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Summary. The method of lines is used to semi-discretize the non-linear Pois- 
son equation over a domain with a free boundary. The resulting mul- 
tipoint free boundary problem is solved with a line Gauss-Seidel method 
which is shown to converge monotonically. The method of lines solution is 
then shown to converge to the continuous solution of the variational in- 
equality form of the obstacle problem. Some numerical results for the dif- 
fusion-reaction equation indicate that the method is applicable to more 
general free boundary problems for nonlinear elliptic equations. 

Subject Classifications. AMS(MOS): 65N30; CR: 5.17. 

I. Introduction 

Front  tracking for free and moving boundary problems refers to numerical 
methods for differential equations over unknown domains which explicitly use 
the geometry of the domain in the solution process. Such methods are applied 
routinely to one and multi-dimensional elliptic, parabolic and hyperbolic equa- 
tions. They are often conceptually simple, numerically robust, and relatively 
independent of the structure and data of the problem provided that the free 
boundaries are indeed trackable. Surveys of numerical methods for free bound- 
ary problems in general and front tracking in particular may be found in [13, 
17, 9], and [5]. 

Although front tracking is widely used in practice only few theoretical re- 
sults exist which a priori assure its success. Moreover, most of the existing 
analytic work applies either to interval problems for ordinary differential equa- 
tions (e.g. the minimum fuel problem of optimal control [15]), to one dimen- 
sional diffusion problems of Stefan type (see, e.g. [4]), or to one dimensional 
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hyperbolic problems (see, e.g. [7]). An analysis of multi-dimensional front 
tracking is only now beginning. 

In our own work we have used a fully implicit sequentially one dimensional 
front tracking method to solve multi-dimensional free boundary problems. As 
demonstrated in [11] a numerical algorithm results which is applicable to a 
variety of potential and diffusion problems. Moreover, for the Reynolds equa- 
tion describing the hydrodynamic lubrication of a journal bearing it is possible 
to establish that the iteration required in the sequentially one dimensional al- 
gorithm is convergent, and that the discrete numerical solution converges to 
the continuous solution as mesh sizes go to zero [12]. 

It is the purpose of this paper to discuss again front tracking based on 
sequentially one dimensional met.hods. In overall outline our approach here is 
similar to that of [12]; however, by using monotonicity instead of fixed point 
arguments nonlinear field equations can be treated. Thus, our new analysis 
applies not only to the Reynolds equation but also to certain (time discretized) 
diffusion problems involving Michaelis-Menten or second order irreversible re- 
actions. Finally, some numerical experiments with reaction diffusion equations 
are described which show that the numerical method is practically unaffected 
by the presence of nonlinear source terms in the field equations. 

2. The Algorithm 

We shall begin by considering front tracking for the following free boundary 
problem on the rectangle R = (0, X)x (0, Y). 

Au=f(x,y,u) (x,y)eD, 

u=g(x,y) (x,y)~D1, 
Ou 

U=~n = 0  (x,y)~c~O2 

u = g (x, y) (x, y)~ 0D 

(2.1 a) 

(2.1b) 

Here D is a domain in R. Its boundary consists of two parts 0D 1 and 63D 2. 

The given boundary ~?D1 lies on the lines x=0 ,  y = 0  and y =  Y. ~?D 2 denotes 
the unknown free boundary which is assumed to be expressible as x=s(y) and 
which bounds D on the right, s(y) is allowed to coincide in part or completely 
with the fixed boundary x =  X. When this occurs the free boundary condition 
(2.1c) is replaced by (2.1d). The geometry of the problem is apparent from 
Fig. 1. Problem (2.1) may be considered to be a typical obstacle problem (see, 
e.g. [8]). 

We shall be interested in non-negative solutions of problem (2.1). To insure 
their existence and computability several hypotheses will be imposed on the 
data. 
H1): f and g are continuously differentiable o n / ~ x  {u: u>0} and 0R, respec- 
tively. 

if x<X, (2.1 c) 

if x = . g .  (2.1 d) 
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H2): f (x ,y ,u)=fl(x ,y ,u)+ f2(x,y,u ) where 

i) 0fl > a o >  - ; t o =  - + u>-0, 

ii) suplf2(x,y,u)[-=llf2H<~ where the supremum is taken over R 
x {u: u>0}. 
H3): g(x,y)>O on OR. 
H4): max {g(0, y), - f ( 0 , y , 0 ) } > 0 ,  ye(0, Y). 

Hypothesis H1) can be relaxed somewhat, but minimal smoothness con- 
ditions are not central to our analysis. Hypothesis H 2) allows an application of 
standard monotonicity arguments as, for example, in [1, p.369]. We note that 
if in any given application a free boundary x=s(y) has been computed, then 
one may set a posteriori X=maxs(y)  and verify whether H2) holds for the 

Y 
calculation. H 3) is consistent with the expressed aim to find non-negative so- 
lutions. The hypothesis H4) will be seen to assure that D +  {0}. 

Problem (2.1) will be discretized with the method of lines. We define a 
uniform partition 0 = y o < y  ~ < ... <YN+ 1 = Y with mesh width A y and replace 
(2.1) by the system of nonlinear ordinary differential equations 

,, Ui+lq-Ui_l--2Ui 
U ~ -t Ay 2 -- f (x ,  Yi, Ul), (2.2a) 

UI(0)  = g(O, Yi) ~ gi(O) ' 

ui(si)=u'i(si)=O if si<X, 

ui(si)=g(X, yi)~gi(R) if si=X. 

(2.2b) 

(2.2c) 

(2.2d) 

For u o and uN+ 1 we choose go(X) and gN+l(x), respectively. Thus along each 
line y = Yl the solution {ui, si} of a multi-point free boundary problem must be 
found. 

In order to define a numerical algorithm for (2.2) an a priori bound for the 
solution of (2.2) is needed. Such a bound can be computed with the following 
two lemmas which are also used in subsequent convergence proofs. 

Lemma2.1. Let {~i}/U+ol be a set of real numbers with %=~N+l=O.  Then 

c ~ K ( A y )  Z 
i=l i=x \ Ay 

d y e 0  
b b 

Proof. We apply the Rayleigh-Ritz inequality ~fZdx<=((b-a)/n)2~f'Zdx for 
feH~ [a,b] to the function " " 

N + I  

f (Y)= ~ ~iqh(Y) 
i = 0  
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where q~i(Y) is the standard Chapeau function centered at Yv Integration with 
respect to y leads to 

i=1 i=1 \ Ay 1 . 

Writing ~i ~i-1 = ~z + ~i(~i-1-~i) and applying the algebraic geometric mean in- 
equality to the term ~(a~_ 1-a~) we obtain 

i- ,=~,=~--<l_l,~-I 6 J  ,=, \ Ay " 

N 

Let H =  l l H i [ O , X ]  denote the Hilbert space of vectors u 
i = l  

= (u 1 ..... uN), uieH ~ [0, X], with inner product 

N + l  X{ ,  , (Ui__Ui_l~ (V _Vi_l~d x 
<u,v>= ~] A y !  uivi+ 

i=1 \ Ay l \  Ay ]J 

and norm Ilull2=<u,u> where Uo-Uu+l-O. Then one can use the Lax-Mil- 
gram lemma to prove the following result. 

Lemma 2.2. The fixed boundary value problem 

O'/+ oi+x + o l -  1-2~ki aoOi=~i(x), i=1  . . . . .  N, (2.3) A y z 

O~(o) = O~(x )  = 0 ,  

~o(X)- q'N+ dx)-0 

for ~i~C~ has a unique solution for sufficiently small Ay. I f  ai <O then this 
solution is non-negative. 

Proof We remark that an analogous result for the continuous problem A q/ 
- a  o q/< 0 is well-known because a o dominates the first eigenvalue of the Lap- 
lacian on R. For  the above discrete problem the lemma can be eastablished by 
defining on H the bilinear operator 

N X 

B[u,v]=<u,v>+ao ~ Ay~.uivl 
i = 1  0 

and-proving its continuity and coercivity on H. In fact, continuity in u and v 
follows by inspection because the Rayleigh-Ritz inequality applies to each 
component u~ and vi. To show that B[u,u]>7 Ilull 2 for 7 > 0  we apply Lem- 
ma 2.1 to obtain the inequality 

Ay ~ u i u i d x (  = sAy u'i2dx 
i = 1  0 i = i  

+(1--or 2 AyK(Ay) 1 dx 
i:x \ Ay 
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for any ~ [ 0 , 1 ] .  The coefficients of both integrals on the right are equal if 

aoi~= Ayiu~dx<[aolK(Ay)(~)2/[(-~)Z+K(Ay)]<u,u> �9 
But in view of H2) and Lemma2.1. 

lim lao[ K(Ay) + K(Ay) < 1. 
Ay + 0 

Hence for sufficiently small Ay it follows that B[u ,u]>7  Ilull 2 for some 7>0. 
By the Lax-Milgram lemma there exists a unique solution {$i}~= 1 of (2.3). If 
~i <0  then let ~i = min {~,0}. A straightforward calculation shows that 

N X 

B[q,,~]=- E ~y I~,~,dx<- - 0  
i=1 0 

and 

B [#J, ~ ]  ->_ B l-~, #J] >_- O. 

These inequalities can hold only if ~-~0 for i=  1 . . . . .  N. Hence each ff~ is non- 
negative. 

Corollary 2.1. I f  the bound on a o in H2) is strengthened to 

16 
ao  > z~2 __ y 2  

then each ~i can be bounded above by # i = M ( x ( X - x ) + y i ( Y - y i ) )  for 
sufficiently large M > O. 

Proof. We compute 

#,i,~" # i +  1 - - # i - -  1 - - 2 # i  
Ay 2 

=< ( - 1  +[ao[ !'~2 + Y/) ] 1 6  ! (4M)<= 

ao Pl = - 4 M - a o #i 

- T M  for some 7>0. 

Hence for sufficiently large M we can assure y M > m a x l % l .  The conclusion 
i , j  

follows by applying Lemma 2.2 to #i-@i. Note that M is independent of A y. 
In order to give an algorithm for (2.2) we shall denote by ~k i the solution of 

(2.3) when 
~ =  - m a x l f l ( x , y , O ) l -  llf2l[ + min {ao,0} Ilgl[ 

R 

and write F i = r  Ilgll where IlglL =maxg(x ,y)  and ~0 =~N+ 1 =0. 
OR 

Let F be a positive constant such that F > m a x  F~, x~[0, X], i=  1 . . . . .  N, and 
set 
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max ~fu (x, y, u) (2.4) K 

where the maximum is taken over the compact se t /~x  [0, F]. Then in analogy 
to the usual monotone methods for nonlinear elliptic equations (see, e.g. [1]) 
we shall generate a solution {u*,s*}~=l with the Gauss-Seidel iteration 

L - -  + i<1 = v,- (x) (2.5) 
LAy J 

uT(O) = g,(0) 

um(s?)=U.~'(S?)=O if ST'<X 

u~ ' (x )=g , (X)  if s. '?=X. 

where 

Fi"(x)= u'~- I + u'~+-11 -k f ( x,  Y l , U .~ - X ) - K u'~ -1 (2.6) A y2 

and where m denotes the iteration. The functions {u ~ are suitable initial gues- 
ses to be discussed below, and s~" is the computed free boundary on the line 
Y = Y l  in iteration m. 

The solution {u.~,s.~} of each scalar problem (2.5) is found exactly as de- 
scribed in [11]. For ease of reference the basic steps are outlined below. We 
emphasize, however, that the question of convergence of {u~", s~'} to a solution 
of (2.5) as m ~  ~ and to a solution of (2.1) as A y ~ O  is completely independent 
of the algorithm used to solve each scalar problem (2.5). 

In order to compute u~" and sT' we employ the Riccati transformation 

u?(x)  = R(x)  o'S(x) + w?(x)  (2.7) 

where v ' r ( x )=u? ' ( x  ), and where R and w~" are the solutions of 

R ' =  1 - [ + + K ]  R 2, R(0)=0,  (2.8) 

w ~ " = -  [A2-~+ K]  R w ~ - R ( x ) F ~ ( x ) ,  w~(x )=gi (O ). (2.9) 
y 

m m _ i11 m The Riccati transformation and the boundary conditions u~ (s i ) - v  i (s i )=  0 im- 
ply that s 7' must be a root of the equation 

wT(x)=o. (2.10) 

Throughout this paper we shall agree to choose the smallest root of (2.10) on 
(0, X). If no such root exists we shall set s 7' = X. Finally, v~" is computed from 

(2, ,)  
Lz~y J 

l 0 if S m < x  
vm(sm)= g,(~)__wim(_~) i _ _ -  

S m - -  t ~ if X. 
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The existence of a positive solution R of (2.8) on (0,X] follows by inspec- 
tion. The other  two equations are linear and have bounded  solutions for bound-  
ed source terms. Finally, if s~' < X we shall set uT ' -0  on [s~', X]  so that each 
u.7 ~ C 1 [0, _~]. 

It is s traightforward to extend the results of [12] to characterize the iterates 
{Urn}. We shall summarize the necessary results and outline their proof. 

Lemma2.3 .  Let u~  for i = 1  . . . . .  N. Then s~'>0 and u~'>0 on (O,s m) for 
l<i<_N a n d m = l , 2 , . . . .  

Proof Consider u~'(x) for arbi t rary i and m. Either w~'(0)=gi(0)>0 or w~'(0) 
=Win'(0)=0 and wT'"(0)= -F /m(0)>0  because of H4). In either case wT'>0 on 
some interval (0, Sin). If U~" has a relative minimum at x*~(0, s~') then v~'(x*)=0 
and um(x *) = w?(x*) > O. 

The next lemmas depend on the observat ion that  if u sk-ujk- 1 _>0 for all j 
and k preceding the calculation along the line y = Yl in i teration m then because 
of (2.4) 

F~" (x) - Fir"- ~(x) __< O. (2.12) 

Lemma  2.4. Let up-O, s ~  for i = 1  . . . . .  N. Then u=, >u~ -1 and S'~Sr~ -1 

Proof The result is true for m =  1 by Lemma 2.3. Suppose next that  _k> _k-1 5i = "~i 
k-1 for all j and k preceding the computa t ion  along the line y=yi  in and u~ > u i 

i teration m. Then 

(win-w~'-1)'  = -  [A2~ + K]  R(x)(wm-w~ '-1) 
Y 

- R ( x )  [ F i m ( x ) - - F [ n - l ( x ) ] ,  m m--1 (W  i - -  W i ) ( 0 )  = 0 

and (2.12) imply that w~"> w m- 1 and hence that  s.~>s'~-1. The maximum prin- 
ciple is then applied to L ( u ~ ' - u ~ ' - l ) < 0  on (0,s~ ' -1)  to conclude that  u~>u'[' 1 

, , -1) and hence on [0, ,g]. on (0, s i 
The  sequence {u m, s~'} provides monotone ly  increasing lower bounds for the 

solution of (2.2). We can also obtain monotone ly  decreasing upper bounds 

L e m m a  2.5. Let U/~ S o =,~.  Then the Gauss-Seidel iterates {U/m, S~"} satisfy 
U/m_~_~_ U/m--1 and S~ < S~ -1. 

Proof By hypothesis S~ < S O and by direct calculation L(U~-  F1)>0. The maxi- 
mum principle can now be applied inductively. 

Lemma2.6 .  For the sequences {u~'} and {U/'} of Lemma 2.4 and 2.5 we have 
O ~ u m ~  U i m <  ffi . 

Proof We observe that s o < S O and u ~ < U/o. If we assume that  u~ < U k for all j 
and k prior to the calculation along line y=y~ in i teration m then as in Lem- 
ma 2.4 we find that s m < S~" and u m < U/m on (0, s~") and hence on [0, ,g]. 

Thus, the solution of (2.2), if it exists, is bracketed by mono tone  sequences 
of functions and boundary  points. 

U m Theorem 2.1. The sequence { i,  s.~} converges to a solution ,~u*,,s*~, of the dis- 
crete free boundary problem (2.2). 
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Proof It follows from Lemma 2.6 that for each i the sequence {uT' } is uniformly 
bounded. Equation (2.5) then assures that uT"' is also uniformly bounded on 
(0,sT') and (sT',X). Thus, {u~"} and {uT"} simultaneously are sequences of uni- 
formly bounded equi-continuous functions so that u 7' converges monotonically 
to a continuously differentiable function u* as m--, 0o. At the same time the 
monotone sequence {sT' } converges to a limit s* for each i=  1 . . . . .  N. Moreover, 
let [0, ~] E [0, s*) then there exists an m o such that ~<s~ "~ for all m>m o. On 

[+ 1 (0, 2) the function uS'" satisfies the equation u~'"= + K u'~'+ Fire'(x). 

Since u~e C 1 [0, X] for all j it follows that u~" also is bounded and equicon- 
tinuous. Hence u~' ~ u*" as m - ,  oo. Taking limits in Eq. (2.5) we see that u* is a 
solution of (2.6). Moreover because u~(x)-O on [s~', X] we may conclude that 
u * = u * ' = 0  at x=s*. If sT'=_X then U~(S*)=gi(.~ ) by construction. Thus 
{u*,s*} is a solution of the free boundary problem (2.2). 

An analogous argument may be applied to show that the sequence 
{Uim, s?} converges to a solution {UI*,S* } of (2.2). However, the hypotheses 
imposed so far only guarantee existence of a solution, not its uniqueness. One 
can verify, for example, that if f and g are determined such that 

u(x,y)=(S-x)2(s-x) 2, 0 < s < S < X  

is a solution of A u = f  then f=- f (x)  and g=g(x)  satisfy the conditions H 1 -  
H4). But two distinct solutions of (2.1) result if we truncate u after s or S and 
continue it as the zero function. In fact, one may observe that the increasing 
sequence {uT' } converges to the minimal positive solution of (2.2). The mo- 
notone sequence {U["} will converge to the maximal solution whenever the 
corresponding Eq. (2.10) has a single root $7' on [0,X]. 

Uniqueness of the numerical solution can be guaranteed under the follow- 
ing additional hypotheses. 

H5): fz(x,y,u)=-O 

H6):  Gi(x)=-f(x, yi,O ) u*l +U*l >--0 on [ s* ,X] ,  s * < X ,  
AyZ - 

U* where { ~,s*} is the minimal solution obtained above. Hypothesis H5) is com- 
mon to force uniqueness of the solution of the Dirichlet problem [1]. Hy- 
pothesis H6) is related to the condition ( A u - f ) u < O  in the complementarity 
formulation of free boundary problems but shows the effect of the by-lines 
approximation. We note that Gi(s*)>=O because otherwise w*'(s*)>0 which 
contradicts that s* is the first zero of w* on (O,s*). We also note that since 

U m U* convergence of { i,sT'} to { i ,s*} is guaranteed the hypothesis H6  can be 
verified a posteriori. 

Theorem 2.2. Under the hypotheses H5,6) the solution of (2.2) is unique for 
sufficiently small A y. 

Proof Let Ai=Ui*-u* on [0 ,X]  where {Ui* } is any other non-negative so- 
lution. Then integration and summation by parts yield 
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X A i + l + A i _ l _ 2 A i ]  

i = 1  

On the other hand, U~* and u* satisfy (2.2) which leads to the identity 

�9 = Ay - [ f ( x , y~ , U~*) - f ( x , y~ ,u* ) ]A ,  dx 

Iv X 

= Z Ay ~ O,(x)U,*(x)dx>=O. 
i= 1 s* 

Since [ f (x ,  y, U/*) - f (x ,  Yi, u*)] Ai> a o A 2 we see with the notation used in Lem- 
ma 2.2 that 

N X 

- B [ A , A ] >  ~" Ay ~ Gi(x ) Ui*(x)dx. 
i = 1  

Hence A i - 0  for i= 1 . . . . .  N, and the solution is unique. 
It is apparent that the above theory applies to more general problems than 

just Poisson's equation with Dirichlet boundary data. Since the key tool is the 
maximum principle one can treat equations like 

Lfi - Vo k Vu + a (x)o Vu = f (x, y, u) 

provided the by-lines approximation also satisfies the maximum principle. 
Moreover, Neumann or reflection data can be given on c~D~. However, in- 
homogeneous data on the free boundary require careful estimation (see the 
method of lines for the dam problem described in [10]). The actual numerical 
performance of the above iterative method is not very sensitive to the bound- 
ary data on x=s(y) .  

3. Convergence of the Method of Lines Approximation 

The convergence of the discrete solution of (2.2) to the continuous solution of 
(2.1) as Ay--+O will be shown as in [12] by relating the computed solution {ui} 
to that of a variational inequality underlying (2.1). However, the nonlinearity 
of f causes some technical complications. 

We shall retain the hypotheses H 1,3,4,5). To simplify exposition only we 
shall replace H2) by 

H2') ~?f >0, u>0 .  
0u = 

In addition, our technique of proof requires that hypothesis H6) be strength- 
ened to 

H6') G,(x )=f (x ,  yi,O) u*+' -u*-I  Ay  2 >=0, x>=s* 

for any solution of (2.2). 
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In the proof of uniqueness of the numerical solution given above the hy- 
pothesis H6) could be verified a posteriori for a given A y, whereas in H 6') the 
inequality G~>0 has to hold a priori for all A y. As we shall see below this 
condition can often be established with the maximum principle. In addition we 
shall assume that the boundary function g is the restriction of a non-negative 
function ~,eC~ for some s>2.  For  example ~ may be the classical 
solution of A~=0,  g=gl0R. For  ease of notation we shall identify ~ with g. 

Let K be the closed convex set in Ha(R) defined by 

K = {v: v~Ha(R), 0<= v <=F, v -  g~Hoa (R)}, 

where F is independent of Ay (see Corollary2.1). Then we can consider the 
variational inequality 

(Au ,  v - u )  <=O, v~K (3.l) 

where A is the nonlinear mapping from Ha(R) to H- I (R)  defined by 

( A u , ( p ) = ( - A u +  f(x,y,u),~o), ~oeHl(R) 

and where (u, v)= ~ u v dx dy. Under the hypotheses H 1-5) we can state 
g 

Theorem 3.1. The variational inequality (3.1) has a unique solution ueK.  More- 

over, ueCLa(K)nHZ'S(R) for 2=1  2 
S 

For a proof of the existence of a generalized solution for (3.1) and for its 
regularity we refer to [8]. 

It will be convenient to define 

B(u, v) = ~ Vu o Vv dx dy 
R 

and to rewrite (3.1) as 
B(u, u - v) + (f, u - v) < O. (3.2) 

Let us define next the subspace MNcH~(R)  consisting of all functions of the 
type 

N + I  

vN(x,y)= q,,(y)O,(x) 
i = 0  

where again each ~o i is the one-dimensional Chapeau function centered at y 
=yl,  and where Oi(x)eH a [0,x]. We note for further reference that for any two 
sets {~i}~=+J, {/?j}~Y__+o ~ we obtain by integration and rearrangement 

= Z Ay + + Z Ay + (3.3) 
i = 0  i = 1  

N + a  A -  N + I  

1). 
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It is straightforward to verify with this identity that {v k} is a Cauchy sequence 
in M N if and only if {O k } is a Cauchy sequence in H l [0 ,x ] .  Hence M N is a 
closed subspace of Ha(R). 

If {u~}~_+o I is the computed solution of (2.2) we can define a function 
UNeM N by 

N + I  

UN(x,Y):= 2 ~i(Y) Ui( X)" 
i = 0  

It follows immediately from Lemma2 .2  that UN~K. Let II IIo and II I11 de- 
note the usual norms on L2(R ) and Hi(R). Then we can give 

Lemma  3.1. 11UN][, <k for some constant k and all sufficiently small Ay. 

Proof Let WN= UN-G N where GN=~qh(y)g(x, Yi). Then from (3.3) 

B(WN, WN) < 2 Ay w'i2+ dx 
i=1 \ Ay 

,, Wi+l-[-Wi_l--Rwi 
= Ay - w  i AY 2 widx 

/=1 
N + I  X 

< ~, Ay ~ { - f ( x ,  yi,ui)+Agi} widx. 
/ = 1  0 

Since WNeHo(R ) it follows from the boundedness of the right hand side that 
I1WNIE1 _--< k and hence that I[ UNll 1 < k. For  any VusM N n K we compute  with the 
aid of (3.3) 

N + I  X ~(Ui--Ui--I~ (Ui--Ui--1 1)i--Vi 1~ 

t t f l t ! t ! t t 
"~- U i ( U  i - -  Ui) - - ~ ( U  i - -  U i _  , ) ( U i -  Ui_ 1 - -  (Ui - -  V i -  1)) d x ,  

where we have taken into account  that  u o -  v o -  uN+ 1 -  vN+ 1 = 0 .  Let us set 

R I =  ul-u'  i 1)(u',-u'i_l-(vl-v', 1))dx. 
i = 1  

Summation and integration by parts yield 

X 
,=1 AY E ~- i ;  tu ' - v ' )dx -Rl"  

Since {ui} is a solution of (2.2) on (0,sl) we can write 

B(UN, UN--VN)= -- ~=,Ay -- f (x ,y~,ui)(ui--v , )  

+ ! G,(x)(ui-vi)dx}-R1. (3.4) 



474 G.H. Meyer 

For any UNeM N let us define 
N+I  

fN(x,y, UN)= }-'1 ~o,(y)f(x, yi,ui) (3.5) 
i=o 

then it follows from (3.3) that 

N X 

(fN, UN-- VN)= ~ Ay ~ f ( x , y , , u i ) ( u , - v , ) d x - R  2 
i=1 0 

where 

R 2 = -  Z [ f ( x ,  y i , u i ) - - f ( x ,  Y i - l , U i - 1 ) ] [ u i - v i - ( u l  1 - v i - 1 ) ]  dX. 
i= o 

We can now rewrite (3.4) as 

N X 

B(U N, U N - VN)+(fN, U N - VN)= ~ Ay ~ G i ( x ) ( u i - v i ) d x - R  1 - R  E. 
i= 1 si 

By hypothesis Gi(x)>O and u~=0, v~>0 on [ s , X ] .  Hence the computed so- 
lution U N c H i ( R )  satisfies 

B(U N , U N - VN) + ( f  N, U N - VN)<R N (3.6) 

where 

RN= - R  1 - - R  2. 

In order to prove convergence of U N to u as Ay-~O we adapt the calcu- 
lation of [3]. It follows from 

B(UN, UN-- VN)+(fN, UN-- VN)<=RN, VNeMNc~K N, 

e ( u , u - v ) + ( f u - v ) < = O ,  v e K  

that 

B(u - UN, u - UN) <= B( UN -- U , VN - u) + B(u, v - U~) + B(u, VN -- U ) 

+ (f, V-- UN) + (f, VN--U) + ( f  -- fN, U N -  VN) + R N 

= B ( U o - u ,  V N - u ) +  ( f  - Au , v -  UN + VN--U ) 

+ ( f  - fu ,  UN--uN + u -  VN)+ R N. 

If we write 

then 

f (x, y, UN) = f (x, y, ~ q~i(y) u,) 

( f  - fN, U N - - u ) = ( f  -- f,  U N - - u ) + ( f  -- fN, UN--u) 

c~f 
so that ~-u > 0  implies that 

( f  - fN, U N - - u ) < ( f  -- fN, UN--u)" 

(3.7) 
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We now can est imate 

B ( u -  tiN, u - UN)<= IIf-Au]lo {ll VN- Vllo + [ Iv -  UNll o} 

+ I l f - fNl [o  It gN-u l lo  + I l f - f N t l o  I l u -  gNIlo 

+ li V (u -  UN)It o l[ V(VN--u)IIo+RN (3.8) 

where so far v and V N are arbi t rary  in K and M NmK. 
Since u - U  N - 0  for y = 0  and y =  Y it follows that  there is a constant  y > 0 

such that  
~, I lu-  U,,ll ~ <=B(u - U , , , u -  U,,). 

Let us now choose 

v(x, y)=u(x, y), 
N+I 

Vu(x,y)= ~" ,:pi(y)u(x, yi) 
i=0 

where u is the solution guaranteed by Theorem3.1 .  Since f is smooth ,  
U~ C1"2"c5 H 2,s, s > 2  and II Uulll < k for some generic constant  k which is inde- 
pendent  of Ay, it follows from approx imat ion  theory (see, e.g. [16]) that  

IlVu-ullo <=k Ay 2 

IIV(VN-u)llo <k  Ay, 

IIf - fNIIo <k Ay. 
. a 2 8b 2 

If  we now use the algebraic geometr ic  mean  inequali ty ab<=~e+ ~ -  then (3.8) 
leads to the following est imate 

l lu-  UNJl E < k A y2 + RN (3.9) 

for some constant  k > 0 .  Hence  convergence is assured if lim R N ~ 0 .  We ob- 
dy~O 

serve f rom the definition of R N and the assumpt ion  O f > o  that  Ou = 

RN< ~ (u'i-u'i_l)(v'i-v'i_Odx 
i=1 

+ ~" (f(x,  y i , u i ) - f ( x ,  Yi_l,Ui_x))(vl-vi_Odx 
i = l  

- - i = 1  ~ -  l ) - f ( x ' y i - l ' U i - 1 ) ] ( u i - u i - 1 ) d x "  

Since u(x,y)eCl'X(R) it follows that  Iv'i-v'i_xl<kAy z and ]v i -v i_ lJ<kAy.  
Since also II UNII 1 __<k w e  see immedia te ly  that  

lim RN__<O. 
dy~O 

Thus we have proven 
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Theorem 3.2. The method of lines solution U N obtained by linearily interpolating 
the computed solution {ui}g+ 1 between lines converges in Hi(R) to the unique 
solution u of (3.1) as A y e 0 .  

We note that the above estimates guarantee a convergence rate of dy ~/2. 
An improvement of this rate would require an a priori estimate for [u'i-u' i_ 11. 

0 f  >_0 then the above estimates Also, if hypothesis H2)  applies rather than ~ u -  

must be handled with greater care. In particular, the coercivity of the va- 
riational inequality on M N must be maintained which requires that U N and u 
satisfy the same boundary conditions on OR. Thus, one should prove first con- 
vergence of UN to fi and then convergence of t~ to u where ~ satisfies piecewise 
linear boundary data on x = 0 and x = X. 

The final point to consider is whether condition H6')  can reasonably be 
verified a priori. A useful tool in this connection is a simple one-dimensional 
version of the "moving parallel plane" version of the maximum principle [6]. 

For definiteness we shall introduce it as follows. Let x c be arbitrary in 2 '  X 

and let x L and x R denote points in [0, X]  which are an equal distance to the 
left and right of xc. Assume that the following additional hypotheses are satis- 
fied 

H 7  a) g ( X , y ) = 0  for ye(0, Y), 

b) g(xL,y)>g(xR,y ) for any XL, XRe(O,X ) and y = 0 ,  Y.. 

c) f(XL, y,u)<=f(xR,Y,U ) for any XL, XRe(O,X),y~(O,Y), u>O. 

We note that b ) a n d  c ) i m p l y  that g a n d - f  are decreasing on /~- , -Y/  and 
I_L .I 

that g(x,y) and - f ( x , y , u )  for x < ~ -  lie above the left reflection of g and - f  

about  x = - - .  
2 

Lemma  3.2. Let {ui,si} be the computed minimal solution of (2.2). Assume also 

> ~ Then U,(XL)>U,(XR). that s~ = 2" 

Proof Since u ~ = 0  the result is true for m = 0  and i =  1, ..., N. Suppose the lem- 
k prior to the calculation along line y =y~ in iteration m. ma is true for all uj 

l > S  ~ 
~ V  

Because of m~176176 msl >Sl = 2" NOW let x c be arbitrary in / 2 '  X ) .  If 
k 

xc>s ~' then the conclusion follows because u~n>0 on [0,s~") and u~'=0 on 
[s~',,~]. If  xc<s.~ we set xe=x~-(s~ ' -xc)  and define V(XL) by V(XL)=um(xR) 
where XR=Xc+(X~--XL) for xre[xE, x~]. Thus V(XL) is the left reflection of u 7' 
about  x~. In particular V(X~)=ur~(s'~)=O where H 7 a )  is used if s i~-X.- On 
(x~,x~) we see that V"(XL)=U.~(XR)" SO that 

L(u ? - v) = F[n(XL) -- Fi'n(X.), 

( u ? -  v) (xE) = uT'(x~) > O, 

(u ? - v)  (x~) = o .  
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But Fim(xL)--F~m(xR)< 0 by the induction hypothesis and H 7 c) and by H 7 b) for 
i=  1 and N. By the maximum principle um(xL)>U~(XR). Since the lemma is true 
for all i and m it remains valid in the limit as m ~ 0o. 

Since Lemma3.2 implies u'i<O on [~- , .~]  and since Gi(sl)>O it follows 

immediately that Gi(x)>O on [si,X ] so that H6) can be verified a priori. We 
v 

also note that s i 1 ~ is assured, for example, if f(x,y,u)~0 for x~/0, ~ /  

y~(0, Y), u > 0  because (2.10) cannot have a root unless f(x,y,u) is positive. 
Finally, we remark that on occasion the boundary data and source term 

allow an application of the standard maximum principle to u' i. For  example, if 
L u' i >=0 on (0, sT' ) then u'i cannot have an interior positive maximum. If, in ad- 
dition (u'i")' (0)> 0 then u'i" cannot have a positive maximum on [0, x]. We note 
that (u~')' (0)> 0 is induced if in the continuous problem 

lim uxx = f(x, y, u) - gyr(0, y) > 0. 
x ~ O  

As we noted above, ~x(x,y,u)>O and u'i<O imply G'i(x)>O and hence H6). 

4. Applications 

Numerical results referred to in this section were obtained with the research 
code described in [11]. In this program the Eq.(2.8) is solved in closed form 
while the linear Eqs. (2.9) and (2.11) are solved with the trapezoidal rule. The 
root of (2.10) is found by linear interpolation. Throughout, the iteration is ter- 
minated when the maximum absolute change in u~" and s~' from one iteration 
to the next falls below 10 -8 . However, the monotone convergence guaranteed 
by the above theory for the line Gauss-Seidel iteration was generally sacrificed 
to the improved convergence rates of the line SOR method. 

a) The Reynolds Equation 

In [12] a convergence proof of front tracking for the linear Reynolds equation 
was given which applied to the hydrodynamic lubrication of a finite journal 
bearing. If the above theory is applied to this problem one can verify that 
fewer restrictions on the bearing geometry and inlet pressures need to be im- 
posed. Moreover, the monotone convergence of the upper and lower bounding 
solutions to a common limit which was observed from the numerical results in 
[12] now follows directly from Theorem2.2 above. And finally, hypothesis 
H 6') which was verified through the use of an ad-hoc bounding function, now 
follows from the generalized maximum principle Lemma 3.2. In fact, hypothesis 
H 2) in [12] is essentially hypothesis H 7c) above. 
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b) The Obstacle Problem 

It is well known that the formulation (2.1) arises in the description of the gen- 
eral obstacle problem which usually is analyzed as a variational inequality. 
Thus the above theory is applicable to those obstacle problems whose free 
boundaries are single valued "trackable" functions. 

A model obstacle problem is given in [2] for the Poisson equation 

Au=l  

where the boundary data are determined from the analytic solution 

u=(X + l)2 + y2 1 l ln(X + l)E + y2 
4 2 2 2 

and where the free boundary is given by 

( x + l ) 2 + y / = 2 .  

It is easy to verify by induction that u~'<=O for i = 0  . . . . .  N + I  and all m. Hence 
the method of lines provides a convergent numerical algorithm for this prob- 
lem. The program of [11] was used to solve this free boundary problem on the 
domain [0,0.5] x [0, 1] chosen in [2] for a finite element calculation. Equiva- 

A 

Fig.l. Plot of membrane and obstacle for problem (4.1). dx=l/20, Ay=l/lO0, w=1.6; 51 iter- 
ations for convergence. Computing time on the Cyber 730 was 60 s 
Please note: In this and subsequent figures x is discretized and y is retained as the continuous 
variable for the method of lines approximations. 
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lent results were obtained. With Ay=0.05 the absolute error si-s(y~) increased 
from 2.10-5 for i=  1 to 3.5.10 -3 for i=N.  Reduced accuracy near y =  1 is to 
be expected because the free boundary becomes less orthogonal to the mesh 
lines as y--* 1. 

The above obstacle problem is benign because the obstacle has vanishing 
slope on y = l  so that uECl'a(/~). In contrast, consider the obstacle problem 
where an elastic membrane w over the unit square is displaced by a parabolic 
punch v = l - x 2 - 4 ( y - 1 )  2. Then the difference u = w - v  satisfies 

A u = 1 0  (x,y)~D 
(4.1) 

u = m a x ( -  v,0) (x,y)eOO 

and 

~U 
U = ~ n = 0  x=s(y) .  

In this case s0=0.5 and si>s o. Theorems 2.1 and 2.2 remain valid because 
Lemma 3.2 may be applied. On the other hand, the proof of Theorem 3.2 does 
not hold because ur C 1'~(/~). Numerical results do show convergence as A y--* O. 
A plot of the membrane is given in Fig. 1. 

c) Michaelis-Menten Reaction 

As a first example of a free boundary problem with a nonlinear source term we 
shall consider an extension of the oxygen diffusion-consumption model which 
is representative for a number of biological diffusion processes (see, e.g. [2]). 
Here an agent at concentration u(x,y,t)  is diffusing into the medium D. As it 
diffuses it is consumed at a rate determined by a Michaelis-Menten reaction. 
The concentration may be described by the free boundary problem 

with 

A u - c u, = f ( x ,  y, u) (4.2) 

~ U  
f (x, y, u)= i ~ u  + e(x, Y) 

where e(x,y) is a local threshold consumption rate. At the free boundary the 
concentration and its gradient vanish. 

It is immediately verified that H 2) holds for this choice of f so that under 
suitable conditions on the boundary and initial data the time discretized dif- 
fusion equation can be solved with a convergent algorithm at each time level. 
Convergence as A t -~0  remains an open question. 

For  a numerical example we shall consider the steady-state case c = 0  with 
the following additional data on the unit square R. 
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0.6 
~9 

I 

>- O.Z, 

1 . 0  

0.8 / 

0.2 

0 0.2 i i i i 

0.4 0.6 0.8 1.0 X-axis 
Fig.2.  P lo t  of the s teady s ta te  free b o u n d a r y  for the Michae l i s -Men ten  reac t ion  p rob lem (4.2). Ax 
=1 /20 ,  Ay=l/lO0, w=1.6 .  49 i te ra t ions  for convergence.  The same number  of i te ra t ions  was re- 
qu i red  for K = ct = 1 as for K = ct = 0 

(x, y) = 8 (y - 0.5) 2, 

0u 
- - = 0  when y = 0  and y = l  and s (y )= l .  
On 

u(O,y)=y(1 --y). 

Figure2 shows D and the free boundary. From the data symmetry about y 
=0.5 is expected, although it is not specifically used in the program. We re- 
mark  that the nonlinear source term had no discernible influence on the con- 
vergence of the line SOR iteration. 

d) Second Order Reaction 

As a last example let us consider a two-component reaction problem where a 
substance at concentration u diffuses into an immobile substance at concen- 
tration v while undergoing a second order irreversivle reaction with it. The 
model equations and an application to the diffusion of oxygen in nickel are 
discussed in [14] where an asymptotic formula for the diffusion front is devel- 
oped in one space dimension (which, however, does not correspond to a free 
boundary). Here we shall treat a two-dimensional problem in which movement  
into unreacted zones can occur only if the gradient on the diffusion front 
reaches a given threshold value. This problem goes considerably beyond the 
theory outlined above; however, the numerical method remains routinely ap- 
plicable. 

Specifically, for the same geometry as in examples b) and c) we shall con- 
sider the time dependent system 
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ut=Au-kuv O<x<s(y,t), y~(0, 1), 

v t = - kuv 

u(x,y,O)=O, 
v(x, y, O) = Vo(X, y), 
du Ov 
On On - 0  on y = 0  and y = l  and x = l ,  t > 0  

and the free boundary condition 

~u 
u=0 ,  O ~ = - e  for e > 0  on x--s(y,t). 

This system is readily converted to a scalar problem for u because 

v(x,y,t)=Vo(X,y)exp ( - k  i u(x,y,r)dr ) �9 

Hence the scalar equation is 
t 

subject to the appropriate boundary conditions. We note in particular that the 
free boundary conditions must be rewritten as 

u = 0  and 1 + \dy] ! fix = - e  

in order to compute along the lines y =y~. 
A fully time implicit approximation based on a backward difference quo- 

tient for u, and the trapezoid rule for the integral then leads to the following 
sequence of elliptic problems for u - u .  at time t, 

Au=f(x,y,t,u) 
where 

f(x,y,t,u)=U-U._l ( u-u.  ) At 4-kuvqo(x,y,t,_l)ex p -kAt  2-1 

q~(x,y,t,)=qo(x,y,t. 0exp ( -  kAr u-u.2 -1) 

,p(x,y,O)= 1. 

For a boundary concentration of 

u(x, y, t)= 1 t---~ (0' 1 + 16yZ(1 _ y)2), v o (x, y) = 1 
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• 

Fig. 3. Plot of u(x,y, t) at t = 0.1; A x = 1/20, A y = 1/100, A t=0.1/20, w= 1.6. About 34 iterations per 
time steps were required for convergence. Total computing time for 20 time steps was 240 sec on 
the Cyber 730 

it fo l lows  i m m e d i a t e l y  f r o m  the  m a x i m u m  pr inc ip le  t h a t  

0 ~ u ~ l . 1 .  

S ince  also q~(x,y,t,)<l it is s imple  to check  tha t  

_<L+k 
- A t  

for suff ic ient ly  smal l  A t. H e n c e  for the  c o n s t a n t  in (2.4) we shal l  use 

K =  l~+k. 
At 

T h e  a l g o r i t h m  o u t l i n e d  a b o v e  is i m m e d i a t e l y  a p p l i c a b l e  excep t  tha t  Eq.  (2.10) 
is n o w  r e p l a c e d  by 

g 
- , , - a  ,~ 4- wT'(x) = 0" (2.10') k i ( x ) -  - R ( x )  1+ ( Si+ l --Si-1) 2 
\ ay  

Fig t i r e  3 shows  a typ ica l  n u m e r i c a l  s o l u t i o n  for the  r e a c t i o n  p r o b l e m .  
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