a m p l e  1 

Let CN denote the space of k-tuples (c 1 ... . .  Ck) with entries cietl2 n, where c i 
may be thought of as an n-vector over the complex field ~2. Thus N = n k .  For  a 
given k-tuple of non-zero integers (n 1 . . . . .  nk), the circle group S 1 acts on I12 N by 

g( c l , . . . , ck) = (gnl c l . . . . .  g"k ck) 

X ' C ~ N - - ~  s 0 Index*X is defined and on this Then, for every invariant set ._ _ , - v  - , 
category of invariant subsets of l~, N, Index* satisfies all the properties of Index* 
discussed in Section 6 as well as the stability property (Proposition (7.3)). In 
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particular, for X c r 

2 Index,X < dim X + 2 

so that our index is finite over invariant subsets of C, N. 
We compute first the index of the unit sphere S = S 2N- ~ in C N. By definition, 

Index*S = IndexcE x S 

where c is the first rational Chern class. To compute the R.H.S., we use standard 
techniques as follows. Consider the bundle map 

E x S  ~ ~E 

l 1 
E x s l S  P , B  

where p is induced by equivariant projection/~. Then, notice that the fiber of the 
fiber map p is a (2N-1)-sphere. Using the Gysin sequence [-17], we conclude 
that (for any coefficients) 

H i ( B )  P* , Hi(E • s,S) 

is an isomorphism for i < 2 N - 1 .  Thus, Index~ S > N .  On the other hand, using 
Lemma (6.11), we have isomorphisms 

j*: Hq(S/S1)---+ Hq(E x siS) 

and since H2N(S/SI)=O, w e  have H2N(E• Thus, IndexcS<N and we 
have verified 

(7.4) Proposition. Index~ S 2N- 1 = N .  

N__ (7.5) Corollary. Index t l2 , -N.  

(7.6) Corollary. Let K denote an invariant linear subspace of CN of (complex) 
dimension k, then Index* K ,  =k, where K ,  = K - O .  

(7.7) Corollary. Let K denote an invariant linear subspace of CN of dimension k 
and let X cll2N, denote a closed invariant subset such that k+Index~ X > N. Then 
X c~ K ~ fJ. More precisely 

Index~ X c~ K > Index~ X - (N - k) > 0. 

Proof. Let K"  denote the orthogonal complement of K. K • is invariant and the 
orthogonal projection n:~N--*K" is equivariant. By continuity (Proposition 
(6.5)), there is a closed invariant neighborhood A of X n K  in X such that 
Index~:Xc~K=Index,  A. Let B denote X minus the interior of A (in X). Then, 
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7z[B: B - - ) K ,  l tells us that Index~ B <  N -  k and hence using subadditivity 

Index~ X < Index~ X c~ K + (N - k) 

which is the desired result. 
Before we consider the index of the boundary of an invariant neighborhood, 

we make one more comment. Let cat X denote the Ljusternik-Schnirelman 
category of X. Recall that cat X = 2, if X can be covered by 2 open sets each of 
which is contractible in X and ), is minimal with this property. 

(7.8) Corollary. c a t S / S i = N .  

Proo f  The remarks above show that S/S 1 has non-trivial cup products of length 
N - 1 ,  so that cat S > N .  To see that cat S < N we proceed by induction on N, 
representing S as N-tuples (x 1 . . . . .  xN), x~6~, x ~ =  1. Let A denote the orbit 
containing (0,0 . . . . .  1). Then, by induction c a t ( S - A ) / S  1 = N - 1 .  On the other 
hand, S/S ~ is an A N R  ([27]), so that S/S ~ is locally contractible at the point 
corresponding to the orbit A. Thus, cat SIS ~ < N  so that our proof  is complete. 

(7.9) Proposition (Boundary of Invariant Neighborhoods). Let  M e ~ ,  denote an 
orientable 2N-manifold and U an open invariant set in M with compact closure. 
Le t  q) : (U,~U)~(~N,~u , )  be an equivariant map o f  non-zero degree. Then, 
Index~: ~ U = N. 

Proo f  Just as in Proposition (4.6), we assume that q~ is defined on an equivariant 
neighborhood V of U and qg-l(S)=c3U, where S is the unit sphere in (E N. Thus, 
we have q~: (V, V -  ~ U) ~ (~u, C u - S) and, by assumption, <p has non-zero degree 
6, i.e. if o l~H2N(V ,V- -~U) ,  ozEH2N(CN,~N--S )  are fundamental classes, 
<p,(Ol)=6 o 2. The map ~0 also induces a map 

~o o = l x qg : E x V--~ E • (E N, E = S | 

and it suffices to show that for m sufficiently large 

(Po: sm• s~ ~U ~ Sm x s ,S  

induces an injection in rational cohomology in dimension 2 N -  2. Now, if/~ is a 
fundamental class of the sphere S m, let 52 ~ H m +2 N( Sm x (V, V - ~ U)), 52 s H,, + 2N(S m 
x (~r ~N_S))  denote fundamental classes corresponding to # x ol ,  # x 02, re- 
spectively. Then, q~(5~)= 562 and the transfer map t: H*(S  ~ x ~U, f f ) ) ~ H * ( S  ~ 
x S , ~ )  applies to force q)*:H*(S '~•215 to inject in all 

dimensions. Now, we look at the bundle map 

S " x O U -  ~,o ) S m x S  

Smxs~c?U Coo ) S m x s ~ S  

and proceed, just as in the proof of Proposition (4.6), via a Gysin sequence 
argument over the rationals. Keep in mind that the action of S 1 on ~U has all 
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isotropy groups finite so that H * ( S " x  slOU, Q)=H*(aU/S~,ff~). In particular, 
Hq(S " x s, OU, Q ) = 0  for q > 2 N -  1, since dimOU/S  1 < 2 N - 2 .  

Example 2 

This example is similar to Example 1 except that we allow fixed points. Let C M 
denote the space of (k+ 1)-tuples (Co, q . . . . .  Ck) with eze02" so that M = ( k +  1)n 
= N + n ,  where N = n k  and'~N, as in Example 1, is naturally imbedded in C u. 
For  a given k-tuple of non-zero integers (nl, ...,nk), we define an action of the 
circle group S a on C M by 

g(Co, cl . . . . .  Ck ) = (Co, g,1 Cl . . . . .  g,k Ck ) 

so that the 0-th coordinate remains fixed. Then, the fixed point set F = Fix(C M) 
of this action is the subspace given by c i =0,  i >  1. Furthermore, the invariant 
subspace ~2 N, defined by c o = 0, is precisely Example 1. For  any invariant subset 
X c ~  M, just  as in Example 1, 

Index~: X = Index* X 

where e is the first (rational) Chern class. Thus, we have a index theory on the 
invariant subsets of ~2 M satisfying the properties in Section 6, but which is not 
finite on sets which intersect the fixed point set F. However, in the complement 
of F things still behave nicely. The projection. 

n: (Co, c l  . . . . .  c ~ ) ~ ( c l  . . . . .  ck) 

takes C M - F  equivariantly onto ~.s and this, together with the inclusion map in 
the other direction tells us that 

(7.10) Proposition. 

Index* C M - F = Index~ On. -= N. 

Now, let S 2M- i denote the unit sphere in C M, S the unit sphere in tL -u, as in 
Example 1, and F o = F n S  2M- 1. Fo is then the ( 2 n -  1)-sphere given by CoYo = 1, 
q =0,  i > 1. Clearly S ~ S 2M- ~ and ~/above induces an equivariant map 

V1: S2M- X--Fo--~ S 
by 

q(Co, C~ . . . . .  ck)= cie~ (ci, . . . ,  ck). 
i =  

invariant subset of  S 2M-~ such that (7.11) Proposition. Let A denote any 
F o c A  c S 2 M - 1 - S .  Then, 

Index* S 2M- 1 _ A = Index~ S = N. 

Proof  Use V/and Proposition (7.4). 



Generalized Cohomological Index Theories 159 

(7.12) Proposition (Boundary of Invariant Neighborhood of 0.). Let  U denote a 
bounded open invariant set in I12 M containing the origin O~ff2 M. Then if  ~U denotes 
the boundary of  U, we have 

Index*(~ U - F ) = N .  

Proof. Let V = U c ~ r  N. Then I n d e x * 0 V = N .  Since O V c O U - F ,  we have 
Index~:(t3U-F)>=N. On the other hand r l ( t 3 U - F ) c S  so that Index~(~U 
- F ) < N .  

(7.13) We close this section with a few remarks concerning Ljusternik- 
Schirelmann category. First of all, q above is an equivariant homotopy equiva- 
lence and hence 

a) cat(S zM-a-Fo) /S  ~ = c a t ( S / S ' ) = N .  

For e > 0, let V= denote the e-neighborhood of F o in C M, i.e. 

V = = { c ~ M :  I]e-Pll <e  for some p~Fo}. 

Then, q: S 2M- 1 ~ ~ S remains an equivariant homotopy equivalence and 

b) cat(S 2M- 1 -  V~)/S ~ = c a t ( S / S ~ ) = N .  

More generally if CatxA denotes the category of A in X (open sets coveringA are 
in X and contractions are in X), then for any invariant set A = S we have 

c) cat x A = Caty A = cat z 

where ,4 = A / S  ~, X = S/S  ~, Y =  (S T M  - ~ - Fo)/S ~ and Z = (S 2M- 1 _ V=)/S ~. 
Now, the function 7(A)= caty.~, defined on invariant subsets of S2U-X-Fo,  

where Y= (S 2M- ~ -Fo)/S 1, satisfies many of the properties of Index~: e.g. monoto-  
nicity, continuity and subadditivity. However, we are not sure how 7 behaves in 
relation to the piercing property (Prob. (6.9)) (we conjecture against it) and this 
is one of the reasons why Index~ is better suited to our techniques. 

Example  3 

Examples 1 and 2 are finite dimensional versions of the following infinite 
dimensional example. First, we identify as usual the reals mod 2n with S 1 (t<--~e") 
and we denote by W1'2(S ~) the Hilbert space of real valued functions z: S ~ R  

dz 
such that z and k = ~ -  are square integrable with inner product 

2~ 
(ZI~ Z2) ~ 2~ ! I-Z1 Z2 A~-Z1Z2] dt 

S 1 acts on this space W1'2(S 1) as follows. For  geS 1 set 

(g z) (e i~) = z (g e i') 
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where ge"  is ordinary complex multiplication. Alternatively, the action may be 
written 

(Loz)(t)  = z ( t  + O) 

where 0 corresponds to g = d ~  x and L o is the linear transformation cor- 
responding to the action of the element g on W 1' 2($1). This space W 1' 2($1) can 

be identified with the space of Fourier series ~, c , e  int subject to the conditions 
- - 0 O  

C_,=C, ,  ~ (1 +n2)lCn[2 < oO, CnE~. 
- - 0 O  

Consequently, W ~' 2($1) can be identified with the space of infinite sequences 
(c o, c a, . . . ,  Ck, . . .)  subject to the conditions 

o0 

coeR,  ~ (1  +2n2)[c,]2 < oo, c,~C. 
o 

The S x action translates into 

g(co, c~,.. . ,  ck .. . .  ) =(Co, gc l , . . . ,  g%k,-..) 

and it is clear that each g corresponds to a unitary transformation of W~'2($1).  
This action is not free. In fact isotropy groups of all orders appear. 

Nevertheless our index theory Index* applies to all invariant subsets of 
W 1, 2(S1). 

(7.14) We close this section with a few comments concerning the analogue of 
Section 5, in the non-free case. Let ~ denote any normed linear space over C. 
Then, any S 1 action on ~ induces an index theory Index~ on the family g of 
invariant subsets of ~.  Furthermore, the function 

Index.  c: 8 --* IN 

possesses properties analogous to those in Theorem (5.1), with some obvious 
changes. We leave the formalities to the reader. 

8. An application 

In this section we shall show how the index theory of Sections 6 and 7 can be 
applied to study the bifurcation of time periodic solutions from an equilibrium 
solution for Hamiltonian systems of ordinary differential equations. 

Let p, q e R "  and H = H ( p , q ) ~ C 2 ( I R 2 " , I R )  with H(0,0)=0,  Hp(0,0)=0 
= H~(0, 0). Consider the Hamiltonian system of ordinary differential equations: 

(8.1) d-~P = - H ~, -d~tt = H p . 
dt  
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z q, O'),8,, 
dz 

(8.2) ~-/= J H ~ .  

can be rewritten as 

Our assumptions on Hz(0) imply that (8.2) possesses the trivial equilibrium 
solution z = 0 which is periodic with any period. Of interest is the existence of 
small nontrivial periodic solutions of (8.2). The Lyapunov Center Theorem is an 
old result of this nature [28]. To state it, observe that if (8.2) is linearized about 
z = 0, the resulting equation is 

dw 
(8.3) 2 y  = j / - /zz(0)  w. 

The Lyapunov result then says that if JHz~(0 ) possesses purely imaginary 
eigenvalues: + (1, + (2 . . . . .  __+ (, and if (s/(1 is not an integer for j#: 1, a family of 
periodic solutions with periods near 2n (~-~ bifurcates from z =0. 

Lyapunov's irrationality condition on the eigenvalues of J H ~ ( 0 )  was elim- 
inated by A. Weinstein [10, 29] who assumed instead that H~z(O ) is a positive 
definite matrix. He then showed that for all small e >0, the manifold H = e  
contains at least n distinct periodic orbits whose periods are near those of the 
linearized problem (8.3). He also discussed the case of indefinite H~(0). 

Recently J. Moser [11] generalized and simplified Weinstein's result. 
Moser showed that if IRZ"=E1 • E  2 where E 1 and E 2 are invariant subspaces 
for (8.3), if all solutions of (8.3) with initial data in E1 have a common period 
T > 0  while no solutions of (8.3) in E 2-{0}  have period T, and if Hzz(0 ) is 
positive definite on El,  then for all small e>0,  (8.1) possesses at least �89 
distinct periodic orbits on H = e whose periods are near T. 

Observe that both the Weinstein and Moser results provide lower bounds for 
the number of distinct periodic solutions of (8.1) on H = e .  In contrast in this 
section we will use the index theory of sections 6 and 7 to obtain lower bounds 
for the number of distinct small nontrivial periodic orbits of (8.1) as a function 
of the period. This procedure will be carried out under more general hypotheses 
than those considered by Moser. Given the index theory of Section 6 and 7, the 
techniques we use to find the periodic solutions and the results we obtain are 
closely related to our earlier paper [1]. However we will give a self contained 
development here. 

Our main result is: 

(8.4) Theorem. Let H6C2(IR2n,~)  with H(0)=0,  H~(0)=0. Let ]R2n=E 1 0 E  2 
where E 1 and g 2 are invariant subspaces for the flow given by (8.3). Suppose all 
solutions of(8.3) with initial data in E 1 are T periodic, no solutions of (8.3) with 
initial data in g 2 -  {0} are T periodic, and there are no equilibrium solutions of 
(8.3) in E 1 -{0}.  I f  the signature 2v of the quadratic form (H~z(O) (, (), ( eE l ,  is 
nonzero, then either: (i) 0 is a nonisolated T-periodic solution of (8.1); or (ii) there 
exist a pair of integers k, m>O with k +m>lvl, and a left neighborhood, ~ ,  and a 



162 E.R. Fadell and P.H. Rabinowitz 

right neighborhood, 4 ,  of T in IR such that for all 2 e ~  (resp. ~), (8.1) possesses at 
least k (resp. m) distinct non-trivial 2-periodic solutions. 

(8.5) Remark. That the signature is even follows from the hypotheses on E 1. A 
more precise count of the number of distinct nontrivial solutions for fixed 2 will 
be given in the course of the proof of Theorem (8.4). See Theorem (8.48) and 
Corollary (8.51). Observe that under Moser's hypotheses, since H=(0) is positive 
definite on El,  (8.3) possesses no equilibrium solutions in E 1 - { 0  } and 
v= �89  1 :t:0. Thus our result applies to his case. 

While completing the final draft of this paper we learned of the work of 
Chow & Mallet-Paret [12] who have obtained a special case of Theorem (8.4) 
for (8.1) where E1 = {(z~ . . . . .  zr, 0 . . . . .  0, z, + 1 . . . . .  z, +,, 0 . . . .  ,0)} and H restricted to 
E~ has the form 

2 2 1 2 2 _t_ O([Z[2). H(z)=�89 Z z~ +z .+~-~ zj +z.+j 
j = l  j = / + l  

This form for H on E 1 implies the hypotheses required of E 1 are automatically 
satisfied with T=2rc and 2re is the minimal period for solutions of(8.3)in E r 
This has the effect of inducing a free S 1 action on our problem making it 
tractable by a simple extension of the index theory of [1]. Chow and Mallet- 
Paret also have some more refined results when H is analytic. 

The proof of Theorem (8.4) will be carried out in several steps. The basic idea 
is to convert the problem to that of finding critical points of a real valued 
function g defined near 0 in a finite dimensional space of periodic functions. 
Critical points of g then will be obtained using minimax arguments. 

To begin, we normalize the problem by fixing the period at 2m Thus let 
T = 2-1 t. Then (8.2) becomes 

(8.6) ~ = 2 J H ~  

where ~=dz/dz. Any 2re periodic solution of (8.6) is a 2~2 periodic solution of 
(8.2). Observe that j 2 = - I .  For  our later purposes it is convenient to replace 
(8.6) by the equivalent equation 

(8.7) J ~ =  - 2 H ~  

Finally set ~ - ( 2 , z ) = J ~ + 2 H ~ .  The solutions of (8.7) will be obtained as the 
zeroes of o~. To introduce the class of functions in which (8.7) is studied, we 
identify lR/[0,2r~] with S 1. Let W1'2(S 1) denote the real Hilbert space of 2re 
periodic functions which have square integrable first derivatives and let 
E = ( W  1" 2($1))2". Then E is a real Hilbert space under the norm 

1 ~=(i,~(z)l 2 +iz(~)12)d ~ IlzlT~ = ~ -  0 

Let Y-~(L2(Sl)) 2n. The smoothness assumptions on H imply o~e C1(~ x E, Y). 
Let # = 2 g T - 1 .  The Frechet derivative of ~- with respect to z at (#, 0) is 

(8.8) ~(t~,  0) w = J ~ ,  + M4=(0) w. 



Generalized Cohomological Index Theories 163 

Comparing (8.8) to (8.3), we see that ~ (# ,0 )  has a null space Y of dimension 
2N-=dimE1 of vectors of the form 

N 
(8.9) z(t)= ~. elk,~ej 

j = - N  

where kjeZ, k_ j=  - k j ,  e jeC 2", e_j=Y~, and ej is an eigenvector of JH~z(O ). In 
fact ./~ is isomorphic to E 1, the isomorphism being given by z(t)=S(t)z(O) where 
z(O)eE~ and S(t) is the semigroup for the initial value problem for (8.3). It is 
straightforward to check that ~ (# ,  0) is a Fredholm map of index zero. 

We seek zeroes of ~ in ~,, x E for 2 near # and z near 0. We already have the 
trivial family of zeroes {(2,0)12elR}. Using the method of Lyapunov-Schmidt, 
(8.7) can be reduced to a finite dimensional problem. (We do not use the same 
finite dimensional reduction carried out by Moser but the analogue of [5].) Let 
~A r l  denote the L 2 orthogonal complement of Jff in E, i.e. 

2~r 

o fora,, t 

Let P and P• denote the (L 2 orthogonal) projectors of E onto ~4r and jg.l  
respectively. Then (8.7) is equivalent to the pair of equations: 

(8.1o) e~(Lz)=O, e~-(,~,z)=O. 

Any z~E can be written uniquely as z = x + y  where x e ~  and y~jir• Define 

(8.11) F(2,x,y)=P• 

Then F(#, 0, 0) = 0 and by construction ~(p ,  0, 0) is an isomorphism from .A r• to 
JVac~ Y. Therefore by the implicit function theorem, there exists a neighborhood 
f2 of (#,0) in IR xJV and a mapping q~eCl(O, JV • such that F(2,x,y)=O for 2 
near p and z near 0 is equivalent to y = q~(2, x). Moreover since 

(8.12) o= f ( L  x, ~o(~,x))= F,(L o, o) q~ + o(llx + ~ollE) 

and Fr(2, 0, 0) is an isomorphism from ~ •  to Jt r-L ~ Y for all 2 near/~, it follows 
that 

(8.13) ~(2,x)=o(llxllE) 

at x = 0 uniformly for 2 near #. 
Thus to solve (8.7), it suffices to solve the finite dimensional problem 

(8.14) P ~ ( 2 , x  +q)(2,x))=O. 

Before discussing this question, we observe some invariance properties of our 
operators. For zeE and 0el-0, 2rc], set Loz = z(t + 0). This defines an S 1 action on 
E. (See Example 3 of w It is easy to see that ~ commutes with L o, i.e. 
~(2 ,  Loz ) =L0.,~(2, z). Note further that both X and JV "• are invariant under L o. 
It then follows from (8.11) that F(2, ' )  commutes with L o. The same is true of 
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tp(2, "). Indeed 

F(2, x(t), y ( t ) )= O, 

where y = ~o(2, x), implies that 

0 = F(2, x( t  + 0), y(t  + 0)) = F(2, L o x, L o y). 

Hence by the implicit function theorem Lo~o(2,x)=q~(2,Lox ). Following stan- 
dard usage, as in earlier sections we will refer to functions with values in E, ~,, 
or X l that commute with L o as being equivariant. The same term will be 
applied to real valued functions d for which d(Lo(z ) )=d(z  ). Sets A such that LoA 
=A for all 0e[0,2~] will be called invariant. 

The next step in the proof of Theorem (3.4) is to show that the solutions of 
(8.14) can be determined as the critical points of an appropriate function. Some 
additional notation is required. If z~E,  z = ( z l ( t  ) . . . . .  z2,(t)). Let 
p(t) - P1 z -  ( z l ( t ) , . . . ,  z,(t)) and let q(t) =- P2 z -  (z, + 1 (t) . . . . .  z 2.(t)). 

Define 
2r~ 

(8.15) g(2, x) = S [(p(t),//(t))~,-- J.H(p(t), q(t))] at  
0 

where z = x + t p ( 2 , x )  and (.,.)~. denotes the IR" inner product. Thus geC'(f2, IR) 
and it is easily checked that g(2,') is equivariant. Moreover for fixed 2, the 
critical points of g(2,.) satisfy (8.14). Before showing this, it is technically 
convenient to renorm Jg  by taking the L 2 norm on JV" which is equivalent to the 
E norm on JK. Henceforth we denote the new norm by [['llx. 

Now suppose x is a critical point of g(2, .). Then for all ~EJV,, 

0 
0 N. n 

+ (~ (~ + q~x (4, x) ~), qho - 2(H.  (p, q), ~ (4 + ~o~ (,~, x) ~)ho 

- 2(Hq(p, q), ~ ( 4  + ex(2, x) r dr 

where p = P1 (x + q~ (4, x)) and q = P2 (x + q~ (2, x)). An integration by parts yields: 

2~ 

(8.17) 0 =  ~ [ ( i l -2Hp(p ,q ) ,P t (~+tp~(2 ,x )~)~R,  
0 

-- (iO + 2H~(p, q), P2 (4 + c,o~ (2, x) ~)~R-] dr 
2~ 

= - j (o~(2, z), ~ + ~o~(2, x) ~h, ,d~.  
0 

Since P•  and ~o,(2,x)~e./g • (8.17) implies that 

2~ 

(8.18) I (s~(2,z),~h,.d~=0 
0 

for all ~eJV which is equivalent to (8.14). 
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Thus to solve (8.7), it suffices to find small nontrivial critical points of g(2, .) 
in JK. If 0 is not an isolated critical point of g(#,.), the first alternative of 
Theorem (8.4) obtains. Hence for the remainder of this section, we assume 0 is an 
isolated critical point of g(#,'). 

To continue several preliminaries are required. Consider the ordinary differ- 
ential equation 

dO 
(8.19) d-s=-g~(p,O),  0(0 ,x)=x  

for x near 0 in JK. By (8.16)-(8.18), 

(8.20) g x ( L x ) = P ~ ( 2 , x  +~o(Lx)) 

so gx is continuously differentiable in x near (p,0). Hence (8.19) possesses a 
unique solution for all x near 0 in ~ We will show 0 is equivariant. 

(8.21) Lemma. I f  V(x) is a locally Lipschitz continuous map of JV to Jr" and is 
equivariant, the solution r/(s, x) of 

(8.22) ~s  = V(q), r/(0, x) = x  

is equivariant. 

Proof. Let w =Lotl(s, x). Then 

dw dtl = L o V(tl)= V(Loq)= V(w) (8.23) ~s=LO ds 

and w(0)=Lox. Therefore w(s) = rl(s, Lox) = Lotl(s, x). 

(8.24) Corollary. O(s,x) is equivariant. 

Proof. By Lemma (8.21), all we need show is that gx(a,x) is equivariant. Since 
g(#, x) is equivariant, 

(8.25) (gx(#, X), ~)w = (gx(#, Lox), go ~)w 

for all ~ s ~ .  It is easy to verify from (8.9) that L o is a unitary transformation so 
Lo 1 =L~. Thus choosing ~ = L  o l a in (8.25) yields 

(8.26) (gx(#, x), L~ a)v~ = (Log~(#, x), coy = (gx(#, Lo x), ct)~. 

for all a~Jff which implies the equivariance of g~(#, x). 

(8.27) Remark. The above argument also shows that g~(2, x) is equivariant for 
all 2 near #. 

With the aid of 0(s, x), the neighborhood of 0 in Jr will be constructed in 
which we will find critical points of g(2, .). 
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(8.28) Lemma.  There is a constant c > 0 and an open invariant neighborhood Q of 
0 in Jff such that 

1 ~ IfxEQ, [g(#,x)[<e and ~k(s,x)~Qfor all s such that 

Ig(#, O(s,x)) l  < e. 

2 ~ I f x ~ Q ,  ]g(#,x)]=c or O(s,x)eOQfor all s satisfying 

Ig(#, ~(s,  x))[ =< c. 

Proof Since 0 is an isolated critical point of gx(#, 0), there is a neighborhood X 
of 0 in Jff in which 0 is the only critical point of gx(#, 0). We restrict ourselves to 
X. Let S+={x~XI@(s,x)EX for all s>0}  and S-={x~XIO(s ,x)EX for all 
s < 0}. It is easy to see that at least one of these sets is nonempty. In particular if 
there are points near 0 where g(#, .) is positive, S + :t:~ for then we can find a 
sequence x , , ~ 0  such that g(#,Xm)>O. If Br={xeJVlllxl[x<r }, then for some 
small r, and all large m, the orbit ~p(-s,x,.) will intersect 0B, at S=Sm>0. Since 
x,,---~0, s,.--,oo. A subsequence of O(--Sm, Xm) converges to 2cOB, and our 
construction implies tp(s,2)eX for all s>0 .  A similar argument shows that 
S -  = ~  if there are points near 0 where g(#, .) is negative. Let x be near S +, say 
Llx-S+l[,~<=p and xCS +. Then for p<=p+ there is a b+(p )>0  such that O(s,x) 
will cross all level sets g(#,-) - -b  as s increases provided that b__<g(#,x) and 
[bl<b+(p). Similarly if I [ x - S - l l ~ < p < p -  and xeS- ,  there is a b - ( p ) > 0  such 
that O(s,x) will cross all level sets g(p,')=b as s decreases provided that 
b > g(#, x) and [b[ < b -  (p). Thus choosing p = min (p +, p - )  and 
ce(O, minb+(p),b-(p)), we can take Q to be the union of all orbit segments 
~,(s,x) starting in Bp and lying between g ( p , ' ) = c  and g ( # , . ) = - c .  Then Q 
satisfies 1 ~ and 2 ~ Moreover  since Lo is unitary, IlLoxll~= IlxH~ so if xeBo, 
L o x ~ B o. Hence Q is invariant. 

(8.29) Remark. The index theory of w 7 is applicable to invariant subsets of ~ .  
For such AeJV we set i(A)=Index~:A. Since 0 is equivariant and is a neigh- 
borhood of 0 in JV with d i m J V ' = 2 N ,  it follows from Proposition (7.7.) that 
i(~?Q)=N. Set T • = S  • c~t?Q. The indices of these sets play an important role in 
determining the number of critical points of g(2, .) in Q. The next result gives an 
estimate for these numbers. 

(8.30) Theorem. i (T-)+i(T+)>N. 

Proof. Let X be as in Lemma (8.28) and r > 0  such that B , ~ X .  By the 
construction of Lemma (8.28) with X replaced by B r, there is a neighborhood Qb 
of 0 in X satisfying l~ ~ of Lemma (8.28) with e replaced by b. Let Qf  
={x~Qblg(#,x)=b } and QZ ={x~t?Qblg(#,x)= -b} .  If XeQb, there is a unique 
K(x) > 0 such that g(#, O(x(x), x)) = - c. Since 

g(#, 0 (x(x), x)) = g(#, L o 0 (g(x), x)) = g(#, 0 (~c(x), L o x)) 

= - c = g(/~, O(X(Lox), Lox)) 

by the equivariance of g(#,-) and O(s,-), it follows that ~: is equivariant. 
Therefore so is the map v(x)=O(x(x),x) and veC(QZ,Q[ ) (where Q+ has the 
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obvious meaning). In particular v(S- c~Q~-)= T- .  Hence by (6.4) and (6.5), there 
is a neighborhood U of T-  such that i(U~Qc)=i(T- ). 

If r is sufficiently small, V(Qb)C Uc~Q2 for if not, for all r ~ 0 ,  there exists 
bm~O and x,,,eB,m such that g(#,Xm)=b,,,>O and v(x,,)eQ~-U. Along some 
subsequence we have v(x,,)--~weQ~ and wr However since Xr~---~0, 
~ : ( X m ) ~  which shows weT-,  a contradiction. Thus we can assume 
v(Q~)c UnQ~. 

By (6.4), 

(8.31) i(S- chQ~)=i(T-)<i(Qf)<i(U c~Q~)=i(T-). 

Hence 

(8.32) i(Qf)=i(T-). 

Similarly 

(8.33) i(Q~)=i(T+). 

Next let xe~Qb-Qf.  Then there exists a unique co(x)<0 such that 
g(#,~p(co(x),x))=b. An above argument implies p(x)=O(co(x),x) is equivariant 
and peC(t3Qb-Qb , Q~). Hence by (6.4) 

(8.34) i(~Qb-Q~)<=i(Q])<=i(OQb-Qb ) 

Combining (8.32)-(8.34) and using (6.6) yields 

(8.35) N=i(~?Qb)<=i(Q~)+ i(t?Qb-Qb )=i(T-)+ i(T +) 

(8.36) Remark. The number of critical points we obtain for g(2,') in Q depends 
on the interplay between g(2,.) near t?Q and g(2,.) near 0. The estimates just 
obtained for i(T • are a quantiative measure of the behavior of g(#,') near t~Q 
and therefore of g(2,.) near t?Q for 2 near # since such a perturbation does not 
change the behavior of g near t?Q. On the other hand, the quadratic part of 
g(#, ') vanishes identically while for 2~g ,  the quadratic terms in g(2,.) are 
dominant near 0. These terms are governed by the quadratic part of H restricted 
t o  E 1 . We will make these statements more precise in what follows. To help 
determine the behavior of g(2,') near 0, we have the following lemma. We are 
indebted to Mark Adler who assisted in the proof. 

(8.37) Lemma. Under the hypotheses of Theorem (8.4), the quadratic form 
(Hz~(0) (, ~), (eEl, is nondegenerate. 

Proof. From (8.9), we see ( has the form 

N 

j = - N  

where ~_j = ~. Therefore 

(8.38) (H~(0)~,()= ~ afij(H~(O)el, ei)-(I~a,a) 
Ill, [jI<-_N 
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where I~ij=(Hzz(O ) ei, ej). Thus (Hz~(0) (, {) is nondegenerate on E 1 if and only if 
has no nontrivial null vectors. If there is an e e ~  2N such tha t /~e=0 ,  then 

(8.39) ~ I~isc~s=O=(H=(O)e i, ~ ~sej) 
[j[ <=N [j[ < N 

= (e,, n~(0)~), lil<N 

where 8= ~. ~sej. Thus H~z(O)d is orthogonal to E 1. Since E 1 is invariant 
[j[ ~ N 

under ~H=(0), ~H=(O)Ex =E ~ and H ~ ( O ) E I = J -  I EI= - J E I = J E  1. Thus 
H~(0)~--A~ with ~ E  1 and (8.39) implies 

(8.40) (E~, J ~ ) ~  [Ex,~] =0. 

Since E 2 is also invariant under JHz~(0), [E~, E2] =0  (see Moser [11]). Hence 
= 0 and the lemma is proved. 

(8.41) Lemma. I f  z e ~ ,  

2n  

(8.42) ~ (U~(0) z(t), z(t)) dt = 2n(H~(0) z(O), z(O)) 
0 

for any 0e[0,2rc]. 

Proof. Let Hz(z) denote the quadratic part of H(z) at z=0,  i.e. 

Hz(z ) = �89 z, z). 

The elements of X are just the solutions of the Hamiltonian system correspond- 
ing to H2: 

(8.43) ~=l~H2z 

having initial data in E~. Hence Hz(z(t)) is constant along such solutions of 
(8.43) from which (8.42) follows. 

(8.44) Remark. Let E+,E[ denote the subspaces of E 1 on which H=(0) is 
respectively positive and negative definite. Since if ze~,, z(t)eE~ for each telR, 
we see from Lemma (8.41) that (H~:(0) z(t), z(t)) is independent of t. It then follows 
from (8.9) that E l ,  E~- are even dimensional with dimensions 2/~, 2? respectively. 
Moreover Lemma (8.37) implies 13 + ? = N. Let ~/" +, X -  denote the subspaces of 
3r of dimension 2/~, 2V corresponding to E~-' E~-. Note that they are 
equivariant. 

With the observations, we can determine the behavior of g(2, .) near 0. Let 

(8.45) H ( z ) -  H2(z ) + lq(z) 

so I4(z)=o(lz[ 2) at z=0.  From (8.15), (8.13), and (8.38) we have 

2n  

(8.46) g(A,x)= ~ [(P~x, P2:~)~,-AH2(Pax, P2x)]dz +o([fxll~r ) 
0 



Generalized Cohomological Index Theories 169 

at x =0. Since x satisfies (8.43), on integrating by parts in (8.46) and using the 
homogeneity of H 2 we find: 

2r~ 
(8.47) g(2,x)= ~ [�89 x, P25C~R,--�89 P~ Sc)~,, 

0 

- 2H2(P 1 x, Pz x)] d'c + o( Ilxll 2) 

- 0 ( ~[(Pxx'H2v(Plx'P2x))~"+(P2x'H2q(PIx'P2x))~'] 

- - 2 H 2  (P1 x,  P2X)} d'c "4-0( IIxH 2) 

2~z 

=(/z-,~) J Hz(P~x, P2x)d~+o(rlxHS) 
0 

at x=0 .  Thus by Lemma (8.41) and Remark (8.44), for 2</~, g(2, . )>0  on X + 
and <0  on X -  in a deleted neighborhood of 0; if 2>#,  these inequalities are 
reversed. 

Theorem (8.4) is now a consequence of the following two results: 

(8.48) Theorem. Suppose that 

(8.49) i(T-)  > v 

(resp. (8.50)i(T-)> fl). 
Then there is a 8 > 0  such that if 2e(/~-b, #) (resp. 2E(/~,/~+ 8)), g(2, .) has at 

least i (T - ) - y  (resp. i (T-)-B) positive critical values with a corresponding 
number of distinct critical points, x(2) such that x ( 2 ) ~ 0  as 2--,/a. 

(8.51) Corollary. Suppose that 

(8.52) i(T+)>V 

(resp. (8.53)i(T+)>fl). 
Then there is a b > 0  such that if 2e(/~, #+6)  (resp. 2a(#-6,/~), g(2, .) has at 

least i(T+)-y (resp. i (T+)-f l )  negative critical values with a corresponding 
number of distinct critical points, x(2), such that x(2)~  0 as 2--,/l. 

Proof of Corollary (8.51). Replace g(2, ") by -g(2,  .). This has the effect of 
reversing the roles of T + and T-  and changing the sign of the factor (# -2 )  in 
(8.47). Hence the result obtains via Theorem (8.48). 

Assuming Theorem (8.48) for now, we can finally give the: 

Proof of Theorem (8.4). We assume 0 is an isolated T periodic solution of (8.1). 
Thus we must produce k, m, ~ ,  and J ,  as in the statement of the theorem. Since 
v=/3-74:0 ,  /34:> Without loss of generality, we can take /3>~ and 
i(T-)>i(T+). If i (T-)>fl ,  then (8.49) is satisfied so by Theorem (8.48) we can 
take ~=( / l -b , /~ ) ,  .r k=i (T- ) -y>v ,  and m=0. Thus suppose i(T-)</3. 
Then by Theorem (8.30), N-i(T+)<fl  or i(T+)>7. We claim 

(8.54) i(T-)-7+i(T+)-7>=v. 
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Indeed by Theorem (8.30) again, 

i(T-)-7+i(T+)-y>__N-27=v. 

Hence by Theorem (8.48) and Corollary (8.51), we can take J t = ( p - 6 ,  6), 
=(#,/~+6), k = i ( T - ) -  ~,, and m=i(T+)- y. 

It remains to prove Theorem (8.48). The idea is to obtain the critical points 
of g(2, .) by taking the minimax of g(2, .) over appropriate subsets of Q. This 
requires several additional preliminaries. First we construct the desired subsets 
of Q. 

Let g={A~QIA is closed and invariant}. Let K c T -  and define ~ ( K ) =  
{r x) I (s, x ) e ( -  0% 0) x K}. Thus ~(K) is a cone over K. Set J / =  {Ze C(Q, Q)] z 
is 1 -1 ,  equivariant, and g(x)=x if x~T-}.  For l<j<i(T-) ,  define Gj 
={Z(q~(K))IZEJr K = T - ,  i(K)>j}. By Corollary (8.24), q~(K)~g. Hence 
X(cb(K))~g. Lastly define 

Fj={A-W]AeG,  for some k,j<__k<=i(T-), WeN, and i(W)<=k-j}. 

(8.55) Lemma. The sets Fj possess the following properties: 

1 ~ I S j + l ~ / ' j j  , l<j<i(T-) .  
2 ~ If Ze~g and BeFj, then z(B)~Fj. 

3 ~ I f B e F / a n d  Zeg  ~ with i(Z)<__m<j, then B-ZeFj_  m. 

Proof. 1 ~ is trivial. Let B = A - W  as in the definition of F/. Then z ( A - W )  
= z ( A - W )  =z(A)-z(W). Since AEG k implies z(A)eG k and i(z(W))=i(W) by 

(6.4), z(B)eFj and 2 ~ is verified. To check 3 ~ again let B = A - W .  Then B - Z  
- - A - W - Z = A - ( W • Z ) .  Since A~G k and i (WwZ)<=k- j+m=k-( j -m)  by 

(6.6), B - Z E~_ m. 
With the aid of these sets, we define 

(8.56) cj(2)= inf maxg(2, x), l<=j<=i(T-). 
B~Fj x~B 

We will show that an appropriate subset of these numbers provides us with the 
critical values whose existence was asserted in Theorem (8.48). 

(8.57) Lemma. If  i(T-)> y and 0 < # - 2  is small, then cj(2)>O for y<j<=i(T-). 

Proof. By 1 ~ of Lemma (8.55), c~<=cj+ 1. Thus it suffices to show c~+ 1(2)>0. For 
p sufficiently small and xe~Bpc~Jff +, it follows from (8.47) that 

(8.58) g(2, x)>a(p-2)p 2 

where a is a constant independent of p. (In fact a is a multiple of the smallest 
positive eigenvalue of (H=(0) ( ,0  for (eEl .)  Since dim JV+=2fl ,  by (7.7), 

i(dBpc3~4f+)=fl. Let BeF~+ 1 so B=Z(~(K))-W with K~T- ,  i(K)=m>7+l, 
and i(W)<m-(~+ 1). For s>co depending on X and K, X(~O(-s, K))cBp. By the 
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Piercing Property (6.9), 

(8.59) i(z(~([-co, 0] • K))r~OBp)=i(K)=m. 

Therefore by (6.4) and (6.5) 

(8.60) i(B c~ t~Bp) = i((Z(r c~ ~Bo)- W) 

>= i(X(~(K))nOBp)-i(W)>=m-m+7+ 1 = y +  1. 

Corollary {7.7) now implies 

(8.61) BnOBpc~A/'+ ~ .  

Let ~eBc~OBpc~Jff +. By (8.58), 

(8.62) maxg(2, x)>g(2,~)> min g(2, x)>=a(,u-2)p 2. 
x e B  x ~ O B p n , ] f  " + 

Since (8.61)-(8.62) are valid for all BeF~+ 1, it follows that 

(8.63) Cy+ 1 ~ a { ] / - - 2 )  p 2 . 

(8.64) Corollary. I f  i (T-)>fl  and O<2- / a  is small, then cj(2)>O for 
fl<j<=i(T-). 

Proof. Same as that of Lemma (8.57) with Y +  replaced by X - .  

To show that the cjs of Lemma (8.57) are critical values of g(2, .), re- 
quires a variant of a standard result from the calculus of variations. Let Azb 
= {x~Q [ g(2, x)<-_b} and K~b= {xe~) [ g(2, x)=b, gx(2, x)=0}. 

(8.65) Lemma. I f 2  is near p, be(O, c), g>0, and U is any neighborhood of Kxb, 
then there exists an ~(0,  ~ and r/eC([0, 1] x Q, Q) such that 

1 ~ t/(s,'): o z ~ g ,  s~[0, 1], 
2 ~ t/(s, x)=x if g(2, x)e[b-~-, b+g], 

3 ~ t/(s, x) is a homeomorphism from (~ to C) for all se[0, 1], 
4 ~ t/(1,A~,b+ . -  U)cAx,b_~, 
5 ~ If K~,b=~, t/(1, Aa, b§ b-~. 

Proof. A proof of Lemma (8.65) (without 1 ~ for the case in which Q is a real 
Banach space can be found in [30] or [31]. Thus we merely indicate the 
modifications required here to employ the earlier proofs. To satisfy 1 ~ it suffices 
to obtain t/as the solution of an ordinary differential equation of the form (8.22) 
where V is a locally Lipschitz continuous map of X to X and is equivariant. 
Let w: I R + ~  IR + be defined by w(r)= 1 if 0 < r < p, w(r)= 0 if r>  2p, and w(r) is 
linear between p and 2p. For the moment, p is free. Define d(x)= IIx-aQIIx. 
Then d(Lox)=d(x ) since 2s~Q implies Lo2eO Q. Set q)(x)=w(d(x)). Thus q~ is 
equivariant and Lipschitz continuous in Q as is V(x)= -~o(x) g~(#, x ) - ( 1 -  cp(x)) 
gx(2, x) via Remark (8.27). 



172 E.R. Fadell and P.H. Rabinowitz 

A vector field kg on (2= ~9-{xeQ.lv(x)=O} is called a pseudogradient vector 
field for v(x) if 7 j is locally Lipschitz continuous in Q and 

II ~(x)ll 5 2 Ilv(x)ll 
(8.66) 

(7'(x), v(x)) > II v(x)II 2 

for all x~0.  Since gx(#, x) has no critical points near ~Q, neither does gx(2, x) for 
2 near #. Hence for p sufficiently small, if # is appropriately scaled in 
{x~QId(x)<2p}, ~" is a pseudogradient vector field for -g~(2, x). Multipli- 
cation of ~" by another scalar Lipschitz continuous equivariant function as in 
[30] or [31] produces a V for which the corresponding flow satisfies 1~ ~ 

(8.67) Lemma. Under the hypotheses of Lemma (8.57), cj(2) is a critical value of 
g(2, "), 7 < j < i(T-). Moreover if cj . . . . .  cj+,_ 1 =-b, i(K ab)> r. 

Proof It suffices to prove the second assertion. Clearly Kabeg. If i(Kab)<r, by 
(6.5), there is a neighborhood U of K~b such that i(U)<r. Choose ~-=�89 in 
Lemma (8.65). By that lemma with the above choice of U, there is an e~(O, ~ and 
an qsC([0,  1] x Q, Q) such that 

(8.68) q(1, Az, b+~-U)cAz, b_ ~. 

Choose BeFj+ r_ 1 so that 

(8.69) maxg(2, x ) < b + e = c i + , _  1+~. 
x~B 

% 

By 3 ~ of Lemma (8.55), B - U e F  i. If 2 is close enough to # so that g(2, x ) < 0  for 
x~T- ,  by 1~ ~ of Lemma (8.57), q(1, . ) ~ / .  Hence by 2 ~ of Lemma (8.55), q(1, B 
- U)~F/. Therefore 

(8.70) max g(2, x ) ~ b = c j  
xer/(1, B -  U) 

which contradicts (8.68)-(8.69). 

(8.71) Remark. A similar argument shows the c]s of Corollary (8.64) are also 
critical values of g(2, .) with a corresponding multiplicity statement. Observe 
also that if i(Kzb)> 1, by Remark (6.16), K~b contains infinitely many distinct 
critical points. 

(8.72) Lemma. Under the hypotheses of Lemma (8.57)for 7<j<i(T-) ,  let 
xj(2)~Q be a critical point of g(2,') corresponding to cj(2). Then xj(2)--~0 as 
2 ~ # - .  

Proof Observe that q~(T-)eF i, l < j < i ( T - )  and if x ~ ( T - ) ,  g(#, x)<0.  Since 
O ~ ( T - ) ,  

max g(#, x)=O 
x ~ ( T - )  
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Moreover since g(2, x)-+g(t~, x) uniformly for x~0 as ~.~#, 

(8.73) 0<c~(;~)< max g(2, x)-~0 
x ~ ( T - )  

as 2 ~ p - .  Therefore along a subsequences of 2's converging to #-,  we have 
xj()~)---~x~Q with g(#, x)=0 and gx(/~, x)=0. Since 0 is the unique critical point 
of g(#, .) in ~), the result follows. 

Proof of Theorem (8.48). Immediate from Lemma (8.67), Remark (8.71), and 
Lemma (8.72). 
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