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The Intersection Matrix of Brieskorn Singularities 

A. Hefez (Pisa) a n d  F. Lazzer i  (Pisa)*  

Abstract. To each isolated singularity of a hypersurface of dimension n, one associates 
the local fundamental group G of the moduli space minus the discriminant locus, and a 
representation a: G--* Aut(H), where H is the n-homology group, with integer coefficients, 
of the non singular fibre. Although, in general it is very difficult to determine even a presenta- 
tion of G, we show that the image of ~ can be computed rather easily, by exploiting some 
relations in a first aproximate presentation of G, in the case of Brieskorn polynomials 
namely, polynomials of the type x~~ --, + x "~. 

In this way we solve an open problem stated by Brieskorn [1] and Pham [8~. 

1. Introduction 

The  objec t  of  this  p a p e r  is to solve an  open  p rob l em,  stated by 
Br i e sko rn  [1] a n d  P h a m  [8],  a b o u t  the in te r sec t ion  ma t r ix  be tween  
the v a n i s h i n g  cycles for a pa r t i cu l a r  class of isola ted hypersur face  
s ingular i t ies ,  n a m e l y  the  Br ieskorn  s ingular i t ies .  In  do ing  so, we also 
exhib i t  a n  explici t  express ion  for the in te r sec t ion  ma t r ix  over  a geomet r i ca l  
basis.  

F ina l ly ,  we give a m e t h o d  to der ive explici tely the ma t r ix  of  l i nk ing  
n u m b e r s  f rom a n  in te r sec t ion  ma t r ix  over  a geomet r ica l  basis, for a n  
i sola ted  hyper su r face  s ingular i ty .  

Let  q0: (C" +h, 0 ) -~  (IE h, 0) be a flat m o r p h i s m  whose  fibre ~o-l(0) has  
an  i so la ted  s ingu la r i t y  at the origin.  Let  (A,0)~--,(tI;h, 0) des igna te  the 
d i s c r i m i n a n t  of ~o (in the sense of  [6]) 1 a n d  define ju to be the  mul t ip l i c i ty  
of A at  the  or ig in .  

Def ine  B~(r)= {x~lF'/ l lxl[ <g} a n d  S ~ ( r ) = b o u n d a r y  of  B~(r). 
H a m m  in [4] has  p roved  the fo l lowing:  

The re  exists a pa i r  of  pos i t ive  n u m b e r s  co, r/o such that  q~ is def ined  
in a n e i g h b o r h o o d  of B*o(n+h)  (B* = c losure  of  B) in such a way tha t  
its r e s t r i c t ion  

cp~o, ~o : M~o, 7o ~ B,o (h) 

* This work was conducted while both authors belonged to the G.N.S.A.G.A of the C.N.R. 
i (A,0) is in general a not reduced space and it can be defined in the following way: let 
~: (X, x)- .  (T, t) be the semiuniversaI deformation of(q~-l(0), 0); then ~o is induced by a map 
z: (~h, 0) ~ (T, t). If(D, t) denotes the (reduced) discriminant locus of 0r, then (A, 0) is (r- ~ (O), 0) 
with the fibre structure. 
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(written also for the sake of brevity as ~0: M---, B, where M -=- M,:,,, ,o = 
B*o(n + h) c~ q)- 1 (B), B = B,o (h)), has the following properties: 

i) M is a differentiable submanifold ofll~ a+h with a boundary and ~p is a 
proper differentiable surjection which is of maximal rank on the boundary 
of M and outside q~-l(A). 

ii) For each 2eBc~Ll, q0-a(2) has only isolated singularities while 
for each 2eB-A,q~-~(2) is a compact differentiable paratlelizable 
manifold which is canonically oriented and has the homotopy type of a 
bouquet of k~ spheres of dimension n. 

iii) For all 0 < e < e o  there exists 0<q<r /o  such that the pair e, t l 
satisfies i), ii) and q~ is homeomorphically equivalent to ~o~.~. 

From i)-iii) it follows that q0: M-~o-L(A)  -', B - A  is a fibre bundle 
intrinsically associated to ~: (r 0)-~ (~ ,0) .  

For 2eB define Fa=cp-l(,~) and let ~ .oeB-A .  Then, we have a 
representation a: rq ( B -  A, 20)---, Aut (H~ (Fzo, 7l)) defined by following 
isotopically Fzo along ), for y ~ ~ ( B -  A, 20). Actually, rq (B-A,  20) can be 
identified with the local fundamental group of II? h-A at the origin. The 
above a is called the full monodromy of cp, 

Throughout this paper we assume that (A,0)~--,(C h, 0) is a reduced 
space. This assumption is equivalent to the following statement: 2 is a 
simple point of A if and only if Fx has one and only one singularity which 
is quadratic. In this case we shall say that ~0 is a regular deformation of 
the isolated singularity ~o-~(0). 

Let L designate a complex line through 2o, passing near 0 and trans- 
versal to A. Then L c~A consists of g distinct simple points 2~ . . . . .  )t,. 
Let 7~ . . . .  , y, be/~ loops in L - A  constructed in the following manner: 
E~ denotes a small open disc around ,~ in L, d~ a point on the boundary 

p 

of E,; choose embeddings z~ of [0, 1] into L -  ~ E~ with z~(0)=,L 0 and 
~=~ 

zj(1)=d~, i=1 . . . . .  /~, such that the images of two distinct z~ intersect only 
at 2 o. Then define ~ the loop obtained by describing r~ first, then the 
counter-clockwise boundary of E i and finally describing z~-~. 

The loops 7~ . . . . .  ~u induce a free basis of r q ( L - A ,  2o1. Since/~, has 
an ordinary quadratic singularity, one knows (see for example Fary [2]) 
that to each y~ can be associated a cycle e~e H,,(F~.o, 7Z.) called the vanishing 
cycle at 2~; which is uniquely determined, sign apart, by 7~. 

The action 7" of yi on H,,(F~ o, 71) is described by the Picard-Lefschetz 
formula: 

(n +1)  (n + 4.) 

7*(z) = z - ( -  1) 2 <z, e~> e~, zeH,(F~o, Z),  (1.1) 

where ( , ) : H .  (Fx0, Z) • H. (Fao, 7l.) --. 7l denotes the intersection product. 
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Moreover, one knows that 

0, if n is odd 
(ei,  el) = ,i,+i) (1.2) 

2 ( - 1 )  z , i f n i s e v e n .  

Note  that the intersection product is symmetric if n is even and anti- 
symmetric if n is odd. 

It can be shown that s: r t l (L-  A, 2o)--+ 7zl(B-A) is surjective, so that 
r h ( B - A )  can be presented as the group generated by Y1 . . . . .  7u modulo 
some set of relations {Rk}k~K (such set of relations can be computed as 
in Lazzeri [5]). 

Obviously, each relation Rk between the 7i will be fulfilled by the ),* 
and hence each R k induces via (t.1) and (1.2) an equation Ek((ei,ea)) 
among the intersection numbers (ei, e j ) ,  i , j= 1 . . . . .  ~. 

For example, 7i = Y~ implies either ei = e i or (z, e i ) =  (z, e j ) =  0 for all 
z~ H.(Go, 2~). 

Assume now, that e~q=ej implies that there exists zeH,(Fa,,, 7/) such 
that (z, e~) 4 = (z, e j ) .  Note that this assumption is satisfied in our present 
case since (p-l(0) is an hypersurface singularity (see [6]). 

Actually we can think of (p as a deformation of (p- ~ (0) (for the exact 
formulation and further details see Grauert  [3]). 

We say that q~ determines the intersection matrix of ~p- 1(0) if and only 
if the following holds: 

For  each solution (xu)i,; of Ek((e i, e2)), k e K ,  there exists a choice of 
orientation of the e i such that x u = (e i, e2). 

It has been conjectured by Brieskorn and by Pham that the semi- 
universal deformation of an hypersurface isolated singularity determines 
the intersection matrix. 

Various illustrative examples indicate that it is plausible that this 
conjecture actually holds true even when the deformations are regular. 

In what follows we shall give an affirmative answer to the above 
generalised problem in the special case where the singularity considered 
arises from the Brieskorn polynomials x~~ but under the 
weaker assumption that the deformations are linear. In these deforma- 
tions, the discriminant d is expressed explicitely in a nice closed form and 
consequently the points of Lc~d are symmetrically distributed on the 
complex line L, This in turn, facilitates the choice of a set of geometrical 
generators of n ~ ( L -  A, 20). The construction of the above convenient 
set of generators enables us to succesfully resolve the crucial step in our 
proof which is done by induction on the number of variables of the 
Brieskorn polynomial whose exponents aj are greater then 2. Further- 
more, we write the Picard-Lefschetz formula for the product * * 71.--~u in a 

form which appears to be very efficient in exploiting the relevant informa- 
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tions from the above relations. This, not only solves the problem we have 
stated above, but also yields an explicit expression for the intersection 
matrix over a geometrical basis. 

It should be remarked that Pham [9], using different methods, has 
also computed the intersection matrix between the vanishing cycles, 
however it is not clear whether the basis he has chosen for his computa- 
tion is geometric. Nevertheless, it is surprisingly interesting to note that 
his intersection matrix coincides componentwise with ours. This leads 
us to suspect that Pham's basis is actually geometrical. It goes without 
saying, that it is important to know the intersection matrix over a geo- 
metrical basis. 

Finally we present an explicit relationship between the matrix of 
linking numbers and the intersection matrix over a geometrical basis. 

Since in general we don't have an explicit formula for the discriminant 
A, the method we have exhibited here is somewhat restrictive as it is 
apparently only applicable to the Brieskorn polynomials. 

2. A Particular Choice of a Set of Generators 

Before we present our construction let us note that if the hypersurface 
{ x / f ( x ) = O }  has an isolated singularity at the origin then the moduli 
space and the discriminant of its semiuniversal deformation coincide 
with those of {(x, y ) / f ( x )  + y2 = 0}. 

Actually, from our point of view the difference between them occurs 
in the Picard-Lefschetz formula. In particular, adding tof (x)  four squares 
will yield no change to the problem considered. 

We make a particular choice of L, 20, yl . . . . .  y, and compute directly 
the intersection matrix between the associated vanishing cycles. Note 
that for any other choice of these data, one can easily determine the new 
intersection matrix by expressing the new vanishing cycles in terms of 
the old ones. In fact, there is a braid action on the different choices, so 
that the invariance of any property needs only to be verified for the 
generators of this action. 

This evidently shows that the intersection matrix is determined for 
any choice of L, )~o, 7~ . . . . .  7~ if it is determined for a particular choice. 

1 

Suppose now that the singularity is given by f ( x ) =  V xe'+~=0 Z...a l 

a l > a 2 > . . . > = a , > a r + l  . . . . .  a l = l ,  with deformation i=1 

f (x )  + ~ ~ x~ =/3 cq,/3 ~ r i = 1 . . . . .  r. 
i = 1  

Define L -  {(cq, ~2 . . . . .  %; ~)/cti=e i, i=  1 . . . . .  r},where the e, i are real 
positive numbers such that 1 ,> ~1 "> e2 > " "  > e, > 0. 
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The discr iminant  A of the above deformat ion is essentially (constants 
apart)  given by 

a l + l  a r + l  

~I ~' -4---.+~, ~" =f t .  

Then A c~ L can be described as the set of  all 

+<'" 

where {~o}0)}0=~ ...... , are the aj-th root  of e~,+~ ordered by increasing 
r 

arguments .  In this case we have ~ = ~[ aj. 
I=L 

We call 7~,~ .... i. the loop a round  co]i ')+---+oJ~ ~'t in L - A  which 
satisfies the following inductive requirements.  

(i) If  r = 1, choose 7~ . . . . .  7,~ as illustrated in Fig. 1. 

Fig. 1. The  choice of loops in the case r = 1 

2 
Obvious ly  the loop  y is equal to the product  Yl )~2"--)~ai" 

(ii) Supposing that  the 7~, where a stands for the ( r - 1 ) - t u p l e  
(il . . . . .  i,_~), have been chosen a round  o~=o~i~+...+co~i ~I, choose 
7~, i. a round  ~%, i. = m~ + ~~ ~"~, for i, = 1 , . . . ,  a,, as illustrated in Fig. 2 a 
and b. 

2 In the p roduc t  7~ 7i we first let 7j operate  and then 7~. 
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Im~ ~t [mfl 

I I r~,2 
I I r~-i 

] I 
I .,,.- ! / -,,-- 

~r Refl  Refl 

~,0 a ,t,0 ~'- b 

Fig. 2 a  a n d  b. The inductive choice of loops 

This construct ion  gives the fo l lowing equalit ies:  
ar 

~i t i z . . . i r - I  ~ H ] ) i l i2 . . . i r - l i  
i=1  

a r -  1 

~)iliz. . . ir-2 ~ H ~ i l i2 . . . i r -2 i  
i=l  

t~2 

Yi~ = I-[ 7i~ i 
i=1  

al 

~ :  I ~ ) ' i -  3 
i=1  

The  fo l lowing  l e m m a  is fundamental .  

L e m m a  2.1. For il = 1 . . . . .  al - 1 /]'we make ~1 describe the the circle 
S ( e l ) =  {cq e r  = e l }  we get, among others, the Jollowing relations 

* --1 ) )*  
7"1 i2... ir = (7*) -1 Y*I +1 7~* +1, .... ,r(Til + 1) (2.1) 

Proof W h e n  al describes S(r to] ~'~ is transformed into og]a +1); from 
the above  construct ion,  when al describes the al-th part of  S(el), we have 
after a~ + 1 steps the fo l lowing sequence  of  transformations  

- 1  1 
7ili . . . .  i r  P'--~ 'Yil+l i  . . . .  ir ~--~""  t--~Ta~i . . . .  ir ~-r7  Y171i2. . . i~71 Y 

- 1  
F-+~ ) - 1  ~2 '~2i . . . .  i~3~2 2 3: ~-~ " ' "  F -~7  - 1  7i~+1 ]?il+li  . . . .  i r '~ ) i l+ l  ~"  

t '-* --1 - 1  The  only  step which is not trivial is y,~i~...~, 7 71 Yl i~.. i, 71 ~ and 
can be verified by superposi t ion of  Fig. 3 a, b and c. 

a~ 

3 The products are to be developed from left to right, for example H y~= )'J 72 ...  Ya,. 
i=I 
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Ira// 

a Ira# 

Im/S 

/ \ 

/ 

b 

Refl 

Fig. 3. a The loop 71. b The loop ~1i, , ;  c The loop y ~ 7~ Y1~ ...... 't~ -t Y 

3. The Picard-Lefschetz Formula 

We consider again the general case of an isolated hypersurface 
singularity, with the notations of w 1, denote by 7* the product Yt*...'q,* 
in Aut(n.(Fzo , 7/)). 

One can easily derive, by induction, from the Picard-Lefschetz 
formula that: 

~*(z)=z+~ (z,%)e~+ ~. (z,e~2)(e~2,%,)e~,, 
O" a 2  > O'l 

+ ~ (z,e,,~)(e,~3, e,,2)(e~2,%)e,,,+"" 
0"3> ~ 2 >  ~tl 

where the sign + 

(3.1) 

is for n = 1, 2 (mod 4) and sign - for n -  O, 3 (rood 4). 
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Moreover (e , ,  e~) equals 2 if n - 0  (mod 4), 0 if n = 1, 3 (mod 4) and 
- 2  if n - 2 ( m o d 4 ) .  

From the above formulas we derive the following: 

7*(z)~=z~+_(z,e~)+ Y_, ( ~ * ( z L , - z j ( % , e ~ )  (3.2) 
~i>~ 

where z. denotes the o--component of z and sign + is for n - 1 ,  2 (mod 4), 
sign - is for n - 0 ,  3 (rood 4). 

The proof is as follows; from (3.1) we have for n--0, 3 (rood 4) 

7*(zl~=z~-(z,e~)+ ~ ( z , % ) ( % , e ~ )  
~r I > a 

- ~ (z ,e~)(e,2,  eo,)(e~,,eo)+... 
G 2 > G 1  > G  

s o  

"/*(z)~=z~,--(z,e~)+ ~ ((z,e~,)-- Z (z,e~,~)(eo2, e~,,)+"')(e~,,eo) 
G I > G  G 2 > G I  

the result follows by observing that the expression between parentheses 
is equal to -(7*(z)~,-z~,). The other case is similar 

Lemma 3.1. For an isolated singularity of an n-dimensional hyper- 
surJace, the following data determine each other 

(i) v*(e3jor all i 
(ii) (ei,ej) jbr all i,j; i<j. 

Proof. Obviously by (3.1)(ii) determines (i). Conversely assume that (i) 
is known; (e,_~,e~) is determined by (3.2) as follows 

( e u - t ,  eu) = +_7*(e._O~ ,. 

Suppose now, by induction, that (e~, ei) is determined for all 
i,j; v<i<j, then again by formula (3.2t we get for v< j  

+ (e, ,  e j)  = ~:* (e~)j ~- ~ 7* (e3o (e~, e j)  
a > j  

but for v< j  < ~r the inductive assumption gives the intersection numbers 
(e , ,  e~) so (e, ,  ei) is also determined. 

4. The Computation 

Let us fix some notations: 

I = (il, i2 . . . . .  i,), J=(Jl,J2 . . . . .  J,), K=(kl ,  k 2 . . . . .  k,) 

and so on; 
I ' =  ( i  2 . . . . .  i t )  , 

a symbol like (i 1 + 1, K') means (q + 1, k2 . . . .  , kr) .  
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Lemma 4.1. For  1< il < al - 1, we have 

y * ( e l ) = 2 1 7 * + l ( e i , + l , r ) ,  where 2I= +1. 

P r o o f  At a point z~H,(Fxo)  we have, by (2.1) and (l.1), that 

((7")-1(z), et) 7" (ej)= (()'~ +1)--I(Z), eil+ 1,i ,)  ~/~ +i (eil+ 1, l') �9 

Now there exist points z', z"eH,(F;.o) (see [5]) such that 

Writing 

and 

we get 

( ( 7 * ) - l ( z ' ) , e ~ ) = ( ) ' * + o - l ( z " l ,  e i i + l , r ) = l .  

((7*+l)-l(z'), ei~+l,r)= 2l~Z 

( (~'*)- l (z"), e l )  = B, e TZ, 

7"(el)= 21 * e 7/1+l(/,+1,i,) and f117*(el)=~/*+l(ei l+l ,r);  

combining together these two formulas we obtain fl1" 2r = l and then 
2I= _+1. 

We fix the orientation of the vanishing cycles in the following way: 
Suppose, inductively, that the vanishing cycles of the form et, r have 

been oriented; for all I' choose the orientation of e2, r in such a way that 

~:* (el, r) = 2 ~/~ (e a r') 
where 

2 =,~ 1, if (1 - 1)-  0, 1 (mod 4) 
( - 1 ,  if ( t -  1)-2,  3 (mod 4). 

Iterating this process we have fixed the orientation of the cycles 
ei,, r for all i 1 . 

Proposition 4.1. (Pham [8])jor r =  1 we have: 

(i) (el, e j )  = 0 / J  I i - j l  > 1, 

(ii) (ei, e i+x)=l  i l l < a t .  

P r o o f  We use essentially (3.2) and Lemma(4.1) restated for r = l  
(i) in this case it is sufficient to prove the assertion for j >  i+1:  

0 = 7'* 1 (el + 1)j = 2 7'* (ei)j = +_ (e l ,  e ; ) ,  

(ii) if ( / -1 ) - -0  (mod 4), 

(el, el+t)= --y*(ei)i+l = * -7i+1(ei+Oi+l = - - ( l -  ( e i+ l , e i+ l ) )  = --(1 --2)= 1 

the other cases are similar. 
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At  this point  let us make the inductive assumption:  
(I.A) Let (il,i2 . . . . .  i ,)<(il , j2 . . . . . .  j,),4 then (ehi  .... it, eilo .... s,) = 0  

unless Jor ever), t7, v, l i, -J , I  <= 1 and (i~ -j , ,)  (i, - j , )  > 0 in which case 

f~ ' -  /f ( l - 1 ) - - O , l  (mod 4) 
( e l t i z ' " i " e i l h " J ~ ) =  , . -  1) j z - i 2 + ' ' ' + j r i €  / f  ( t - 1 ) - 2 , 3 ( m o d 4 ) .  

Proposition 4.2 s. Let I < J. U Jor ever)' q, v, l i , - j , I  < 1 and 

(i~ - J d  (i. - j , )  >= O. 
then 

~1 , , , Jor ( / - 1 ) = 0 ,  1 (rood4) 
( e I ' e s ) = ( ( - - 1 ) k - ~ + J z - z + + J ~ - ' ~ - I  .lor ( I - -1 )=2 ,  3 (rood 4) 

otherwise (e  l, e j ) = 0 .  

Proof We have only to prove the assertion when j ~ > i l .  F rom 
L e m m a  4.1 and formula (3.2) we have 

SO 

y* (e,)s = 2 7i* + x (el, + t, r)s = 2 [(ei, + 1. los +- ( %  + 1. ,', es) 

_ _  * e 4- E (Yi,+,( h+~,V)K--(eil+,.r)K)(eK, e , )]  
K>J 

7*(er)s+ ~ Y*(e/)r (eK, es)  
K > J  

= 2 [(% + 1, r ) .  + (e,, + 1. r ,  es) 7+ Z (e~, + 1,,'). (eK. es)] 
K>J 

on the other  hand  

7* (e,)s = (el) s +_ (e l .  es) ++_ ~ (y* (el)r - (el)x) (eK. e~) 
K>J 

but (el)j = (el)K = 0 because I < J < K so 

(4.1) 

4 Here the multi-indexes have the lexicographic order. 
s E. Brieskorn communicated to us that A.M. Gabrielov, using different methods, has 
computed the intersection matrix, over a geometrical basis, of f(x)+ g(y). 
Gabrielov, A.M.: Funkcionalnij analiz i jewo prilo~enija, Vol. 7, No 3, 18-32 (I 973). 

+(el, eJ)=7*(el)a 7--F E 7*(et)K (eK, ea). (4.2) 
K>J 

(4.1) and (4.2) give 

( e t , e s )  = +2[(e i ,+ l , l ' )a+(e , ,+ l , r , e j )T  - ~ (%+l,r)x (eK,e j ) ] .  (4.3) 
K>J 

There are three cases to consider (i) suppose that jl > ia + 2, then from 
(4.2) we get 

( e l ,  e j )  = 0  
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because 
7* (e~)K = 2 ?* + i (ei~ + 1, r)K = 0 for K > J 

the last equality holds because k 1 > il + 2 and by the Picard-Lefschetz 
formula  " * '&+l(ei,+l,r) is a linear combina t ion  of  vanishing cycles of 
the type ei~ + 1, h2... h~- 

(ii) Suppose  that  J1 = il + 1 and there exists r /> 2 for which j~ = i, - 1 
or ]jq-i~[ >1 ;  in this case we have from (4.3) that  (e  I, e j ) = 0  because if 
J' < I '  then ( e i l + l , 1 , ) j = O  and 

+__ (ei~ + 1, ,r', e~,) T- Y, (el, + 1, r)r  (eu,, e j )  
K > .I 

= § ( e i , + l . l ' ,  ea)-T-(ei,+l.r, ej)=O 

if J ' > l '  then (ei,+l,r)j=O, § e j ) = O  by ( I .A)and  

(ei, +a, I')K = 0 for K > d > (il + 1, I ' ) .  

(iii) Suppose that  j l  = i l  +1  and for every rl>-_2,j,=i.+l or j~= i . ;  in 
this case (e i i+~, r )~=0 for K > J  the from (4.3) we get 

(e l ,  e j )  = -I- )~[(ei, +x,r)j § (ei~ +x.r, e a)] 

if 1 ' =  J '  we have 
(ex, e j )  = + )~ [1 + (e  j ,  e j ) ]  = 1 

if I ' #  J '  we have 

@I, e , )  =2  ( %  + 1, r,  es)  

{ i ' -  if ( 1 - 1 ) = 0 '  1 (m~ 41 
= 1)  l + j 2 - i 2 + ' ' ' + j €  , if ( / -  1)-=-2, 3 (mod 4) 

where the last equali ty follows from (I.A). 

5. The Linking Matrix 

We consider now another  matrix associated to a set of  vanishing 
cycles of  an isolated hypersurface singularity, which corresponds  to the 
bil inear form, on H.(Fao, 77), defined in the following way: 

Let f :  ( r  (~ ,0)  be the germ of an analytic function with 
an isolated critical poin t  at 0 e r + 1. The fibration j :  J'-  a (S~ (1)) ~ Ba(n + 1) 
~S~(1 )  for 0 < e , ~ 6  is equivalent to the fibration Z: S a ( n + l ) - j ' - l ( O )  ~ 

$1(1), defined by Z(z)=  f ( z )  (see Milnor  [7]). It follows that  each Fa 
Hf(z)tl 

can be thought  of as embedded  in Sa(n+l ) .  
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Let t + be an arbi t rary point  in St (1) different from 1. Define F = Z- 1 (1), 
F + = Z-  1 (1 +) and denote  by x ~ x + the i somorphism H.(F, Z) ~ [1, (F +, 7l ) 
obtained by an isotopy that brings F into F + turning counterclockwise 
on S,(1). 

For  x, ysH,(F,  7Z) define L(x, y) - - l inking number  of  the pair (x, y+). 
L(x, y) can be defined also in the following way. 
Let T=Bo(n+l)c~f- ' (B*(1)) ,  T is contractible, so from the exact 

sequence of  the pair T, Fa, with 12[= e, one gets an isomorphism 

~,~: H.+ 1 (T, E~; :g)--- U. (L~, 7z). 

Define A(x)=~,~l(x) for xeH.(F~,71); there is, for 2#2' ,  an inter- 
section product 

<,  >: Hn+,(T, Fa;Z) X Hn+,(T,F),;Z)-~ 71 

such that one has, for x, y e H.(F, 71), that  L(x, y)= (A (x), A (y+)>. 
Make  a little deformation f of  f such that the critical value 0 o f f  is 

decomposed  into a set A of/~ = r a n k / 4 .  (F, 7/) distinct critical values. 
Choose  a set of  smooth  embeddings of  [0, 1] into B* (1), which connect  

the point  e to the points of  A and are disjoint outside the point e. 
Remark  that there is a natural  ordering 71 . . . . .  ~, of these arcs, 

induced by the clockwise order  in which they intersect the boundary  
of  a small disk a round  e. 

Let A = {2, . . . .  ,2.},  where 21 denotes the end point of  7i. 

Proposition 5.16 

i 
o, i f  i < j  

L(e i, e~) = (ej, el), i f  i> j  
| n(n+l) 
[ ( - i )  z , i f i = j .  

Proof Let e+ be a complex number  of  modulus  e and small positive 
argument .  One can construct  (by deforming ~i . . . . .  ~ ;  see Fig. 4) a set 

a b 
Fig. 4. a The vanishing arcs. b The deformed vanishing arcs 

6 The Reviewer communicated to us that this result has also been obtained independently 
by A.H. Durfee in a preprmt entitled "Fibered Knots and Algebraic Singularities", Univ. 
of Calif., Berkeley June 1973. 
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of embeddings y~, ..., y+ of [0, 1] into B*(1) which connect e + to 21 . . . . .  2, 
and such that 

(i) the vanishing cycle associated to y+ is e +, 

(ii) the images of 7~ and y+, are disjoint for i<j, they intersect trans- 
versally at one point if i>j  and intersect only at 2~ for i=j. 

Remark that A(e 3 (respectively A(e+)) can be represented by a cone 
over the sphere that represents e~ (respectively e +) with vertex in the critical 
point of f over 2~ (respectively 2). This can be seen following the non 
singular fiber along 7~ (respectively 7+). 

It follows that if i<j, A(e 0 and A(e +) can be represented by cycles 
with disjoint supports, so that 

0 = (A (e3, A (ef t )  = L(ei, e). 

If i>j, let t denote the intersection point of 7, and 7f;  choose a 
trivialization of f over an open set U which contains the image of 7i, 
from e, to t and the image of y f ,  from e+ to t. Suppose that e~, ej are 
represented by cycles in F which intersect each other transversally at a 
finite set of points. 

Then A(e 3 and A(e~)can be represented by cones which, over U, are 
products of ei and ej with lines 1~, lf .  It follows that A(e3 and A(ef )  
intersect transversally in f -~( t )  at the points of e~ c~ ej. Taking care of 
signs by remarking that the lines 1~, I f  have a positive intersection, it 
follows that 

L (e i , e j)= (A (ei), A (e+)) = (-- I)" (ei, e j) = (e2, e,). 

Finally we compute L(ei, ei). The same argument as before reduces 
us to computing (A(ei),A(e+)) in a neighborhood of f - l (2 i ) ,  so that 
one may suppose that 

= 1, j ( z ) =  z, 
n 

0 

We do the calculation explicitely: let S={z6ll?"+l/If(z)[=l}.  then 
f :  S--+ $1(1)=S is equivalent to the fibration of the singularity. If OeS, 
define F(O) = f -  1 (0) and let z~ = x~ + i y~, ~ = 0, ..., n. Then the vanishing 
cycle e in F(1) is represented by 

x o , Y o , . . . , x , , y ,  ~lR 2"+2 x =1, y ;=  , 

and 

A (e )=  (Xo, yo . . . . .  x , ,  / o  i = 1, y ; =  0 . 

11 lnvemiones math., Vol. 25 
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We can choose 1 + =  - 1 .  The isotopy F(1)-~F(O z) is obtained by 
(z o . . . . .  z,)~-~ (0 Zo . . . . .  0 z.) so that F(1)-~ F ( -  1) is just 

(Xo, Yo, ---, xn, Y,) w-~ ( - Yo, Xo . . . . .  - y,,  x~). 

It follows that A(e+)= (xo,yo . . . .  , x ~ , y , ~ u x  // oL,~ = l , x j = 0  and 

A(e), A(e +) intersect transversally at one point. 
If (x o . . . . .  x,) are positively ordered coordinates for A (e), (Yo . . . . .  Y,) 

will be positively ordered for A(e+). Since the orientation of ~"+~ is 
given by the ordering (x o, Yo . . . . .  x , ,  y.) which can be obtained from 

n ( n + l )  
(x 0 . . . . .  x, ,  Yo . . . . .  y,) by means o f ~  transpositions, it follows that 

n(n+l) 

L(e ,e )=(A(e ) ,A(e+) )=(_ l )  z 

Each bilinear form B over H=H.(F,;g)  can be interpreted as an 
element of H o m ( H ,  H*), where H* is the dual module of H over ~g. 
In particular L, t L 6 H o m ( H ,  H*). 

Corollary 1. L, 'L are isomorphisms. 

Proof By Proposition 5.1, on a geometrical basis, one has det L =  
n(n+l )  

d e t ' L = ( - l ) -  ~ ~. 
F rom the above corollary it follows that eL- l -L  can be interpreted 

as an automorphism of H. 

Corollary 2. ( - 1 )  "+1 'L -1.  L coincides with the automorphism M oJ 
H,(F, 7/,) associated to the fibration ~ over $1(1 ). 

Proof This equality can be checked directly, on a geometrical basis, 
using formula 3.1 and the expression of L(ei, e i) in Proposition 5.1. We 
give an alternative proof  which uses only the fact that L is invertible: for 
x, y e/4,  (F, Z) one has L(x, y)=  ( -1 ) "  +1 L(M(y), x); because 

(A (x), A (y+)> = (A (x+), A (M(y))) = ( -  1) "+ '  (A (M(y)), A ix+)). 

This can be expressed by the formula L = ( - 1 )  "+~ 'L .  M. 
Since L is invertible one gets the assertion. 

Remark. As noticed by Brieskorn, on a geometrical basis the equation 
M = ( - 1 ) " + ~ ' L  - ~ . L  can be solved in L; because by Proposition5.1 
on such a basis L has a representative matrix that is triangular, so that 
the coefficients of  L can be determined recursively from those of M. 
In view of 5.1, this is only another way of stating Lemma 3.1. 

On the other hand it is not clear whether the bilinear form L is 
determined by giving M as an automorphism of the Z-module  H,(F, Z). 
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By Proposition 5.1 it follows that the intersection pairing I on H.(F. ;g) 
satisfies I = ' L  + ( - 1)" 'L. 

So we have 

on an ordered geometrical basis it is equivalent to know L, I or M 
ingeneral L determines I and M. 

It might be interesting to study the obstruction given by L to the 
ordering of a geometrical basis; in other words let a geometrical basis 
el . . . . .  e. be given, and let (al . . . . .  au) be any permutation of (1 . . . . .  ~) 
such that L(%,  e~j)=0 for i<j; is it true that (%,  .... e..) is an ordered 
geometrical basis for a suitable choice of 71 . . . . .  y. ? This seems to be of 
interest when comparing the monodromy group with the group of isom- 
etrics of the intersection pairing I. 
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