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Introduction

The main object of this paper is the investigation of a “Milnor number” u for an
arbitrary reduced complex curve singularity (X, x,) =(C", x,). The definition,
which uses the dualizing module of Grothendieck, is purely local and depends
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only on the local ring of (X,, x,). We show that pu enjoys the following
topological properties which are analogous to the classical case of plane curves
and which justify the name:

Let B, @" be a sufficiently small ball with center x, and X,<B, a
representative of (X, x,). Let Dc € be a sufficiently small disc with center 0
and f: X — D a (flat) deformation of X ,'. Then X is a complex surface (in general
singular) and we may assume that X is contained in B, x D such that f is the
projection to the second factor. Let p(X,) denote the sum over all Milnor
numbers of the singular points of X,=f"!(1). We show that u(X,)—u(X,)
=dimgH'(X,, €), so u measures the vanishing (co-) homology in the family
(X),p if t tends to 0. Note that u(X,)=0 if and only if X, is smooth, but that
there exist curve singularities (X, x,)} which have no smooth deformations. The
other property of u is the following. Assume that {x,} x Dc X and that X,
—{(xq, 1)} 1s smooth. Then (X, (x,, 1)) is constant for all ¢ if and only if
f: X->D 1s homeomorphic to a product family. These properties of the Milnor
number are known for isolated hypersurfaces singularities and were proved by
Milnor [Mi] and Lé-Ramanujam [L-R] respectively.

Though we use topological arguments, our methods are mostly algebraic or
analytic and make use of the coherence of the hypercohomology of certain
complexes. These methods, originally due to Grothendieck, were introduced and
used by Brieskorn [Br] in the study of hypersurface singularities.

Our definition of u occurred already implicitly in a paper of Bassein [Ba],
who considered only smoothable curves. He introduced the fruitful idea to
replace the module of differentials by the dualizing module of Grothendieck.

Here is a short outline of the contents of this paper, each chapter itself being
headed by a short summary. The first chapter contains the definition of p, a
proof that it coincides with the classical Milnor number for complete in-
tersection curves, a proof of the formula y=26—r+1, which is due to Milnor
for plane curves, and some other elementary formulas concerning u. Chapter 2
and 3 are the most technical parts of the paper, but they are basic for what
follows. We give a simple proof, using the main theorem of Kiehl and Verdier
[K-V], of the coherence theorem mentioned above for families of isolated
singularities. This theorem is due to Brieskorn for hypersurfaces and to Hamm
in full generality (see also the beginning of 2.1). Moreover we deduce a Gysin-
type exact sequence and give a criterion for the freeness of the hypercoho-
mology. All this together allows us to give a topological interpretation of u in
Chap. 4. In Chap. 5 we give a short discussion of (topological) equisingularity in
higher codimension (5.1). Note that there is a fundamental difference from the
case of plane curves, since the most significant topological invariant of a plane
curve singularity, the link, is trivial. Then we state an equisingularity theorem
{5.2), part of which was mentioned above. These investigations were initiated by
Zariski’s “Studies in Equisingularity” [Z,] and motivated by the existing vast
theory for plane curves (and - more generally - for hypersurfaces). For the
readers convenience we give a short summary of these results in 5.3, contrasting
them to the general case. The explicit examples and counterexamples are

deferred to Chap. 7. In Chap. 6 we use our methods to investigate several other
! The vague term “sufficiently small” is often used in order not to complicate statements. The
precise meaning will become clear from the context and from the proofs. In this case cf. §2.1 for a
precise definition
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numerical invariants of reduced curve singularities. In particular, we prove a
conjecture of Berger concerning the torsion of the module of differentials for
curves which have deformations lowering ¢ sufficiently. Moreover we apply the
coherence theorem to obtain semicontinuity of various numerical invariants.
After that we study generic projections and generalize Zariski’s discriminant
criterion for equisingularity to complete intersection curves. For non-plane
curves this criterion is definitely stronger than “p=-constant”. In Chap. 7 we
state the announced examples in order to illustrate how the behavior of y in
general differs from the case of a plane curve. We end with a short discussion of
the curve singularity consisting of the n axes in €". The properties of yu are
already sufficient to determine all its deformations. Some of our results were
announced in [B-G].

This work was done while the first author was a guest of the Ecole Polytéchnique at Palaiseau,
and the second a guest of the IHES at Bures-sur- Yvette and of the Mathematics Departement of the
University of Nice. It is a pleasure to thank these institutions and the mathematicians there for their
warm hospitality and support. Especially we would like to thank L& Diing Trang and B. Teissier at
the Ecole Polytéchnique, N. A’Campo and P. Deligne at the IHES, J. Briangon, A. Galligo and M.
Granger at Nice and last but not least H. Hironaka for fruitful discussions.

We wish to express our thanks to the Deutsche Forschungsgemeinschaft and the Stiftung
Volkswagenwerk for financial support.

1. The Milnor Number

We define a Milnor number u for every arbitrary reduced curve singularity. For
the definition we need the notiom of a dualizing module in the sense of
Grothendieck. More classically this module can be described as the regular
differential forms in the sense of Rosenlicht. We show that our definition
coincides with the now classical Milnor number of plane curves introduced by
Milnor [Mi] and for which the calculation was extended to complete in-
tersection curves in [G,]. From the definition we deduce immediately a formula
which relates u to the d-invariant and the number of branches, generalizing a
formula of Milnor for plane curves. Finally we characterize the ordinary n-tuple
points in €" to be those with minimal u.

1.1. Definition of p

Let (Xq. Xo)=(C", xo) be a reduced curve singularity, ie. the germ of a I-
dimensional reduced complex space. Let Q,‘(O!XO be the module of holomorphic
I-forms on (X, xo) (i.e. the module of Kdhler differentials) and wy, ., the
dualizing module of Grothendieck. wy, ., is uniquely defined only up to non
canonical isomorphism; we take the definition of Grothendieck (cf. [A-K],
[Gr], [HK,]):

s = n—1 n
Wxo, xo' _EXt(Vcn, xo(@xo, xg? TECH, XD)’

which can be seen to be independant of the embedding (X ¢, x,} < (C", x).
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Let n: (X, xg)— (X, xo) be the normalization, where (X, x,) is the mul-
tigerm (X, n~ !(x,)). Using the functoriality of Q! and w we obtain a mapping

.. 1 1 ~
Cxo an‘ xo T My 'Q(XO, x0) = N D(Xo.x0) " Pxp. x0°

Composition with the exterior derivation d gives

a [
. 1 Xo
d: (QXo,xo on.xo Wy, xo

which we denote also with 4.

Definition 1.1.1. Let (X, x;) be a reduced curve singularity. We set

p=p(X,, xo)= dimc(wxo, xo/d(gxo. xo)

and call p the Milnor number of (X, x,).
We will immediately see that this is a finite number. But first we give another
equivalent definition of wy, . . Let Xo=n""(x,) and Q% (X,) be the germs of

meromorphic forms on (X, x,) with a pole (of any order) at most in X,. We set

0f = AaeQiz (Ko)l Y, Tes, (fa)=0 VfeOy, .}

PExo
These are Rosenlicht’s regular differential forms (cf [Se], IV. 9). Again we have a
canonical mapping

— 0!

) 1 s R
d: Cxo,xo Xo,x0 " My Q(Xo,xo) Wx,, x0°

It is proved in [A-K], VIII that there is a canonical isomorphism wy, , =%, .,
such that the following diagram commutes

Wy, x0

Oxorns = |1
TR
0 X0

Grothendieck’s definition has the advantage that it is obviously functorial
and that it can be extended immediately to higher dimensions and to the relative
case. On the contrary Rosenlicht’s definition is better suited for concrete
computations.

Example. (X o, xo)=({(x, y, z)| x=1¢3, y=t* z=1}, 0)=(C?, 0).
dOy, =t"C{}dt, wy,  =Ct > d@®Ct>dt@C {t} dt.

Therefore u=4.

Now we assume that (X, x,) is a complete intersection, given as the fibre of
the holomorphic mapping f=(f,,..., f,_1): (€% xo)—>(C" 1, 0). If we intersect
the nearby fibre f~ (1) with a sufficiently small ball B centered at x, then X,
=B~ f~'(t) is an open Riemann surface (for sufficiently general, small ¢). Its
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first Betti number b, (X ) is called rank of the vanishing homology or Milnor
number of (X, x,). Milnor [Mi] showed that for n=2

| of of
b,0¢)=dime s, o (2. ).

For arbitrary complete intersection curves we have

b (X,)=dimg @, ,,/dO

Xo, xo0°

This was proved in [G,].

The interpretation of u as rank of the vanishing homology in general will be
discussed in Chap. 4. Here we give a direct algebraic argument which shows the
coincidence in the case of a complete intersection {cf. also Corollary 6.1.6).

Lemma 1.1.2. Let (X, x,) be a reduced complete intersection curve, then

u=dim¢ 25, . /4O

Xo.x0"

Proof. For complete intersections the dualizing module is equal to

dx, n...ndx,
Xo, xo0

wxo,xoz (
df

{cf. [Se]) where we have written df instead of df; A... Adf,_,. Exterior multipli-
cation with df induces an isomorphism

NI
on.xo/d(QXo,xo —;" Qu:n. X0®(9Xo,xo/df FAN d(QXO, xo0'

Now consider the exact sequence

0 TQ! — Q!

Xo, xo Xo, xo

1d0

Xo, X0

Adf
—— Qen, ( ®0x, /Af NdOy, .

@Oy, JAfAQL S0

Xo. xo Xo, xg

where TQy, . is the torsion submodule of Q} . .

But it was shown in [G,], Proposition 1.11 iii) that

dimg T4

Xo,XO:dimwgil‘I”,xo@@ /df/\91

Xo, xp Xo, xp?

which proves our assertion. W

1.2. Some Consequences

Let 6 =0(X, xo)=dimgn, O 5-755/0y,. x, b€ the o-invariant and r=r(X,, x,) the
number of irreducible components of (X, xo). The following lemma is due to
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Milnor [Mi] for plane curves; his proof was generalized to complete in-
tersections by Giusti [Mi]. The following proof is due to Bassein [Ba], who
considered smoothable curves. From our point of view Milnor’s formula is a
theorem about residues and duality.

Proposition 1.2.1. 1) u=26—r+1,
2y u=0iff (X,, xo) is nonsingular.

Proof. Consider the exact sequences

0->C 1 on O(Xo xo)/(gxo xoﬂn Q(Xo Xo)/dOXO Xg O’

0—>n* Q(Xo.xo)/d(QXO,xo wxosxo/d(OXo,xoquQ xo/n Q(Xg o1 —0.
Using Rosenlicht’s definition we see that there is a perfect pairing (cf. [Se], IV.9)
(14 O %m0/ O o, x0) ¥ (@, o/ My o) > €

given by [f]x [a]— ) res,(fa). So both modules have length 6 and 1) follows.
pPeXo
2) is now an easy consequence. W

Assume (X, xo) = U (X, xo) such that XinXi={x,} for i+j (X}, x,)

need not be 1rredu<:1ble) Set

r

(X, x0)= U XO’X

J=i+1
8;=8(X}, xo) and p;=pu(Xh, xo). For two arbitrary curves (C,, x,) =(T", x,).
i=1,2, we set

(Cy- Cy)=dimg Ogn, x0/11 +1,

where I; is the ideal of (C;, x,) in Ogn

r r—1
Lemma 1.2.2. (Hironaka [Hi]). 6= ) &+ Y (X4 X))

i=1 i=1
Proof. We may assume r=2, the general case follows by induction. Let @
=0Opn, ., =101, the ideal of (X4, xo)=(C", x,). Consider the inclusions

» X0?

OI=0/1,®0/1,—~0/[,®0/1,=0x—,

where (/I; denotes the integral closure in its total ring of fractions. Now the
lemma follows from the exact sequence

0— O/ > 0/1,®0/1,—0/1,+1,—0. W

With the same notations we obtain

r r—

Corollary 1.2.3. 1) p— 1=} (y;—1)+2 Z (X5-X,).

i=1 i=1

) pz ) pHr—L

i=1
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Remark. For a plane curve (X,, x,) the number (X}-X,) is the intersection
multiplicity. In particular (X§-(X3u X3)=(X§-X3)+(X§- X3). This is not true
in general as can be seen already from the following example.

Example. Let (X, xo) =(C", x,) be the union of the n coordinate axes, which is
defined by x,x,=0, 1<i<j<n. Since (X,-X,)=1 we obtain y=n—1. We call
each singularity analytically equivalent to (X, x)} the ordinary n-tuple point. It
can be characterized by the minimality of u:

Lemma 1.2.4. Let (X, X,) be a reduced curve singularity. Then

1) u=0.

i) If (X, xo)=(C", x,) is minimally embedded then pzn—1.

iii) If one of the foregoing inequalities is an equality then also the other one
and (X o, x,) is the ordinary n-tuple point.

Proof. Since 6=r—1 and d=r—1iff (X, x,) is the ordinary n-tuple point, i) and
one half of iii) follow from Proposition 1.2.1.

Let m be the multiplicity of (X, xo). It is well known that for a curve m=n
where n is the embedding dimension. We have also 6=m—1 by

o=dimg(n, Oz;=/M) —12dimg(n, Ox;—/Mn, Oy, )—1=m—1

Xg, xo Xo, X0

(Mt denotes the maximal ideal of Oy, ).

Hence
u=20—-r+lzm-1)+o—-r+1=2n-1

and equality holds iff 6=r—1. W

2. Coherence of the Hypercohomology

In this section we consider flat families f: X — D of complex spaces of arbitrary
dimension with at most isolated singularities, where the parameter-space is a
small disc D= C. We consider rather general complexes (£, d) of sheaves on X
of which we are going to prove the coherence of the hypercohomology with
respect to the direct image functor f,. This generality is needed in order to
cover all our applications. A good example one should keep in mind is the
complex (2Yy,p, d) of relative differential forms of X/D, although later modified
versions of this complex are more important.

The coherence theorem and the Gysin sequence of Sect. 3 are the essential
tools for our investigation of ¢ and other numerical invariants in flat families of
curves. These tools were introduced by Grothendieck and used by Deligne, Katz
and others for the study of proper smooth families of algebraic varieties. They
were developped and modified by Brieskorn [Br] in order to investigate
algebraically the topological invariants of isolated hypersurface singularities.
Generalizations to complete intersections were carried out in [G,] and later by
Hamm [Ha] to arbitrary singularities.

2.1. Statement of the Theorem

The coherence for Q% ;, is already known and was proved by Hamm [Ha] under
somewhat more general conditions. Hamm’s proof, which has not been pub-
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lished, is rather complicated due to the fact that he treats also non isolated
singularities and therefore has to use Hironaka’s resolution of singularities. So
we decided to present our simple proof for all (4", d). Using a Mayer-Vietoris
argument of Brieskorn’s proof for hypersurfaces [Br] we show that the coher-
ence is an easy consequence from the main theorem of Kiehl-Verdier [K-V].
Though we are later only interested in the case of curves we treat here the
general case since it is not more complicated.

Let (X, x,) be the germ of a pure m-dimensional complex space (m = 1) with
isolated singularity, let¢ Do be a small open disc with center 0 and
fi(X,x0)—(D,0) a (flat) deformation of (X,, x,). This implies that (X, x,) is
pure (m+ 1)-dimensional and (f ~1(0), x,) = (X, X,)-

Once and for all we choose a “good” representative for f:Let X, be
embedded in a small open ball B, < C" with center x,. We may assume that X is
a closed analytic subset of B=B,xD and f:X—D is the restriction of the
projection on D. C(f)=X denotes the set of critical points of f. We shall
identify B, with B, x {0}.

If B, is sufficiently small and D is sufficiently small with respect to B, we may
assume that the following holds:

a) X and X, are contractible and X j~—{x,} is nonsingular,

b) f: X — D is flat and f|c: C(f)— D is finite,

¢) 0B, x {1} intersects X,=f~'(t) transversally in regular points of X, for all
teD and each sphere S?"~ ' < B, with center x intersects X , transversally.

Under these assumptions dim C(f)=<1 holds and all fibres X,, teD, are n-
dimensional Stein complex spaces with at most isolated singularities.

We define now a rather general class of complexes and study their hyper-
cohomology.

Let (£, d) be a finite complex of sheaves on X,

D] A B SN SN

with the following properties:

(P} A'?is a coherent Oy-module for all p,

(B) dris f~1Op-linear for all p,

(B) HUA)=f"'F where F is an O -module,

(B AP\ ¢y is a free Ox_cpmodule (p20) and (A |y _ ¢y dlx_c(p) is exact
for p>0.

(f ~' # denotes the topological preimage sheaf).

The sheaves of hypercohomology R” f, (%) (cf. [EGA]) are ¢ -modules and
the aim of this section is the following theorem.

Theorem 2.1.1. (Brieskorn, Hamm).
(1) R?f (A7) is a coherent Oy-module for all p,
() R? [ (Ay=H(f, A7),
() R f (A No= AT(A ).

(Z, denotes the stalk of the sheaf # in x).
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This theorem (for (X7, d)=(£%,p, d)) was proved by Brieskorn [Br] for
hypersurfaces and Hamm [Ha] in the general case.

Remark. The fact that A#'?|y_ ., is free, is used only in 3.2.2-3.2.4.

2.2. Proof of the Coherence

For the proof of Theorem 2.1.1 we need some preparations.

Proposition 2.2.1. Let B\, = B, be an open ball with center x,, let ¢ resp. € be the
radii of B, resp. By, and assume O0<|s—¢'| to be sufficiently small. Then for each
open subset U <D and for each p the restriction maps induce isomorphisms
HY(f Y ), [~ F) = HA(f (U nByx D, f =1 F)
=S HY(f~"(U)nByxD,f~*F).
Proof. Because of the assumption 2.1 (¢) it is possible to find a vector field in the
neighbourhood of X —X nBj, x D which respects the fibers of f such that the
integral curves induce a strong deformation retraction from X onto X n By x D.

Using a Mayer-Vietoris sequence the proposition follows as in Brieskorn [Br],
p-20,21. W

Corollary 2.2.2. R? f, (f ' #),2H"(X,, #,), teD.
Proof. This follows from [Go], Theorem 4.11.1. W

Lemma 2.2.3. With the notations of 2.1 and Propositions 2.2.1 the following holds:
For each Stein open subset 9 < D the restriction map

r(f="), A")>T(f~ (W) nByx D, A7)

is a quasi-isomorphism (i.e. induces an isomorphism of the cohomology groups ).

Proof. Consider the second spectral sequence of the hypercohomology of the
functor I' with respect to #". The restriction map induces the following
commutative diagram:

ES9=HP(f 11 U), #9(A) =T/ 7 (), A7)

"ERt=HP(f~ Y(U)nByx D, #UA N=>H T~ "(U)nByx D, A7)

E5% »’E%% is an isomorphism for g>0 if C(f)n(X —X nByxD)=0, which is
true for |e—¢| sufficiently small. The isomorphism E2°—’E2° follows from
Proposition 2.2.1. because of property 2.1 (P;). Therefore the mapping between
the hypercohomology groups is an isomorphism. On the other hand the first
spectral sequence

HP(HO(f @), A7) =T =), A7)

shows that H?(I'(f ~ W), #") = (f ~ (%), A") since [~ (%) is Stein and A7
is coherent. The same holds over f~ (%)~ B}, x D and the lemma is proved. W
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We are now in the position to apply the main theorem of Kiehl and Verdier
([K-V1], Theorem 3.7).

Theorem 2.2.4. (Kiehl-Verdier). Let (A),.1) be a nuclear chain of Fréchet
algebras and let N°, M be finite complexes of nuclear A,-modules. Moreover let
@' N'— M’ be an Agy-linear subnuclear quasiisomorphism of complexes and let A,
be transversal (over A,) to N?, MP for all p and all t. Then there exists a finite

complex F' of free, finitely generated A,-modules and a quasiisomorphism
FF—»4,®,N"

Proof of Theorem 2.1.1. Let D=D, be the disc in € of radius § with center 0eC
and let 0<p<é§. We put

A,=ID;_,,, Op),

N'=I'(X, A")y=ID, f, A7),

M'=T(X B}, x D, #")=T(D, (f|X nByx D), "),
@": N'— M’ the restriction map.

By Lemma 2.2.2 ¢ is a quasiisomorphism, and this is indeed the reason for the
coherence. All other assumptions in the theorem of Kiehl-Verdier are of general
nature and they are fullfilled since f is a Stein mapping of complex spaces. We
refer to [Do], where all the properties we need are stated. By the theorem there
exists a complex F* with F?= A%» for suitable k, and a quasiisomorphism

h:F'—T(Dy_,, f 4.

Let %’:(9’;,1;7” and Z" the sheaf complex associated to F'. For each Stein open
subset # <D,_, h induces an isomorphism

r@, #(F) = H'((f~ (), X))
(cf. [Do], Prop. 2 and Cor. to Prop. 3). Therefore
HP(f AV = AHP(F)

and the second sheaf is coherent. Since f is Stein, the spectral sequence
HPRU A )= RPHf (A7) degenerates and therefore H#P(f, (A7) =IRPf (A7)
This proves 2.1.1 (1) and (2).

2.1.1. (3) results from the fact that X, is contractible (cf. [G,], Prop.3.1. and the
proof of Prop. 3.1.1). MW

3. Investigation of the Hypercohomology

We keep all the notations and assumptions of 2.1, but from now on we
specialize to families of curves, i.e. we suppose m=1.

The reason why we restrict our investigations to families of curves (at least
for the moment) becomes clear in this section: Stein spaces of dimension 1 have
nonvanishing cohomology groups only in degree 0 and 1, in particular they have
spherical fibre cohomology. It follows from the Leray spectral sequence that for
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fibrations with spherical fiber there exists a long exact sequence, the “Gysin
sequence”. We show an analogous result for the hypercohomology in 3.1,
though the actual role of the base and the fiber is just opposite to the case of the
Leray spectral sequence. In 3.2 we deduce necessary and sufficient conditions for
the hypercohomology to be free. Moreover we determine the difference between
the rank and the minimal number of generators of the hypercohomology, a
result which will be used in Chap.6 for the computation resp. comparison of
several analytic invariants of curves. The principle how we are going to use the
Gysin sequence and the freeness is explained at the end of 3.1 and 3.2
respectively.

3.1. A Hypercohomological Gysin Sequence

Let f: X—D be a good representative of a flat family f: (X,x,)—(D,0) of
reduced curves and let #” be a complex which satisfies (F),...,(F) (cf. 2.1).

Proposition3.1.1. Let teD and S(X,) be the (finite) set of singular points of X,.
The following holds:

(1) Rof*(%.)t;Ho(Xw(D)®¢g;r
2) Rf (A7) = D HU(AY), p>1,

x
xeS(Xy)

(3) There is a canonical exact sequence, the “Gysin sequence”

0> HY(X, O)@cF R (A)—> @ HI(A)—0.

xeS{Xy)

Remark. The proof makes use only of the properties (P;) and (P,) of 2.1 but not
of the coherence.

Proof. Consider the second spectral sequence
ERt=RPf, (A(A),= RIS (A7),
Let ¢>0. #(x") is concentrated on C(f) and f|,, is proper, therefore
E2tx HP (X, HUAT)).

Because of Corollary 2.2.2 this isomorphism holds also for ¢=0. From the
universal coefficient theorem we deduce

(*) E5°=HP(X, C)®Z,.

But X, is Stein and 1-dimensional. Therefore E5°=0 for p=+0, 1. Since for g+0
HUA )X, is concentrated on finitely many points by (P,) of 2.1 we obtain E5?

=0 for p£0, g+0 and E}*= gi—()x ) H4(A"). Hence we obtain an exact sequence

which we call (hypercohomological) Gysin sequence (cf. also [Go], 4.5.1, 4.6.1),
o> EY PSR f (A7), > ESP—EYP — ..

Therefore (1) results from (=), and (2), (3) from the Gysin sequence. W
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The Gysin sequence shows that the hypercohomology consists of two terms,
a topological and more global one (namely H'(X,, C)® %) and a local analyti-
cal part which is concentrated in the singular points of the fibers.

Our method how we use the Gysin sequence several times is the following:
Let a(X g, x,) be any analytical invariant of (X, xo) such that a(X ,, x,)=0 if x,,
is a smooth point on X ,. Assume there exists a complex 4~ on X as above such
that a{X,, xo)zdimcHl(.%”;o)/f.Hl(J{;o), and for simplicity suppose & =0y,
Consider now the Gysin sequence for t=0 and t+0. The coherence theorem
implies

(X, X0)Z Y #X,, x)+dimg H'(X,, T).
xeX,
If R f, (A7) is free we even have equality. This will be the case for a=pu. Of
course, not every analytic invariant of (X, x,} can be sheafified in this way.
Therefore it is useful to look for conditions on "~ which guarantee that
R £, (A7) is free. More generally we are interested in the missing term in the
above inequality. These problems will be considered in the following section.

3.2. Freeness of the Hypercohomology

Consider the following condition on the complex (4™, d):
(P5) The canonical mapping H°(A ")/ f H°(AHY— #(A")f A7) is bijective.

Since d: A" —"*" is f~! Op-linear it induces a C-linear mapping dy, on
Hyo=H"[fH1X,.

Remark. The assumption (P5) implies that the complex (£ , dy,) is almost an
“absolute version” of our complex (%", d). This means the following: (A7y,, dy,)
satisfies all the properties (P), ..., (P,) with respect to the mapping f: X ,— {0},
except perhaps the exactness property (P,). If X'y has this property, ie.
(A x| X0 tx0)» Dxo | X0 ixo) 18 €xact for p>0, then all the statements of §2 are
also true for &y (with the appropriate interpretation). The coherence in
particular implies that HP(#y, ) is a finite dimensional C-vectorspace. For
Hxo, xo=2x,. x, this is the well known theorem of Bloom and Herrera.

Lemma 3.2.1. Let (X7, d) satisfy (P,), ...,(P,). Assume that the canonical mapping
of (Ps) is surjective and that Aer(d': A''— A?) is a torsion free O,-module.
Then R [ (A7) is a free O p-module.

Proof. Because of Theorem 2.1.1 it is sufficient to show that H'(#, ) is a torsion
free O}, (-module.

Let weX,;, do=0 and fw=dg for some geA_. g represents an element of
H(A%, ) By assumption there is a g'e #° such that dg'=0 and g—g'= fh for
some he%ﬂ. Hence fw=dg=fdh and therefore f(w—dh)=0. Now
—dheAzrd' since weAHerd', hence w=dh by assumption. The lemma is
proved. M
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We consider the local cohomology sheaves, (cf. [Gr]),
Ho(A7), p20,

which are coherent (y-subsheaves of 7. We shall freely make use of the fact
that #,2(#'7) coincides with the ¢ -torsion submodule of #? since H Pl o) 1S
free after (P,) of 2.1. #2(A") is a subcomplex of #™ and we can define the
quotient complex

(A, )= (A"/HLA), d/ HUAT)).

Lemma 3.2.2. If (47, d) satisfies (P,),....(P;) the same holds for (A, d). Mo-
reover, R' f (A7) is a free (-module which coincides on D— {0} with R f,_(A4").

Proof. We have to check (P;) and (P,) for (7, d), the other properties (P) being
obvious.

(P)): We show #°(H")=#°(A")=f~' .
Note  that  #2(A°)nf '#=0, so we have an injection
f1F = (A )= A Now let ge #° be such that dge #2 (A"). This implies

dglX —{xq} =0, hence g|X —{x,}ef~'&#. But g|X —{x,} has a unique pro-
longation to an element g'e f~' #. Since g’ —ge H#,. (A °) the claim is proved.

(Ps): It suffices to show #°(AHy,)=#"(Ay,).

But this follows in the same manner as we proved (P;) since H#°(#y) is a
constant sheaf by (P;). The rest of Lemma 322 is true in view of
Lemma 3.2.1. N

For the following proposition we need some notations. Let Az:d* denote
the kernel of d': #"'— &2, For an (¢, -module M resp. an ¢/,-sheaf .# we set

M) =M/D, M resp. M()=4 /M, M,

where M, denotes the maximal ideal of @, ,. For a sheaf # of f~! ¢y -modules
on X we write

hJ(c)o.Xo(y):dlmC(Hgo(f)/ngo(g’_))
where HY (—) denotes the stalk in x, of #2(—).

Proposition 3.2.3. Assume that (X, d) satisfies (P)),...,(Ps) and let teD—{0}.
Then

(x) dimeR* f,(#7)(0)—dime R* £, (™) () =dim¢ H' (H (A7) (0).

In particular R f, (A7) is free iff the complex HJ (A7) is exact in degree 1.
Moreover if H2(A °)=0 then the right hand side of () is equal to b2, y (Herd').

xa, Xo

Proof. From the proof of (P;) in Lemma 3.2.2 we deduce the following exact
sequence

0—H'(H2 (A7) — H' (A ) > H' (X))
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This is part of the cohomology sequence to 0— HY (#7)— A" — A —0.
Since H'(X,) is free, H'(#", ) maps onto a free module of the same rank.
Hence

dime H" (H#.2)(0)— dimg H' (7.) (0) = dimg H' (H?

X0

(AN(O).

The terms on the left are equal to dimgR! £, (#7)(0) and dim¢R! f, (#7)(0)
respectively. By (3.2.2) we obtain

dimgR! £, (") (0)=dim R £, (A7) (t)
=dimeR! £, (A7) ().

This proves the proposition. W

Corollary 3.2.4. Assume that (A", d) consists of two terms only,
040! 0,

and satisfies (Py),...,(Ps). Assume moreover H°(A")=f"'0, H2(H°)=0
Then:

) R f (A= f*fl/df* A0 is coherent,
2) R' f,( 3{')0_ /d o
3) dime At A — Y dimA JdAL  =dimg HY(X,, C)+h®

X0, Xo
xeS(Xy)

()

where teD —{0}.
(Note that A =HF)(f—1t) A7)

Example 3.2.5. We can apply our theory also to the following, rather trivial
situation:

Let ¢:%9— % be an injective, Oy-linear (!) morphism of coherent (-
modules such that F/@(¥%) is concentrated on C(f). By the finite coherence
theorem, f, #/f, ¢(%) is coherent. We could have considered also the two terms
complex 0—%— % —0, which satisfies (P,),...,(P,) (cf. remark after 2 1.1).
Then Lemma 3.2.1 says: If # is Op-torsion free and YRy, Oy, > F Ry, Oy, is
injective, then f, F/f, ¢(%)is a free @ p-module.

4. Topology of Flat Families of Curves

In this section we apply the machinery developped in Chap.2 and 3 to show
that u is a measure for the vanishing (co-) homology. Moreover we study the
topology of families of curves f: X — D with constant total Milnor number.

To do this we need the relative dualizing module of Grothendieck. Since we
could not find an explicit and easy reference, we give a short summary of the
definitions and results which we need in the sequel. For a general treatment see
the work of Hartshorne [H] (and [H-K,] for the absolute case).
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For the study of f: XD it is very useful to consider the family f: XD
where n: X — X is the normalization of X and f=fon. We recall the essential
properties of f which are due to Lejeune, Lé and Teissier.

4.1. Relative Dualizing Sheaf and Normalization

Relative Dualizing Sheaf. Let f: X—S be a Cohen-Macaulay morphism of
complex spaces (i.e. f is flat with Cohen-Macaulay fibers) of relative dimension
d. We assume that f is embeddable, i.e. there exists a commutative diagram

X<bY
A/
S

where g i1s smooth of relative dimension N and i is an embedding of X as a
closed subspace of Y of codimension N —d. (This is of course always possible
locally on X.)

Then the relative dualizing sheaf wy s exists and can be defined by
Wy s=i*Exty; (i, Ox, QY ),

where Q5 denotes the sheaf of relative holomorphic (Kdhler) N-forms of Y
over S. Indeed wy, is the unique non vanishing cohomology sheaf of the
dualizing complex f'COg (cf. [H], p.298, p.192). If in particular X itself is
smooth over § then wy, Q% . The definition of wy, is independant of the
embedding of f.

The most important property for our purposes is the local duality theorem
for finite morphisms.

Theorem 4.1.1 ([H], Th. 6.7., p. 170). Let f: X — S, f': X'— S be two embeddable
morphisms of complex spaces and p: X' — X be a finite morphism with "= fop.
Assume that wy,s exists. Then wy. s exists too and:

~ g ]
Py Wxris= %OW@X(P* Oy, wx/'s)’

Remarks 4.1.2. 1) wys exists if X —§ is Cohen-Macaulay. Since we will consider
small representatives either of germs of reduced curves (over a point) or of germs
of flat families of reduced curves over a disc, the existence of wy,s will be
guaranteed.

2) Since p is finite, p, is an exact functor and therefore knowledge of p, wy. s
is sufficient for the knowledge of wy. s: the @y-module structure of wy. s is
defined by the natural action of p, Oy. on # omy (p, Oy, wyg).

The properties of wy,s which we shall need are now easy consequences of
Theorem 4.1.1 and of the definition of wy.

Lemma 4.1.3. Let [:(X,x)—(D,0) and f": (X', x")— (D, 0) be two germs of flat
families of reduced curves, and f: X—D, f': X'—D sufficiently small repre-
sentatives.
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Then:

(1) wxp®,, Ox,Zwy, for every teD, where X, = f~ (),

(2) wx,pis Cohen-Macaulay,

(3) Let p: X' — X be a finite morphism satisfying fop=f'. There is a canoni-
cal morphism

Py Oy p ™ Wxyps

which is injective if p is generically injective.

Proof. (1), (2). Let 7: (X, x)—(CxD,0) be a finite, flat morphism where the
second component is equal to f. By [EGA], IV, 0.16.4.8 it suffices to show that
m, Wy, p is Cohen-Macaulay. But by 4.1.1

Ty Oy p= Homgg, (T, O, Og pp)-

Since  w¢,pp= Ry pp=Ccxp the right hand side is isomorphic to
Homeg (1, Ox, Og, p). Hence n, wy , is Cohen-Macaulay because 7, Oy is a
locally-free O, ,-module. Again by 4.1.1 we obtain 7, Wy p,®pcxp Oy =y Wx,»
where g=n|y : X,— € x {t}. This proves (1).

(3) The structural morphism ¢, — p, 0. induces a morphism
Py OxpEH omg, Dy Uxrs Wy p)— Homg (Ox, 0gp) =0y p.

If p is generically 1—1 then p, (y,/Ox is concentrated on a lower dimensional
analytic subset of X. Hence

%M(P* Wy p—™ wX/D) = f}f”mwx (P4 O[Oy, wX/D) =0

since wy,p is Cohen-Macaulay. W

Normalization. Let f:(X, x,)—(D,0) be the germ of a flat family of reduced
curves. Let

n: (X, %)= (X, x,)

denote the normalization of the surface (X, x,); here X,=n""(x,) consists of a
finite number of points (as many as there are irreducible components of (X, x,))
so that (X, %,) is a multi-germ of normal surfaces.

The essential properties of the composition

f~=f°n:()2, XﬂO)")(Da 0)

are given in the following theorem (due as stated to B. Teissier [Te,] 1.3.2,
maturing the earlier result in [L-L-T7]). To state it we need the following
notation: Let f: X — D (resp. f: X — D) be sufficiently small representatives of
the corresponding map germs f (resp. f) and put X,=/"'(t), X,=F"'(t), teD.
X, denotes the normalization of X,.
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Theorem 4.1.4 (Lejeune, L&, Teissier). (1) £ (X, %o)— (D, 0)) is flat.
(2) For sufficiently small teD—{0} we have X,=X, and

(X o) —0(X,)=5(X ),

where 6(C)= Y 6(C, x) and S(C) denotes the singular set of C for any curve C.
xe8(C)

Proof. (X, X,) is a normal surface, hence Cohen-Macaulay. Since the fibers of f
are l-codimensional, f is a nonzero divisor and therefore flat. As a normal
surface, (X, X,) has only finitely many singularities. By Bertini’s or Sard’s
theorem, f is singular at most in X, for sufficiently small D. So X, is smooth if
teD — {0}, and by the universal property of normalization, X,=X,.

By Remark 3.2.5 f; Oz/f«Ux is free on D. This implies the dimension
formula, observing that (X, X,) and (X,, x,) have the same normalization
(X %o W

Definition 4.1.5. (cf. [Te,]). (1) f: X — D admits a normalization in family if X, is
smooth for all teD.

(2) Assume that f:(X, xo)— (D, 0) admits a section o: (D, 0)-(X, x,) such
that X,—a(t) is smooth for all teD. Then f admits a simultaneous (resp. weak
simultaneous) resolution if f admits a normalization in family and

n"Y(a(D)=D xn~(c(0) (over D)
(resp. n= '(6(D)),.q=D x 1~ '(6(0)),,q (over D),

where the index “red” means the associated reduced space.

Remark 4.1.6. (cf. [Te;]). (1) Normalization in family is equivalent to &(X,)
=0(X,) by Theorem 4.1.4. In this case we say also that f: (X, x,)— (D, 0) is a o-
constant family.

(2) Weak simultaneous resolution is equivalent to: f admits a normalization
in family and the number of branches of (X,, o{t)) is constant for all teD. If in
addition the multiplicity m(X,, o(¢)) is constant, this is equivalent to simul-
taneous resolution.

4.2. Milnor Number and Vanishing Cohomology

Before we can prove the main result of this section we have to explain how to
extend the mapping d: Oy, . —4>Q%, ., — Wy, «, constructed in 11 to the
relative case.

Proposition 4.2.1. Ler f: (X, xo)—(D,0) be a flat family of reduced curves and
{1 X — D a small representative. Then there exists a natural morphism

. .ol
Cx/p* QX/D*’ Wx/p

such that the analytic restriction ¢y, =cxp®q, Oy, 1 Q5, — @y, , is the mor-
phism Qy  ,— wy, , constructed in 1.1 (teD, xeX,).
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Proof. Let n: X — X be the normalization of X,X,=n"'(x,). The critical set
C(f) of f=fon has codimension at least two in X (and by taking small enough
representatives we may assume C(f)cX,). Let i: X —C(f)~X denote the
inclusion. We define cy,p, to be the composition
Cxp Qkp o n, Qk p—n, i, i* Qyp=n i, i* oz ,=n, 0z brx, Wy p-
All the mappings in the diagram are canonically defined. We have i* Q5 ),
= i* wgp since foi is smooth and wg =i, i* wgp- This follows from the exact
sequence of local cohomology since wg,;, is Cohen-Macaulay by lemma 4.1.3 (2)
(cf. [Ba]).
cx,p is natural in the sense that if p: X’ — X is a finite morphism with fop
= f", then

Cx;p= :BX’/XOP* Cxip°%x x-

Using this fact it is now a matter of chasing the obvious diagrams to show that
the analytic restriction of ¢y, on each fiber coincides with the morphism
constructed in 1.1. W

Remark. The definition of ¢y, is possible in a much more general context (cf.

fEL).

Now we assume that the representative f: X —D of f:(X,x,)—(D,0) is
“good”, ie. satisfies the conditions (a)-(c) of 2.1. Then H®(X, €)=C and
dim¢ H'(X,, €C), teD— {0}, is independent of the chosen representative. Since X,
is contractible we call HY(X,, €), teD— {0}, the vanishing cohomology of the
family f: (X, x,)— (D, 0). The following theorem shows that g measures exactly
the vanishing cohomology. For the proof of that theorem we need nearly
everything we have proved so far.

We use the following notations (teD):

me=m(X)= 3 u(X,x),

xeX:

d,=8(X)=> (X, x),

xeX,

where we have to sum of course only over the finitely many singular points of
X

Theorem 4.2.2. Let f: X —D be a good representative of a flat family
Si1(X, xq)— (D, 0) of reduced curves. Then for all teD:
(1) X, is connected,
(2) po—p=dimc H'(X,, ©),
() Ho— 2009,
Corollary 4.2.3 (1) (Bassein [Bal]). If X, is smooth for t+0 then
w(X o, xo)=dimg H' (X,, C).

(2) The function s— p,, SES, .4 is upper semi-continuous on the reduced base
S.eq Of the semi-universal deformation of (X, x).
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Proof (of the Theorem). (1), (2). We define w},;, to be the complex with two non
vanishing terms,

. expod
Wxp: 0= 0y ——— wyp— 0,

where d: 0y, — Q) , denotes the universal derivation. Then #°(wyp)=f""0)
and #°(wy,p/f 0xp)=C, so it follows immediately that w},, satisfies the
properties (P,),...,(P,) of 2.1 and (P;) of 3.2. Since wy,, is Cohen-Macaulay
(Lemma 4.1.3) it is torsion free. Hence by Lemma 3.2.1, R" f, w}/p, is a free O)-
module. Therefore the Gysin sequence 3.2.3 (3) and Proposition 4.2.1 imply

dime H' (X, €)=dimgwy, . /dOy . — Y dimewy, JdOy
xeS(X,)
=Ho— M-

To see that X, is connected, we consider R f, (w}p), = H(X,, ©)® ), (3.1.1).
C

Since R f, (wY,p) is coherent with a free stalk of rank 1 over 0, the other stalks
are also free of rank 1. Hence H°(X,, €)=C and X, is connected.

(3) Now we consider the family f:(X,%X,)—(D,0), where Xq=n""(x)
={%,,...,%,}. Since we can consider each germ f:(X,%)—(D,0) (i=1,...,p)
separately, we deduce as in (1)

M(XO)_.u(Xr):dlmd: Hl (er C)

By Theorem 4.1.4 (2), X,= X, is smooth, hence u(X,)=0 if t40. Moreover we
have proved the following:

ﬂ(Xo):'i (26(X o, %) —r(X o %)+ 1), (1.2.1)
5(Xo. X)zr(Xo, %) 1, (1.2.2)
S(X)=08(Xo)—d(X). (4.1.4)

Since for any curve C, dimg H'(C, C)=dimg H'(C, €), we obtain:
pto— pt, =dimg HY (X, €©)2dimg H'(X,, €)= (X )26(X ;) =0,—9,. M

The next result, which is a corollary of Theorem 4.2.2 points already in the
direction of equisingularity.

Theorem 4.2.4. Let f: X — D be as in Theorem 4.2.2. Then the following conditions
are equivalent:

(1) u, is constant for all teD,
(2) 8, and r/= Y (r(X,, x)—1) are constant for all teD,

xeX;
(3) H'(X,, €©)=0 for all teD,
(4) X, is contractible for all teD.
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Proof. The equivalences (1)<>(2)<>(3) follow immediately from Theorem 4.2.2
and from p,=24,+r. The only thing to show is (3)=(4).

But H'(X,, €)=0 implies H(X,, €)=0, so that X, is the disjoint union of discs
by the classification of open Riemann surfaces. Therefore X, is homeomorphic
to a union of discs, each corresponding to a (global) irreducible component of
X,, with certain points identified. Now consider the corresponding graph of this
configuration. Since its number of cycles is equal to dimgH'(X,, €)
—dimg H'(X,, €©) by Mayer-Vietoris, there are no cycles and hence X, is
contractible. W

5. Topological Equisingularity

We shall apply the results of the preceeding section to show that “u=constant”
is a necessary and sufficient condition for a family of curves to be topological
equisingular in a certain sense. Since we consider curves which are embedded
with arbitrarily high codimension we have to explain what we mean by
“equisingular”. This is discussed in 5.1. Moreover, since in a u-constant family
of non plane curves the singularity may split (cf. Example 7.2.5), we consider
only families of curves which have at most one singularity. The situation for
plane curves is reviewed in 5.3.

5.1. Equisingularity in Higher Codimension

Let f:{X, xg)—(D,0) be a flat family of reduced curves and f: X —» D a good
representative in the sense of 2.1. In particular X < B, x D, where B, C" is a
small ball with center x,, and f is the restriction of the projection on the disc
DcC. We assume that there is a section ¢: D— X, d(0)=x,, of f such that
X,—o(t)=(XnBy x {t})—o(t) is smooth. Sometimes we shall identify B, and
B, x {t} if there is no risk of confusion.

If n=2, the topological type of (X, x,) is defined to be the homeomorphic
type of the pair (B,, X) for sufficiently small B,. It is also characterized by the
topological type of the link (0B, dB,n X ) and this in turn is equivalent to the
numerical data consisting of the Puiseux pairs of each branch of (X, x,) and of
all intersection multiplicities of pairwise distinct branches. Moreover, given two
germs of topological equisingular plane curves (i.e. having the same topological
type), they can be embedded into a l-parameter family as above. There exist
many other characterizations of the topological type, mostly due to Zariski, who
initiated the whole study of equisingularity (cf. [Z,]).

A simple numerical criterion for topological equisingularity (still in the case
n=2) was given by Lé and Ramanujam [L-R]: If u(X,, o(t)) is constant, then the
topological type of (X, a(t)) is constant. (This is true for all isolated hypersurface
singularities of dimension m=+2; the case m=2 is unknown). The result of Lé-
Ramanujam was complemented by Timourian [Ti], who showed that “pu
=constant” implies even topological triviality. Note that this criterion refers to
a family; the Milnor number alone does not characterize the topological type. It
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should be noted that “u=constant” is also a necessary condition for constant
topological type and topological triviality.

All this seems to be out of order if we consider curves in €”, n>3. It is well
known that in this case the link, which consists of a certain number of disjoint
circles in a sphere of dimension 2n—1, is trivial. Therefore the only topological
invariant of a germ of a curve is the number of these circles, i.e. the number of
irreducible components of the germ. In other words: Let (X, xo)
(X', x5) = (", x,) (= 3) be two germs of curves. Then there exist small balls By,
By« C" with center x, such that (B,, X,) and (Bp, X;) are homeomorphic,
iff (X, xo) and (Xj, xo) have the same number of branches.

But the situation is different if we consider a family of curves f: X —» D as
above. First of all, it makes sense to ask for a numerical criterion for the family
to be topologically trivial. On the other hand we may also ask for conditions,
such that for a sufficiently small fixed ball B, there exist homeomorphisms
between (B, X ) and (B,, X,) for all teD. Note, that constant topological type
requires only that for each teD there exists a ball B, with center o{t) and a
homeomorphism between (B, X ;) and (B,, X,). But the size of B, may tend to 0
if t tends to 0. For plane curve this makes no difference: Constant topological
type is equivalent to the existence of homeomorphisms between (B,, X,) and
(By, X,) for all ¢ by Theorem 5.2.2 and what we said above.

Another (related) fundamental difference from the case of plane curves is the
existence of a “vanishing fold” in a u-constant family. This means the following.
Let B,cC” be the biggest possible ball with center o(r) such that each sphere
contained in B, with center o(t) intersects X, transversally. Let ¢, (0 <g, < c0) be
the radius of B,. We say that the family (X,),., has a vanishing fold if limg, =0
(cf. Fig. 1). (=0

Fig. 1

Since p-constant families of plane curves satisfy the Whitney conditions along
o(D), such vanishing folds cannot occur. But for arbitrary curves this may
happen. This is related to the fact that the multiplicity need not be constant. See
Example 7.2.1 which has a vanishing fold and therefore does not satisfy Whitney
conditions (cf. also 6.2.7).

These remarks show that in higher codimension the Milnor number is a
weaker invariant than in codimension 1. The reason is that the topology of the
embedded curves contains less informaiton and that g reflects exactly the
topological behaviour of a flat family of curves (Theorem 5.2.2).
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5.2. Constant Milnor Number is Equivalent to Topological Triviality

We keep the notations and assumptions of the beginning of 5.1. As always u
denotes the Milnor number, r the number of branches and ¢ the é-invariant (cf.
2.1).

Lemma 5.2.1. Let f: X — D be a good representative of a flat family of reduced
curves. Let a: D— X be a section of f such that u(X,,o(t)) is constant. Then
X,—o(t) is smooth.

Proof. This follows immediately from Theorem 4.2.2 and Proposition 1.2.2. W

Theorem 5.2.2. Let f: X — D be a good representative of a flat family of reduced
curves with section ¢: D— X such that X,—o(t) is smooth for each teD. The
following conditions are equivalent.

(1) p(X,, o(t)) is constant for teD,

(2) 6(X,, a(t)) and r(X,, o{t)} are constant for teD,

(3) dimg HY(X,, €)=0 for teD,

(4) f: X— D admits a weak simultaneous resolution (cf. 4.1.5(2)),

(5) There exists a homeomorphism between (B, X ;) and (B, X,) for each teD,

(6) f: XD is topologically trivial, ie. there is a homeomorphism h:
X" Xy x D such that f=moh where n: X, x D— D is the projection.

Proof. Consider the following implications:

()= (2)=0)=0)

$
(4)=(6).

By Theorem 4.2.2 and by Remark 4.1.6 we need only show (4)=(6) and (3)=(5).
(4)=(6): Let n: X > X and X,— X, denote the respective normalizations. The
hypothesis implies that f=fon: X—D is smooth. Since the restriction of f to
the boundary of X has maximal rank (by 2.1c) it follows from the fibration
theorem of Ehresman that there is a commutative diagram

where / is a diffeomorphism.

We have in particular that the irreducible components X’ of X are in one to
one correspondance with the irreducible components X§, of X,,. Since r(X,, (¢))
is constant we deduce that each X' is locally irreducible along o (D). Therefore n
(resp. nxid) maps each connected component of X (resp. of X,xD) ho-
meomorphically to an irreducible component of X (resp. of X, x D). In this way
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we obtain for each i a homeomorphism
W=(mxid)oh-n~,: X' =X xD

whichArespects the fibers. But the 4’ coincide on the common intersection (D) of
the X'. Therefore (6) follows.

(3)=(5). The case (X,,x,) <=(C" x,) with n=2 is essential due to L& and
Ramanujam [L-R]: consider f: X —B,xD—">D and let F(x,t) be the equa-
tion of X in By x D. We consider F as a mapping from By, x D—C and put N,
=F~'(S)<B, where ScC is a small disc and F,(x)=F(x,t). Then the pair
(Ny, xo) is homeomorphic to the cone over (ON,, X ) such that x, is the vertex
of the cone. Here N, =F~ Y(3S)U(F~ 1(§)n0B,) and 60X ;= X ,n3B,. This is due
to Milnor [Mi]. Lé-Ramanujan show that the same is true for (N,, X,) and that
(ONy, 6X,) and (N, éX,) are homeomorphic. By the conic structure this
homeomorphism can be extended to a homeomorphism between (N,, X ) and
(N,, X,). The conic structure of (N,, X ) (resp. (N,, X)) is defined by integrating a
certain vector field, which can be extended all over B,. Integrating both
extended vector fields we can extend the homeomorphism (N,, X o) —(N,, X,) to
a homeomorphism (B, X ;) —(B,, X,). (For similar, detailed arguments cf. [Ti].)

Now assume #=3: Since X, is transversal to éB, for all teD, it follows from
the fibration theorem of Ehresman that the restriction of f to 60X is differentially
trivial. This implies that ¢X, and ¢X, are isotopically embedded in éB,. But
since the real codimension of X, in 0B, is greater than or equal to 4, this
isotopy can be extended to an ambient isotopy of dB, (cf. [Hu], Th. 10.1). By
assumption, dim H'(X,, €)=0, so that X, is contractible and homeomorphic to
a one point union of discs since X,—oa(f) is smooth (cf. the proof of Theo-
rem 4.2.4). The same holds for X and therefore X and X, are homeomorphic
to the cones over dX, and 20X, respectively. The theorem of Lickorish [Li]
about the wunknotting of cones implies that the homeomorphism
(6B, X o) (0B, ¢X,) can be extended to a homeomorphism of B, which sends
Xoto X,. N

5.3. Comparison to the Case of Plane Curves

As mentioned in 5.1, the concept of equisingularity was introduced about 1965
by O. Zariski. Today there is a well-understood theory of equisingularity for
plane curves, starting with the results of O. Zariski [Z,] further developed -
among others — by O. Zariski himself, H. Hironaka, M. Lejeune, Lé Dung Trang
and B. Teissier. A short summary of equisingularity for plane curves can be
found in [Te,]. Also good discussions of the results and the problems of
equisingularity for higher dimensional families in codimension one are available
(cf. [Z,, Z4, Te,, L-T]).

For the readers convenience we give here a short summary of known results
for plane curves to outline the historical traces leading to 5.2.2 and to exhibit
other possible notions of equisingularity than the topological one given above.

The main results can be summarized as follows.
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Theorem 5.3.1 (cf. [Te, ], [Te,] 3.7, [L-R]). Let f: X — D be as in 5.2.2 and assume
Sfurthermore that X, is a plane curve. Then X, is also plane curve for all teD and
the following conditions are equivalent :

(1)...(6) as in 5.2.2,

(7y w(X,,a(t)) and m(X,, a(t)) (the multiplicity of X, in a(t)) are constant for
teD,

(8) the pair (X —a(D), a(D)) satisfies the conditions a) and b) of Whitney
(cf. [Te;]),

(9) f: X —D is Lipschitzian equisaturated at every point of o(D) (cf. [Te,]),

(10) For every teD there exists a bijection between the branches of (X,,a(1))
and (X, 0(0)) resp. such that the Puiseux pairs of corresponding branches and
their multiplicities of intersection remain constant (cf. [Z]),

(11) X is equisingular along o(D) in the sense of Zariski meaning that there
exists a projection n: X —C x D, such that f=pr, o7 and the discriminant A, is of
constant multiplicity along {0} x DcA4,. (cf. 6.2 and [Z,]).

Nowadays there are several proofs of this theorem and we will make only
some comments:

(i) For a plane curve singularity the Puiseux pairs of the branches and their
respective intersection multiplicities are determined by the link of the singu-
larity. This follows from results of O. Zariski, K. Brauner and W. Burau. The
equivalences

(1)< (2)<>(5)<>(7)<=(10)

are then established if one knows that “u, = p,” implies the invariance of the link
in the family. This result was proved by Lé Dung Trang [Lé&,] (see also [L-R]).

{(ii) The starting point in Zariski’s theory of equisingularity was the property
(11) which will be investigated in more detail in 6.2. There it is shown that the
equivalence of (7) and (11) remains true for curves which are complete in-
tersections. In general this equivalence fails as is shown by the example (7.2.4).

(i) O. Zariski ([Z,,Z,]) showed that (10) and (11) are equivalent and he
introduced the concept of equisaturation which was pursued by F. Pham and
B. Teissier. Furthermore B. Teissier [ Te,] gave algebraic proofs for the equiva-
lences

(D<=Q)=(@)<=(T)<0)

(iv) In the case of plane curves one can even weaken the hypotheses: If
f:X—D is a (flat) family of plane curve singularities such that y(X,) remains
constant then it follows already from results of Cevdet Has Bey and Lazzeri that
there is a section of f such that ¢(t) is the only singularity of X,. This is no
longer true in the general case (7.2.5).

Up to now the situation for general reduced curve singularities is as follows.
Beside the equivalences of 5.2.2 it is shown in [B-G-G] that (7) and (8) are
equivalent and that (9) is definitely stronger than these. Furthermore the
implication from (7) to (1) is strict (7.2.1).

A particular consequence of the equivalence of (1), (7) and (10) in 5.3.1 is that
a deformation of a plane curve singularity (X,, x,) satisfying one of these
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equivalent conditions induces deformations of each branch of X, at x,. These
deformations in turn satisfy the equivalent conditions of 5.3.1 too. In the general
case this is no longer true as is shown by the counterexamples 7.2.2 and 7.2.3.

6. Other Numerical Invariants

We apply the methods developed in Chap. 2 and 3 to investigate the behaviour
of several numerical invariants in flat families of curves. We are particularly
interested in the torsion part of the holomorphic differential forms Q5 . on the
reduced curve (X, x,). It is well known that the torsion submodule T(Q%, )
contains much information about the singularity itself. In particular, maximal
torsion characterizes quasi-homogeneous plane curves [Z,]. On the other hand
there is a still unsoived conjecture of Berger which says that the torsion is zero
only if (X,,x,) 1s smooth. This conjecture is closely related to a conjecture
concerning deformation theory of (X, x,) because of the well known con-
nection between T (Q§(U «,) and the Zariski tangent space Ty, . of the parameter
space of the semi-universal deformation of (X,,x,). Ty, ,, =0 means that
(X, xo) Is rigid, i.e. allows only trivial deformations, and it is conjectured that
there are no rigid curve singularities. For Gorenstein curves this conjecture is
equivalent to Berger’s conjecture, since then Ty, . =T(2j, ) by local duality.
But even in this case the answer is in general unknown.

For non- Gorenstein curves, however, the connection between deformations
of (X, x,) and T(Q}, ) is not obvious. Nevertheless we can show that Berger’s
conjecture is true for curves which have deformations which lower & sufficiently
(6.1.4), generalizing results of Pinkham and Bassein. It is also interesting to note
that in some cases, smoothable curves have a smooth semiuniversal parameter
space if Q) . bhas minimal torsion (6.1.5).

Section 6.2 is devoted to a generalization of Zariski’s discriminant criterion
for equisingularity. We succeed in deriving such a criterion only for complete
intersection curves. In general we have several possibilities to define invariants
of a generic projection. All these invariants coincide for complete intersections,
but it is not clear what should be the “correct™ one in the general case.

6.1. The Torsion of the Module of Differentials

Let (X,.xo) be a reduced curve singularity, n: (X, x;)—>(XO, X,) the normali-
zation and ¢y Q}, . —®y,. ., the mapping defined in 1.1. T(M) denotes the
torsion submodule for any €'y . -module M.

Definition 6.1.1.
= T(XO’ XO) dlm (Q/IY() XO)

T
( ) =71 (X07x0) dlmC (QX() x0®(ﬂx X0 n* @(]To:x—o))’
(3) 2=A(Xy, xg)=dimgwy, xo/‘ XO(Q1\’0 m),
(4) k=xr(X,, xo)=dimgn, (Q(xo ~0)/(Xo, m))
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Note that « is the “cusp-multiplicity” which occurs in the Pliicker formulas.
Qxs%oy1%0. x denOteEs the mpdulg of relative differential forms.
We shall compare these invariants with

p=mX,, xo)=dimgwy, . /dCy . (Milnor number),
0=050(X,, xo)=dimgn, O 57—/0x, ., (S-invariant),
r=r(X,, xo)= #irreducible components of (X, x,),
m=m(X,, xo)=dimgn, O 5—,/Mn, 05—, (multiplicity),
(M =maximal ideal of @, ).

Moreover, let « be any numeric, analytical invariant of a reduced curve
singularity, and let f: X— T be a flat family of reduced curves. Then we set

o=o(X)= ) a(X,x)

xeS(Xe)

=0o(X)= ) (X, x)—1),

xeS(X¢)
where S(X,) is the set of singular points of the curve X,=f""(t), te T.
Lemma 6.1.2. Ler (X, x,) be a reduced curve singularity. Then:
(1) k=m—r,
(2) pzZA2d+x,

(3) If f: X—D is a small representative of a deformation of (X, x), then
Ao=4,.

Proof. Consider the commutative diagram:
1 -
qu, X0 ® o (Q(Xo, Xo)
d

1
(pxo..\-g QXo,xo

N 1 C
Ny ‘Q(Xm X0) Wxy, xo

1
4 850 o)/ Xo, xo)

0

The vertical row is exact, which proves (1). The horizontal line shows that u> 4,
and moreover

. 1 po—

Azdime oy, /%y, 2o @1y O o)
Y L . | 1 —.
= dlmc Wy, xo/"* Q(Xo. x0) + dlmC Ny ‘Q(Xo, xo)/Q(Xo- xo) ® My (Q(XO’ xa)

=d+k (by duality (cf. 1.2) and the vertical row).
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(3) The sheaf A=y, p/cyp(R2y,p) (cf. 4.2.1) is concentrated on the critical set
of f which is finite over D. Therefore f, /4 is a coherent ¢)-module. Since for all
teD,

(fe DO =y fex (2))  (cf. 4.1.3,4.2.1),

we obtain i,=dim¢(f, A)O)=dimg(f, A)(t)=4, (with the notations used in
323, B

Theorem 6.1.3. Let {2 X —D be a small representative of a germ (X, xq)—(D,0)
of a flat family of reduced curves. Then:

(1) to—1,=ho—A+hY x, (2% p)
(2) If, moreover, [ is a d-constant family (4.1.6), then:

To— T, =(to +mg) —(u, +m;) + hgm XO(Q;(/D @y 1y Cx).

Here as always n: X X denotes the normalization of X ; for the definition
of hY . see 3.2.3. Note that h?  (Q%,p)=hy, x,(Q)). and this term vanishes iff
Q) ., contains no elements which are annihilated by some power of f. This
follows from the exact sequence of local cohomology associated to

0df nOy—Qy—Q},;,—0 and the isomorphism df A €y =Cy.

Corollary 6.1.4. (1) 1,— 1,25, + Kk, — 1, 28,20, + k. In particular T(Qy, . )¥0
if there exists a (flat) deformation of (X . x,) such that the generic fiber X, has
the property 25(X,)<d(X,, X,)

(2) If (X4, xp) is smoothable, ie. there exists a deformation of (X, X,) with
generic smooth fiber, then

(X, Xo) =X, xo),  (Bassein [Ba]).

Proof. (1) follows from 6.1.3(1) and 6.1.2(2).
{2) If X, is smooth, then 7,=4,=0. N

Remark 6.1.5. In order to improve 6.1.4(1) one might ask if instead of 6.1.2(3)
the stronger inequality A,— 4,2, ¢, holds. One may also ask, as in [Ba], if the
inequality 7=/ always holds, which would of course imply Berger’s conjecture.
(We checked it for certain homogeneous, non-smoothable curves) We pose the
question if at least for smoothable curve singularities “t=2" always implies that
(X o, Xo) is not obstructed (i.e. the base space of the semi-universal deformation
of (X,,xp) is smooth). This was shown by Pinkham [Pi] for smoothable
Gorenstein curves.

Proof of 6.1.3. (1) Consider the truncated Poincaré complex
00y — Q) p—0,
which satisfies all conditions (P,), ..., (Ps). By 3.2.4(3) and 4.2.4(2) we obtain

(*)  dimeQ%, (JdOx, (o= 2 dimg Q /A0y, =po— s +hY, 5, (Qxp)-

xe8(Xy)
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It is easy to see that 40
sequence

AT(QL y=0. Therefore we have an exact

Xo. xp Xo. xp

0— T(Q,lv xo) ™ on o/ 4Ux,. 5 e, Oy, 5/A0x,. x> O, m/"xn(g)l{o. x0) ™0
and we conclude
dimg Q x(, xo/A0x,. 5o =To+ Ho— 4o-
The same formula holds for X,. Substituting this in (*) we obtain
fo— 1+ 3y xo(2p) = (T —T) + (1o — 1) — (Ao — 4,)

and hence the desired resulit.
{2) We consider the complex

1) d * 1
00y —">n, n*Qyp—0,

where d is the composition of the exterior derivation (y—Q5 , with the

canonical mapping Q,,—n, n* Qy ,=0Q% , ®, 1, Cx. Arguing as before, we
obtain

dlm(f (QXU Yo® n (/(XO xO)/dO

- l'o + dlrn‘f(uxn, xo/d(/XOV xg —dlmfwxo. XO/Q;(O- xn® By a(ml

Xo, xo

=T+ o— 0y —Ko-

Note that n,n* Q5 p, 0 ®Ux, =Q%,  ® 1, ()(XO %oy Since X-»D is supposed
to be a d-constant family and therefore X,=X

Doing the same for X, and substituting in a formula analogous to () gives

To—T,=(dy+ 1)~ (I, +K)+th xo(n, n* Q}(/,D).

But since J,=9J,, we obtain

(0ot Ko)—(0,+K)=(205+K,)—(20,+K,)
=20, —ro+mp)—(26,—r,+m) {6.1.2.1)
=(po+mo)~{u,+my). WA

From the proof of 6.1.3(1) we obtain the following

Corollary 6.1.6. Let (X, x,) be a reduced curve singularity. Then (X, x,)
=Xy, Xo) if and only if
u(X o, x)=dim¢ £ x x/d0

Xo, x0°

Since complete intersections are Gorenstein and moreover smoothable and
not obstructed, we see by 6.1.5(2) that 1.1.2 is a special case of 6.1.6.

From the results shown above we deduce easily the following semicontinuity
theorem. Recall that a function «: t—a, defined on the complex space T is called
upper (resp. lower) semicontinuous is for all teT, o,=a,. (resp. o, Sa,) for all ¢
sufficiently near to t.
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Theorem 6.1.7. Let f: X — T be any flat, analytic family of reduced complex curves.
(1) The following invariants are upper semicontinuous on T:
(a) 1,4, 1—4,
(b) u, 6, u—=4.

(2) If f is a O-constant family (i.e. d,=constant on T), then the following
invariants are upper semicontinuous on T:

(c) x
dy &, u+m', T—(u+m).

Futhermore, in this case r' is lower semicontinuous on T.

Proof. It is of course sufficient to prove the theorem in the neighbourhood of
each singularity in the fibers of  and, after base change, for families over a small
disc. Then (a) 1s 6.1.2(3) and 6.1.3(1), (b) is 4.1.4 and 4.2.2.

(c) follows, since for a é-constant family (4.1.6) x,=dim¢(f, n, 2}, (1, and
fy 1, Q% is coherent. (d) follows from 6.1.3 (2} and (g +mp) — (4, + M) =k —x, if
0,=29, (see the proof of 6.1.3). Furthermore, r;—ry=p,—u, by 1.2.1(1). A

Remarks. (1) By (d) we see that m' is upper semicontinuous on T, if f is a p-
constant family, For plane curves “u=constant” implies even “m’=constant”,
but this is not true in general (cf. example 7.2.1).

(2) In general r' and m' are in no direction semicontinuous on the base
(though the multiplicity is upper semicontinuous on the total space X). For r’
this can be seen from the deformation of the cusp into the double point and then
smoothing this double point. For m’ see the following example (cf. [Te,], p. 219).

Example 6.1.8. Let X, be the family of plane curves defined by the equation
f =[] (y—o(x+1t)(x—1)), r=2, where a; are pairwise distinct complex
i=1

numbers. X, has one singular point in 0 and X,(t%0) two singular points in
(£t, 0). We see immediately: m(X,, 0)=m(X,, (£, 0)=r, r(X,, O)=r(X,, (££,0)
=r. So my=ry,=r—1<r,=m,=2(r—1). X, is even a dé-constant family with 4,

=9,=r(r—1) (cf. Fig. 2).
r=2:
X 1 1 X

Fig. 2

6.2. On Zariski’s Discriminant Criterion

Let (X4, %) be a reduced curve singularity and 7.: (X, xo)—(L,0) a finite
projection on a germ of a complex line. Let n;: X ,— L be a small representative
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which is ramified only in x,. The critical set C, (resp. the discriminant D) of r,
consists then only of the point {x,} (resp. {0}) and we put an analytic structure
on it by the following definition:

Definition 6.2.1. Let n: X— S be a finite, flat morphism of complex spaces. We
define the critical subspace C < X, resp. the discriminant subspace D<= S by

Oc=0x/F, (Q)l(/sl resp. Op=0g/Fy(m, Of).
We call the degree of n in xe X the number

deg, n=dimc 0 |

n Hr(xh, %

Here F;, denotes the 0-th Fitting ideal. For an adequate reference concerning
discriminants and critical sets we mention Teissier’s paper [Te,].

We want to compare the multiplicity of D, and other invariants depending
on n;, with invariants of (X, x,) itself. Note that =, being finite, is automati-
cally flat since (X, x,) is Cohen-Macaulay.

For any local ring ¢ with maximal ideal M and any M-primary ideal B,
mg(0) denotes the multiplicity of B in ¢ (in the sense of Samuel and Serre). The
multiplicity m(X, x) of a complex germ (X, x) is defined to be the multiplicity of
the maximal ideal in @y ,; for a multigerm the multiplicity is the sum over the
local multiplicities.

Definition 6.22. Let (X,,x,) be a reduced curve singularity and
np: (X, xo)—(L, 0) a finite map onto a germ of a complex line. We set:
(1} 4,=4,(X,, x0)=m(D, 0),
(2) me, =mc, (X, xo)= M o@xorn. <o) Oxo, xoh
(3) te=7,(Xo, xo)=dimg Q4 ;. ..
Moreover we write deg 7, instead of deg, =,
Lemma 6.2.3. (1) 4, =m(Cp, xo)=dime (O . /Fo(Qx, 1. x,)
(2) me, =mn* Cp,n~1(xo))=dimeg(Q, 1 ., ®ox,. x, " Ockario)
(3) Let a, be one of the three invariants of (6.2.2). Then
o, —degn,
is independent of the projection n;.

Proof. Note that the multiplicity of a zero dimensional space is equal to the
length of its local ring. Now (1) follows since the matrix defining the Fitting ideal
in 0; 4 can be put into diagonal form.

(2) follows from the projection formula and the fact that O x5 18 principal.

The statement in (3) for 4, =m(C,, x,) and m,,, can be proved as follows.
One shows that Fo(Q% 1 ) - Fo(n, Q%1 5,) ", which is a fractional ideal in the
total quotient ring of Oy, , , is an Oy -submodule of n, 03— and does not
depend on =, . This requires some calculation with the matrix representation of
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Fo(Q%,/L. x,)- Then the statement follows from

M 1 _A: 1 -1
dimg 0 x5/ FoQixszoe. o) = dime FoQxr . o)™ /Vxa750)
=deg,  n; —r(X,, xq)

The assertion for 7,(X,, x,) is originally due to R. Berger [Be] and contained in
the following proposition. W

Proposition 6.2.4. With the assumptions and notations of 6.2.2 and 6.1.1 the
Sfollowing holds:

(1) 1, —degn, +1=1—A+u
(2) me, —degn, =7—m.

Proof. Consider the following diagram with exact rows,

0—— 2 @Oy, —— 0k, —— Qhy——0
f«z Jﬂ Jv
0——»9}_@(9,?0 Q;Io Q;o/L 0.

We obtain ker a=0, dimgcoker a=06, dimgker f=1, dimgcoker f=1-4,
dime Qx50 0y =deg m, —r.
Therefore,
dimg ker y —dimg coker y=1+9—(1—9)
and
1, =degn, —r+(t—A)+29,

which proves (1).
Tensoring the first row of the diagram above with O x—, and looking at the
resulting diagram, we obtain

- . T L
T—k=dimg x,, +,® Oxmp — diMe Lixgmoyin. o)

=mc, —degm, ++.
But k=m—r by 6.1.2, hence the result. W

Definition 6.2.5. Let o; be one of the invariants 4,, m¢,, 7,, of 6.2.2. We define
o, =1info,,

where the infimum is taken over all possible finite maps 7, : (X, xo)—(L, 0). If
7, is such that o, =« we call n; a generic projection. The infimum «_ is already
achieved if we consider only finite linear projections in the following sense:
Choose a fixed embedding (X, xo)=(C" x,) and let L < C" be any line through
Xo. A linear projection 7;: (X4, Xo)—(L, x,) is the restriction to (X, x,,) of the
orthogonal (with respect to some Hermitian metric) projection C"— L.

Now «, =a, for L in that Zariski open subset of IP"~* where deg, n achieves
its minimum m(X,, x,) by 6.2.3(3). Therefore 7, is generic (with respect to 4,
me, or 7,) iff degy, m, =m(X,, x,).
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Remark 6.2.6. (1) If (X, x,) is a complete intersection, then Fo(Q2y,.. ) is @
principal ideal and we obtain

Ay=m¢, =1, =p+degn; ~1

by 6.2.4(1), 6.1.5(2). Note that the formula for 4, can be generalized to complete
intersections of arbitrary dimensions by u(X,, xo)+u(xg *(0), xo) (cf. [G,],
Lemma 5.3). For a generic projection n we obtain

A,=me =T, =T=p+m—1

(2) Except for the case of complete intersections we do not have an estimate
for 4,. But using the results of [Be] and [K-H,] about the relation between
Kéhler and Dedekind different, one can deduce the following: If (X, x,) is
Gorenstein, then

Ang;‘}'"}_m_ 1,

and equality holds iff (X, x,) is a complete intersection. But one may have 4,
=p+m—1 for (X,, xo) not Gorenstein (e.g. the ordinary triple point). Note that
always T=m,_ 24, (by 6.2.3(1)) and equality holds iff the critical space of the
projection is a hypersurface.

The following theorem is a generalization of Zariski’s discriminant criterion
for plane curves ([Z,]).

Theorem 6.2.7. Let f: (X, xo)— (D, 0) be a ( flat) deformation of a reduced com-
plete intersection curve (X, xo) and f: X — D a sufficiently small representative.

The following conditions are equivalent:

(1) Let m=(ny, f): (X,x0)—>(Lx D,0) be any finite generic projection (i.e.
deg, n=m(X,, X,)). Then the reduced discriminant (D,),., of w is smooth.

(2) There exists a finite mapping n=(n,, f): (X, xo)— (L x D, 0) such that the
multiplicity m(D,, (0, t)) of D, along {0} x D is constant for all teD and equal to
u(X)+m(X,) for t+0.

(3) f: X—D admits a holomorphic section ¢: D— X such that X,—o(t) is
smooth and (X, o(t)) and m(X,, o(t)) are constant for teD.

(4) For each teD there exists an x,€X, such that u(X,,x,)+m(X,, x,) is equal
1o p(X g, xo)+m(Xg, Xo).

Before we prove the theorem we need a lemma which is interesting in itself.
We set

ny,=aly: X,—»Lx{i}=L,.
Because all fibers X, are complete intersections we obtain by 6.2.6(1)

A (X, x)=u(X,, x)+deg,n, —1, xeX,.

We set
v (X, x)=deg. n;, —m(X,,x), xeX,

and call it the number of vertical tangents of mn,, in x. Note that n: (X, xo)—
(Lx D, 0) is generic iff v, (X, x,)=0.
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Moreover we set
ULt(Xx): Z UL{(X:,X).

xe X,
Lemma 6.2.8. With the assumptions and notations of 62.7, let n=(n,,[):
(X, x9)—(LxD,0) be a finite mapping. Then

Bo— pe =1 _m’0)+{0Lt(Xz}_— ULO(XO’ Xg))
In particular, p+m' is upper semicontinuous on D.

Proof. D is a hypersurface since (X, x,) is a complete intersection. Therefore the
first statement is just

A (X0, X0)=i(Lo- Dy, O)=i(L, D)= 3 4.,(X,. %),
seLin Dy
xen " l{s.1)

where i denotes the intersection multiplicity, together with the formulas for 4,
and the definition of v, . Choosing n generic, the second statement follows. W

Remark. Suppose that f is a y-constant family. We have already noticed that m’
is upper semicontinuous (Remark (1) after 6.1.7). For complete intersections we
see that my—m, is just the number of vertical tangents of X, for a generic
projection.

Proof of 6.2.7 (a) Let us first assume that n=(n,, f): (X, xq)—(L x D,0) is any
finite projection such that (D,),.4 is smooth. We show that this implies (3) except
that the muitiplicity m(X,, o(t)) might not be constant. Note that D_ is a
hypersurface since (X, x,) is a complete intersection.

W.log we may assume that (D,).,={0}xD. Since m(D,(0,1))
=i(L,- D, (0,1)) is constant for all ¢, we obtain:

po+deg, mp —1=4, (Xo,x)= Y, 4,(X,.x)

xen 10,1}

=p+ 3y (deg,m, —1)

xen~ 10,1}
=p,+deg, m, — #{n""(0,1)},

because 7 is flat. Since u is upper semicontinuous we obtain p,=y, and
# {7~ 1(0,1)} =1, In particular

s (Cn)red%(Dn)red: {0} xD

is unramified and 1 — 1, hence biholomorphic. The inverse gives a section o, and
X,—o(t) is smooth.
(b) (1)=(2). Let = be any generic projection. By hypothesis and by (a) we get

m(D,, (0, 1)) =p,+deg,, 7, — 12 p+m—1
But after a small change of n, which again is generic, we may assume that
deg, T, =M,

(2)=(3). By (a) we have only to show that m(X,, a(t)) remains constant, since the
hypothesis implies that (D,),.q is smooth.
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But ﬂ0+m0— 1 ém(Dn’ (0» 0))=m(Drw (0, t))zﬂt+mt_ 1 and u0+mogﬂt+mr
by 6.2.8. Hence m,=m, since y is constant.

Since (3)=(4) is trivial, we have to show (4)=-(1). Consider any finite
projection 7: (X, x,)— (L x D, 0). By 6.2.8 we obtain

:u'0+m;3::u’t+m;+th(Xt)
EM(X“ xz)+ml(Xz7 xt)+ ULt(Xt)'

Using the assumption, we conclude that X,—{x,} must be smooth and that
i(L,- D, m(x,)) is constant. Hence (D,),., must be smooth. M

7. Applications and Examples

So far we have proved properties of families of curves in analogy with the case
of plane curves. Now we are going to discuss several examples which show the
essential differences.

To do this we need a simple criterion to decide whether a given family (X,),.p
is a deformation of X . If X, is given by equations f;(x), ..., f(x), xe€*, and X, is
defined by a “deformation of the equations™, F,(x, t)=f(x)+ tg;(x, 1), teD, then
it is in general difficult to check whether this family is flat. One has to show that
every relation between the f; can be lifted to a relation between the F,. But if X,
is given by a parametrization ¢@,: X, " and (X)), is given by a “defor-
mation of the parametrization”, @: X, x D —C", ¢ (s, t) =@ (s)+t¥(s, 1) (se X,
teD), that is X,=¢ (X, x {t}) with its reduced structure, then one has to decide
whether this is indeed an analytic family. This is however comparatively easy; a
necessary and sufficient condition is that 6(X,) is constant.

We end with a discussion of the ordinary n-tuple point. The minimality of p
already allows us to determine all possible deformations. Moreover we show
that the monodromy group is trivial.

7.1. 6-Constant Deformations

The results of this section are essentially due to B. Teissier ([Te,], 3.2).

Let (Xg, xo)=(C" 0) be a germ of a reduced curve and X,c B, a repre-
sentative, where B, < €" is a small open ball with center x,. We assume that X,
is given by a parametrization, i.e. as the (reduced) image of a holomorphic
mapping ,

Po: onjul D~ X,<B,,

(pO(S)=((pO, 1(5)’ st (pO,n(s))’

where [] D; is the disjoint union of r open discs, such that D; is mapped
=1 ]
homeomorphically on exactly one branch X} of X, and ¢,(0)=x,, 0eD;, for

each j. We shall sometimes not distinguish between ¢, and its (multi-) germ at
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¥
Xo=0g "xo)=(0),_, € I_[ D;. ¢4 X;— X, is the normalization of X, and

the local algebra Oy . is the subalgebra of @y* 0% ;)= @ C{s;} generated

by the component functions

(Po,i( )=((P(),(S -1, 66‘)(]:{3}

of ¢g.
Let D<€ be a small disc with center 0. A deformation of the parametrization
is a holomorphic mapping

¢: XoxD=]] (D;xD)—> By,
i=1

such that @(s, )= @y (s)+t¥(s, 1), se X, teD.
Then for sufficiently small D, and D the following holds:

(a) ®=(¢,t): Xy xD—B,x D is a finite mapping and therefore
Y=&(X,xD)=B,xD

is a two dimensional analytic subset which we give the reduced structure. Let

f:Y->D

denote the projection on the second factor and set Y,=f~'(2).
{b) For each fixed teD define

¢ Xo—By by ¢,(5)=0(s1)
and set X,=¢,(X,) with its reduced structure. Therefore X, =(Y),eq- Note that
Oy, x,.0) 18 the subalgebra of @, 0y . p 0, 0)= @ C{s;,t} generated by the

(multi-) germs of t and of the component funct10ns @(s,1) of @ at (X,,0). Oy, =
Oy/(f —t) O, while Oy, is the image of Oy in @, Oy , p/(f~1) O, p-

Lemma 7.1.1. (1) &: X, xD— Y is the normalization of Y. Hence ¢,: X,— X, is
the normalization of X, for all teD.
(2) f: Y- D is flat, Y,— {0} is reduced and Y, is reduced for each t+0.

Proof. (1) Let Y, be an irreducible component of Y. Using Sard’s theorem and
Ritt’s lemma we see that $: &~ 1(Y)— Y, is regular over the complement of some
curve C; in Y, and therefore an unramified covering over Y,— C;. Since ¢ is
regular in each point of X, — g '(x,), so is @ and therefore C;n Xy ={x,}. So ¥,
— C; contains points of X, and each of these points has only one point as
preimage. This implies that @ is biholomorphic over Y~ C; and (1) follows from
the universal property of normalizations.

(2) Since f is not contained in any associated prime ideal of Oy _ , f'is a nonzero
divisor which means that f is flat. X, x D and Y are biholomorphic outside the
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singular set S(Y) of Y,. Therefore Y,— {0} is reduced and Y,, %0, is reduced
except at the finitely many points of Y,nS(Y).

Since Y is reduced we may assume that Y—{x,} is Cohen-Macaulay. Since f
is flat, Y, teD—{0}, is Cohen-Macaulay and therefore without embedded

t
components, hence reduced everywhere. W

The lemma shows that f: Y— D is always a deformation of Y,= f~(0). It is
a deformation of X iff Y, is reduced.

Deformation 7.1.2. Let ¢: X, x D— B, be a deformation of a parametrization of
Xo. We say that ¢ defines a deformation of X, if Y, is reduced.

The following criterion has been implicitly used already in [Pi].

Proposition 7.1.3 (Teissier). The following conditions are equivalent:
(1) The deformation of the parametrization, @, defines a deformation of X .
(2) 6(X,) is constant for all teD.

Proof. Consider the following commutative diagram, resp. isomorphism, resp.
exact sequences:

@Y\;—*’q’o* Xo
B) ((P* XoxD/(QY)®(Uy Oy, =@, (/Xo/(gXta
(V) OH@Y_)(/)* OXOX D—)(p* (OXOXD/(OY—)()‘
Tensoring with ®,, Oy, yields
Oy, @04 O3, Pos (QXO/(OXO‘*O-

Because of (8), 4(X,)=constant is equivalent to f (¢, Ox ., p/0y) being a locally
free O0-module. By (y) this is equivalent to

Oy, ®0,0g, being injective
By () this is equivalent to ¢y — Oy, being injective. M

Remark 7.1.4. (1) With the notations introduced above, assume that (X)), is an
analytic family, ie. there exists a complex space X, a holomorphic mapping
g: X — D and for each teD an isomorphism g~ '(t)= X,. It is not very difficult to
show that this implies: X is reduced, g is flat (hence a deformation of X,) and
the normalization §: X —»D is isomorphic to X,x D —D. Therefore the con-
ditions of 7.1.3 are equivalent to the condition that (X,),., is an analytic family.

(2) Let ¢, be a parametrization of X, and ¢ a deformation of ¢, as before.
Consider the (multi-) mapping:
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The subsheal Oy co,, O = @ Op, is generated by the component functions

@,; of @,. 6(X,) is the d1mens1on of the quotient sheaf and this quotient is

concentrated on those points x=(x,...,x,) where one of the following con-
ditions is satisfied:

(a) There exist s)+si (s7eD;,s;€D,) such that ¢ (s})=0k(s;) for all
i=1,..,n

a(f?; i

(b) There exists a s7eD; such tha Y)=0foralli=1,

In particular: If X, is irredumble r=1), @, 0)=0 for all ¢t and
dimg C{s}/(¢@, ,, ..., ¢, ,)=constant, then ¢ defines a deformation of X,.

7.2. Examples and Counterexamples

To illustrate the difference from the case of plane curves we shall consider
families (X,),., of irreducible curves which can be given by a deformation
@15, 1), ..., 0,(5,0)eC{s,t} of the parametrization ¢,(s,0),..., ¢,(s,0)eC{s} of
X, (cf. the notation of 7.1). We define (X,),., by the subalgebra
Clo,(s0), ..., 0,5 1)} =€ {s,t}. Recall that u(X )= constant implies 6(X,)= con-
stant. None of the phenomena of 7.2.1 to 7.2.5 can occur for plane curves.

Example 7.2.1. Constant Milnor number does not imply constant multiplicity:

(@) C{s®—s?t,s% 5%}, u(X,,00=4 for all t but m(X,y, 0)=3, m(X,,0)=2
(t+0).

(b) (J.P. Henry). Define X,=C? by the equations

xy—tz=0, z°+x'+y!?9=0.

X, is quasihomogeneous; (X,,0) is a complete intersection and (X,,0), t%0, a
plane curve singularity. We find

WX, 00=126 (all1), m(X,,0=12, m(X, 0=10 (1%0).

Example 7.2.2. Constant Milnor number does not imply constant Milnor number of
each branch:

In the example of Henry, X, ., has 5 branches with semigroup (cf. [H-K,])
{2,3>(u=2) while X, has 3 branches with semigroup (2,5)(u=4) and 2
branches with semigroup (3, 5) (u=8).

This is due to the following fact. If f: X — D denotes the family, then X has §
irreducible, reduced components X'. Let f': X'—>D be the restriction of f. Of
course (f)~1(0),.4 is equal to some branch of X,. But (f%)~'(0) itself is not
reduced; it has an embedded component in 0.

Example 7.2.3. Constant Milnor number and constant multiplicity do not imply
constant semigroup:

C{s* s7+15%5° 510}, u(X,,00=12, m(X,0=4 forall g,

but
I'(X,,00=<4,7,9,10>, TI'(X,.+,0)=¢4,69,115.
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Example 1.2.4. Constant semigroup does not imply constant multiplicity of the
discriminant of a generic line projection (cf. 6.2):

C{s®,s8+2¢5% 104151t 517 5194+ 2¢52'}  (cf. [H-K,] p. 40).
I(X,,0)=<6,8,10,17,195  for all &

{X,,0) is Gorenstein, but not a complete intersection, (X,.,0) is a complete
intersection. By ([H-K,]) we obtain

4,(X0,0)> 4,(X,, 0= p(X,, 0)+m(X,,0)—1=27  (t+0).

This is due to the following fact: let f: X— D denote the family and n: X > L
x D a generic plane projection (cf. 6.2). Then the reduced discriminant (D), is
smooth, but D, has an embedded component in 0.

Example 7.2.5. Constant Milnor number does not imply “non-splitting” of the
singularity:
C{s*=3ts,5%—21s%, 55 =Tts3+161%s).

X, 4o has two singular points for s= +7/t, each isomorphic to C{t? ¢}, Hence
WXy, 0)=p(X)=4. ,

Question. Do there exist examples of type 7.2.1 and 7.2.3 for irreducible complete
intersections or of type 7.2.5 for arbitrary complete intersections?

Deformations of the ordinary multiple point:
Proposition 7.2.6. Let (X, xo)=(€", x) be the ordinary n-tuple point (1.2.4). The
following holds :

{1) Let f: X—D be any small representative of a deformation of (X, x,).
Then X,=f~'(t), teD, has only ordinary multiple points as singularities.

P
(2) Letny,...,n, be any integers such that n,=2 and Z (n,— 1)< n. Then there

i=1

exists a deformation f: X —D of (X, x,) such that X,, teD—{0}, has exactly p
singular points x,,...,x, and (X, x;) is an ordinary n-tuple point. (p=0 is
allowed ; this means that (X, x,) is smoothable ).

(3) The parameter space S of the semiuniversal deformation of (X, x,) is of
pure dimension 2n—3.
Proof. (1) By (4.2.2) we have po—p,=6,—95, and by (1.24) p,=968,, 1, =96,.
Therefore p, =6, and (1) follows again by (1.2.4).

(2) Take any (n, —1) lines of X; and translate their common intersection
along any other line Z (cf. Fig. 3).

—— e

Fig.3
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Of course this can be done by a deformation of the parametrization. But
since u stays constant, this indeed defines a deformation of X, (7.1.3). Now
continue with the remaining lines through 0 by induction. Those lines through 0
which are left can be translated into ordinary double points and then smoothed
(see also [P1]).

(3) This is indeed a corollary of a result of P. Deligne. The dimension
formula follows from a formula of Deligne, which can easily be applied to
quasihomogeneous singularities (cf. [G,]). B

Remark. One can show that the Zariski tangent space of S has dimension
nn—2) if n=3. Hence § is smooth iff n=1, 2, 3 (cf. [G,]).

The smooth fiber of the ordinary s-tuple point is a disc with n—1 holes. This
follows since pu=n—1 and since the fiber has n boundary components (cf. Fig. 4).

—

triple point two double points two vanishing cycles

Fig. 4

Let § be the parameterspace of the semiuniversal deformation ¢: X —S of
the ordinary triple point. We know that it is smooth of dimension 3. Recall that
the monodromy group is the image under the canonical representation

p: n (S—D,t)—Aut(H,(X,, Z)),
where D<S is the discriminant of @ and teS— D a base point. We claim

The monodromy group of the ordinary triple point is trivial. In particular, any
geometric monodromy corresponding to an element yer(S—D, t) has fixed points.

Proof. By the local Lefschetz theorem, each element yern,(S—D,t) can be
represented by some loop in SnL~{p,,...,p,} where L is a generic complex line
in €° near 0 (0O¢L, teL) which intersects D in p,,...,p,. By the above con-
sideration, the generic fiber over D has one ordinary double point, so D is
generically reduced and we may assume that the p; are simple points on D. Since
y is the composition of simple loops around each point p; in the obvious way, we
may assume that y is a simple loop around one point p only and that the fiber
X, contains exactly one ordinary double point. Denote by eeH (X, Z) the
vanishing cycle corresponding to this double point. By the Picard-Lefschetz

formula we obtain
p(MN(@)=a—o,e>e, aeH (X, Z),

where ( , > denotes the intersection pairing. But as we have seen above,
H,(X,,Z) has a basis of non-intersecting cycles with self-intersection 0, hence
{a, > =0 and we are done.
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Since u=2 and X, is connected, the Lefschetz number of p(y) is equal to —1,
hence each diffeomorphism of X, representing p(y) must have fixed points. W

Lé Dung Trang ([Lé&,]) has shown that for hypersurface singularities the
classical monodromy on the homology can be represented by a characteristic
diffeomorphism (= geometric monodromy) without fixed points. As A’Campo
pointed out to us a similar result holds for complete intersections: there exists
always a l-parameter deformation and a corresponding local geometric mono-

dromy which has no fixed points. More general and more precisely the following
holds:

Theorem 7.2.7 (A’Campo). Let (X, x) be a germ of a reduced complex space and
f1(X,x)—(C,0) a deformation of (X,,x)=(f"1(0),x). Assume X —X, to be
smooth and fem?® where m is the maximal ideal of (X, x). Then the local
monodromy of f can be represented by a geometric monodromy without fixed points.

The proof follows from [A’C], théoreme 5, after resolving the singularities of
f via a morphism n: X —X such that X is smooth, (fon)~'(0) consists of
smooth components which intersect normally and X —(fom) ' Q)= X —X,.
Note that the assumption fem? implies that f o & vanishes on 7~ *(0) at least of
order 2.

Remark 7.2.8. We note that the ordinary n-tuple point is a simple (0-modular)
singularity in the sense of Arnold. For the ordinary triple point the discriminant
D cS consists of the 3 coordinate hyperplanes. Therefore S—D is an Eilenberg-
McLane space - supporting a conjecture of R. Thom. We do not know whether
this is true also for n=4.
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