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Triple Collision 
in the Collinear Three-Body Problem* 

Richard  McGehee  (Minneapolis)  

1. Introduction 

Consider  n point masses moving  in k-dimensional  space according to 
the laws of classical mechanics.  If particle i has mass m~ > 0  and position 
q ~ R  k, then the negative potential  energy is given by 

mirn~ 11.1) U= ,< j.~. llq,_qjl[ , 

where II II denotes the Euclidean norm in R k. The mot ion of the particles 
is described by the system of differential equat ions 

migti=Vq U, i = 1 , 2  . . . . .  n, (1.2) 

where Vq, U is the gradient  of U with respect to qi. 

A posit ion (qt . . . . .  q,) of the particles will be called a collision if 
qi=qj for some i=l=j. The above system of equat ions is defined every- 
where except at collisions. Suppose we are given the position and 

m o m e n t u m  of the particles at t ime t = 0 .  If we do not start  at a colli- 
sion, then the s tandard theorems of differential equations assure the 
existence and uniqueness of a solution of Eqs. (1.2) on some maximal  
interval [0, t*). If t* < oo, then the solution is said to experience a singu- 
larity at t*. 

The behavior  of a solution as it approaches  a singularity is not fully 
unders tood,  but  some of the possibilities are known.  If  all of the particles 
approach  a limiting posit ion as t - -  t*, it is not  difficult to show that  the 
limiting posit ion must be a collision [12, 17]. The singularity is then said 
to be due to collision and the solution is said to end in collision. If m 
of the particles coincide while the rest have distinct positions, then the 
collision is called an m-tuple collision. It is unknown whether  there are 
singularities not  due to collision. 

* Supported by NSF Grant GP-38955. 
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For the two-body problem one can change variables so that a double 
collision transforms to a regular point of the equations [6]. Such a 
transformation is called a regularization of the double collision. The 
solution can then be extended through the singularity. The extension 
corresponds physically to an elastic bounce. 

Sundman [14] showed that double collisions can also be regularized 
in the three-body problem. That is, one can transform the variables in 
such a way that the solution can be continued through the double 
collision as an analytic function of a new time variable. Again the exten- 
sion corresponds to an elastic bounce. 

Collisions involving more than two particles are of course more 
complicated, but some aspects of their behavior are known. We define 
the configuration of the particles to be the position divided by a norm 
which corresponds physically to the moment  of inertia. Sundman [15] 
has shown that, for triple collision in the three-body problem, the 
configuration approaches one of the five so-called central configurations 
(cf. [12, 17], and Sections 6 and 7 below). Wintrier [17] has observed that 
Sundman's techniques can be used to show that solutions ending in n- 
tuple collision in the n-body problem also approach central configurations. 
However, little is known about  central configurations for n > 4. 

Since double collisions can be regularized, one is led to ask whether 
the same can be done to other singularities. Siegel [11 ] has addressed this 
question for triple collision in the three-body problem. He found that 
most solutions cannot be extended through triple collision as analytic 
functions of some transformed time variable. He also showed that the 
set of orbits ending in triple collision forms a smooth submanifold of the 
phase space. 

In this paper we consider the singularity due to triple collision. We 
wish to describe not only the solutions with such a singularity but also 
the solutions close to the singular ones. The simplest case of triple 
collision occurs in the collinear three-body problem. In this case n = 3  
and k--  1, so a position (q~, q2, q3) of the particles is a point in R 3. Fixing 
the center of mass at the origin confines the position to the plane Q 
determined by m 1 ql + m z q2 + rn3 q3 =0.  The momentum is also confined 
to a plane and Eqs. (1.2) can be made into a four-dimensional first order 
system. Conservation of energy further reduces the system to a vectorfield 
on a three-dimensional constant energy surface. 

Triple collision corresponds to the origin in Q. We shall make a 
transformation which blows up the origin to a circle. With an appropriate 
change of coordinates in the momentum space this transformation has 
the effect of pasting a two-d.imensional boundary, which we shall call the 
"triple collision manifold", onto the constant energy surface. A time 
transformation scales the vectorfield so that it can be extended to the 
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boundary. The boundary is invariant for the extended vectorfield. All 
points on this boundary correspond to triple collision in the original 
coordinates. The flow on the triple collision manifold is entirely ficticious 
since orbits on it do not correspond to any orbits in the original coordina- 
tes. However, the flow on the entire constant energy surface, including 
the ficticious boundary, is continuous. Hence the flow close to the bound- 
ary follows the flow on the boundary for an arbitrarily long time. There- 
fore the behavior of orbits on the triple collision manifold can be used 
to determine the behavior of orbits close to the manifold, i.e. close to 
triple collision. 

The triple collision manifold is shown in Fig. 2. The flow on it is 
gradient-like and has two rest points, both saddles. All orbits ending 
in triple collision are asymptotic to the triple collision manifold. 

As examples of how the properties of the triple collision manifold can 
be exploited, we shall give new proofs of two known results. The first is 
the previously noted result of Sundman that triple collision orbits 
approach a central configuration. We shall show that a triple collision 
orbit must be asymptotic to one of the two rest points. This property 
will be shown to imply Sundman's result in the collinear case. The second 
resialt, due to Siegel, is that the set of orbits ending in triple collision 
forms a smooth submanifold of the constant energy surface. We shall 
show for the collinear case that this result follows from the stable mani- 
fold theorem applied to the two rest points. 

We shall also use the properties of the triple collision manifold to 
examine the question of whether orbits can be extended through triple 
collision. We shall adopt the viewpoint of Easton I-4, 5], rather than that 
of Sundman and Siegel. Whereas Sundman and Siegel ask if a single 
solution can be extended as an analytic function of time, Easton asks if 
it can be extended so as to be continuous with respect to nearby solutions. 
By examining the flow on the triple collision manifold, we shall show that 
triple collision cannot be "regularized" in the sense of Easton, at least 
for some values of the masses. 

Finally, the flow on the triple collision manifold will be used to show 
that the following property holds for some values of the masses: After 
passing close to triple collision the system emerges with arbitrarily high 
kinetic energy. That is, one of the particles emerges with an arbitrarily 
large velocity in one direction, while the other two particles are close 
together and moving in the opposite direction with large velocity. This 
behavior is rather surprising and may have some bearing on the question 
of whether there exist singularities not due to collision in the n-body 
problem. Painlev6 [8] showed that such singularities cannot occur in 
the three-body problem, but the question is open for n>4 .  We shall 
speculate on this question for n = 5. 
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2. Preliminaries 

We begin by writing the equations of motion in Hamiltonian form. 
Let q---(qt,q2,q3) ~R3 and let 

[i ~ 1 M =  m 2 . 

0 m 3 

For the collinear three-body problem, Eqs. (1.1) and (1.2) become 

U (q) = ml  m2 + ml  m3 ~. rr/2/"~|3 

[ql --q21 Iql - -q3[  Iq2--q31 

M ~I=VU(q) (2.t) 

Let p~ = m i qi be the momentum of particle i and let p =  (Pl, P2, P3) ER3" 
We define the kinetic energy of the system as 

/ p2 p2 p2 \ 
T(p)=�89 I , 2 . 3 I 1--T I M -  p. 

If we now define the Hamil tonian 

Hlq, p)= r ( p ) -  U(q), (2.2) 

Eq. (2.1) can be written: 

~1 = Hp(q, p)= VT(p)=M -a p 
(2.3) 

1~= -Hq(q, p)= VC(q). 

The function T is defined everywhere on R 3. The function U is 
defined everywhere except at collision points. Let 

A={qER3:  ql=q2, q2=q3,  or q3=ql} 

denote the set of collision points. Eqs. (2.3) define a vectorfield on 
(R 3 - A )  x R 3. We shall use the phrase "vectorfield with singularities" 
to describe a vectorfield which is undefined at some points. Thus we 
shall say that Eqs. (2.3) define a vectorfield with singularities on R 3 x R 3. 

We can reduce the dimension of system (2.3) by removing the center 
of mass and the linear momentum. Fixing the center of mass at the origin 
restricts the position coordinates to the linear subspace 

Q = {q ~ R 3 :  ma ql  + m2 q2 + m3 q3 = 0 }  

isee Fig. 1) and the momentum coordinates to the subspace 

P =  {P f i R 3 :  Pt + P 2 q - P 3 = 0 }  ' 
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Fig. I. Position coordinates 

Eqs.(2.3) determine a vectorfield with singularities on Q • P, a four- 
dimensional  linear space. They determine a vectorfield on (Q - A) • P. 

Since the Hamil tonian (2.2) is constant  along solutions of (2.3), it 
defines an invariant set 

M(h) = {(q, p)E(Q - d) • P:  H(q, p)-- h} (2.4) 

for each real constant  h. This set is a three-dimensional manifold, which 
we shall call a constant energy surface. Thus Eqs. (2.3) define a vectorfield 
on M (h). 

However,  this vectorfield is not complete, i.e. solutions do not exist 
for all time. In finite time some solutions tend to collision and hence 
leave M(h). Solutions which end in double collision will be extended by a 
technique similar to Sundman 's  [-14]. Solutions which end in triple 
collision will be slowed down so that they approach collision in infinite 
time. 

3. The Singularities Due to Triple Collision 

We first examine the singularities at q = 0. Define 

r :  (m 1 q~ + m 2 q~ + m 3 q~)~ = (qr Mq)~. 

Note  that r 2 is the moment  of inertia of the system of particles and that 
triple collision corresponds to r : 0 .  Let 

S =  {q~Q: r2=qrMq=l} 

be the unit circle in Q in the norm given by the moment  of inertia. A 
point on S is called a configuration for the system of particles. We think 
of ( r , s ) e{0 ,~ . ) •  as polar coordinates on Q - { 0 }  by the map:  
(r, s ) ~ r s .  
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We now define the variables: 

r = (qr M q)~, 

- 1  s = r  q, 

y = p r s ,  

x - - - p - y M s .  

Note that sES and that x r s = 0 .  Thus we have broken the momentum p 
into a radial component  y and a tangential component  x. We now let 

T={(q,p)~Q x P: qES, prq=0}, 

which can be thought of as the tangent bundle of S. We then have r~i0, ~) ,  
y~R 1, and (s, x)~T. Note that the old variables can be written in terms 
of the new variables: 

q = r s  

p = x + y M s .  

Thus we have defined a real analytic diffeomorphism: 

(0, ~ ) x  R 1 x T - , ( Q - { 0 } ) x  P: 
13.~) 

(r, y, (s, x))~--~(r s, x + yMs) .  

In these new coordinates the kinetic energy can be written: 

T(p)=�89 M -1 x +  y2), 

while the potential energy becomes: 

U ( q ) = r  IU(s).  

Thus the energy relation H(q, p) = h can be written 

�89 - t  x + y Z ) - r  -1 U(s)= h. (3.2) 

The equations of motion (2.3) become" 

t: = ), 

p = r  - l x r M  - l x - r  -2 U(s) 
(3.3) 

~ = r - l M - l x  

~ = - r  - l  y x - r - l ( x r  M -xx) M s + r  -2 U(s) Ms+r-aVU(s) .  

The computat ion to derive these equations is straightforward if one notes 
that U is homogeneous of degree - 1 .  Hence F U is homogeneous of 
degree - 2  and Euler's formula implies 

qr V U (q) = - U (q). 
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Eqs. (3.3) define a vectorfield with singularities on [0, or R I •  T. 
We have now expanded the singularities due to triple collision. Whereas 
for Eqs. (2.3) the set of triple collision points was {0} x P, the set of 
triple collision points for Eqs. (3.3) is now {0} • R ~ • T, i.e. the set where 
r = 0. The set of double collision points is (0, oo)x R 1 x (T r~ (A x P)), i.e. 
the set where s = (s 1, s 2 , s 3) satisfies s I = s 2, s 2 = s 3, or  s 3 = s 1 . We shall 
deal with double collisions in Section 5, but first we wish to remove the 
singularities at r~-0. 

We again introduce new variables: 

U=F~X, 

v=r~ y. 

That  is, we define a real analytic diffeomorphism: 

(0, o o ) x R  1 x T--* (0, o o ) x R  1 x T :  
(3.4) 

(r, v, (s, (s, u)) 
Then the energy relation (3.2) can be written: 

�89 -1 u+v2)  - U(s)=  r h, (3.5) 

and the equations of  mot ion  (3.3) become 

/~=r-- Iv  

~ = r - ~ [ � 8 9  - l u -  U(s)] 
(3.6) 

u = r  - ~ [ - � 8 9  -1 u) M s +  U(s) M s + V U ( s ) ] .  

As before, these equations define a vectorfield with singularities on 
[0, ~ ) x  R ~ x T. The double and triple collision points are exactly the 
same as those for Eqs. (3.3). However,  now we can remove the singularities 
at r = 0  by scaling the vectorfield with the time t ransformation:  

dt = r ~ dr'. (3.7) 
Eqs. (3.6) then become:  

dr 
- - - - - - - r u  
dr' 

dv 
dt' �89 +ur  M - l u - U ( s )  

ds (3.8) 
= M - l u  

dr' 

du 
u) M s  + U(s) M s +  V U(s). - - =  - ~ v u - ( u r M  -1 

dt" 
14 Inventiones math,, Vol. 27 
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Since the above equations do not have singularities at r =  0 we have 
extended the equations of motion to include triple collision, Note that 
{r=0} is invariant for Eqs. (3.8). Time transformation (3.7) acts to slow 
down the orbits for small r so that a solution ending in a triple collision 
now takes an infinite amount  of tlme to reach it. The set of orbits ending 
in triple collision is now the set of orbits asymptotic to the invariant set 
{r=0}. Also, orbits on the invariant set {r=0} can be used to describe 
orbits of (3.8) for small r, i.e. orbits passing close to triple collision. 

4. Coord inates  

Before discussing the invariant set introduced at tripie collision, 
we wish to eliminate the singularities due to double collisions. In the 
next section we shall extend orbits through double collision by an elastic 
bounce. To facilitate the computat ions we first construct a new coordinate 
system, in which Eqs. (3.8) transform to a vectorfield on R 4. 

If we begin with the particles ordered on the line, qt <q2<q3, they 
will retain that ordering after any double collision. Hence the ordering 
is preserved along any orbit. Let 

S0={seS :  sl <s2<s3} ,  

S1={seS :  sl <-_s~ < s3}, 

T0 = {(s, u)eT:  seSo}, 

T t = {(s, u)ET: seS1}. 

Also let a=(al,az,a3) and b=(bl ,bz ,b  3) be the unique points on S 
with a t = a z < a  3 and b 1 < b z = b  3. We see that S t is a closed interval on 
S with endpoints a and b, while S o is the corresponding open interval. 
1"he endpoints correspond to double collisions. (See Fig. 1.) 

Note that TI is homeomorphic  to a compact interval crossed with the 
real line. Since it is more convenient to work with a subset of R 2 than 
with a subset of R 6, we next define a diffeomorphism between [ - 1, 1 ] x R ~ 
and T~. Let 

A t =  l , A2= - 1  0 , 
1 1 - 1  

and define 
1 ( m z m 2 r n a  I~M_IA2" 

A -  A i M +  mi~rn2 +rn3 ! m 1 + m 2 + m 3 

Some elementary calculations show that A has the following properties: 

A r M A = M ,  (4.1) 

A: Q--, Q,  (4.2) 
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q r M A q = 0  if q~Q,  (4.3) 

A2q= - q  if q~Q,  (4.4) 

ar AT Mb>O.  (4.5) 

If we consider Q as having an inner product induced by M, then A is a 
rotation by 90 ~ in Q , a  and h have unit length, and {a, Aa} is an ortho- 
normal basis for Q. Therefore we have that 

b = (a T M b) a + (a r A r M b) A a .  (4.6)  

Note that a r M b  is a constant depending only on the masses and that 

0 < a r M b <  l. 

Choose ,~ to be the smallest positive number such that 

cos 22 = a t  Mb. (4.71 

Note that ;o is a constant depending only on the masses m I, m2, and m 3. 
Eqs. (4.61 and property (4.5) then give that 

b= (cos 2),) a +(sin 2L) Aa. (4.8) 

Now for any real s define 

S(s)=(sin 22) -~ [(sin L(I -s ) )  a+(sin 2(1 +s)) hi. (4.9) 

Proposition 4.1. S: [ - 1 ,  I ] ~ S  t is a real analytic d!fjeomorphism 
such that 

S'(s) = 2 A S (s). (4.10) 

Proof Clearly S is real analytic, S ( - 1 ) = a ,  and S( l )=b.  Since 
a, bcQ,  S(sl~Q for all real s. Eq. (4.8) and some trigonometric manipula- 
tion give 

S(s)= (cos 2(1 + s)) a + (sin 2(1 + s)) A a. (4.11) 

Properties(4.1) and (4.3) then yield S(s) r MS(s)= 1 and hence S(s)eS 
for all s. Now using property (4.4) and formula (4.11) we can derive 
Eq. (4.10). We have only left to show that S: [ - 1 ,  1] ~S~ is one-to-one, 
since Eq. (4.10) and the inverse function theorem then imply that S is a real 
analytic diffeomorphism. Let 

S (s) = (S~ (st, S2 (s), S3 (s)). 

We then have 

S2(s)-Sl (s)=(s in  22) -1 (b2-  bx) sin 2(1 +s) 

S 3 ( s ) -  S 2 is) = (sin 22)- t (a 3 _ a2 ) sin 2 (1 - s) (4.12) 

S3(s)-Sl(s)=(sin  22) - I  [(b 2 - b l )  sin 2(1 +s)+(a3-a2)  sin 2(1 - s ) ] .  
14 * 
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7T 
Since 0 < 2 < ~ -  and s t [ -  1, 1]. sin 2(1 +s) and sin ~(1 - s )  have inverses 

and all three of the above numbers are positive. Therefore S: [ -  1, 1] ~ S 
is one-to-one and S(s)eS~ for s t [ - 1 ,  1]. The proof of Proposition 4.1 
is complete. 

We now use the function S to define new variables for (s, u)~ T~. Let 

s = S - l ( s ) ,  

u : s T  A T u .  

Then s t [ - 1 ,  1] and u e R  1. Letting 

9~ = [0, c~)x R 1 x [ -  1, 1] •  1 

we have defined a real analytic diffeomorphism 

~R--,[0, m ) x R '  x T l :  ( r , v , s ,u )~ -~( r , v , (S ( s ) ,uMAS(s ) ) ) .  (4.13) 

Note that this map restricted to [0, oo) x R 1 x ( -  1, 1) x R 1 is a diffeo- 
morphism onto [0, m) x R 1 x T 0. 

Next we transform the vectorfield given by Eqs. (3.8). Let 

V: (-- 1, 1) ~ R 1 : Sb--~ U(S(s)). 

For future reference we use Eqs. (4.12) to explicitly write: 

V ( s ) = s i n 2 2  [ m l m 2  m2m3 
L ( b e - b  1) sin 2(1 +s) -f (a 3 - a2 )  sin ~(1 - s )  

(4.14) 
m 1 m 3 ] 

-t (b  E _ bl  ) s i n  2 (1 + s)  + (a  3 - a 2 ) sin 2 (1 - s)- " 

Eq. (4.10) enables us to compute the derivative of this map: 

V' (s) = 2 D U (S (s)) A S  (s). (4.15) 

In the new variables defined by transformation (4.13) the energy relation 
(3.5) becomes 

�89 (u 2 + v 2) - V(s) = r h, (4.16) 

while the equations of motion (3.8) become 

d r  
--I 'D 

dr' 
(4.17) 

dv  
dr'  --  1U2 -~- u2 - V(s)  
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ds 

dt' 

du 
dr' 

=X lu  

�89 ~ - t  V'(s). 

(4.17) 

The above  equat ions define a vectorfield with singularities on 9t. 
The  singularities occur when s = +_ 1. The vectorfield is diffeomorphic by 
t ransformat ion  (4.13) to the vectorfield on [0, c o ) x R  1 x T 1 given by 
Eqs.(3.8). Thus  { r=0}  corresponds  to triple collision while {s= +_1} 
cor responds  to double collision. No te  that  we have restricted at tent ion 
to the case ql < q2 < q3. Therefore  the only double collisions which can 
occur are between particles 1 and 2 (s = - 1) or between particles 2 and 3 
( s=  + 1). In the next section we extend orbits  through double collision 
by t ransforming Eqs. (4.17) to a vectorfield without singularities on 9t. 

5. Regularization of Double Collisions 

It is wel l -known that  orbits  can be extended through double collisions 
even for the three-body p rob lem in three dimensions.  Sundman  [14] 
gives an analytic technique for such an extension. Easton [4, 5] gives a 
topological  technique which he uses to describe the regularized energy 
manifolds  in the p lanar  three-body problem.  Here  we use a t ransformat ion  
similar to Sundman ' s  to globally regularize all double collisions on an 
energy manifold. The regularization corresponds  physically to an elastic 
bounce. 

Fo r  s e ( -  i, 1), define 

W(s) = 2(1 - s 2) V(s). (5.1) 

Using Eq. (4.14) we can rewrite this function: 

W(s) = 2 2-1 sin 2 2 [ W 1 (s) + W 2 (s) + W 3 (s)], (5.2) 

where 

and where 

rn~ m2(1 -- s) 
wl (s)= 

(b 2 - b l )  Sn(2(1 +s)) '  

m 2 m 3 (1 + s) W2(s)= 
(a3-a2) Sn(2(1 -s)) '  

J~m I m3(1- -s  2) 
W3(S) 

(b2-bl)  sin 2(1 +s)4-(a3-a2) sin 2(1 - s ) '  

sin x 
Sn(x)= 

X--" 
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[0 Since S n(x) can be extended to a positive real analytic function on , ~-  
~z 

and since 0 < 2 < ~- ,  W~ and W z become real analytic functions on [ - 1, 1 ]i 

Thus W can be extended to a positive real analytic function on [ - 1, I ] ,  

which we denote again by W. 

Now define a new variable 

w = ( 1 - s  2) W(s)--~u. 

That  is, define the real analytic diffeomorphism 

[0, oC)x R 1 x ( - 1 ,  1)x R1--+ [0, oo)x R 1 •  1)x RI: 
(5.3) 

(r, v, s, w)~-+(r, v, s, (1 - s 2 )  -1 W(s) ~ w). 

The  energy relation (4.16) becomes 

w 2 + s 2 - 1 + ( 1 - s2) 2 W(s ) -  1 (v 2 _ 2 r h) = 0, (5.4) 

and the equat ions of mot ion  (4.17) become 

dr 
dt' = r v ,  

dv v2 W(s) ( _ 2w 2 ] 
d t , -  �89 2 ( ~ s 2 )  .1 1 _ s 2 ] ,  

ds W(s) ~ 
dr' - 2 ( 1  - s  z) w, 

dw -�89 W(s)~ [s(1 2w2' 1W'(s) -s2-w2)] 
dr' - 2(1 -sZ~ - 1 _ - -7~  } + i ~ -  (1 . 

The singularities due to double  collision occur at s = + 1. We can now 
remove them by a time t ransformation and by making use of the energy 
relation. First we make the time t ransformat ion 

d t ' =  2 (1 - s 2) W(s)-  �89 dr.  (5.5) 

The above equat ions then become:  

dr 2(1 --s  z) 
dr W(s) ~ rv  

_ i 2 w  2 \ 
dv 2 [ (1 -SZ )  v2 W(s) �89 [ 1 -  1 - ~ - ~ ) ]  

2 I_ W(s) ~ dr 

ds 
= w  

dr  

( ,s dw _ 2w 2 ~ W ( ) '1 2(1--S 2) 
d z = S  1 l _ _ s Z ] - t - l ~ - ~ - ( - - S Z - - W  :) 2 W ( s ) ~ V W .  

(5.6) 
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The energy relation (5.4) gives us 

2w 2 _ 2(1 --S 2) (t,2 - 2 r h ) -  1. 
1 - s 2 W ( s )  

Substituting the above expression into Eqs. (5.6), we have 

dr 2 ( 1 - s  2) 
- -  Y U  

dz W(s) ~ 

d v = ~ _  W(st 4 [1 (l--s2)(v2-4rh)] 
dr 2 W(s) 

d s  
- - z  w 
dr 

dw 2s(t - s z) 
- -  S - t  

dz W(s) 

These equations define a real analytic vectorfield on 9~. 

For each real h let 

- -  (v 2 - 2 r h ) + � 8 9  ~ ( l - s  2 - w  2) . . . .  
vv is) 

,~(1 - s  2) 

2W(s) ~ 
U W .  

(5.7) 

N(h)= {(r, v, s, w)~gl: (5.4) holds}. 

Since the gradient of expression (5.4) does not vanish on N(h), N(h) 
is a three-dimensional real analytic submanifold of 9t. Since (5.4) is the 
transformed Hamiltonian, N(h) is invariant under vectorfield (5.6). 
Therefore (5.6) is a vectorfield on the part of N(h) where it is defined and 
(5.7) is the extension of (5.6) to all of N (h). 

At this point we wish to review what we have accomplished so far. Let 

N3 (h)= {(r, v, s, w)6N(h): r=0} ,  

Na (h)= {(r, v, s, w)6N (h): s= +1},  

N (h)= N (h)-  (N3 (h) ,J N2 (h)). 

We began with a vectorfield (2.3) defined on a manifold M(h) for each 
fixed real h. We successively made transformations (3.1), (3.4), (4.13), and 
(5.13). The composition of these transformations defines an embedding: 
M(h) ~ N(h). In fact, this embedding is a real analytic diffeomorphism 
onto N 1 (h). After a scaling defined by the time transformations (3.7) and 
(5.5), the vectorfield (2.3) on M(h) is carried to the vectorfield (5.7) on 
N 1(h). However, this new vectorfield can be extended to a real analytic 
vectorfield on N (h). The extension to points in N 2 (h) corresponds to the 
regularization of double collisions. The extension to points in N3(h) 
corresponds to "pasting on"  an invariant boundary of triple collision 
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points. Any orbit on M(h) is carried to an orbit on N~ (h). However an 
orbit which ended in a double collision on M(h)  is now extended through 
a point in N 2 (h). An orbit which ended in triple collision on M (h) is now 
slowed down so that it asymptotically approaches N 3 (h). 

Solutions which end in triple collision are now defined for all time. 
The vectorfield (5.7) would be complete except that the time transforma- 
tion (3.7) increases the speed of orbits for large r so that some solutions 
now get to infinity in finite time. This problem could have been avoided 
by replacing (3.7) with 

r~ 
dt = ~ dt'. 

l + r  2 

Vectorfield (5.7) would then be divided by the scalar 1 + r -~ and would be 
complete. However, since in this paper we are concerned only with orbits 
near r = 0, we have chosen the simpler transformation (3.7). 

For  any point x =(r ,  v, s, w ) e N ( h )  we shall denote by ~0(x, t) the solu- 
tion of Eqs.(5.7) starting at x when t=0 .  We shall somewhat loosely 
refer to q~ as the "flow determined by the vectorfield (5.7)". 

6. The Triple Collision Manifold 

We now turn our attention to the invariant set of triple collision points. 
We have a three-dimensional manifold N(h), a vectorfield (5.7) on N(h), 
and a flow ~p given by the vectorfield. The invariant boundary N3(h) 
corresponds to triple collision. If we set r=O in the energy relation (5.4), 
we have 

W 2 + S  2 - -  1 -~(1 - - s Z )  2 W(S)  -1  tl 2 = 0 .  (6.1) 

Thus 

N3(h)={(r,  v, s, w)Effl: r = 0  and (6.1) is satisfied} 

which we shall henceforth refer to as "the triple collision manifold." Note 
that the triple collision manifold is independent of the energy h. For ease 
of notation we write 

C=N3(h ) .  

The triple collision manifold C is a two-dimensional manifold 
homeomorphic  to a two-sphere minus four points. (See Fig. 2.) It is 
ficticious in the sense that it is introduced by the transformations and 
that orbits on C are not actual orbits of the original equations. However, 
the continuity of the flow ~p allows us to use the flow on C to describe 
the flow near C and hence to describe the solutions of the original equa- 
tions near triple collision. 
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Fig. 2. The triple collision manifold 

The vectorfield on C is given by letting r = 0  in Eqs. (5.7). 

dv 2 F, 2 ( l - s2 ) ]  
{6.2a) 

dw 2s(1-s2)  2 1 W ' ( s ) , .  _ s 2  ~. ( 1 - - s  2) 
dz = - s +  ~V~s) v +-~ ~ l  wZ) 2 W(s) ~ vw. (6.2c) 

Before examining this vectorfield it is convenient to recall the notion 
of central configuration (Lf Wintner [-17]). 

Definition. A point s o 6S is called a central configuration if 

V U (so) =12 M s o 
for some real number/~. 

Part of the importance of central configurations derives from the 
so-called homographic solutions. Recall the original second order 

ds 
= w, (6.2 b) 

dz 
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equat ions of  mot ion  (2.1). Suppose  p (t) is a positive function satisfying 

[~(t)=#p(t) - 2. (6.3) 

One then sees that q( t )=p( t ) s  o is a solution of (2.1). This solution is 
called homograph ic  since the configurat ion of the particles does not 
change with time. Since all solutions of  (6.3) tend to zero in some finite 
time, homograph i c  solutions either begin or end in triple collision. 
Thus triple collision orbits exist. 

In the coordinates  we have introduced,  central configurat ions corre- 
spond to critical points  of V. 

Proposition 6.1. so=S(so)  is a central configuration if and only ![" 
V'(so)=0.  

Proof. Suppose s o is a central  configuration.  Eq. (4.15) then implies 

V' (So) = 2 DU(so) A s o = }t# s~ MAs o. 

So, by p roper ty  (4.3), V ' ( so )=0 .  

Now suppose V' (So)= 0. Then,  again by Eq. (4.15), we have 

s~ Ar  vU(so)=DU(so) A s o = 0 .  

Since VU(so)eP,  we can write 

VU(so )=~Ms  o +/~MAs o, 

for some real ~ and ft. Therefore,  by propert ies  (4.1) and (4.3), we have 

O=c~sr Ar  m s o + ~ s r  AT m A s o = f l ,  

and hence g U ( s o ) = ~ M s  o. Thus  s o is a central configurat ion and the 
proof  is complete.  

The central configurat ions of  the three-body p rob lem are wel l -known 
(of. Winter  [17]). Of  the so-called collinear central configurat ions there 
is only one so that  s 1 < s 2 < s 3 , 

Proposition 6.2. There is exactly one central configuration sc~S 1 . 

Proof By the previous  proposi t ion  we must  prove  that V has  exactly 
one critical point  on ( -  l, 1 ). Since V(s) -* oo as s - ,  +_ 1, V has a critical 
point. Using Eqs. (4.15), (4.10), (4.4), and Euler 's formula  we compute  

V" Is)= 2 2 [D 2 U(S (s)) (AS (s), AS(s)) + V(s)]. (6.4) 

F rom the definition of U we compu te  

D 2 U(q)(~, q ) :  Z 2mi mj(~i-~J)(rli-rlJ) 
i<j [qi-qjl 3 
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Hence D 2 U(q) is positive definite. Since V(s)>0,  Eq. (6.4~ implies that 
V"(s )>O for all s e ( - 1 ,  1). Thus V has a unique critical point  (its mini- 
mum) and the p roof  is complete.  

We are now able to compute  the rest points for the flow on C. Let 
so= S(sc) be the central  configurat ion on S~ and let 

(WCsc) " 
v~ = (2 V(sc)) ~ -- \~---~sz ] . (6.5) 

N o w  define two points  on C (see Fig. 2~: 

c--f0,  -v , . ,  s~, 0), 

d = (0, v~, s C, 0). 

Proposition 6.3. The .flow qo restricted to C has exact ly  two rest points, 
c and d. 

Proo f  The point x= (0 ,  ~', s , w ) ~ C  is a rest point of q) if and only if it 
is a zero for the vectorfield (6.2). F r o m  Eqs. (6.2b) and (6.2a) we see that  x 
is a zero only if w = 0 and 

Thus Eq. (6.2c) gives us 

v2 - W(s)  
( 1 - s") " (6.6) 

s + � 8 9  iI - s 2 ) =  0. 

But f rom the definition of W we have 

W'(s )  2s V'(s) 
- 

W (s) 1 - s 2 V (s) 

� 8 9  
(A 

and hence 

Therefore  s = s  c. F r o m  (6.6) we then have that v--  •  c, i.e. that  x = c  or d. 
The  p r o o f  is complete.  

We show below that the coordinate  v increases along solutions of 
Eqs. (6.2). Thus the flow q~ on C exhibits a proper ty  which we shall call 
"gradient- l ike".  

Definition. Let 0 be a flow on a complete  metric space X. Suppose  
there is a cont inuous  function g: X ~ R' such that  

g ( O ( x , t ) ) < g ( x )  if t > 0  

unless x is a rest point. Suppose further that  the rest points  of ~b are 
isolated. Then q, is called gradient-like (with respect to g). 
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Proposition 6.4. The f low ~p restricted to C is gradient-like with respect 
t o  

g" C--*R I" (O,v,s ,w)F--~-v.  

dv 
Proof  Eq. (6.2a) implies that  ~-T > 0  if s =  _+ 1. Combin ing  (6.2a) with 

(6.1) we have 
dv 2 W 2 

d ~ = - ~  - W(s) ~ l _  s ~ 

if s 4= _+ 1. Therefore  

dD 
- - > 0  if w#:O or s =  + i .  
d~ 

When  w = 0 and s 4: + 1 we can compu te  

dv d 2 v 

d ~ - -  d r  2 - 0 ,  

d3v 2(1 -$2)  3 
d T  - W(s) ~ V'(s)2" 

By Propos i t ion  6.1 this last expression is posit ive except when s = s  c. 
Thus v is increasing everywhere  except at the two rest points  and the 
p roof  is complete.  

Propos i t ions  6.3 and 6.4 give a descript ion of the flow on the triple 
collision manifold C. In Section 10 we shall develop a more  complete  
descript ion for certain values of the masses,  but first we discuss two 
known theorems  abou t  the set of orbi ts  ending in triple collision. 

7. Asymptotic Behavior of Triple Collision Orbits 

Sundman  [15] p roved  for the three-body p rob lem in three d imensions  
that  an orbi t  ending in triple collision asymptot ica l ly  approaches  a 
central configuration.  In this section we offer a different p roof  for the 
coll inear problem.  

A solution ( q ( t ) , p ( t ) ) E Q •  of Eqs.(2.3) will be called a triple 
collision orbit  if, for some real n u m b e r  t 1, q ( t ) ~ 0  as t--+ t~. The orbi t  
wilt be said to end in triple collision ifq(t)  ~ 0 as t -+ t t - ; it will be said to 
begin in triple collision if q(t) ~ 0 as t ~ t 1 + .  

Theorem 7.1 (Sundman).  Let  (q (t), p (t)) be a triple collision orbit. Then 
a s  t ~ t 1 

q(t) 
(a) - - - - ,  s c and 

r(t) 

(b) r ( t )  ~ ~( t~ - t )  ~.  

Recall that  r(t) 2 is the m o m e n t  of  inertia. Thus  Sundman  not only 
proved that  triple collision orbits  approach  a central configurat ion but  
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that the moment  of inertia goes to zero like (t t - t) ~. Statements (a) and (b) 
are sometimes combined to read: 

fl(t)~rc(t 1 - t )  ~ s c. 

The value of the constant x is given in the proof below. 

Our proof of Sundman's Theorem in the collinear case uses the 
transformations introduced in the previous sections and is based on 
general considerations of flows on metric spaces. For a flow ~ on a 
complete metric space X denote the o-limit  set of a point x o e X  by 

,OtXo)= 0(x, it, co)). 
t > O  

Here the bar represents topological closure. Theorem 7.1 is a consequence 
of the following lemma, the proof of which is given in the appendix. 

Lemma 7.2. Let ~k be a flow on a locally compact metric space X. Let 
x o e X  be such that cO(Xo) is a non-empty compact set. Suppose ~ restricted 
to cO(Xo) is gradient-like. Then ~O(Xo) is a single point. 

Theorem 7.1 follows almost immediately from the above lemma if we 
can show that the m-limit set of a triple collision orbit is non-empty and 
compact. We need the following notation, which we shall use again in 
Section 9. 

For  v > a > 0, define the following subsets of the transformed constant 
energy manifold N(h) (see Fig, 3): 

B(h, c0= {(r, v, s, w)eN(h): r<=a}, 

B o (h, a, v)= {(r, v, s, w)e B(h, a):lvl < v - r } ,  

B-  (h, c~, v)= {(r, v, s, w)eB(h, a): v > v - r } ,  

B+(h, ~, v)= {(r, v, s, w)eB(h, c0: - v > = v - r } ,  

be(h, a, v)= {(r, v, s, w)eB+-(h, ~, v): r = a } ,  

o--+ (h, a, v )=B -+ (h, c~, v)c~Bo(h, a, v). 

b § ~ 13- 

V 
- v  13 v 

Fig. 3. The i so la t ing  block B (h, a). Note  that  the coord ina tes  s and w are  not  shown 
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We shall say an orbit  segment  ~o(x o, [z, r ' ] )  is maximal  in a closed set K 
if it is a subset of K but 9 (Xo, I) r K for any larger interval I ~ Iv, z'~. 

Proposit ionT.3.  Let v > c t - h .  I f  (o(xo, [z ,z ' ] )  is a maximal orbit 
segment in B -  (h, ~, v), then 9(Xo, ~ ) ~ -  (h, ~, v) and ~p(x o, z ' )eb-  (h, ~, v). 

Proof Adding  the first two of Eqs. (5.7) and inserting (5.4) into the 
result, we have 

d ( v + r ) = , ; [ [ -  W(s)-~ w 2  ( 1 - s z )  ] 
d--~- t 2 ( l _ s 2 1  + r ~ - ( h + v ) j ,  

for s :4= _+ 1, while, for s = + 1, 

d 
- - -  (v + r) = �89 W(s) -~ . 
d r  

If (r, v, s, w)ecr-, then v = v - r  and r<ct,  so v > v - e .  By hypothesis,  
d 

v > ~ - h ,  so v + h > 0 .  Therefore,  ~ - z  ( v + r ) > 0  for {r, v, s, w )ea - .  Thus 

points  on o-- are entering B - ,  so ~o(x0, r ' )Eb- .  Since ( r , v , s ,w)eb -  
implies v > 0 ,  the first of Eqs. (5.7) implies that  points  on b -  are leaving 
B - ,  so ~o(x o, ~)eo--. The  p roof  is complete.  

A similar a rgumen t  proves  the following: 

Proposit ion7.4.  Let v > c t - h .  I f  ~p(xo, [z,r'~) is a maximal orbit 
segment in B + (h, ~, v), then r z)~b + (h, ~, v) and cp(x o, ~')~a + (h, ~, v). 

Proof of Theorem 7.1. We consider only the case of orbits  ending in 
triple collision. The p roof  for orbi ts  beginning in triple collision is 
essentially the same. 

Let  Xo=l r  o, Vo, So, Wo)eN(h) be the image of (q(0), p(0)) under  the 
t ransformat ions  (3.1), (3.4), (4.13), and (5.3). Thus  the orbi t  

{(qCt), pit)): t E0, '1)} 
is m a p p e d  to the orbit  cp(x o, [0, zl)). Since by definition of a triple 
collision orbit  r ( z ) -~0  as z ~ r 1, and since { r=0}  is an invariant  set for 
the flow, we must  have tha t  z 1 = oo. 

Fix ~ > 0 .  Since r(z)--*O there is a % > 0  so that r (T)<~,  and hence 
r o, OeB(h ,  ct), for all z>_z 2. Choose  v so that  

v > ~ + m a x ( - h ,  Iv(r2)l). 

Then  ~o(x 0, r2)eBo(h, ~, v). We shall show by contradict ion that  

q~(x o, r)eBo(h, ~, v) for all z > z  2. (7.1) 

Suppose  9 (xo, z3)E B -  (h, ~, v) for some z 3 > r 2 . Then Proposi t ion 7.3 
and r ( r ) < a  imply that  cr o, z ) e B -  for all r > z  a. But v > 0  for points 
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in B- ,  so the first of Eqs.(5.7) implies that d r > o  for z > z  3. But this 
d-t- = 

contradicts r ( r ) ~ 0 .  Therefore qo(x o, rlq~B- for z>z  2. Proposition 7.4 
implies that qo(x o, r )r  + for z > z  2. Thus we have established (7.1). 

Since B o is compact, co(x o) is a non-empty compact set. Since r(O --, 0, 
cO[Xo)e C. By Proposition 6.4, the flow restricted to oJ(x o) is gradient-like. 
Therefore, by Lemma 7.2, cO(Xo) is exactly one point, necessarily a rest 
point. By Proposition 6.3, the only two rest points are c and d, so 

( r , v , s , w ) - - , ( O ,  + v c ,  s c ,  O)  a s  r ~ o o .  

Thus r -  1 q = s --, s c as z ~ 0% and part (a) of Theorem 7.t is established. 

dr 
The first of Eqs. (5.7) implies that v(r)+-~v,, since -dT > 0. Therefore 

c#(Xo, z ) - ,  c as r ~ o o ,  
and we have 

dr W(sc)~ Vcr as z ~ o o .  

Time transformations (3.7) and (5.5) imply that 

dr 
cl~ - ~ - v ~ r - ~ 

and hence 
r(t),..(Svc)~(t~-t) ~ as t - , t t - .  

Thus we have established part (b) and completed the proof of Theorem 7.1. 

One should note that orbits beginning in triple collision have the 
property that 

r r)-~d as z-~ oc. 

8. The Set of Triple Collision Orbits 

Siegel [11, 12] has described the set of all triple collision orbits for 
the three-body problem in three dimensions. He was mainly concerned 
with the question of whether triple collision can be "regularized". We 
shall discuss the regularization question in the next section but for now 
we are concerned with a corollary of Siegel's work wherein he showed 
that the set of orbits ending in triple collision forms a smooth submanifold 
of the energy surface. In this section we give a proof of Siegel's corollary 

in the collinear case. 
The proof follows from the stable manifold theorem applied to the 

critical point c on the triple collision manifold. By Theorem 7.1 the set of 
orbits ending in triple collision is exactly the stable manifold of the point c. 
We shall compute that the Jacobian at c has one positive and two 
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negative eigenvalues and hence that the stable manifold of  c is two- 
dimensional.  (See Fig. 4.) 

Theorem 8.1 (Siegel). The set of orbits ending in triple collision forms 
a real-analytic two-dimensional immersed submanifold of the three- 
dimensional constant energy surface. 

Proof By the above remarks it is only necessary to compute  the 
eigenvalues of  the Jacobian  

J: T~N(h)--+ TcN(h), 

where T~N denotes the tangent space to N at c. 

Let F = (F 1, F z , F 3, F4): 9~ --, R 4 be the vectorfield defined by Eqs. (5.7). 
Then DF(c): R 4 ~  R 4 leaves T~N(h) invariant, and a r is the restriction of 
DF(c) to T~N(h). 

unstable 
monitold of d 

I 
I 

. . . . . .  J . . __  

I 

i 
/ 

/ 
/ 

1 
/ 

stable 
rnanitold of c 

Fig. 4. The upper (lower) shaded surface is the set of orbits beginning (ending) in triple 
collision 

Recall that  c=(0 ,  - v  c, so,0). Using Eqs. (5.1) and (6.5) we compute :  

DF~ (c)(p, 7, ~, )0 = - 2(1 - s2, )~ p, 
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D F2 (c)(p, y, r~, X)-  (2 h p + v ~?), 
Uc 

DF3 (c)(p, 7, ~, X)=z, 

4s~ V"(s~) 2 )' 
DF4(c)(p,F,a,)O= --Ty-(hp+vc?)+ vZ ( 1 - s ~ ) a + - ~  (1-s~)~-X. 

l? c 

From the definition (5.4) of N(h) we see that 

T~ N(h)= {(p, 7, a, z)ER*: hp+v,.y=O}. 

Thus, for (p, 3', a, X)e T, N(H), we have 

J(P, T, (5, X)= DF(c)(p, )', (5, X) 

= (--2(1-s2)-~p, ~(1-s2)�89 hp, Z , ~ ( 1 - 2 s ~ )  a+~-(12 _s2)~Z) . 
V c U c 

We now choose a basis {r ~2, ~3} for T~N(h) as follows: 

~'1 =(-v~, h, 0, 0), 

~2:(o, O, ~,0), 

~ =(o, 0, 0, 1). 

Note that {~2, ~3} is a basis for T~ C. The matrix for J in this basis is 

0 

(l-s~) v"(s3 2 

Thus ~: is an eigenvector with eigenvalue - 2  (1 -s~) ~. The characteristic 
equation for J restricted to T~ C is 

- -  2 ' Uc 

In the proof of Proposition 6,2 we showed that V"(s~) > 0. Therefore the 
above equation has one negative and one positive root. Thus c has a one- 
dimensional stable manifold and a one-dimensional unstable manifold 
in C. On N(h) we add a negative eigenvalue and thus have a two-dimen- 
sional stable manifold. The proof is complete. 

The same theorem holds for the set of orbits beginning in triple 
collision. In this case one can prove that the unstable manifold of d is 
two-dimensional. The argument is exactly the same if one replaces -v~ 
with + v~. 
15 Inventlones math.,Vol. 27 
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9. The Isolating Block about Triple Collision 

One can ask if orbits can be extended through triple collision. Of 
course, an orbit ending in triple collision can be connected arbitrarily 
to one beginning in triple collision. The problem is whether the connection 
can be made in a meaningful way. 

Siegel has investigated this problem from an analytic viewpoint 
[11, ~2]. He concentrated on a single orbit ending in triple collision and 
asked if that orbit, as a function of time, has a continuation. He found 
that in general it does not. 

However, in the context of flows on manifolds, another viewpoint may 
be more natural. One can ask whether every orbit ending in triple 
collision can be connected to an orbit beginning in triple collision in such 
a way that a flow results. To make this connection it is necessary that 
each two orbits starting close together and close to a triple collision orbit 
remain close together for long periods of time. 

Easton has given a definition of regularization which makes the above 
notion precise [4]. He has used his definition to describe the integral 
surfaces of the three-body problem after double collisions have been 
extended [5]. In this section we briefly describe Easton's definition and 
use it to show that orbits cannot be extended through triple collision for 
some values of the masses. For a thorough discussion of the motivation 
behind these definitions we refer to the papers of Easton [4, 5], Conley 
and Easton [3], and Churchill [1]. 

We must first introduce some notation. Let ~k be a flow on a manifold 
M and let B be a submanifold of the same dimension. Let b be the boundary 
of B and define 

b+ = { x 6 b :  ~ ( x , ( - s ,  O ) ) n B = ~  for some s>O}, 

b -  = {x~b: , ( x ,  (0, s))r~ B = S  for some s>O}. 

Definition. We say B is an isolating block ifb + u b -  =b.  

Now let 
a + = {xeb+:  0(x, t)eB for all t > 0 } ,  

a -  = { x e b -  : 0(x, t)eB for all t>0}  

and define T:  b + - a  + - ~ b -  - a -  by following the flow until it first hits 
b -  - a - .  We shall refer to T as the "map  across the block B". An impor- 
tant property of isolating blocks is that the map T is a homeomorphism 
[3, 1]. 

Definition. We say B is regularizable if T can be extended to a homeo- 
morphism: b + -~ b - .  Otherwise we say B is non-regularizable. 

Now consider the flow go given by Eqs. (5.7). Recall the definition of 
B(h,~) given in Section7. We see that, for any given h, B(h,e) is an 
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isolating block for small enough c~. In fact, 

b + (h, ~ ) =  {(,', v, s, w)~ B (h, ~): r = ~, v < 0 } ,  

b-  (h, ~)= {(r, v,s, w)EB(h, a): r = a , v > 0 } .  

Furthermore, a+(h,a) is the intersection of b+(h,a) with the stable 
manifold of c, while a -  (h, a) is the intersection of b-  with the unstable 
manifold of d. If B (h, a) is non-regularizable, then B (h, 7) is non-regulariz- 
able for aI1 ? < a. Thus we shall say that triple collision is non-regulariz- 
able for energy h if B(h, ~) is non-regularizable for some a. We wish to 
prove the following theorem. 

Theorem 9.1. There exist masses m l , m  2 and m 3 such that triple 
collision is non-regularizable for all energies. 

The proof of this theorem depends upon a close examination of the 
flow on the triple collision manifold C. In particular, we must determine 
the location of the two orbits comprising the unstable manifold of c. 

Definition. We shall say the flow r on C is totally degenerate if the 
unstable manifold of c coincides exactly with the stable manifold of d. 
(See Fig. 5.) 

xx  

? 
Fig. 5. Flow on the triple collision manifold in the totally degenerate case 

15" 
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In the next section we show that ~o is not totally degenerate for some 
values of the masses. In the remainder of this section we shall prove that 
triple collision is non-regularizable if cp is not totally degenerate. 

Recall the definitions of B- ,  b - ,  and or- given in Section 7. Hence- 
forth we shall fix an energy h and choose an e > 0  so that B(h,~) is an 
isolating block. To streamline notation, we shall write B=B(h,c~), 
B-  (v) = B -  (h, ~, v), etc. Let �9 be the map across the block B. 

Proposition 9.2. Suppose q) on C is not totally degenerate. Let aoea  +, 
let U be an open subset o fb  + containing ao, and let v>v c. Then 3 xveU 
such that ~(xv)eb-  (v). (See Fig. 6.) 

Proof From the gradient-like property of ~0 on C and the non- 
degeneracy condition we know that at least one branch of the unstable 
manifold of c intersects ~ -  (v). We know from the proof of Proposition 7.3 
that o-- (v) is a section for the flow. We also know from the definition that 
b + is a section. Since q) can be approximated by its linear part in a neigh- 
borhood of c, there exist a point x~eU and a point y~e~-(v)  such that 
~0(x v, ~)=yv for some z > 0 .  Thus the orbit through x~ crosses ~ -  (v) and 
enters B -  (v). By Proposition 7.3 the orbit can leave B-  (v) only on b -  (v). 
Hence q)(xv)~b (v) and the proof is complete. 

Proposition 9.3. l f  q) on C is not totally degenerate, then triple collision 
is non-regularizabte. 

Proof Let aoEa +, v>vc. We can find points x arbitrarily close to a o 
such that ~b(x)eb- (v). Since (") {b- (v): v>vc} =g,  ~b cannot be extended 
to a o and the proof is complete. 

One should note here a difference between the regularization defined 
by Easton and the regularization explored by Siegel. Proposition 9.3 
shows that the homographic  orbit cannot be extended through triple 
collision. However, if one examines Eq. (6.3) describing the homographic 
solution, one sees that this solution behaves in the same way as a double 
collision. Thus the homographic  orbit can be extended as a function of 
time, but the extension does not result in continuity with respect to nearby 
orbits. 

Q0 

\ 
Fig. 6. An orbit passing close to tripIe collision 
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A~c first glance the above results seem highly technical and only 
vaguely related to the p rob lem of three particles moving  along a line. 
However ,  when one examines the relation of the coordinates  r, v, s, and w 
to the original coordinates  q and p, one finds a somewhat  surprising 
implicat ion of Propos i t ion  9.2. 

First recall that  r 2 is the m o m e n t  of  inertia of the system of particles. 
The isolating block B about  triple collision is the set of points with r =< c~. 
The bounda ry  b of B is the set of  points with r = ~ .  On b + we have the 
one-dimensional  set a + of points whose orbits  end in triple collision. 
Propos i t ion  9.2 tells us that  orbits start ing close to a + emerge f rom the 
isolating block with arbitrari ly large values of v. 

N o w  consider the energy relation (5.4). Since points in the isolating 
block have r__<c~, we see that  [w]__< 1 for large v. We also see that  a large 
value of v forces a small value of 1 - s 2. Hence, for large values of v, the 
set B -  iv) has  two components ,  one containing points with s close to + 1, 
the other  containing points with s close to - 1. Therefore orbits passing 
close to triple collision emerge f rom the isolating block with r=c~, 
]wl _-< 1, ~' large, and s close to _+ i. Recall that s near  + 1 corresponds  to a 
configurat ion with particles 2 and 3 close together  while s near  - 1  
corresponds  to particles 1 and 2 close together.  

Work ing  through t ransformat ions  (3.1), (3.4), (4.13), and (5.3), we can 
write the m o m e n t u m  vector  

P = ~ I  [ v M S ( s ) +  w W(s)~ - s ~ " 

Using Eq. t4.11) we compute  the m o m e n t u m  of particle 3: 

m3a3 v c o s 2 ( l + s ) _ W ~ _ s z S i n 2 ( l + s  ) P3 = r~ 

Now consider  an orbit  passing close to triple collision and emerging 
from the isolating block with s near  - 1. Since r=c~, Iwl < 1, and v is large, 
P3 mas t  be large. Since s is near  - 1 ,  particles 1 and 2 must  be close 
together.  A similar a rgument  shows that, for an orbit  passing close to 
triple collision and emerging with s near  + 1, the m o m e n t u m  of particle 1 
must  be large. Thus we have established the s tatement  in the introduct ion:  
After passing close to triple collision one of the particles emerges with an 
arbi trar i ly high velocity in one direction while the other  two particles 
emerge close together  and moving rapidly in the opposi te  direction. 

N o w  consider the set {(r, v, s, w)e C: v >  v}. As noted above, this set 
for large v has two components :  C+ (v) containing points with s close to 
+ 1, and C_ (v) containing points with s close to - i. An interesting case 
of a non-degenera te  flow on C occurs when one branch of the unstable 
manifold of c intersects C + (v) while the other  branch intersects C_ (v). 
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(See Fig. 7.) In the next section we shall show that such a non-degenerate 
flow on C occurs for some values of  the masses. In such a case, Proposi-  
tion 9.2 implies that orbits passing close to triple collision emerge from 
the isolating block with s close to + 1 or - 1 depending upon on which 
side of  the stable manifold of  c they begin. Thus orbits starting close to 
each other and close to a triple collision orbit  can emerge with totally 
different configurations, as well as arbitrarily high velocities. 

Theorem 9.1 follows from Proposi t ion 9.3 if we can show the existence 
of  masses m,, m 2, and rn 3 for which the flow ~o on C is not  totally degener- 
ate. The flow ~o is a cont inuous  function of  the masses. If c~ is not  totally 
degenerate, then it remains so under  small perturbations. Therefore the 
the set of  masses for which ~ is not totally degenerate is open. In the 
following section we show that this set is non-empty,  thus proving 
Theorem 9.1. 

10. A Special Case 

In this section we consider the special case when the two outside 
masses are equal and the inside mass is small. Let 

~'11 = / T / 3  ~---/T] ~ r f /2  ~-  ~ / T / .  

"'~" "*, 

\x .  

Fig. 7. Flow on the triple collision manifold in a non-degenerate case 
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Recall the definitions of a and h given at the beginning of Section 4 and 
the definition of 2 given by Eq. (4.7). In this case we can explicitly write 

a=(m(1  +e)(2+g))--~ ( -  1, - 1, 1 +~:) 

b=(m(1 +e)(2+r.))  -~ ( -  l - e ,  1, i). 

We compute  that a r M b = ( 1  + e ) - t  and hence that 2 is the smallest 
positive number  satisfying 

1 
cos 22. = - -  

1+~;" 
Thus 2 --+ 0 as e - ,  0. 

For  this choice of masses we can rewrite Eq. (4.14) as 

v(,:.r (1 +q+ 
\ 2 + e l  

(10.1) 

. s i n 2 2  sin 2(-1 +s)  ~ sin 2(1 - s )  ~ s in2( t  +s)+sin,~o(l - s  " 

F rom the above expression and the definition of W(s) given by Eq. (5.1) 
we see that V and W are both even functions. 

Proposition 10.1. For any fixed m there are values of e for which the 
flow qo on C is not totally degenerate. 

Proof A branch of the unstable manifold of c is a single orbit 
~O(Xo, ( - o o ,  ~))  such that q0(Xo, r)--*c as ~ - ~ .  Let z l ~ ( -  oo, oo] be 
such that the value of v at r  o, z~) is + v c. We include h = + ~-3 in case 
~0(x o, z ) ~  d as r - ,  + oo. F rom the gradient-like property of q~, z~ is 
unique. By Eq. (6.2 c) the line {s = + 1 } is a section of the flow on C. Let 
Z(e) be the number  of times ~0(x o, ( - o o ,  z~)) intersects the line {s= + I}. 
Again from the gradient-like property of ~o, Z (e) is a finite positive integer. 

Now assume ~o is totally degenerate for all e. Then Z(~) is constant.  
We shall show that Z(e.) - ,  oc as e ~ 0, thus contradicting the assumption 
and proving the proposition. 

Recall that  in the proof  of Proposi t ion 6.2 we showed that V has a 
unique minimum on [ - 1, 1 ]. In the present case V is even, so the min imum 
must occur at s = 0 .  F r o m  Eq. (10.1) we see that 

V(O)--*2-~m ~ as ~ 0 .  

Now let 
= ~'2 ~ = (2 V(0))-~ = W(0)- ' .  

Then/~ is a constant  depending on the masses and approaches a positive 
limit as e -~ 0. 

N o w  consider 
1 - ( 1 - s Z ) v  2 W(s) -1 

(~0.2) 
g(V,S)= 1_14V2 
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Then g is a positive cont inuous  function on 
define a new variable 

~=g(v,s)-~w. 

That is, we define a t ransformat ion 

Now let 

( -  re, vc) x [ -  1, 1 ~]. We 

( - G ,  vc) x [ - 1 ,  1] x R I - * ( - G , G )  x [ - 1 ,  I ] x R  ~" 

(v, s, w)~(v, s, g(v, s)-~ w). 

Co= {(v, s, w)eC: -vc<v<vc}. 

F r o m  Eq. (6.1) we see that the above t ransformation is a diffeomorphism 
from C O to 

C'={(v,s ,r/)e(-~,#)x E - l ,  13 x R: t/z--(1 --S2) (1 --//V2)=0}. 

The vectorfield (6.2) when transformed to C' becomes 

dv ;~ 
dz 2 

- -  - - -  W ( s )  ~ g ( v ,  s )  (1 - p v 2) 

ds 
dr -g(v,  s) ~ r~ (10.3) 

dr/ 2 2 
d r -  g(v's)~s(1-pv ) - 2  #W(s)-~g(v's)vr/" 

If we now make the time t ransformat ion 

�89 t dz=g(v,s) dr 

the vectorfield on C' becomes 

dv 2 
dr' 2 
- - - - -  W(s) ~ g(v, s) + (1 - ~  v 21 

ds 

dr;=q 
(10.4) 

dq 
= - s ( 1  - r v2)-2~- g W(s) ~ g(v, s) -~ vq. 

d r '  2 

Now from Eq. (5.2) we see that  

W(s)-*]//2m~(1-s 2) as 2 - * 0  

uniformly on [ -  1, 1]. Thus  Eq. (10.2) gives us 

W(s)g(v,s)--*V~m4(1-s 2) as 2 - * 0  
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uniformly on compact  subsets o f ( -  t' c, v c) x [ -  1, 1]. Therefore 

,t W ( s )  ~ g(v, s) ~ --, 0 as )~ --* 0 

uniformly on compact  subsets. Hence the orbits of the vectorfield (10.4) 
become close to the orbits of  the vectorfield 

d v  
= 0  

d r '  

d s  
dr '  =r/  (10.5) 

- s ( 1 - p v  z) 
d r '  

as 2 --, 0. But the orbits of the above vectorfield are just the circles on C' 
given by constant  v. Thus orbits of the vectorfield (10.4) must wrap 
a round  the dylinder C' an arbitrarily large number  of times as 2 ~ 0 .  
Therefore the same statement holds for the vectorfield (10.3). Since the 
flow on C' given by (10.3) is homeomorph ic  to the flow on C o given by 
(6.2), we have the required statement that Z(~)--,oc as ~--,0. The proof  
of  Proposi t ion 10.1 is complete. 

One can give the following interpretation of the vectorfield (10.4). 
The masses of the particles are m~ = m 3 = rn and m 2 = ~m.  As 2 ~ 0, e ~ 0 
and m 2 --,0. Thus Eqs. (10.5) represent triple collision when the central 
particle has mass zero. It is difficult to physically interpret e = 0 since the 
various t ransformations become singular. However,  for small e, the 
rapid spiralling around C' represents the central particle bouncing 
back and forth between the two outer particles many  times while passing 
close to triple collision. The number  of  bounces goes to infinity as e, ~ 0. 

In the present case, where m 1 = m  3, we have a symmetry for the flow 
on C. Since W is even, Eqs. (6.2) are invariant under the t ransformation 

(v, s, w) --, ( ~ , -  s, - w).  

Therefore the two branches of the unstable manifold of  c are reflections 
of each other. Recall the definitions of C+ (v) and C (v) given at the end 
of Section 9. Because of the symmetry,  if one branch of the unstable 
manifold of c intersects C+ (v), the other  branch must intersect C_ (v). 
Thus Proposi t ion 10.1 establishes the existence of  flows as shown in 
Fig. 7. 

11. Remarks and Speculations 

Many  questions remain unanswered by this work. For  example, can 
one describe the set of values of the three masses for which triple collision 
is non-regularizable? The problem is made somewhat  simpler by not ing 
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that the original equations of motion (2.1) remain invariant if one makes 
the transformation 

M=I~M', 

q = # ~ q '  

for g > O. Thus triple collision is non-regularizable for masses ~rn 1 , m 2 , m3) 
if and only if triple collision is non-regularizable for masses i# ml,/~ m2, 
u m3) for any/~ > 0. Therefore one need only consider values of the masses 
on the simplex 

~l~= {(ml,mz,m3): ml +rn2 + m3= l, rnk>0 Vk}. 

In Section 9 we showed that triple collision is non-regularizable if 
the flow on the triple collision manifold is not totally degenerate. We 
also saw that the set of masses for which the flow is not tota:lly degenerate 
is open. One expects that this set is large. 

Conjecture. The set of masses for which the flow on the triple collision 
manifold is not totally degenerate is dense in 9)1. 

If this conjecture were true, then the set of masses for which triple 
collision is non-regularizable would be dense in ~J/. There still remains 
the question of whether triple collision is regularizable when the flow 
on the triple collision manifold is totally degenerate. The eigenvalues 
at the two rest points may play a role here, but the author does not have 
a conjecture. 

One can ask whether the results and methods of this paper apply to 
situations other than triple collision in the collinear three-body problem. 
The flow for the cotlinear problem is contained in the flow for the prob- 
lem in higher dimensions as an invariant set. Therefore if triple collision 
cannot be regularized on the line, it is automatically non-regularizable 
in the plane or 3-space. However, certain mass ratios may be regulariz- 
able in the collinear problem, but non-regularizabte in the planar 
problem. 

The transformations used in Section 3 can be generalized to apply to 
n-tuple collision in the n-body problem in any dimension. That is, n-tuple 
collision can be made into an invariant manifold by blowing up the origin, 
and the time variable can be transformed so that no orbit arrives at n- 
tuple collision in finite time. The author has not yet studied the trans- 
formed equations in enough detatil to see if any new results can be ob- 
tained from this method. 

The question of the existence of singularities other than collision 
has long been outstanding. Painlev6 [8] proved for the three-body 
problem that all singularities are due to collisions. The work of Painleve, 
Von Zeipel El6], and Sperling 1-13] shows that a collision is the only 
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singularity that can occur in a solution of the n-body problem, if the 
positions of all the particles remain bounded. Therefore finding a singu- 
larity not due to collision is equivalent to finding an orbit for which at 
least one of the positions becomes unbounded in finite time. 

The results of Section 9 indicate that such an orbit may exist. Con- 
sider the collinear 5-body problem with all double collisions regularized. 
Let mt . . . . .  m 5 be the masses of the five particles in the order in which 
they appear on the line. Choose m and e so that the flow on the triple 
collision manifold for the three-body problem with masses (rn, ~: m, m) is 
not totally degenerate. Let rn 1 -- m s = m s = rn and rn 2 = m,  = c m. If triple 
collision in the five-body problem can be shown to behave like triple 
collision in the three-body problem, then, as we noted in Section 9, the 
system can pick up arbitrarily high kinetic energy whenever particles 
1, 2, and 3 or particles 3, 4, and 5 pass close to triple collision. 

We shall now describe an orbit which becomes unbounded in less 
than unit time. Particles 1 and 2 always remain close together and we 
shall call them binary system A. Particles 4 and 5 also remain close 
together and we shall call them binary system B. Particle 3 bounces 
back and forth between the two binary systems. At time t=0 ,  particle 3 
is moving so that it overtakes binary system A in time q <�89 After 
particles 1, 2, and 3 pass close to triple collision, particle 3 emerges with 
a velocity high enough to overtake binary system B in time t 2 <�88 After 
particles 3, 4, and 5 pass close to triple collision, particle 3 emerges with 
enough velocity to overtake binary system A in time t3 <-~, etc. In less 
than unit time binary system A goes to -- ~ ,  binary system B goes to + 0% 
and particle 3 bounces back and forth between them an infinite number 
of times. 

Conjecture. The orbit  described above exists. 

Clearly it will not be a simple matter to prove this conjecture. How- 
ever, the author hopes that the methods used in this paper will provide 
a first step towards such a proof. 

One should note here an apparent contradiction between the above 
conjecture and a theorem of Saari [91. Saari proved that all singularities 
are due to collision in the collinear n-body problem. However, Saari does 
not extend orbits through double collisions. One sees that the orbit 
described above must contain an infinite number of binary collisions. 

Appendix 
We wish to prove Lemma 7.2. Using ideas of Sacker and Sell [10], a 

fairly direct proof can be given. However, we choose to use methods 
introduced by Conley [2], since they provide a characterization of the 
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m-limit set of  a point. This characterizat ion is given by Theorem A.2 
below and seems to be interesting in its own right. 

Our  method  is to introduce the concept o fa  "cha in-min imal"  flow and 
to prove that the ~o-limit set of  a point is chain-minimal. We then show 
that a gradient-like chain-minimal flow is a single point, thus proving 
the lemma. 

The following two definitions were developed by Conley [2]. 

Definition. Let q~ be a flow on a complete metric space X with metric d. 
Let x, y ~ X  and let ~ and T be positive numbers.  We say a collection 
(X 1 . . . . .  xn+l , t  t . . . . .  t,) is an (e, T, q0)-chain from x to y provided the 
following condit ions hold for i =  1 . . . .  , n: 

(a) x i~X ,  x = x  1, y=xn+l ,  
(b) ti>-_ T, 
(c) cl(~o(xi, t~), xi+0__<~. 
Definition. Let x, y e  X. We shall write x > y provided there is an (e, T, ~0)- 

chain from x to y for all positive e and T. 

Conley shows that " > "  is a transitive relation on X but that it 
is neither reflexive nor  anti-symmetric.  We shall somewhat  loosely refer 
to " >  " as an ordering. For  a gradient-like flow this ordering is con- 
sistent with the gradient function in the following sense. 

Lemma A.I. Let qo be a flow on a compact metric space X.  Suppose ~o 
is gradient-like with respect to g, and let x, y e X .  Then 

x >  y=~g(x)>g(y) .  

Proof Suppose x > y and g (x)< g(y). Choose  real numbers  a 1 and a 2 
so that 

g (x) < a I < a 2 < g (y) 

and K = g-a([a 1, a2]) contains no rest points. Let 

KI = g - a  ( ( -  oo, a~]), K 2 = g - l ( [ a 2 ,  oo)). 

Then K 1 and K 2 are disjoint compact  sets. Let 6 = d ( K  1, K2). Since K 
is compact  and contains no rest points, there is a positive Tso  that  

x e K ,  t>  T ~ ( p ( x , t ) E K 1 .  

Thus, for e < 6 and T '  > T, there is no (e, T' ,  ~o)-chain from x to y. This 
contradicts  x > y and proves the lemma. 

We now introduce the following generalization of  a minimal flow. 

Definition. Let q~ be a flow on a complete metric space X. We shall 
say ~o is chain-minima1 if x > y  for all x, y e X .  
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Conley [2] calls a flow "cha in - recur ren t"  if x > x  for all x e X .  One 
can show that chain-recurrent  and chain-minimal  are equivalent on 
compac t  connected spaces. 

We now have the following proper ty  of m-limit sets. 

Theorem A.2. Let q) be a flow on a locally compact metric space X. 
Let x o e X  be such that co(xo) is a non-empty compact set. Then qo restricted 
to cO{Xo) is chain-minimal. 

It is impor tan t  to note that  we are considering the flow restricted 
to the e)-limit set. It is trivial to prove  that x, y e m ( x  o) implies x > y  for 
the order ing given by cp on X. However ,  the ordering on cO(Xo) given by 
the restricted flow is different from the restricted ordering. This distinction 
is easily seen if we consider non-wander ing points. All points in ~o(x o) 
are non-wander ing  for the flow ~o. However ,  they may wander  in the flow 
restricted to e)(Xo). 

One should also note that,  if X is compact ,  ~O(Xo) is automat ical ly  
non-empty  and compact .  Thus  ~(Xo) is always chain-minimal  for flows 
on compac t  metric  spaces. 

To prove  Theorem A.2 we need the following proposit ion.  

Proposit ion A.3. Let qo be a flow on a locally compact metric space X. 
Let x o ~ X  be such that ~O(Xo) is a non-empty compact set. Then c~(Xo) is 
connected. Furthermore,]br each open U containing ~o (Xo), there is a positive 
t' so that (p(x o, t)EU for t >=t'. 

When X is compact ,  Proposi t ion A.3 is a s tandard result [7]. The 
assumpt ion  that  o(x0)  is non-empty  and compac t  is enough to insure 
that the s tandard  proof  is valid when X is locally compact .  

Proof of TheoremA.2. Let O=~o(x0) and let ~ denote  the flow (p 
restricted to f2. Let  y, y 'ef2,  and let e and  T be given. We must construct  
an (e, T, ip)-chain from y to y'. 

Let U be an open subset of X containing f2 with compac t  closure. 
Choose  6 < e/2 so that  

8 
u l , u 2 e U  , d(ut ,u2)~d(tp(ul, t) ,qo(u2,t))< ~ V t ~ [ 0 , 2 T ] .  (A.1) 

Let V be an open subset of U so that  f2& V and  d(x, 0 ) < 6  for all x~  V. 
By Propos i t ion  A.3 there is a t' so tha t  ~0(x o, It ' ,  oe) )c  V. 

Choose  XleqO(x 0, [t', oo)) so that  d{Xl ,y)<6.  Choose T ' >  T so that  
d(~o(x~, T'), y ' )<r  Let n be the greatest  integer in T ' / T  and let xi=- 
qo (x i_ l, T) for i = 2 . . . . .  n. Let  x,  + i = q~ (x,, T '  -- (n - 1) T) = ~0 (x 1 , T'). For  
i = 2 , . . . , n ,  choose yief2 so that d(yi ,xi)<6.  Let y a = y  and y ,+l=y ' .  
Let t~ = T for i = 1 . . . . .  n -  1, and let t ,  = T' - (n - 1) T. 
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W e  c la im that  (Yl . . . . .  'Y,+I,  tl . . . . .  t,) is a n  (e, T, 0 ) - cha in  f rom y to y'. 
Since (a) a n d  (b) of the def in i t ion  are  satisfied by  c o n s t r u c t i o n  we need 
on ly  show (c), i.e. 

d(O(yi, ti),Yi+l)<e for i = 1  . . . . .  n. (A.2) 

But  dlyi, x,)<~5 a n d  t i<2T, so by  (A.1), 

d( O (y i, ti), x, + ~)= d(q)(y~, t,), ~o(x~, t~)) < e/2. 

Since d(yi+~,x~+~)<6<2, (A.2) fol lows f rom the t r i ang le  inequa l i ty .  

Thus  (y~ . . . . .  Y,+I,  tl . . . . .  t,) is a n  (e, T, ~,)-chain f rom y to y'  a n d  the 
p r oo f  of  T h e o r e m  A.2 is comple te .  

L e m m a  6.2 n o w  fol lows as a coro l la ry  of  T h e o r e m  A.2, P r o p o s i t i o n  
A.3, a n d  the fo l lowing p ropos i t i on .  

Proposition A.4. Let cp be a chain-minimal gradient-like flow on a 
compact connected non-empty metric" space X. Then X consists of a single 
point. 

Proof Let x, yeX .  Since x> y, g(x)>g(y). Since y> x, g(y)>g(x). 
T h u s  g is c o n s t a n t  on  X,  so X c o n t a i n s  on ly  rest poin ts .  Since the rest 
po in t s  are isola ted a n d  X is compac t ,  X c o n t a i n s  on ly  finitely m a n y  
poin ts .  Since X is c o n n e c t e d  a n d  n o n - e m p t y  it consis ts  of a s ingle poin t .  
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Note Added in Proof Orbits similar to the one described at the end of Section 11 have 
been proved to exist. (Mather, J., McGehee, R.: Orbits for the Collinear Four-Body 
Problem Which Become Unbounded in Finite Time. Battelle Rencontres 1974 Proceedings, 
to appear.) 


