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This paper continues the study of abstract moduli problems begun 
in our previous paper Algebraization of formal moduli I [31. Some of 
the results were announced in [41. 

In Section 3, we analyze the properties of Schlessinger's formally 
versal deformation at a point, giving conditions which imply that is is 
versal in the algebraic sense (3.3). We then show (4.4) that formal versality 
is an open condition, under some-mild hypotheses which are easy to verify 
in practice. A model for this study was the example of deformations of 
isolated singularities (4.5). These results are used in Section 5 to give 
criteria for representability as an algebraic stack, generalizing the 
results of [3] for algebraic spaces, and in Section 6 it is proved that 
every flat groupoid is equivalent to an algebraic stack. Some corrections 
to [3] are made in the appendix. 

We have tried to make this paper as independent of [3] as was possible, 
and the only essential references are to its Sections 1, 2. However, it 
seemed too clumsy to introduce algebraic stacks without using algebraic 
spaces, and so, starting with Section 5, the basic notion of algebraic 
space [121 is assumed. 

An improvement over the treatment of [3] is given by the intro- 
duction of an explicit obstruction theory. We avoided this before, because 
we didn't know what was behind such a theory. We still do not completely 
understand that, but it is certainly clear that a much neater list of axioms 
is obtained this way {compare (5.4) with [3, Theorem 5.3]). 

Throughout  the paper, the symbol S denotes a scheme (or algebraic 
space) of finite type over an excellent Dedekind ring. 

This paper was written while the author visited the Tata Institute of Fundamental 
Research in Bombay, and the Research Institute for Mathematical Sciences of Kyoto 
University. We want to thank these institutions for their generous hospitality and support. 
We also want to thank R. Elkik and L. lllusie for some helpful discussions. 
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166 M. Artin 

1. Basic Terminology 

We have been unable to be consistent about the use of schemes as 
opposed to rings, but in the first sections we have chosen to work as 
much as possible with rings, rather than with their spectra. In later 
sections we wilt pass informally from one category to the other. 

Let C be a subcategory of the category ofnoetherian rings. By groupoid 
F over C we mean a functor p : F - * C  which is cofibred in groupoids, 
i.e., such that the following conditions hold (cf. [6]). (We will use capitai 
letters to denote objects of C, and small letters for objects of F.) 

(a) (Existence of extension of scalars.) Given a map A ~ , B in C 
and an element ae  F with p(a)= A, there is a lifting a---, b of q> to F. 

(b) (Uniqueness.) Given a commutative diagram 

A ~B 

\ /  
C 

in C, every partial lifting to F of solid arrows 

~ b  
/ 

J -  i 
/ 

a~ 

can be completed by a unique dotted arrow. 

In order to facilitate passage to the language of schemes, we adopt 
the convention that when we replace rings by their spectra, i.e., pass to 
the dual category C ~ we also pass to the dual category F ~ Thus a 
groupoid over a category of schemes will be a functorfibred in groupoids, 
i.e., a functor such that the dual axioms (a) ~ (b) ~ hold. 

We will write F(A) for the fibre o f p  over AEC.  This is a groupoid 
because of axiom ~b). The existence and uniqueness of extension of 
scalars defines, up to unique isomorphism, a "direct image" functor 

�9 ,:  F(A)--~ F(B) for each map  A e ~ B in C, with canonical isomorphisms 

(q~P), ~ ~ ,  ~ , .  I fbsF(B)  and A ~' ,B are given, we will denote by Fb(A ) 
the groupoid of maps a---,b in F lying over 45, an isomorphism being a 
commutat ive diagram al - . . . . . .~ 

a2 
with p(e) = id A �9 
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We call a groupoid F limit preserving if it is compatible with filtering 
direct limits in C in the obvious sense, i.e., if lira F(Ai)--,F(lim Ai) is an 

is m C, the hmlt on the left equivalence of categories whenever lira Ai " ~ " "---' 
being the obvious 2-categoricaI limit. This property is what we have 
previously referred to (following Grothendieck) as ~ finite presenta- 
tion". When working with schemes, we require only that F be compatible 
with the same limits, i.e., with inverse limits of affine schemes. 

In general, a bar will denote the set of isomorphism classes in a 
groupoid. Thus F(A), Fb(A) denote the isomorphism classes of F(A) and 
Fb(A) respectively. Using extension of scalars, we can view the symbols 
F, F b as functors 

f :  C ~(sets) ,  

Fb: C/B--, (sets). 

The groupoid F is a stack over C [6] if C is closed under tensor 
products A* | " when A ~ A* is etale, and if the following conditions 
hold: 

(1.1) (i) For every pair al ,azeF(A),  the functor 

Isom(al, a2) = I: A \ C  --+ (sets) 

defined as follows: Given A ~ �9 B, 

I (B) = {isomorphisms r (al) ~ ~ ,  (a2) satisfying p(fl) = ids}, 

is a sheaf on A \ C  for the etale topology. 

(ii) Let {A __~a_~ Bi} be an etale covering family in C. Every descent 
datum [6, 10] for F relative to {4~i} is effective. 

2. A Review of Schlessinger's Conditions 

Let F be a groupoid over C, as in the previous section. By infinitesimal 
extension of a ring A we mean a surjective map A' ~ A having a nilpotent 
kernel. To generalize Schlessinger's conditions, we consider arbitrary 
maps of infinitesimal extensions of a given reduced ~ ring A o, and in 
particular, diagrams 

(2.1) A'-~ A--+ Ao, ker(A'-* A ) = M ,  

of infinitesimal extensions of A 0, where A'---,A is surjective and M is a 
(finite) Ao-module. 

The restriction to reduced rings A 0 is not  very important,  except in condition (4.1)(iii). 

12" 
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(2.2) Condition (S 1). (a) Let 
B 

i 
A' - ~ A  

be a diagram in C, where A'--~ A is as in (2.1). Assume that the composed 
map B-~ A o is surjective. Let aEF(A). Then the canonical map 

Po(A' • ~B)--, Po(A'~ • P.(B) 

is sur]ective. 

(b} Let B -+A o be a surjection, A o reduced, and let M be a finite 
Ao-module. Let beF(B) have direct image aoe F(Ao). Then the canonical 
map 

ff b (B + M)---~ ff ~o {Ao + M) 
is bijective. 

Here B + M denotes the ring B[M], with M2= 0. Of course, when we 
say these conditions hold, it is to be understood that in particular the 
rings and maps which appear are in C. 

A strengthened form of (S 1) which will often hold is 

(2.3) Condition (S 1'). l/Hth the notation of (S 1)(a), the functor 

Fa(A' x AB)--* Fa(A ') x F~(B) 

is an equivalence of groupoids (i.e., of categories). 

Exactly as in [15, 16], condition (S 1)(b) gives Fao(A + M) a structure 
of Ao-module, and when (S 1)(a) holds the additive group underlying 
this module acts transitively on the set _~a(A'). Conditions (S 1) and (S 1') 
are called "semi-homogeneity" and "homogeneity" respectively by 
Rim [15]. 

We will use the notation 

(2.4) Fao (Ao + M) = D~o(M), 

so that D is a functor of (ao, M), depending linearly on (A o, M). 
Schlessinger's final condition is 

(2.5) Condition ($2). D,o(M)=Fao(A o + M) is a finite Ao-module. 

Remark. In the cases we consider, all rings in C will be filtering direct 
limits in C of rings having some finiteness property, such as being of 
finite type over S. Then provided that F is a limit preserving groupoid, 
(S 1') or (S 1) will hold for all of C if and only if it holds for these special 
rings. We will need to assume (S 2) only for them. 
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We do not know to what extent a theory of obstructions is determined 
by the groupoid F, so we will treat such a theory as extra structure. By an 
obstruction theory for F we mean the following data: 

(2.6) (i) For each infinitesimal extension A--~Ao and elemen~ aeF(A), 
a functor 

(ga: (finite Ao-modutes) ~ (finite Ao-modules). 

(ii) For each deformation situation (2.1) and a~F(A), an element 
�9 E o~(A )cOa(M) which is zero ![" and only if P~(A') is not empty. 

We require that these data be functoriaI, and linear in (Ao, M) in the 
obvious sense. 

3. Existence of  Versal Deformations  at a Point 

gince the results of this section are local for the etale topology, it is 
convenient to work with henselian rings. So, let S be the base scheme, and 
let k be a field which is finitely generated as field over (9 s. Let C denote the 
category of noetherian henselian local (gs-algebras with residue field k. 
Consider a limit preserving groupoid F over C such that F(k) consists 
of a single object with the identity as its only automorphism. We will call 
an element a~F(A) algebraic if A is algebraic, i.e., is the henselization 
of an (gs-algebra of finite type. If A is a complete local ring, we also have 
the notion of formal element a~P(A), meaning a sequence .----~a,--~ 
am_t-*-., with a,~F(A/m"+l). 

An algebraic element wF(R)  is called versal if 

(3.1) every diagram of solid arrows 

a p 

"~a 

such that p(a'--*a)=A'---*A is surjective, can be completed by a dotted 
arrow. 

Similarly, an element or formal element v is called formally versal if it 
has the same property (3.1) on the subcategory C s of finite length algebras, 
i.e., if (3.1) holds whenever A' has finite length. 

According to Schlessinger [16] and Rim [15], there is a complete 
local ring R and a formally versal, formal element veF(R) if conditions 
(S 1, 2) of Section 2 hold on the category C I. Using the results of [3], 
we obtain 
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(3.2) Corollary. Let F be as above. Assume that (S1,2) hold on Cy, 
and that ira is a complete local ring in C, the map 

has a dense image. 

Then there is an algebraic ring R and an element v~F(R) which is 
formally versal. 

For,  since (S 1, 2) hold for F they also hold for the functor if, and we 
may apply Theorem (1.6) of [3]. 

(3.3) Theorem. Let veF{R) be an algebraic element which is formally 
versal, and consider the conditions 

(i) S 1, 2 hold for all algebraic elements, 

(ii) (D is compatible with completions}. I f  aoe F(Ao) is algebraic and M 
is a finite Ao-module, 

Dao(M) | Ao - , ~ Dao(M/m"M)" 

(iii) Let A be an algebraic ring with an ideal I, and let ,4 be its l-adic 
completion. Let a, b~F(A). I f  there exists a compatible sequence of iso- 
morphisms a~ ~ b n between the trunca tions in F (A/I n + 1), then there is an 
isomorphism a ~ ~b compatible with the given isomorphism a o ~ b  o. 

If(i),  (ii) hold, then (3.1) holds for all infinitesimal extensions A'--~ A. I f  
(i)-(iii) hold, then v is versal. 

Proof. Consider  a lifting problem (3. l) when A ' -*  A is an infinitesimal 
extension. Since F is limit preserving, we may assume A' algebraic, and 
by induction we may further assume the extension is of the type of (2.1). 
It is permissible to replace R by the henselization R' of some polynomial  
ring R [ x l , . . . ,  x,]  at the origin, and v by its image v' under extension of 
scalars to R'. Versality for v and v' are equivalent. Doing so suitably 
results in a situation in which R--~ A is surjective, hence A is a finite R- 
module.  

(3.4) Lemma.  There is some dotted arrow completing the diagram 

R . . . . . . . .  ~ A '  

\ / 
\ ,  

\ 

A.  
To  see this, note  that since v is formally versal, there is a dot ted arrow 

R . . . . . . . .  ~A'  n 

(3.5) ~ / 
A. 
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for each n, where the subscript denotes truncation (modulo m~+~). For 
given n, the set of these dotted arrows is a principal homogeneous space 
under the group of derivations Dere,(R,M(n)) , M(n)=ker(A'~--*A,). 
This is a finite length module over Ao, and the map Derr 
Dere(R, M(m)) for n>m is Ao-linear. Thus the Mittag-Leffler condition 
holds for the sets of arrows (3.5), and so there is a map R--. A' compatible 
with R--* A. It may be approximated by a map R ~ A' [2]. 

Now let the map ~': R-~A'  be given, and let b'=~'.(v). We have the 
following diagram in F: 

v - -  ,b'  a' 
\\ / 

/ /  

\ ' \  .... J 

a 

m ! 

The group D,o(M) acts transitively on F,(A ), and so for some d~D,,o(M), 
a' and db' are a-isomorphic. If we show that Der~(R, M) maps surjectively 
to D,o(M), we can adjust 4~' by a derivation so that a'=b' in F,(A'). This 
will give the dotted arrow (3.1). Since Dere(R,M)=Homn(R,A+M), 
and D,o(M)=F,(A+M) by S l(b), this surjectivity is precisely the 

�9 . t A versality assertion m the case A = + M. So we are reduced to that case�9 
If M has length 1, then F,(A+M)=F(k+M) by Sl(b), and so the 

assertion follows from the fact that v is formally versal. By induction, 
the lifting property holds whenever M has finite length. Therefore, 
setting M. = M/m "+1 M, we find that Dere(R, M~) --* D,o(M~) is surjective 
for each n. Both sides are finite length R-modules, and so the map between 
inverse limits !im is also surjective. We have 

n 

and 

Der~(R, M.)=  li.imm HOmR(f2R/~, M~) = HomR(fl, M)| 

Doo = l )  .o IM)| = D oo 
Ao R 

by assumption (ii) of the theorem. Thus the map Der~(R, M)-~ D~o (M) 
becomes surjective when tensored with /~, and hence is surjective, as 
required. 

It remains to verify versality for v when (3.3) (iii) holds. Let I ~ A' be 
the kernel of a map A' ~ A, and let a'~ E F(A'/P*I) be the element induced 
by a'eF(A'). Using what has been proved, we can find a compatible 
sequence of maps v ~ a' n, lying over some maps c~'n: R ---, A'/P +I. Let 
q~': R--,  ~{' be the map to the I-adic completion determined by {4~,}, let 
b'=4~.(v) and let ~' be the direct image of a'. Then we are in a position 
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to apply (3.3) (iii). It  gives us an i somorphism d' - ,/3% and hence a 
dot ted  a r row 

v . . . . .  ~ a '  

\ 

a 

r By [2], this arrow can be approx ima ted  by the required map  v . . . .  a .  

(3.6) Remark. The assertion of the above theorem can be varied some-  
what.  In part icular,  one can weaken the assumpt ions  (i), (ii) at the cost of 
s t rengthening condi t ion (iii). This does lead to a better formulat ion in the 
absence of au tomorphisms ,  i.e., when F is a functor. We obtain  the result 
announced  in [4]. 

(3.7) Theorem. Let F be a limit preserving functor on C, and let v~F(R) 
be an algebraic element which is formally versal. 7hen v is versal if 

(i) S 1 (a) holds whenever M is of length 1. 

(ii) I f  A is algebraic and ,4 is its completion, then the map 

e(~) -~ ~ e(A/m") 
is injective. 

Proof We may  assume A' algebraic. The case that  A' -*  A is a length l 
extension is t reated in the same way as the infinitesimal case of (3.3). 

a, EF(A,)  be the Consider  the general case. Let A * = A ' , x A A ,  and let * * 
element induced by a'. Then A. --* A,, is surjective and a finite length 
extension if n >= m, and so we can find successively a compat ib le  sequence 
of maps  v - * a * .  These maps  lie over  a sequence of h o m o m o r p h i s m s  

--~A, ~ A , ,  which in turn  induce a m a p  ~: R- -~ ,4 '= l im~]* .  By con- 
struction, a , (v)  and &' have the same image fi* in F(A*), hence the same 
image in F(A',) for every n. By assumpt ion  (ii), we have c% (v)=fi' .  We 
now approx ima te  the formal  lifting 

\ /  
a 

by an algebraic one. 

R - -  > z4 t 

A 

4. Formal Versality in a Neighborhood 

In this section C will denote  the category of noether ian Os-algebras. 
Let F be a limit preserving groupoid  over  C. An element aeF(A) is 
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algebraic if A is algebraic, i.e., is of finite type over (~s. We assume given 
an obstruct ion theory (9 for F, and that Schlessinger's conditions (S 1, 2) 
hold. In addition we assume that the following are true for algebraic 
elements: 

(4.1) (i) The modules D and (9 are compatible with &ale localization: 
I f  p: A--+B is &ale, b=q~ , ( a ) e t c  . . . .  , then 

D~o(M | Bo)'~ D.o(M)| Bo, 
and 

(9 b (M | B o) ~ (9 a (M) | B o . 

(ii) D is compatible with completions: I f  m is a maximal ideal of Ao, 
then 

D,o (M) |  0 ~ ~ D~o(M/m"M). 

(iii) Constructibility: There is an open dense set of points of finite 
type p~SpecA0 so that 

D~o (M) | k (p) ,~ D~o (M | k (p)), 

and 

In these condit ions the tensor products  are taken over A o. 

We call an algebraic element vEF(R)formal ly  smooth over F if the 
lifting proper ty  (3.1) holds whenever A' ~ A is an infinitesimal extension. 
The element v is formally versal at a point pc Spec R if (3. I) holds when A' 
is a finite length extension of the residue field k(p). We have 

(4.2) Proposition. An algebraic element v is smooth over F if and only 
if it is formally versal at every point peSpec  R of finite type. 

Proof. We assume v formally versal at every p, the other implication 
being trivial. Consider a diagram (3.1) with A ' ~ A  an infinitesimal 
extension, which we may assume to be of the form (2.1). Using condit ion 
(4.1)(ii), we can apply Theorem(3.3)  to conclude that there is a local 
lifting (local for the etale topology) at every point p, so that  in particular 
there is an etale covering map e': A' ~ I ]  B'i and a family of dotted arrows 

\ )4 
\b/ 
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where b'~=e'i,(a'), etc . . . . .  Now the obstruction to the existence of a 
dotted arrow R ................ A' 

/ \\,~'\ / ' 
A 

lies in Extl(qb, Lg/r M) [11, Ch. III,2], which is local for the etale 
topology. Thus this obstruction vanishes, and there is some arrow 
4)': R--~A', determined up to a derivation d~Derr M). As in the 
proof of (3.3), we are led to showing that the map Der,(R, M)--,  D,o(M ) 
is surjective. Both terms are compatible with henselization, and so it 
suffices to check surjectivity when A o is henselian. Then it follows from 
the local assertion (3.3). 

(4.3) Proposition. Formal versality is stable under etale localization. In 
other words, let x~F(R)  be an algebraic element, let e: R--~R* be etale, 
and x* =e,(x) .  Then x* is formally versal at a point p*~SpecR* if and 
only if x is formally versal at p =e -1 (p*). 

Proof The formal structure of R* at p* is determined by that of R 
and by the separable field extension k(p*) of k(p). So to prove the pro- 
position, we go back to the construction [16] of a formal versal defor- 
mation, and verify that it is compatible with separable field extensions. 
There is no problem in first order, i.e., on tangent spaces, by (4.1)(i). 
Say that we have already constructed a deformation v . _ ~ F ( R , _ I )  
which is formally versal for (n -1)s t  order deformations (i.e., which has 
the lifting property (3.1) whenever m~,=0), and is such that m" =0. Rn- I  
Write R~_I as quotient of a smooth d~s-algebra P: 

O--~ Jn_I--~ P--* R,_I--~ O, 

with J,-1 cruz- Then J ._ t /mJ ,_ l  is a finite dimensional vector space. 
We choose an ideal J. with J,-1 = J . ~ m J , - x ,  which is maximal with the 
property that v._ 1 extends to R~=P/J. .  The extension to R~ is versal 
for n-th order deformations. This can be explained using the obstruction 
theory: Let M = J , _ l / m J . _  1, R ' = P / m J , _  a, and let o~(9 . . . .  (M) be the 
obstruction to extending v._ 1 to R'. Then the set of qS~Hom(M,k) 
sending v to zero in (9v,_1 (k) is a linear subspace F, and a maximal quotient 
M on which the obstruction vanishes is obtained by mapping M-- ,  U 
via a basis q51 . . . . .  qS, of V. Clearly this is all preserved by an etale ex- 
tension, because of(4.1) (i). The proposition now follows by induction on n. 

(4.4) Theorem. With the assumptions of the beginning of this section, 
let vEF(R) be an algebraic element. I f  v is formally versal at p~SpecR, 
then it is formally smooth in an open neighborhood of p. In particular, 
formal versality is an open condition on Spec R. 
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(4.5) Example. Let F be the groupoid whose objects are families of equi- 
dimensional isolated singularities: An element a~F(A)  is given by an 
affine scheme X A flat over Spec A, such that the locus A a ~ X A on which 
X A is not smooth is finite over Spec A. A map a-- ,  b is a commutative 
square 

X A ....... + XB 

i 
+ 

Spec A . . . . . . .  Spec B 

such that X~,.~XA@AB. Schlessinger ~17] has defined an obstruction 
theory for this groupoid, which is easily seen to satisfy (4.t). So, Theo- 
rem (4.4) applies to F. Moreover, Elkik [8, 91 has shown that the hypo- 
thesis of Corollary (3.2) holds, and that therefore every affine scheme X o 
with isolated singularities admits a formally versal deformation vEF(R). 
It is formally versal in a neighborhood by (4.4). In order for this formally 
versal deformation to be versal at the given point, i.e., to satisfy (3.1) 
locally for extensions which are not infinitesimal, it is necessary to 
change the groupoid slightly by working in etale neighborhoods of the 
singular set. We can define another groupoid U as follows: Its objects 
are those of F, but a map a ~ b is given by a diagram 

X t  

/ \ 

e ,  / 
/ 

// 

XA 

+ 

\ 
\ 

\ 
\ \  

XB 

J 
1 

Spec A . . . . . . . . . . . . . . . .  + Spec B 

where X A is an etale neighborhood of A a in X (i.e., e is etale and 
e - t  (AA)~A,~), and X'A@aB is an etale neighborhood of A B in X B. Then 
condition (iii) of Theorem (3.3) holds (cf. Elkik [9]), and so v is versal. 

Proof  o f  the Theorem. This proof has arguments similar to that of 
[3, 5.3]. We first show that if x is a generalization of p, then v is also 
formally versal at x. Consider a "test map"  a' ~ a lying over a surjection 
A'--+A of infinitesimal extensions of k(x). We have to verify the lifting 
property (3.1) for such a map. If v were not formally versal at x, there 
would be a test map for which the lifting property failed. Moreover, it is 
easy to see that a test map would exist so that the lifting property failed 
also after any etale localization ofA' --+ A. (Take A = R/m" and A' = R'/m'", 
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where v'EF(R') is versal, and use (4.3).) Therefore it suffices to check 
that a lifting exists for the given test map, after some etale localization at x. 

Let p c R  be the prime ideal of x, and Bo=R/p.  To prove that (3.1) 
holds, it suffices to show 

(4.6) Lemma.  The diagram (3.1) extends in some way to a diagram of 
solid arrows 

v . . . . . . . .  ~b' 
\ \  /J 

b 

where p(fl)=(B'--~ B) is a surjective map of infinitesimal extensions of B o 
whose localization at x is A'---~ A, and such that the localization of this 
diagram is (3.1). 

For,  condit ion (3.3)(ii) holds at p because of  (4.1)(i), (ii). So we may 
apply Theorem (3.3) to complete the above diagram with a dot ted arrow, 
locally at p for the ~tale topology. This gives a local lifting of (3.1), as 
required. 

Proof of the Lemma. It is a simple exercise to find a diagram 

R 

B' ' B  , B  o 

which localizes to the given one. Next, we have to extend a'eF(A') to 
b'~F(B'). Working  step by step using induction on the nilradical of B', 
we are reduced to finding b' when b~F(B) is already given. Let 
M = ker(B'  ~ B). We may  assume M torsion-free. The obstruct ion ob(B') 
to lifting b in some way to F(B') lies in (gb(M), and it vanishes at x. There- 
fore it is zero in some ne ighborhood  of  x since F is limit preserving, and 
so by (4.1)0) it is a torsion element of  d0b (M), say killed by some t4 :0  in B o. 
Let 

B" = B '  [t  - 1 M ]  = {b '+  t -1 m[b'~B', m~M} .  

Then B" is an infinitesimal extension of B with kernel t -1M. There is a 

d iagram M , B' , B 

N II 
t - a M  ,B"  ~B , 

and we may identify the inclusion M c t - l M  with the map M ' )M. 
By linearity of the obstruct ion theory, we have ob(B" ) = tob(B' ) = 0. Thus 
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if we replace B' by B ' ,  we can lift b in some way, say to b*~F(B'). Let 
a* E F (A') be its image_Then there is some fieDbo(M ) | k(x)=D,o(M | klx)) 
such that  6a*=-a' in Fa(A' ). Write 6=t - td  for some dEDbo(M) and t~B 0. 
Then if we replace B' by B" and identify ker(B"---~ B) with M as above,  
we have da* = a', and so b' =da* is the required lifting. Finally, we want  b 
to be i somorphic  to the image of v under the m a p  R ~ B. Since this is 
true after localization, an a rgument  similar to the above shows it is true 
when B is chosen suitably. 

We return to the p roof  of Theorem (4.4). If v is formally versal at p 
but not smooth  in any ne ighborhood of  p, there is some irreducible 
closed set YcSpecR,  containing p, and a dense set ,~ of points y e  Y at 
which v is not formally versat. Since we have shown that  formal  versality 
is preserved under generalization, it is clear that  we may suppose the 
points y e s  e of finite type. Making  a localization of the base if necessary, 
we may assume they are closed points. We also know that  v is formal[y 
versal at the generic point  r /of  Y. This will lead to a contradiction.  

For  each y e ~  the failure of versality yields a surjective map  A~ -~ A r 
of infinitesimal extensions of k(y) with kernel of length 1, and a d iagram 
of solid ar rows 

/ 

(4.7) '\, / 

a y  

which can not be completed by a dotted arrow. By Schlessinger's axiom 
t t l ! Sl(a) ,  there is a vyeF(Ry), where Ry=Ay A R, and a d iagram 

Uy - - - - ~  ay 

comple t ing  (4.7). 

Let Bo=R/p, where p is the prime ideal of Y. By L e m m a  (5.9) of [3], 
there is an infinitesimal extension B of B~ (in fact of  the form B = R/I, 
with I / l = p ) ,  and a further infinitesimal extension B ' ~  B, with the 
following proper ty :  Every R; is of the form Br xBR for some length 1 
extension B'y ~ B which is a quotient  of B'. Let M = ker (B' ~ B). We m a y  
assume M is a B0-module,  and since our p rob lem is local in a ne ighborhood  
of the generic point  r /o f  Y, we may in fact suppose that  M is free, say of 
rank r, over  B o. 

Let b~F(B) be the image of v. The obstruct ion to lifting this e lement  
to F(B') lies in Cb(M)=C~(B0) ' ;  say it is o = ( ~  1, .. . ,  ~,) with ~ie(fb(Bo). 
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The surjective map B '=  B'y induces a map M ~ k (y), and since b does 
lift to F(B'y), the obstruction o maps to zero in Ob(k(y)) under the induced 
map. Since Ob(M)| by (4.1)(iii) (after localization if 
necessary), it follows that the residues of the ~i in Ob(k(y)) are linearly 
dependent for each yeSs Therefore the ~i are linearly dependent in (gb(Bo), 
and so there is a non-zero map M ~ , B 0 sending the obstruction to 
zero. After a further localization, we may assume q~ surjective. 

Let B*=B/ker~b. Then b lifts in some way to b*eF(B*). Since v is 
formally versat at t/, we can complete the diagram 

(4.8) 

v ......... , b* 

2 / \ /  
b 

with a dotted arrow in a neighborhood of r/. This gives us a map R - ,  B*, 
after localization. Now there are two cases: 

Case 1. For a dense subset of ~,  B~ is not a quotient of B*. In this 
case we replace ~ by this subset, and consider the products B* = B'y x B B*. 
Then B~* is a quotient of B' which is a length i extension orB*, and clearly 

t __ . Ry-By xB.R.  So we can replace B by B* in the above discussion. By 
induction, this reduces us to 

Case 2. B'y is a quotient of B* for a dense subset o f~ .  Now we replace 
by this subset and B' by B*, which reduces us to the case M = B 0 free 

of rank 1, and that b lifts in some way, say to b*EF(B'). 
Again using versality of v at v/, the diagram (4.8) can be completed 

by a dotted arrow after localization. Therefore R'=B'x~R splits: 
R' = R +  M. We now apply Condition (4.1) (iii) for D and Schlessinger's 

axiom S 1 (b): D v(M) = ~ (R + M) ~ Dbo (M), 
and 

Dbo (M) | k (y) ~ Vbo (M | k (y)) 

for all y in a dense open set. Localize so this holds for all yeS~. Let 
a~oeF(k(y) ) be the element induced by v. By S 1 (b), 

Dbo(M | k(y))= Fbo(B o + k(y)),~ Da,o(k(y)). 
Thus 

D,,(M) | k (y) ~, D a~ o (k (y)). 
Denote by v* the image of v via the map R --* R + M, and by a* its image 
in A'y. There is an element deDv(M ) whose residue deD,,~o(k(y)) carries 

* t o  "d -ay*~  ' a;~ ay. , ~  ay. 
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Now the set Dero(R, M) of splittings of R'--* R identifies with the set 
of liftings of R ~ B to B', and we have the canonical map 

Dero(R, M) --~ Db(M ) ,-~ D~(M). 

Both terms are compatible with localization. Since v is formally versal 
at t/, this map is surjective at ft. A final localization allows us to suppose 
this map surjective. Let b~Dero(R, M) represent d in D,(M). Then if we 
map R to R' via 6, the image ofv becomes dr*. Hence under the composed 

i map R --+ R' ~ A'y, the image of v is isomorphic to d-a* = a r We obtain a 
diagram 

V . . . . . . . . . . .  -~ a~, 

/ 

a y  

contradicting the choice of ~ This completes the proof of the theorem, 

(4.9) Remark. In constructing an obstruction theory for a given groupoid 
F, it may be convenient to rigidify F by some auxiliary structure, such 
as a choice of basis, etc . . . . .  For applications to the above theorem, there 
is no need to check that the theory thus obtained is independent of the 
choices made, since the assertion of (4.4) is local. More precisely, returning 
to the notation of Section 2, let us call a local obstruction theory at 
aooeF(Aoo ) (Aoo reduced) a collection of data of the following type: 

(4.10) (i) For  every diagram 

a .~ a o A ' -~ A o 

T 
!~ , 

i ' ! I 

aoo Aoo 

where ~ is an infinitesimal extension and fl is 6tale, a functor 

Cga: (finite Ao-modules) ~ .  

( i i)For each deformation situation (2.1) with a~F(A) as in (i), an 
element o,(A')e(9,(M) which is zero if and only if F,(A') is non-empty. 

Again, this data must be functorial and linear in (A o, M). Then the 
proof of (4.4) shows 

(4.11) Corollary. The conclusion of Theorem (4.4) remains valid if local 
obstruction theories exist for a base for the ~tale topology on algebraic 
elements of C, satisfying conditions (4.1). 
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5. Representation of Algebraic Stacks 
We adopt a slightly more general definition of algebraic stack than is 

given by Deligne and Mumford [-6]. 

(5.1) Definition. Let C be the category of schemes over S. A limit 
preserving stack F over C is an algebraic stack if 

(i) (F is relatively representable). For every pair of algebraic elements 
x~ F(X), y~ F( Y), the fibred product X • r Y is represented by an algebraic 
space locally of  finite type over S. 

(ii) There is an X 6  C locally of finite type and an x6F(X) ,  which is 
smooth and surjective, i.e., such that for every y~F(Y)  the map 
X x r Y---~ Y is smooth (hence locally of finite type) and surjective. 

This is more general in two respects. First, we do not assume that the 
fibred products in (i) are schemes,which would be unnatural (eL [6, 4.6]), 
but only that they are algebraic spaces. To fix ideas, let us assume the 
algebraic spaces at least locally quasi-separated. This means for an 
algebraic space Z, that the diagonal map Z--+ Z • Z is of finite type 2. 
Secondly, we require only that the map x: X - +  F be smooth, and not 
necessarily etale. It is clear that the notion of smoothness coincides with 
that of formal smoothness (Section 4) when F is relatively representable. 

Let F be an algebraic stack, and X ~ = X ~ F the smooth, surjective 
map of (5.1)(ii). Let X 1 = X  x v X .  Then a map Z ~  X 1 is given by a pair 
(f,g) of maps Z - ~ X  ~ and an isomorphism q~: f * ( x )  - ~g*(x). Thus 
there is a law of composition making X 1 ~ X  ~ into an algebraic groupoid, 
i.e., a groupoid-object in the category of algebraic spaces. Conversely, 
an algebraic groupoid X t ~--~X ~ determines a stack, namely the stack 
associated to the groupoid functor represented by X ~ ~ X  ~ (Passage to 
associated stack means that the functor is closed under descent etc . . . .  
[10], [6, 4.1].) It is a routine exercise to check that if the algebraic 
groupoid is obtained from an algebraic stack F as above, then the stack 
so determined is equivalent to F. Note that in this case the structure maps 
X 1 ~ X  ~ are always smooth. 

A separation property of an algebraic stack F is a property of the 
map  X 1 = X  ~ x F X ~ 1 7 6  x X ~ (or, equivalently, of the diagonal map 
F - ~  F • F, cf. [6, 4.4]). For instance, F is locally quasi-separated if this 
map is of finite type. For a locally quasi-separated F, the condition of 
being an algebraic stack in the sense of Deligne and Mumford [6], i.e., 
of admitting an etale covering X--* F, is also a separation condition. 
Namely, it is that the map X ~ --+ X ~ x X ~ be unramified (an immersion). 
This can be shown easily using a slice (quasi-section) argument of the 
type made in [7], and is roughly the assertion of [6, 4.21]. Another way 

2 Products are to be interpreted as fibred products over S. 



Versal Deformations and Algebraic Stacks 181 

of expressing this condition is by saying that the objects of F do not 
admit infinitesimal automorphisms. Let us say that such a stack admits 
an etale structure. The same slice argument shows that F is an (separated) 
algebraic space if X 1 ~ X ~ • X ~ is a (closed immersion) monomorphism. 

Let F be a limit preserving stack. Then to show F is an algebraic 
stack, we can apply the results of the previous sections to verify axiom 
(ii) of (5.1). This gives 

(5.2) Corollary. Let F be a limit preserving stack on C, and assume given 
an obstruction theory (9 for F. Then F is an algebraic stack locally of finite 
type over S if 

(1) F is relatively representable. 

(2) Schlessinger's conditions (S 1, 2) hold. 

(3) I f  .4 is a complete local (gs-algebra with residue field of finite type 
over S, then if(.4) ~ ~ ff(/l/rrt") has a dense image. 

(4) The modules D and (9 satisfy conditions (4.1). 

On the other hand, we may use this Corollary again to verify relative 
representabitity, and can collect the various conditions together. Now 
relative representability of F is equivalent with the following property: 
For every pair xt,  x2eF(X),  the functor 

lsom (x 1, x2) = 1: (Schemes/X) ~ (Sets), 

I(Z) = set ofisoms, between the images of x i in F(Z) 

is represented by an algebraic space. We can also consider the related 
functor for x~F(X):  

Aut x: (Schemes/X) -~ (Sets) 

Autx (Z)= set of autos, of the image of x in F(Z). 

In the assertions below, it is convenient to pass back to the category of 
(gs-algebras, and so we will write Aut~ for a~F(A). We revert to the 
notation of the previous sections. Collecting together the various con- 
ditions gives 

(5.3) Theorem. Let F be a limit preserving stack with obstruction theory (9. 
Then F is an algebraic stack, locally of finite type over S, if 

(1) (S 1, 2) hold for F, and if aoeF(Ao) is an algebraic dement then 
Aut,o(A o + M) is a finite Ao-module. 

(2) For any complete local (gs-aIgebra A with residue field of finite type 
over S, the canonical map 

F(~) ~ ~ F(J/m") 

is faithful, and has a dense image, i.e., the projection to F($/m") is essentially 
surjective for every n. 
13 Inventiones math.,Vol. 27 
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(3) D and (5' satisfy conditions (4.1), and also Aut~o(A0+ M) satisfies 
the conditions analogous to (4.1)for D, 

(4) I f  aoeF(Ao) is algebraic and dp is an automorphism of a o which 
induces the identity in F(k) for a dense set of points Ao---~k of finite type, 
then q5 = id on a non-empty open subset of Spec A 0. 

Here the limit in Condition (2) must be taken in the obvious 2-cate- 
gorical sense. That is, an object of lim_mF(A/m n) consists of objects 
anEF(A/rn n) for each n, together with isomorphisms of a n with the image 
of an+ 1 for each n. Condition (4) is just to insure that the products X x~. Y 
are at/east locally quasi-separated, as we assumed above. 

We remark that the converse of Theorem (5.3) is also true. That is, 
given an algebraic stack F locally of finite type over S, there exists an 
obstruction theory so that conditions (1)-(4) of (5.3) hold. Local obstruc- 
tion theories can be found using [11] and the auxiliary schemes V 
constructed in the next section. These can be shown to be independent 
of the choices made in constructing V, and hance give a global theory. 
We omit the proofs of these assertions 3 

Copying Theorem (5.3) over for functors yields 

(5.4) Corollary. Let F: (Cs-algebras)-~(Sets) be a limit preserving 
functor which is a sheaf for the etale topology, and let (5' be an obstruction 
theory for F. Then F is represented by an algebraic space locatly of finite 
type over S if 

(1) (S I', 2) holdfor F. 
(2) I f  fit is a complete local (gs-algebra with residue field of finite type, 

then F(fl)---~li__m F(/]/m") is injective and has a dense image. 

(3) DEC satisfy conditions (4.1). 

(4) (local quasi-separation), l f  ao6F(Ao) is algebraic and x, y~F(Ao) 
are equal at a dense set of points offinite type, they are equal on a non-empty 
open set. 

Stronger separation conditions such as those of [3, 3.4] may be 
added to these conditions. Note that of course remark (4.9) applies, so 
that (5.3) and (5.4) remain valid when only local obstruction theories are 
given. 

(5,5) Example. (Moduli stack for surfaces of general type.) Here F 
is the stack over S = Spec 2~ such that F(A) is the groupoid of smooth 
proper algebraic spaces X A over Spec A, all of whose geometric fibres 
are non-ruled surfaces with (K2)>0. It is a standard fact that (S1',2) 
hold, and that the modules AUt~o(Ao + M), D~o(M), (9.(M) are H ~ (Xao, O) 
for q=0,  1, 2 respectively, O being the relative tangent bundle. These 

3 This point was clarified in some correspolldence with Illusle. 
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certainly satisfy (5.3) (1, 2), and (5.3)(4) presents no problem. The only 
serious point is the effectivity of formal elements (5.3) (2), i.e., that if {X~} 
is a compatible sequence in F(A/m "+ t), then it can be approximated by an 
X~F(A). 

Now since X o is of general type, a sufficiently high multiple of the 
canonical bundle defines a morphism Xo---~tP N, whose image is a normal 
surface X0 birational to X 0 and having only rational double points as 
singularities [13, 14]. This map extends to the infinitesimal deformations 
Xn, and hence {Xn} gives rise to a family {X,} of subschemes of projective 
space. By Grothendieck's existence theorem, this family is induced by a 
scheme X proper and flat over Spec A, and its fibres have only rational 
singularities (cf. proof of Proposition (3.4) of Ef]). The family {Xn} is a 
formal resolution of X, which is algebraic by [5, 2.2]. Thus F satisfies the 
hypotheses of (5.3), and is an algebraic stack. 

It is known that in characteristic zero a surface of general type has 
no infinitesimal automorphisms. So F admits an etale structure in charac- 
teristic zero. I don't know any examples in characteristic p either. In 
any case a surface of general type can not have a positive dimensional 
group of automorphisms. Thus the map X 1 - * X ~  X ~ is quasi-finite 
in all characteristics. 

Proof of Theorem (5.3). This is routine. We just have to check that the 
conditions of (5.2) hold for the functors Isom(x~,x2)=l.  Condition 
(S 1') for I is 

I(A' x AB) ~ ,I(A') x I(A)I(B), 

which is the full and faithful property of the corresponding map for F, 
and so it is included in (S 1') for F. Similarly, the map l ( A ) - - , l i  m/(A/m")  
is controlled by condition (2) of the theorem. 

Next, let a ~ I(A). Then the tangent space I~0 (Ao + M) can be identified 
with Aut,0(Ao + M), where a denotes the image of x~ in F(A). Our hypo- 
theses include ($2) and (4.1) for these modules. 

Finally, the obstruction to lifting a to I(A') can be expressed this way: 
Let a'l, a'zeF(A ) be the images of xl ,  x z. Then via the map a-~ we can 

' ' ' F o ( A  ), view a 2 as element of F, (At). Clearly ~ lifts if and only if a t = a 2 in - ' 
i.e., (a't, a'z)=(a'l, a't) in 

r - -  t F,(A') x F,(A'),~F~(A' x aA )~-F,(A + M)~Fa(A') x Dao(M ). 

Hence we can identify (a~, a~) with the pair (a' 1, d) for some deD,o(M ). 
This shows that ~ lifts if and only if d = 0. Therefore the element d E D,o (M) 
gives an obstruction theory for I. It satisfies the necessary axioms (4.1) 
by assumption. 

It remains only to check the relative representability of I. This is done 
by resubstituting into the same Corollary (5.2), remembering that the 

1 3  ~ 
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deformat ion  theory  for the corresponding sygyzy functor is trivial. 
Condi t ion  (4) of the theorem is merely the assertion that  I is locally 
quasi -separated (cf. [3, p. 59, pa rag raph  2]). 

6. Reduction of a Flat Groupoid to an Algebraic Stack 

Consider  an algebraic g roupoid  &r= X ~ X  o locally of finite type 
over  S, such that  the s tructure maps  X I ~ X  ~ are fiat. Let 5f denote  also 
the functor of  points. In this situation, it is natural  to pass to the stack F 
associated to 3f with respect  to the flat (fppf) topology.  This means  
[10, Ch. I I ]  that  an element Z e F ( Z )  is given by a flat covering Z ' - - ,  Z, 
a m a p  Z'---, X ~ and descent da ta  Z '  x zZ'---, X ~. 

(6.1) Theorem. Assume f locally quasi-separated, i.e., that X 1 --* X ~ x X ~ 
is offinite type. Then F is an algebraic stack locally offinite type over S, i.e., 
there is an algebraic groupoid y l ~  yO with smooth structure maps, whose 
associated stack is equivalent to F. 

Here we mean  of course this: If the stack F is viewed " b y  rest r ic t ion" 
as a stack for the etale topology,  then it satisfies the axioms of Definit ion 
(5.1). In this connection,  we should r emark  that  taking the associated 
stack to a groupoid  y l ~  yO with smooth  structure maps,  for the flat or 
the etale topologies,  leads to equivalent  groupoids  over  C. So nothing 
is gained f rom the fiat topo logy  in that  case. 

(6.2) Example. Let G be a finite, flat, commuta t ive  group scheme over  S, 
and consider  the classifying stack BG associated to the algebraic groupoid  
G ~ S .  It is known that  G embeds  into a smooth  group  scheme H '  over  S, 
and that  H =  G/H' is again smooth .  Thus  H '  is a principal  G-bundle 
over  H, which is determined by a m a p  H--~BG. This is the smooth  
surjective m a p  required by (5.1), and so H • B 6 H ~ H  is an algebraic 
stack with smoo th  structure maps  equivalent  to BG. For, let Y ' ~  Y be 
any principal  G-bundle,  given by a m a p  Y--, BG. Then H x as Y represents 

r , the functor  Isom (p*H,P2 Y') over  H • Y. To  show this smooth  and 
surjective over  Y is a local p rob lem and Y for the fiat topology.  So we 
may  assume Y' trivial: Y ' =  Y x G. Hence we may  in fact assume that  
Y = S and Y' = G, i.e., we have to show H x Be S is smoo th  over  S. But this 
scheme is easily seen to be H' ,  which is smoo th  by construct ion.  

If we write out  T h e o r e m  (6.1) in the case that  X ~ is an equivalence 
relat ion on X ~ i.e., X 1 - - , X  ~ •  ~ is a m o n o m o r p h i s m ,  we obtain the 
assert ion of [1, w 6] : 

(6.3) Corollary. Let G be an algebraic space locally of finite type over S, 
and let R--~ X x X be a finite type equivalence relation on X such that the 
maps R ~ X  are flat. Then the quotient X /R  as sheaf for the flat topology is 
represented by an algebraic space. 
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Turn ing  to the proof  of Theorem (6.1), we note  first the following 

(6.4) Lemma.  It suffices to prove the theorem in the case that F is already 
known to be relatively representable. 

Proof. First, X ~ x F X ~  X 1 [103, and hence this product  is represent-  
able. Next,  i r a  m a p  Y- - ,F  factors through X ~ then X ~ x v Y = X  ~ x xo Y 
is representable.  By definition of F, any map  lifts, locally for the flat 
topology.  Thus  X ~ x F Yis representable,  locally on Y for the flat topology.  
This  reduces the p rob lem of construct ing X ~ x v Y to one of flat descent, 
i.e., to a passage to quotient  by a flat equivalence relation. Similarly, if 
Y-- ,F,  Z - ~ F  are two maps,  and if the first, say, lifts to X ~ then Y x r Z =  
Y • xoX ~ x F Z. SO, the construct ion of Y x e Z  also reduces to a quotient  
problem.  Assuming the theorem proved  under the relative representabil i ty 
hypothesis,  we can apply it (via Corol lary  (6.3)) to these quotient  problems.  
So, the p roof  of the l emma is reduced to that  case. In other words, we 
have to prove  relative representabil i ty when X I - ~ X  ~ is an equivalence 
relation. Then a product  Yx vZ is a certain subfunctor  of  Y x Z. Running 
through the above  a rgument  once more,  we are reduced finally to the 
case that  X ~ X  ~ is an equivalence relation, and that  moreover  the quo- 
tient F is a subfunctor  of a representable functor:  F c  Wfor  some algebraic 
space W. Then  Y x ~,Z-- Y x wZ is indeed representable.  

It remains  now to find the smooth  surjective map  Y~ required 
by Definition (5.1). We will construct  it directly. Let U i be affine (9 s- 
schemes etale over  the (i + 1)st fibre power  X ~ of X ~ over  F, and let n be 
an integer. Consider  the p rob lem of giving, for a variable affine S-scheme 
Z, the following data :  

(1) A finite Z-scheme Z ~ such that (gzo is a free, rank n, (~z-module 
with chosen basis. 

(2) Maps  Z i--, U ~ (Z ~ the ( i+  1)st fibre power  of Z ~ over Z) such that  

the induced d iagram Z 2 ~ Z ~ ~Z o 

I 
X 2 ~ X  1 :X 0 

defines descent da ta  for a map  Z - - ~ F  relative to the cover  Z~ 
Clearly this p rob lem is represented by an affine S-scheme W of finite 
type. Given such data  we obtain a d iagram 

Z ~  x r X~  , X  ~ 

1 
, F  
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where 7~ is of course fiat. We impose the further conditions 

(3) The map 4 is a closed immersion, and Z ~ is a local relative 
complete intersection in Z x eX ~ over Z. 

It is known and easy to see that these are open conditions. 

Let V c W be the open subset representing this problem. To complete 
the proof, it suffices to show that the universal map V---~F is smooth, 
and that the various V we get from choice of U ~ and n cover F. It suffices 
to check these things for schemes Z of finite length. Given a map (: Z ~ F, 
we choose an etale affine Y over Z x F X ~  and let Z ~ be the closed sub- 
scheme of Y defined by an Or-sequence f l  . . . .  , s  ( r = d i m  Y). Since Z 
is of finite length, Z ~ will be free over Z, and we chose a basis. Next, 
the descent data Z i ~ X  ~ is given canonically by our choice of Z ~ It will 
lift to some affines U i over X ~ [12, II, 6.4]. These choices determine a 
lifting of ( to one of the above schemes V. Now given any infinitesimal 
extension Z cZ~ ,  the etale affine Y over Z x r X  ~ extends canonically 
to u over Z 1 XF X ~  [12, III, 3.4], and so on. Thus the lifting to V is 
unobstructed, which completes the proof. 

Appendix 

Corrections to "Algebraization of Formal  Moduti I "  [3]. 
I am endebted to P. Deligne and M. Raynaud for calling my attention 

to the following three errors: 

1. Theorem (6.1), p. 61 of [3] requires the hypothesis that the map 
f:  X --~S be separated. If one wants to extend the notion of Hilbert scheme 
to non-separated maps f, the thing to do is to replace closed subschemes 
by quasi-finite maps, i.e., to consider the stack 

F(S') = groupoid of algebraic spaces Y', quasifinite over X x s S' and 
and proper over S'. 

It is represented by a algebraic stack for any map f:  X---,S locally of 
finite type. Unfortunately, the proof  of this fact requires some foundational 
work on non-separated schemes which makes it too long to give here. 

2. The preliminary reduction in the proof  of representability of 
Pic X on p. 68 of [3] is incorrect: It is not necessarily true that X is flat 
over S. Thus the proof  of (7.3) is complete only with this flatness as an 
extra hypothesis. The general case can be handled with minor changes 
in the argument. 

One can also proceed by applying Theorem (5.3) of this paper. Let 
f :  X ~ S  be any flat and proper map, and let F be the relative Picard stack 

of X/S ,  i.e., 
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F(S')-- groupoid of invertible sheaves on X x s S'. 

It follows easily from (5.3) that F is represented by an algebraic stack 
pa ~_~pO over S. The relative Picard functor Pic X/S  is obtained from F 
by passing to isomorphism classes F, and taking the associated sheaf 
on S for the etale topology. 

Suppose now that f is also cohomologically flat in dimension zero. 
Then the standard argument by the exponential shows that, for any 
object z E F(Z), the algebraic group Aut= of its automorphisms is smooth 
over Z. Consider the structure map pl__, pOx pO, and let R denote the 
fibred product of p1 with itself over pOx pO. Purely formally, the fact that 
AUtp is smooth, when p6F(P  ~ is the given element, implies that the pro- 
jections R--~P ~ are smooth. Thus R is a smooth equivalence relation 
on pl. Let pl be the quotient PI/R as algebraic space. Then clearly 
~1 _~ pO x pO is the equivalence relation defining Pic X /Y .  The separation 
properties are verified as in [3], p. 69. 

3. A substantial step in the proof of Theorem (1.6) of [3] was omitted. 
This is the justification of the assertion of line 10, p. 31, which is as follows: 

The map t) (2.5) is not/~ lid]l-linear. However, it is surjective, and_ 
hence the images old t, ..., d, in ~ jcan  be lifted to e l e m e n t s  d]  2) . . . .  , d(,ES~A. 
Denoting by dl ~) the image of d~ in A via the structure map, we have 
d~r d~(25 (rood (p, d)"+l). The elements dl ~ define a new structure of 
finite ~[[d]]-a lgebra  on ,4, which we denote by a superscript (2), to 
distinguish it from the fixed structure, denoted by (l). The map t) is 
linear with respect to (2). 

One sees immediately that i,-v(,~) is defined intrinsically in A, and 
hence it is independent of the algebra structure. Now since I"-V is a finite 
module over B = R [[dr+l,  ..., d,]] with respect to structure (1), the same 
is true with respect to (2), if N is sufficiently large; and moreover we can 
choose N so that the two structures of/~-module are congruent modulo 
(p, d,+ t . . . . .  d,,) ~ where c is any integer given in advance. (Two modules 
M,M'  over a ring B are called congruent modulo an ideal a if 
M/o M ~ M'/a M'.) 

By construction, the sequence of line 9, p. 31 is exact with respect to 
the second structure on p-~(/[) .Thus,  to justify the assertion of line 10, 
it suffices to find some measure f of ~-modules, depending on the local 
structure at the prime ideal p, such that 

f ( I"  - v (~f)) < f ( I"  - v(/[)(2)) ~ f ( I"  - ~(~{)(15). 

Such a measure is provided by Fitting's ideals: 
Let B be a local ring, with maximal ideal m, M a finite B-module, 

A a localization of B which is a discrete valuation ring, and p the corre- 
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sponding prime ideal of  B. We denote  by F~(M) the i-th Fitt ing ideal. 
Recall that if m 1 . . . . .  m, generate M and if 

all m I +-.. -~- a l n m  n = O  

am1 m 1 -~-... -~- a m n m  n = 0  

is a complete set of  relations among the m j ,  then Fi(M ) is the ideal generat- 
ed by the (n - / ) - r owed  subdeterminants  of the relation matrix (a;k) if 
i<  n, and is the unit ideal if i >  n. Of course, F~(M) is independent  of the 
presentation. 

Denote  by fi(M) the order  of zero of Fi(M) at the prime ideal p (so 
that 0 < f i ( M )  < ~ ) ,  and by f (M)  the sequence 0Co,f1 . . . .  ). Thus, if M is 
locally isomorphic  to A r @ A/p e1 @... | Alp e~, where e I > e 2 > . - .  > e s, 
then f ( M )  is the sequence 

~ ,  ..., ~ ,  (e 1 + - . -  + es), (e 2 + - . -  + es) . . . .  , (e~), 0, 0 .... 

Lemma.  (i) I f  M', M" are finite R-modules and if M" is a quotient of M', 
then f ( m " )  <-f(M'), i.e., f i (m")  < f i(m')  for all ~. Equality holds if and only 
if M' ~ M" locally at p. 

(ii) Given M, there is an integer c so that any finite B-module M' with 
M'=-M (mod m ~) satisfies f (M')< f (m) .  

This lemma applies in our  case, if we set B= /3 ,  M =i ,-~(~)(1) ,  M ' =  
i,-~(~)(2), and M "  = I " - ~ ( d ) .  

Proof of the Lemma. The first assertion of (i) is trivial, since the relation 
matrix for M'  will be a submatr ix  of  that  for M",  if we take corresponding 
generators. We leave the last assertion as an exercise. 

To prove (ii), choose generators  m~ for M, and elements m'zeM' which 
are congruent  to  the m~ (modulo rn~). Then the m'~ generate M'  by the 
N a k a y a m a  lemma. If a~m~+ . . - + a , m , = 0  is a relation among  the mz, 
then alm' 1 +.. .  +a,,m~.=-O (modulo m~M'). Hence there is a relation 
a' 1 m' 1 + . . .  + a', m', = 0 with a' i = a~ (mod m~). Thus if (aik) is a relation matrix 
for M,  we can obtain a relation matrix for M'  whose upper entries are 
a)k--ajk (mod m~), but which may have some more  rows. The assertion 
now follows easily. 
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