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Summary. The extrapolated midpoint rule is a popular way to solve the 
initial value problem for a system of ordinary differential equations. As 
originally formulated by Gragg, the results are smoothed to remove the 
weak instability of the midpoint rule. It is shown that this smoothing is not 
necessary. A cheaper smoothing scheme is proposed. A way to exploit 
smoothing to increase the robustness of extrapolation codes is formulated. 

Subject Classifications: AMS(MOS): 65LO5; CR: 5.17. 

1. Introduction 

In his dissertation [4] and later in [5], W.B. Gragg proposed that the explicit 
midpoint rule with special starting procedure serve as the fundamental formula 
for the solution by h2-extrapolation of the initial value problem for a system of 
ordinary differential equations (ODEs). The idea was implemented by Bulirsch 
and Stoer [2] who showed the approach to be an effective one for non-stiff 
problems. 

It seems to have been considered obvious that smoothing is necessary, or at 
least highly desirable, when the midpoint rule is used for extrapolation. In the 
extrapolation methods one integrates repeatedly from x, to x,+H with suc- 
cessively smaller (fixed) step sizes h. The results at x,+H of the various 
subintegrations are combined in a linear (polynomial extrapolation) or non- 
linear (rational extrapolation) way to yield a high order result at x, +H.  The 
midpoint rule is well known to have no region of absolute stability. These 
successive integrations with a weakly stable formula appear to be dangerous. 
Milne and Reynolds [7] successfully smoothed the results of integrations with 
Milne's formula to eliminate a similar instability. In view of this, Gragg 
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proposed a smoothing scheme for his extrapolation procedure and justified it 
with the asymptotic expansion he developed for the error. 

For nearly 20 years Gragg's approach to solving ODEs has been used 
without questioning if smoothing is really necessary. In a preliminary study 
[11], we showed it is not. Here we report our findings along with important 
new insight. First we shall observe that the analogy with the work of Milne 
and Reynolds is false. Gragg's scheme is intended to estimate and then elim- 
inate a weakly stable component of the error expansion. It is easiest to 
understand what is happening if one considers an "ideal" smoothing which 
removes exactly this term. The remarkable result then is that polynomial 
extrapolation gives precisely the same numerical results with and without ideal 
smoothing. There is a rather tricky point about the effect of smoothing on the 
algorithms for accepting a step which we shall explain. 

Recently Bader and Deuflhard [1] have been studying an extrapolated 
semi-implicit midpoint rule for the solution of stiff problems. The method 
generalizes the explicit midpoint rule in a natural way. Bader invented a 
smoothing scheme for the semi-implicit midpoint rule which resembles Gragg's 
scheme. We shall point out that in contrast to the situation for non-stiff 
problems, Bader's scheme is quite important for stiff problems. The schemes of 
Gragg and Bader suggest a family of schemes for non-stiff problems which we 
explore. Shampine invented a cheap smoothing scheme as an alternative to 
Gragg's which will be explained. 

We propose a way to exploit smoothing which we believe will significantly 
increase the robustness of extrapolation codes. 

Finally we consider the merits of the various smoothing schemes as com- 
pared to each other and to not smoothing at all. 

2. Preliminaries 

First it will be useful to explain why one might not need to smooth the 
midpoint rule as it is used to solve non-stiff ODEs. There are two distinct ways 
one might use the idea of extrapolation - local and global. In global extrapo- 
lation one begins an integration with step size h at the initial point of the 
interval of integration a and advances all the way to the final point b. One 
then reduces h and integrates again from a to b. (In practice the integrations 
might be done simultaneously.) Extrapolation is done at mesh points of in- 
terest, common to both integrations, so as to obtain accurate results there. A 
virtue of this approach is that one obtains global, or true, error estimates. For 
this reason we have been studying the possibility of writing a code of this kind. 
This approach is analogous to that of Milne and Reynolds. Smoothing must 
be done occasionally in each integration to remove the weakly stable com- 
ponent of the error, else meaningless results or overflow may result. 

As implemented by Bulirsch and Stoer first and in all succeeding codes for 
non-stiff problems, extrapolation is done locally. The integrations with the 
midpoint rule are done from a solution at a mesh point x, to the next mesh 
point x,+ 1 = x , +  H. The results of the various subintegrations are smoothed at 
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x, ,+H and then extrapolated to yield an accurate result there. This accurate 
result is used to proceed to the next step. The resulting procedure is therefore a 
one-step method. The smoothing does not affect the subintegrations with the 
midpoint rule at all. This is entirely different from the situation of Milne and 
Reynolds. Smoothing can at most affect the accuracy of the extrapolated result 
at xn+ r 

The notation for the extrapolation schemes is a bit clumsy. We shall follow 
that of the text [14, p. 453ff]. Let r/(x;h) denote an approximation at the point 
X=Xo+nh to the solution y(x) of 

y '=f (x ,y ) ,  Y(Xo)=y o. (2.1) 

The midpoint rule with special starting procedure is 

rl(Xo;h)=yo, 

r l(xo + h; h) = yo + hf(x  o, r/(x o; h)), 

~(x + h; h) = ~ ( x -  h; h) + 2h f (x ,  r/(x; h)). 

If f is sufficiently smooth, t/(x;h) has an asymptotic expansion of the form 

N 

~l(x;h)=y(x)+ ~, h2k[Uk(X)+(--1)tx-~~ (2.2) 
k = l  

The first terms in this expansion satisfy equations of the form 

u' 1 =fy(x, y(x))u 1 + function of x, 

v' 1 = - fy (x ,y (x) )v  1 +function of x. 

Here fy(x, y(x)) is the Jacobian matrix of f in (2.1) evaluated along the solution 
y(x). The equation for the weakly stable component vl(x ) has a character 
opposite that for y and u r 

Gragg proposed smoothing at a fixed point x by 

S(x; h)= 1/4~l(x-h; h) + 1/2~l(x;h) + 1/4r/(x + h;h). 

In the form 

S(x ; h) = 1/2 [r/(x; h) + t l(x - h; h) + h f (x, ~l(x ; h))], 

it is clearer that this smoothing procedure requires an extra function evalua- 
tion in each integration to x. It is easy to see that 

S (x; h) = y (x) + h 2 [u 1 (x) + 1/4 y"(x)] 
N 

+ ~ h2k[~k(X) + ( _  1)t . . . .  )/h ~k(X)] + O(h2N+ 2). 
k = 2  

Thus the smoothing scheme replaces the weakly stable component vt(x ) by 1/4 
y"(x), which should have a behavior similar to y(x), and alters the higher order 
terms in the error expansion (2.2). 
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For completeness we also state the semi-implicit midpoint rule investigated 
by Bader and Deuflhard. It uses an approximate Jacobian J - f r ( xo ,Yo ) .  With 
the notation f ( x , y ) = f ( x , y ) - J y  it forms 

r/(x o; h) = Yo 

tl(x o + h; h) = (I - h J ) -  ~ [t/(Xo; h) + h f  (x o, r/(x 0; h))] (2.3) 

t/(x + h; h) = (I - h J)-  t [(I + h J) t/(x - h; h) + 2 hf(x,  t/(x; h))]. 

Notice that if one takes J =0, this results in the explicit midpoint rule. An 
asymptotic h2-expansion of the error is demonstrated in [1]. 

3. Ideal Smoothing 

The object of Gragg's smoothing scheme is to remove the term 

h2(-  1) (x- x~ v l (x ) = h a Q(x) 

from the asymptotic expansion (2.2). Thus an ideal smoothing results in 

I/(x; h) - h 2 Q(x) = N(x ; h). 

There are two ways of extrapolation commonly seen - polynomial and 
rational. Rational extrapolation is not a linear process so that the usual 
absolute stability analysis does not apply. It is believed that the behavior is 
similar to that of polynomial extrapolation for which the analysis is possible. 
Stability is the whole point of smoothing, so we shall confine our attention to 
polynomial extrapolation. It proceeds as follows. The extrapolation is to be 
done at X = X o + H .  A (fixed) sequence of integers {hi} is specified and in- 
tegrations are done from x o to x with step sizes h i=H/n  v Let 

T~,I = t/(x; hi) i=1 ,2 , . . . .  

A triangular array is generated by 

1,  r ,k_ 1 -  (3.1) 

\ H i - k +  1 i 

Each successive column k represents approximations to y(x) of order 2k. 
It is now trivial to see the effect of the ideal smoothing. Let T~ represent 

extrapolation of the values r/(x;h~), i.e., no smoothing at all. Let T~, k represent 
extrapolation of N(x;h~), ideal smoothing, and let T~Ok represent extrapolation 
of the values h2Q(x). Because of the obvious linearity of polynomial extrapo- 
lation, we have 

r .  N - - 
i , k  - -  i , k  

However, it is obvious that 

T ~ = 0  for k>2 ,  i>2,  
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hence that 

T., Nm i,k--Ti~k for k>2,  i>2. 

In words, the results of no smoothing and ideal smoothing are exactly the 
same after at least one extrapolation is done. 

This result originates in the fact that the extrapolation process successively 
removes terms in the error expansion (2.2). This is true for rational as well as 
polynomial extrapolation. Thus there is no need to remove the weakly stable 
component by a special computation; extrapolation will do it automatically. 
As far as the numerical results go, Gragg's smoothing and/or rational extrapo- 
lation have different terms in the error expansion, but qualitatively the be- 
havior is the same as for ideal smoothing with polynomial extrapolation. 

In retrospect one should not find this result surprising. Smoothing only 
affects the accuracy when extrapolation is being used as a local method, and it 
removes exactly the kind of term extrapolation is supposed to remove. 

There is a rather tricky aspect to comparing smoothing and not smoothing 
which arises in the way the codes decide if the numerical results are acceptable. 
The codes of Bulirsch and Stoer [2J and Hussels [6] use a diagonal con- 
vergence criterion. They estimate the error in the approximation of order 2k, 
Tk, k, by a norm of the difference 

Tk,k -- Tk+ 1,k+ 1" (3.2) 

If this local error is smaller than a specified tolerance, the value accepted is 
Y ( x o + H ) - T k +  1,k+1" Deuflhard [3] proposed the sub-diagonal criterion which 
estimates the error in Tk+ l,k by a norm of the difference 

Tk+ 1,k -- Tk+ 1,k+ 1" (3.3) 

If the error test is passed, he also accepts Tk+ 1,k+ 1' Stoer [13] has a procedure 
which can be regarded as an approximation to that of Deuflhard. 

There are also differences among the various codes as to when they will 
first check for convergence. Deuflhard's code can check as early as possible, 
namely with k--1, whereas the others must do several extrapolations. We have 
been studying an algorithm for which the minimum k is 2, but the behavior of 
T1,1 and T2,1 is monitored for purposes other than error estimation. In all 
cases the result accepted comes from at least one extrapolation, hence is the 
same whether or not ideal smoothing is done (and essentially the same whether 
or not Gragg's smoothing is done). However, if k =  1, the quantities T m and 
T2,1 used in the various error tests are different, depending on smoothing. It is 
certainly easy to imagine that the weakly stable component might be so large 
that the error test is passed if it is smoothed out and failed if it is not. Thus, 
the code without smoothing might have to do one more subintegration at 
some cost to recognize that it has an acceptable result. 

This difference in the acceptance tests arises only at the lowest possible 
order, so does not appear in most codes. Unfortunately this is a very impor- 
tant circumstance. The absolute stability regions of extrapolation, scaled for 



170 L.F. Shampine and L.S. Baca 

equal work, shrink as the order is raised, at least for the standard choices of 
the sequence {ni}. If stability is causing trouble, it is advantageous to use a low 
order. Of course ideal smoothing does not alter the stability of the methods, 
hence does not justify its cost. Gragg's scheme is not ideal so that it is possible 
that the stability "accidentally" obtained would justify its cost. We shall take 
this up below after considering some alternative schemes. 

4. Other Smoothing Schemes 

In this section we shall consider several other smoothing schemes. Bader 
invented a smoothing scheme for the semi-implicit midpoint rule. It resembles 
Gragg's smoothing scheme, but the resemblance is only superficial. Its goal is 
quite different, and the scheme is effective when solving stiff problems. The 
schemes of Gragg and Bader suggest a family of schemes for non-stiff problems. 
We have investigated the stability of members of this family. Gragg's scheme 
turns out to be as good as any. Shampine invented a smoothing scheme which 
is very cheap. 

4.1 Bader' s Scheme 

Bader invented the smoothing 

1/2 [r/(x + h; h) + r/(x - h; h)] 

to go with the semi-implicit midpoint rule (2.3). Although it resembles Gragg's 
scheme, it has a completely different purpose. The semi-implicit midpoint rule 
already has good stability properties; in particular, there is no weakly stable 
term to eliminate. Bader's goal was to improve the stability at infinity. The 
analysis of [1, w shows that the scheme is quite effective, with the con- 
sequence that the resulting numerical method has exceptionally good damping 
at infinity. 

It should be clear that the resemblance of the smoothing procedures for the 
explicit and semi-implicit midpoint rule is purely formal. The objectives are 
entirely different so that it should not be surprising that smoothing might be 
important for the solution of stiff problems and not for the solution of non-stiff 
problems. 

4.2 A Family of Smoothing Schemes 

Bader's scheme could be applied to the explicit midpoint rule. With it and 
Gragg's scheme as examples, one is led to considering schemes based on a 
ftxed linear combination of r/(x - h; h), ~/(x; h), and ~/(x + h; h). In order for such 
a combination to have an h2-expansion it must have the form 

flrl(x - h; h) + (1 - 2fl) r/(x; h) + flrl(x + h; h). 
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Obviously Bader's scheme has f l= 1/2 and Gragg's scheme has fl= 1/4. All the 
members of this family with fl:#0 involve the same number of function eva- 
luations. 

The scaled stability regions for the formulas of orders 4, 6,. . . ,  20, based on 
the double harmonic step size sequence, were computed for various ft. First we 
considered fl = + 1/4, + 1/2, _ 3/4, + 1. Because the best stability was observed 
for /3 = 1/4, we then considered fl = 1/5 and 1/3. Of all the schemes considered, 
Gragg's scheme with f l= 1/4 appeared the best. The derivation of Gragg's 
scheme suggests it should be effective, but not necessarily the best of this 
family. It was worth looking at the family even though nothing new turned up. 

4.3 Shampine' s Scheme 

The idea of Shampine's scheme is very simple. The object of Gragg's scheme is 
to approximate the weakly stable term 

h 2 ( -  1) ~x- ~~ vl(x) 

in the asymptotic expansion (2.2). A function evaluation is made in each 
subintegration solely for this purpose. But vl(x ) is the same for all the subin- 
tegrations - why approximate it every time? Shampine uses Gragg's scheme for 
the first subintegration with h 1 to approximate the weakly stable term and 
then simply adjusts the factor of h z for subsequent integrations. Now 

tl(x ; hl) - S(x ; h 0 
q(x) = h2 

N 

= vl(x ) - 1/4 y"(x) + ~, h 2k- 2 [Uk(X) + ( - 1) ~x- ~o)/h, Vk(X)] + O(h 2N) 
k=2 

= v l(x) - 1/4 y"(x) - n(x; h 1). (4.1) 

For other h the smoothing is simply 

t/(x; h ) -  h 2 q(x) = y(x) + h 2 [u l(x) + 1/4 y"(x) + R(x; h 1)] 
N 

+ ~ h2k[uk(x) + ( _  1)tx-~o)/h Vk(X)] + O(h2N+ 2). 
k=2 

Notice that this smoothing costs exactly one function evaluation regardless 
of the number of extrapolations. It does cost an extra vector of storage for the 
approximation to the weakly stable term. It resembles the ideal smoothing of 
Sect. 3 much more than Gragg's scheme does. Because it is a quadratic term in 
h 2, the observations of Sect. 3 made for ideal smoothing apply directly to it. 

5. A Way to Exploit Smoothing 

Modern ODE codes based on Adams methods enjoy a well-deserved re- 
putation for robustness. They achieve this by a careful monitoring of basic 
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assumptions and by verification of anticipated behavior. For example, the step 
size and the number of terms used in the underlying approximate Taylor series 
expansion of the solution are manipulated so that the terms decrease in a 
regular manner. Perhaps because of our experience with writing Adams codes, 
we believe that the robustness of extrapolation codes could be significantly 
enhanced by a more critical evaluation of the assumptions underlying the 
current algorithms. Here we propose a natural test based on smoothing. 

It is, of course, a fundamental hypothesis that the asymptotic expansion 
(2.2) exist. In practical computation this not always true. The expansion might 
not exist on the interval [Xo, x] because f is not smooth on the whole interval, 
indeed discontinuous f are by no means rare. (More common is that the 
number of terms N is limited by the smoothness of the problem.) If the step 
size H is too small or if f is not evaluated accurately, the numerical value 
actually computed for t/(x;h) might be so contaminated by roundoff errors that 
the expected asymptotic behavior is not present. If the step size H is too large, 
the midpoint rule might be unstable. There is an important distinction here. If 
the step size h is small enough that the asymptotic expression (2.2) is valid, the 
weakly stable term reveals the poor stability of the midpoint rule, but the 
situation is more or less under control. If the step size h is too large, overflow 
is quite possible. Years ago in a comparison of ODE solvers [12] we pointed 
out that extrapolation codes can overflow for this reason, and recently [10] we 
have had experience with this difficulty in developing a type-insensitive code. 

Even if the asymptotic expansion exists, we also need to have a step size 
small enough that the anticipated behavior is actually present. On another 
occasion we shall propose suitable monitoring devices. Here we just need the 
observation that we intend to extract y(x) from the numerical values t/(x;h), 
hence h must be small enough that y(x) be represented in these values. 

Our proposal is very simple. Let us monitor the difference between the 
smoothed and unsmoothed values in the first subintegration. (For example, 
h2q(x) from (4.1) is this difference for both Gragg's and Shampine's smooth- 
ings.) If this difference is large compared to the smoothed value, the step is 
to be rejected and attempted again with a smaller H. It is a fundamental 
practical hypothesis that the quantity we propose monitoring be of modest 
size compared to an approximate solution. A large value is a sure sign of 
trouble. Reducing the step size is an appropriate response for all the difficulties 
we have mentioned, with the exception of H too small. This last case is easily 
handled by a test along the lines of [8]. 

The test proposed is not a delicate one and in our opinion should be 
supplemented with other tests. Its great virtue is that it is done very early in 
the extrapolation process, so that serious trouble can be recognized before 
much effort is wasted. Because it is not delicate and because it is activated in 
circumstances when we do not know how the solution behaves, we do not 
know how much to reduce the step size. In other kinds of ODE solvers, the 
traditional response in such a situation is to reduce the step size by a fixed 
amount, e.g., halve it. 
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6. Which is the Best? 

It is not clear how one should proceed in the local use of extrapolation of the 
explicit midpoint rule. In this section we shall consider several issues which 
affect the decision. 

In [9] one of us argued vigorously that the robustness of a method is 
helped by evaluating the function at arguments spanning the whole step from 
x, to x, +H.  The various smoothing procedures do this, but that based on not 
smoothing never evaluates at the endpoint x , + H .  The matter is most impor- 
tant for the stiff problems considered in [9], and the extrapolated midpoint 
rule should not be used for such problems. Extrapolation is an adaptive 
process which does cause the neighborhood of the endpoint to be probed if 
there is any hint of difficulty in the rest of the step. For these reasons, the 
advantage that smoothing has in this respect is not very impressive. 

Other things being equal, the lower the cost per step, the better. No 
smoothing is obviously best in this regard with Shampine's smoothing a close 
second. Gragg's smoothing does not add terribly to the cost of a step, but the 
extra cost is a disadvantage in severe circumstances causing frequent step 
failures or restricting the step size drastically. 

An issue difficult to quantify is the effect smoothing has on the process of 
extrapolation in finite precision arithmetic. As is well known, the extrapolation 
procedure (3.1) amplifies the arithmetic errors present in the results of the 
subintegrations T~,~. Extracting a substantial term by smoothing, in effect, 
augments the precision available for the extrapolation. As we have observed, 
this is little different from not smoothing because the first extrapolation ex- 
tracts virtually the same term. 

The goal of Gragg's smoothing was to improve the stability. The absolute 
stability regions depend on the sequence {n~} used to specify the rate at which 
the step size h i is decreased in the successive subintegrations. Of course the 
work in terms of function evaluations also depends on this sequence. To 
properly compare methods, one must scale the regions by the cost of the 
formula. We have already seen that any quadratic smoothing, such as the ideal 
smoothing or Shampine's, leads to the same absolute stability region as not 
smoothing. Thus for any choice of {nl}, the stability region for Shampine's 
smoothing is obtained from that of not smoothing by contracting the region in 
the ratio c/(c + 1) where c is the cost in function evaluations of the unsmoothed 
formula. Because c increases fairly rapidly as the order of extrapolation in- 
creases, there is no practical difference in the stability of these procedures 
except at low orders. 

To proceed further with our examination of stability properties, we had to 
specify {n~} and compute the stability regions in the usual way. We chose to 
follow Deuflhard in the April 30, 1981, version of his code DIFEX 1, which 
seems to be the most efficient extrapolation code at this time. He uses the 
slowest possible rate of decrease of step size, the double harmonic sequence {2, 
4, 6 . . . .  }, with the maximum number of extrapolations limited to 9. Associated 
with the report [11] is a microfiche which gives the scaled stability regions for 
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Fig. 1. Scaled stability regions of orders 4 and 10. The larger regions correspond to order 4. 
Dashed line identifies result with Gragg's smoothing, solid line identifies result with no smoothing 

Gragg's smoothing and no smoothing for orders 4, 6 . . . . .  20. In Fig. 1 we 
display the results for orders 4 and 10. 

The situation for the higher orders is easily described. At orders 10 and up, 
the stability region for not smoothing includes that for Gragg's smoothing. 
Shampine's smoothing is virtually identical to not smoothing. Although the 
situation is clear enough, it is not the basis for a choice because the differences 
are not large enough to be important in practice. 

At order 4 the stability regions for Gragg's smoothing and not smoothing 
are comparable. Their shapes change gradually through orders 6 and 8 to 
those plotted of order 10. Not smoothing is somewhat to be preferred because 
the boundary of the region is more circular, hence the method treats problems 
more uniformly. At order 4 the region for not smoothing is contracted by 5/6 
to yield the region for Shampine's smoothing; it is therefore worst of the three 
at this order. At order 6 the contraction factor is 10/11 for which the difference 
in stability is already of little practical importance. 

A key factor is when one starts testing for convergence in the extrapolation 
array. As explained in Sect. 3 it may be necessary to smooth to recognize an 
acceptable result as early as one would like. Smoothing also is a little more 
robust by evaluating f throughout the step and may be a little better in finite 
precision arithmetic. A strong argument for smoothing is the robustness sup- 
plied by the test of Sect. 5. Our preference is to smooth. It is difficult to choose 
between Gragg's and Shampine's smoothings. Gragg's smoothing will be some- 
what more efficient if stability is causing the step size to be restricted. 
Shampine's smoothing will be somewhat more efficient if the step size is 
restrained for other reasons, e.g., output or a lack of smoothness, or if there are 
step failures. 
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7. Conclusion 

I t  is r e m a r k a b l e  tha t  the role of  Gragg ' s  s m o o t h i n g  of  the ex t rapo la ted  mid-  
po in t  ru le  has  b e e n  so l ong  mi sunde r s tood ,  an d  even  m o r e  r e m a r k a b l e  tha t  the 
ex t r apo l a t i on  process itself a l ready accompl i shes  Gragg ' s  goal. As we have 
seen, the advan tages  of  s m o o t h i n g  do n o t  come  f rom s tabi l i ty  at  all. Besides 
c o m i n g  to a new u n d e r s t a n d i n g  of the  role of  smoo th ing ,  we p r o p o s e d  a new 
s m o o t h i n g  wi th  a t t rac t ive  features a n d  a n  easy way to im prove  the robus tness  
of  ex t r apo l a t i on  codes. 
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