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Admissible Representations of a Semi-Simple Group 
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under an lwahori Subgroup 
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To Jean-Pierre Serre 

Let G be the ~roup of rational points of a connected semi-simple algebraic group 
f# over a locally compact nonarchimedian local field k, and let (r, V) be an ad- 
missible representation of G in a vector space V over a field R of characteristic zero. 
If B is a compact open subgroup of G, then the fixed point set V n of B in V is a 
finite dimensional space, acted upon in a natural way by the Hecke algebra 
H(G,B) of compactly supported B-biinvariant R-valued functions on G. We 
shall be concerned here with the case where B is an Iwahori subgroup of G and 
prove that, in that case, every finite dimensional H(G, B)-module E occurs in 
this way. In fact, given E, there are two natural algebraic constructions of a 
smooth G-space of which the fixed point set of B is isomorphic to E as an H(G, B)- 
module: the analogues, in the context of smooth representations, of the induced 
and produced modules of [10], also to be denoted I(E) and P(E) (see 2.3) 1. We 
shall prove more precisely that I(E) and P(E) are admissible (4.4), canonically 
isomorphic, irreducible if and only if E is, and that E ~ P(E) defines an exact 
functor from finite dimensional H(G, B)-modules to admissible G-spaces (4.10). 
The proof of admissibility uses, besides standard facts on H(G,B), mainly a 
lemma on buildings (4.1), due to F. Bruhat, which expresses a strong transitivity 
property of compact open subgroups of G, while that of 4.10 depends on results 
of [7] and on a lemma of Casselman (4.8). 

In w 5 we consider the case where E is one-dimensional, i.e., when r is a char- 
acter of H(G, B), and R=C, and determine in which case P(E) belongs to the 
discrete series (or rather, is the space of smooth vectors of an element of the 
discrete series). There is always the special representation of Matsumoto [13] 
and Shalika 1-16]. In our setup, it corresponds to the special character a, which 
assigns - 1  to the standard generators e~ of H(G, B) (see 3.5). However, if G is 
almost simple over k, of k-rank l ~ 2  and H(G, B) has more than two characters 
of degree one (see 3.4), then there is at least one other. Their list is derived in 5.8 
from a criterion for a character a to give rise to a square integrable representation 
(5.2) and results of MacDonald 1-12]. These representations are not cuspidal. 

The special representation may be viewed as the natural representation of G 
in the space H i of square integrable harmonic/-forms on the Bruhat-Tits building 

However, we shall use the word coinduced instead of produced. 
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X of G, where l=rkkq~=dimX, (6.1). There is a natural G-morphism ~/ of the 
l-th cohomology group H~(X) of X with compact supports and complex coefficients 
into HI2 . We shall prove that ~/ is an isomorphism of I-I~(X) onto the space of 
smooth vectors in Hi2, (6.2). One of the main results of [3] implies that the G-space 
H~(X) is admissible and that its character is the "Steinberg character": the alter- 
nating sum of induced characters from the trivial representations of the groups 
of rational points of the parabolic k-subgroups containing a given minimal one 
(see 6.3 (2)). It follows then that this character is also the one of the special rep- 
resentation (6.4). 

The above summarizes the contents of w167 5, 6, which contain the main 
results of this paper. w 1 recalls some notions on admissible representations, 
Hecke algebras and convolution, mainly to fix some notation. w introduces 
induced and coinduced modules from a finite dimensional module over a Hecke 
algebra H(G, B), where G is a locally compact totally disconnected group, B a 
compact open subgroup, and describes some of their properties. This is quite 
analogous to [10], where this is carried out for algebras, with some minor changes 
due to the fact that we work with smooth representations. 

In w 3, G and B are specialized as above, and we recall some standard properties 
of H(G, B). Finally w 7 is devoted to the proof of 4.1. 

The fact that the Steinberg character is an irreducible unitary character was 
also announced by Casselman in [6] and proved in [7]. His argument is quite 
different from ours. In [14], Matsumoto also states, in a somewhat more general 
framework than ours, that every finite dimensional H(G, B)-module occurs as 
the fixed point set of B in an admissible representation of G. 

In the course of this work, I have received precious help from several people, 
to whom I am glad to express my thanks. The starting point of this paper was a 
question raised to me by Harish-Chandra in December, 1970, namely whether 
the Steinberg character (6.3 (2)) was an irreducible unitary character. The joint 
work with J-P. Serre summarized in [2] showed readily that this character was 
effective, and that it would be the character of the special representation if and 
only if the canonical map r/: H~(X)--, Htz of 6.2 were injective. That was proved 
shortly afterwards. At that time, I benefited from a correspondance with J-P. Serre, 
where he notably emphasized the role of the Hecke algebra H(G, B). This led me 
naturally to the more general questions studied in this paper. The results of w 5 
were proved in Fall, 1971, with the help of J. Tits, the admissibility of the coinduced 
modules P(E) was realized a bit later and discussed in a seminar at the I.H.E.S. 
at Bures, in Fall, 1973; finally, the other results of w were obtained in Spring, 
1974, with the help of P. Cartier, who suggested to use I(E) and P(E) concurrently, 
and of W. Casselman, who supplied Lemma 4.8. 

I. Generalities 

R denotes a field of characteristic zero 2, G a locally compact totally disconnected 
unimodular group. Vector spaces are over R, and modules over groups or algebras 
are vector spaces. 

2 In fact, without substantial change, the characteristic p of R can be allowed to be > 0, provided it 
is assumed that G has no compact  pro-p-subgroup 4: { 1}. 
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w 1. Convolution. Smooth and Admissible Representations 

We recall here a few definitions and facts about  smooth representations, in a 
form convenient for the sequel, mainly to fix some conventions and notation. 
See [7] for a general discussion. 

1.1. Let E be a vector space, and X a set. Then C(X, E) is the vector space of maps 
of X into E. If X is a locally compact totally disconnected space, then Co(X, E) 
is the space of elements of C(X, E) with compact support, and C~ E) (resp. 
C~(X, E)) is the space of smooth (i.e., locally constant) functions in C(X, E), 
(resp. Co(X, E)). If E = R, we write C(X), Cc(X ), etc. 

If X = G, and f e  C(G, E), then f denotes the function defined by f(x)=f(x-1),  
(x~ G). Fix a Haar  measure on G. Assume E to be an algebra over R. Then C~(G, E) 
is an algebra with respect to the convolution product 

(u* v)(x)= j u(x. y-l) .  v(y) dy = S u(y). v(y 1. x) dy, (1) 
G G 

which is in fact a finite sum. We have 

(u �9 v) v = ~ �9 ft. (2) 

More generally, if E', E" and E are vector spaces and (e', e") ~-, e ' .  e" is a bilinear 
map from E' x E" to E, then (1) defines a pairing C~ (G, E') x C2 ~ (G, E") ---, C~ (G, E). 
These definitions are valid if R is only a commutative ring, and E', E", E modules 
over R. 

The right hand side already makes sense if one of the two factors has compact  
support. In particular, it allows one to give C~176 E) a bimodule structure over 
C~~ 

Let B be a compact open subgroup of G, and assume the total measure of B 
to be 1. Then the space Cc(B\G/B) of compactly supported B-biinvariant 
R-valued functions on G is an algebra under convolution, the "Hecke algebra" 
of G with respect to B to be denoted HR(G, B), or H(G, B) or simply H. For geG,  
we let eg be the characteristic function of BgB. We have 

eg = eg-1.  

The elements ew, where w runs through a set of representatives of B \  G/B, form 
a vector space basis of H(G, B), and the characteristic function e 1 of B is a left and 
right identity. 

If E is a vector space, then Coo(G, E) and Cf(G, E) are H-bimodules under 
convolution, and * e 1 is a projector of Coo(G, E) onto C(G/B, E). Thus we may also 
view C(G/B, E) and C~(G/B, E) as H-modules under right convolution. We have 

( f *  u)(x)= ~f(xy). u(y -1) dy= ~ f(xy),  u(y- l ) ,  (3) 
G y~G/B 

( f ~ C ( G / B, E), u ~ H ( G, B ) ). In particular, 

( f*~w)(x)=  ~ f(x .y) ,  (x, weG;feC(G/B,E)). (4) 
ycBw B/B 

Let us put 

q~=Card(BwB/B)= ~ dx. (5) 
BwB 
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We have then 

( f  * ~w) (1) = qw" f (w), ( f e  C(B \ G/B, E)), (6) 

(~w.f)(1)=qw .f(w), ( f e C ( B \ G / B , E ) .  (7) 

Note that qw = qw-, since G is unimodular. 
Clearly, H(G, B) commutes with G acting on C(G/B, E) by left translations. In 

fact, it is easily seen that H(G, B) is the full commuting algebra of G on Co(G/B, E). 

1.2. A representation of G will be denoted either by the vector space V acted 
upon, or by the homomorphism n: G ~ GL(V), or by the pair (~, V). Let (n, V) 
be one. An element v e V is smooth if its isotropy group is open in G. 

The set V ~ of smooth vectors of V is a vector subspace (since the open sub- 
groups of G form a fundamental system of neighborhoods of the identity) stable 
under G. The representation ~ is smooth if V= V ~176 admissible if, in addition, 
V v is finite dimensional for every open subgroup U of G. Every G-submodule 
or quotient module of a smooth (resp. admissible) representation is smooth 
(resp. admissible). If (~, V) is smooth, then it defines a representation of the con- 
volution algebra C[(G) characterised by 

re(f), v= Sf(x) .  r~(x), v dx, ( fe  C~(G)). (1) 
G 

If B and dx are as above, V= C(G/B, E) and re is given by translations, then it 
follows from the definitions that re(f), v = f *  v. 

1.3. Assume rc to be smooth and G to be compact. Then G. v is finite for all veV, 
hence V is union of finite dimensional semi-simple G-modules. Therefore, V is 
semi-simple and if 

0--o V ' ~  V---~ V"---,O (2) 

is an exact sequence of smooth modules, then the sequence of isotypic sub- 
modules of a given type is exact; in particular, 

0---~ V ' ~  V~---~ V"~--* 0 (3) 

is exact. If dx has total measure one, then v~-~,Sn(x), v dx is a projector of V 

onto V G, whose kernel is the subspace V(G) of V generated by the elements of the 
form v -n (g ) ,  v (geG; veV) [7: 3.2.1]. 

/ 

1.4. Contragredient Representation. Assume (~, V) to be smooth. The natural 
representation n of G in the space 171= V,~ of smooth elements in the dual V' 
of V is the contragredient representation ~ of n. It is admissible if and only if rc is. 
For every open subgroup K of G, the space 9 "K is the orthogonal subspace to 
V(K), and may be canonically identified to the dual of V K [7: 2.1.9]. We have 

(v ,~(g) .~)=(n(g-1) .v ,~);  ( v ,~ ( f ) .~ )=(zc ( f ) . v ,~ ) ,  (1) 

(v e V; ~ e 17"; g e G; f e  C~ ~ (G)). In particular 

'~(f)  = ~(f), ( fe  C~ (G)). (2) 
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1.5. Coefficients. Given veV, ~el~, we denote by cv, ~ the function on G defined by 

coAg) = (v, ~(g). r~) = (re(g-I) .  v, ~), (ge G). (1) 

We let lg (resp. r~) denote the effect of the left (resp. right) translation by geG on 
functions on G. Thus 

lg f (x)=f(g -1.x), rgf (x)=f(x .g) ,  (xeG), (2) 

where f is a map of G in some set. Straightforward computations yield the formulae 

c~x).v,~,.~=Ix.rr.cv,~, (veV,~:eV;x,y~G), (3) 

c, ty).,,~th).~=f * c~,~ * ~, (veV, ~eV;f, he C~(G)) (4) 

(of which (3) differs slightly from [-7:2.5.1] since our c,,~ is the V-transform of the 
co, v there). 

w 2. Induced and Coinduced Modules from a Representation of a Hecke Algebra 

In this section, B is a compact open subgroup of G, and convolution is taken with 
respect to a Haar measure dx giving B total measure one. 

2.1. Let E be a vector space. The group G acts by left translations on C(G/B, E) 
and Cc(G/B, E). Clearly, the map 

Cc(G/B) | E ~ Cc(G/B , E), (1) 

which assigns to f |  the function x ~--*f(x). e (xeG) is an isomorphism. Since 
the intersection of finitely many conjugates of B is open in G, the representation 
of G on C~(G/B, E) is smooth. On the other hand, C(G/B, E) is not smooth in 
general. The canonical bilinear form ( ) on E' x E allows one to define a pairing 
of C(G/B, E') and C~(G/B, E) by 

(q~, t)) = ~ (~o(x), tp(x)), (q) e C(G/B, E'), Oe Cr E)), (2) 
XEG 

or, equivalently, by 

(q~, O) =(~o �9 ~)(1). (3) 

The map j: C(G/B, E')--o C~(G/B, E)' is readily seen to be an isomorphism, and 
therefore yields an isomorphism 

C(G/B, E') ~ ~ , Cc(G/B, E) ~. (4) 

2.2. In this paper a representation (r, E) of H(G, B) in a vector space E is a homo- 
morphism r: H(G, B ) ~  End(E) which maps el onto the identity. By definition, 
the contragredient representation to r is the representation ~ in the dual space 
E' to E characterised by 

~r(u) = ?(fi), (ueH(G,B)). (1) 

We have therefore 

(r(u). e, e') = (e, ~(fi). e'), (eeE, geE'; ueH(G, B)). (2) 
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If V is a smooth G-module, then V s is stable under H(G, B) acting via the natural 
representation of C~(G), and is an H(G, B)-module. If V is admissible, then 17 n 
is the contragredient H-module to V B. If W is a smooth G-module, the restriction 
to the fixed points under B yields a natural map 

Hom~(V, W) --* Homn(G,~)(V B, WB). (3) 

2.3. Let (r, E) be a representation of H(G B). We let 

IB,~(E) = IB, G(r)= C r174 E, (1) 

Pf ~(E) = Pf ~(r)= { f e C(G/B, E)l f * u = r(u) . f, (u e H)}. (2) 

Both IR.G(r ) and PB~ will be viewed as G-modules via left translations. The 
former is smooth, but the latter is not in general, and we let 

Ps,~ (E) = PB, G (r) = (Pn ~176176 (3) 

We shall sometimes suppress the indices B, G if they are clear from the context. 
We note that I(E) is the quotient of Cc(G/B)| by the subspacc M spanned 

by elements of the form 

( f  * h ) |  | e ( f e  Cc(G/B); eeE; hell) ,  

and that the canonical projection Co(G/B)| R E --~ I(E) commutes with G. 

Remark. In view of the elementary relation 

C(G/B, E)= Hom( Cc(G/B), E), (4) 

and of the fact that e 1 is a projector of C~(G, E) onto Cc(G/B, E), we have 

IB.G(E) = C~(G)QnE, PB~ E), (5) 

where 

Homu(C ~ (G), E) 
= {f~ Hom(C~ (G), E)I f (q0 * u)= r(u).f(cp), (u~H; q9~ C~(G))}. (6) 

Therefore In, G(E ) (resp. Ps~ is the induced (resp. produced) module from 
H to C~(G), as defined by G.D. Higman in [10]. 

2.4. Proposition. We keep the notation of 2.3. 

(i) The map #o: e ~-* e 1 |  induces an H-isomorphism of E onto I(E) ~. 
(ii) The map Vo: f~--~f(1) is an n-morphism of P(E) onto E, which maps P(E) B 

isomorphically onto E. For e~E, the element feeP(E) n mapped onto e by v o is the 
function 

f~= ~ ew .q=l. r(~) .  e, 
weB~. G/B 

which assigns q~ l . r(~w) . e to xeBwB.  
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(iii) Every non-zero G-submodule of P(E) contains a non-zero element fixed 
under B. The G-module I(E) is generated by I(E) B. 

(i) Left convolution by e x on Co(G/B) defines projectors of I(E) onto I(E) B 
and of Cc(G/B) onto H = Cc(G/B) n. Therefore 

I(E) B = H | E = E, 

and (i) follows. 

(ii) In the notation of 1.1(4)(5), we have 

qw "f(x)=r(ew).f(1), (feP(E)B; w e B \  G/B; xe BwB) .  (1) 

In fact, f ( x )= f (w) ;  by 1.1(6), the left-hand side is equal to (f,~w)(1), which 
equals r(~w).f(1) by definition of P(E). This implies that v0: P(E)B---~E is injective. 
Given eeE, let us now define f eC(G/B ,E)  by (1) and the condition f (1 )=e .  
This function is left-invariant under B; by 1.1 (6), it satisfies 

( f  *ew)(1)=r(ew).f(1), ( w e B \ G / B ) .  (2) 

Since the ew (w e B \ G/B) span/4,  this implies by linearity 

( f  , u)(1)=r(u).f(1), for all ueH.  (3) 

Together with 1.1(6), it yields, for x e B w B :  

qw. ( f  , u ) (x )=( f  , u �9 ~)(1)  = r(u) - r(~w).f(1)= r(u). ( f  * ~w)(1), 

qw(f * u)(x) = r(u). qw .f(w) = r(u). qw . f(x) .  

This shows that f eP(E)  B, hence that v o is surjective. Taking (3) and 1.1(7) into 
account, we have, for f eP(E)  B and weG, 

vo(ew * f )  = (ew * f)(1) = qw . f(w) = r(~w) . f(1) = r(~w). Vo(f). 

Since the e~'s span H, it follows that v o induces an H-isomorphism of P(E) B 
onto E. 

Let M be the kernel of e l ,  on P(E). Then P(E) is the direct sum of M and 
P(E) B and M is also annihilated by all elements of H. For any f e  C(G/B, E), 
we have 

f ( 1 ) = ( e  1 *f)(1),  (4) 

hence M = ker Vo, which completes the proof of the first part of (ii). The second 
one then follows from (1). 

(iii) Let V be a non-zero G-submodule of P(E). Being invariant under left 
translations, it contains an element f such that f ( 1 ) , 0 .  But then (e 1 , f ) ( 1 ) + 0 ,  
hence V ~ + 0. 

For x e G, let e x be the characteristic function of xB on G/B. The tensor product 
Cc(G/B)(~ R E is spanned by the subspaces 

e x | 1 7 4  (xeG), 
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hence Cc(G/B ) | E is generated, as a G-module, by e 1 | E. Since I(E) is a quotient 
of Co(G/B)| R E, this is a fort,or, true for I(E), whence the second assertion of (iii). 

In the sequel, we shall often identify E with I(E) n or P(E) s by means Ofpo or v o. 

2.5. Proposition. Let (r, E) be a finite dimensional H-module, and (n, V) a smooth 
G-module. Then the natural restriction maps (2.2 (3)) 

Pc: Hom~(V, P(E)) ~ Homn(V B, E) and p~: Hom~(I(E), V) ~ Homn(E, V B) 

are bijective. 

Given s~Hom6(V,P(E)), let us denote by % the restriction of s to V B. If 
So = flo, then ~ -  ri is a G-morphism which is zero on V a. Since P(E) has no non- 
zero G-module F with Fn= 0 (2.4), we have ~ = r, hence Pe is injective. Let rio be 
an H-morphism of V B into E. We define a map r: V ~  C(G/B, E) by the rule 

ri(v)(x)=rio(el(x -1 .  v)), (veV; xeG) .  (1) 

Let (vO be a basis of V B, and (v') be the dual basis of IT"B (see 1.4). Then, in the 
notation of 1.5, we have 

ri(v)= Y, co.o,, rio(V,). (2) 

The relation 1.5 (3) shows that ri is a G-morphism of V into C(G/B, E). Let us 
show that f l (V)cP(E) .  Let h~H. The transformation n(h) leaves V ~ stable and 
we may write uniquely 

re(h), vi= E al . v j, (aleR). (3) 
J 

By 1.4(2), tn(h) = n(/i), hence 

~(/~)" vi = Z 4 "  v'. (4) 

Using 1.5(4), we get 

ri(v), h = E (co, v, * h). rio(V,)= Y, rio(V,), 
i i 

i 
ri(v) * h = ~ %, ~, " as. rio(V,). 

l , J  

Since flo is an H-isomorphism, we also have 

r(h) . rio(V,)= rio(n(h) . v, ) )=Z aj . rio(V), 
J 

whence 

ri(v) * h = Y'. Cv.,, r(h). rio(V,) = r(h). ri(v), (5) 
i 

which shows that ri(v)eP(E). If v e V  B, then ri(v)eP(E) s and moreover Vo(ri(v))= 

fl(v)(1) = ~  < v, v'> flo(V,)= rio(V), hence rio = Pe(fl). 
Since I(E) is generated by E as a G-module, the map p~ is injective. Let 

%: E--* V B be an H-morphism. It extends uniquely to an R-linear map 

~"  C~(G/B)| V 
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given by 

~ l ( f |  ( feCc(G/B);eeE).  

If m e C~ (G), then 

~1 ((m �9 f )  | e) = rc(m * f ) .  ~o(e) = n(m). n ( f ) .  ~o(e) = n(m). ~l ( f |  e), 

hence ~1 is C~(G)-equivariant, and therefore also G-equivariant 1-7:2.2.1]. If 
hEH, then 

cq ((f  * h) | e) = re(f* h). %(e) = n( f ) -  n(h). %(e) = n ( f ) .  %(r(h) . e) 

= o~ l ( f |  r(h). e), 

hence cq annihilates the kernel of the canonical projection Cc(G/B)| I(E) 
(see 2.3). The map ct: I ( E ) ~ V  obtained from cq by going over to the quotient is 
then a G-morphism which extends ct o. 

2.6. Proposition. Let (r, E) be an H-module. 7he canonical isomorphism 

C(G/B, e') ~ ~ ,(C~(G/B, e))" 

of 2.1(4) induces an isomorphism of P(E') onto I(E)~. 

By definition, P(E') is a G-submodule of C(G/B, E'). It suffices to show that it 
is the orthogonal subspace to the kernel M of the projection 

q : C~(G/B) @R E = C~(G/B, E) --, C~(G/B) @H E = I(E). 

Let f e  C(G/B, E'), qoe Cc(G, B), eeE, heH. From 2.1, we get 

( f ,  (q~ * h) |  = ( f *  (q0 * h)V (1), e) = ( f *  ]~ * ~b) (1), e) ,  

( f ,  (~0 �9 h ) |  = ( f *  ~, q9 | e) .  (1) 

( f ,  ~ | r(h) e> = ( ( f *  ~5) (t), r(h). e> = (P(~)(f* •)(1), e>, 

( f ,  q) | r(h) e} = (~(~) f, q~ | e) .  (2) 

The proposition follows immediately from (1) and (2) and 2.3. 

II. Semi-Simple Groups Over a Local Field 

From now on, k is a non-archimedian local field with a finite residue field, q the 
number of elements of the residue field, c~ a connected semi-simple k-group, c~ its 
universal covering, o: (~ ~ ~ the canonical central isogeny, and l the k-rank of f~. 
We assume l> 1. 

w 3. The Hecke Algebra with Respect to an Iwahori Subgroup 

3.1. Algebraic groups over k will usually be denoted by script letters, and the 
groups of their k-rational points by the corresponding Roman letters. In particular 

G=~(k) ,  (~ =C3(k). 
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We let ]?=(G,/), 19, S) be the Tits system of G considered in I-5], where/)  is an 
Iwahori subgroup of G, and X the associated building. X is a polysimplicial 
chamber complex of dimension l. We let C O be the chamber fixed by B and A o the 
apartment fixed by /~n)9. Therefore Ao=19. C o. The Weyl group 19/(19n/)) 
of T will be denoted 1~. The apartment A o has a canonical structure of affine 
euclidean space with respect to which W acts faithfully as a euclidean reflection 
group. S is the set of reflections to the hyperplanes containing the faces of co- 
dimension 1 of C o. 

The group G maps naturally into (Aut(~)(k), hence operates on (~ and on X. 
The latter action is also continuous and proper. We let B be the subgroup of G 
fixing C O (pointwise), N be the stabilizer of A o in G, and G O (resp. No) the biggest 
subgroup of G (resp. N) which acts on X by special automorphisms, i.e., auto- 
morphisms which preserve the type of a face [5:2.1.1]. Let L be the intersection 
of N with the normalizer ~ ( B )  of B in G. Then G=L.  Go, the group G O is normal, 
of finite index, in G. The group G/G o = L/(L n Go) may be identified with a finite 
commutative subgroup ~k of the group Aut Cox S of automorphisms of the 
Coxeter diagram of (W, S) which leaves stable every connected component of the 
latter. The isogeny co induces an isomorphism 

17V ~ , No/(N o riB), (1) 

and bijections 

G/B = Go/B , B \ G/B = B'... Go/B. (2) 

We have semi-direct product decompositions 

G= 7J~Go, W = N / ( B n N ) =  ~<ITV, (3) 

and T O =(G o, B, N, S), T=(G, B, N) are respectively a Tits system [4: IV, w 2] and 
a generalized Tits system [4: IV, w 2, Exer. 8] or [11]. We have the decompositions 

Go = L I B  wB, G = ]_I B wB. (4) 
w ~  w~W 

Moreover 

B w B w ' B = B w w ' B ,  if w,w '~W and l(ww')=l(w)+l(w'), 

where l( ) denotes the length in lye with respect to S [4: IV, w 1]. Let 

qw = Card(B wB/B), 

Then 

qw=Card(BwB/B), 

qww, = qw" qw,, 

We have 

L n G o = B ,  

(5) 

(w e W). (6) 

if w~W, (7) 

if w,w'~I7V and l(ww')=l(w)+l(w'). (8) 

(9) 
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SO that the elements of ~ can be viewed as cosets modulo B, whose elements 
normalize B. We have 

B~pB=IpB=Btp, B~B~p 'B=B~p 'B ,  (r ~'~ ~), (I0) 

t p B w B = B ~ w B ,  q~,w=qw, (w~ I~; Ip ~ ~P). (11) 

For all this and the facts recalled in 3.2 below, see [4: IV, w 2, Exer. 8], or w 3 of [11], 
where the underlying groups are split but the arguments are general. 

3.2. The Hecke algebra H(Go, B) will often be denoted by H o. It follows from 
3.1 (2) that ~o yields an isomorphism of H (G,/~) with H o. The algebra H o is spanned 
over R by the characteristic functions % of the cosets B w B  (we W).The ew'S 
have the following properties: 

1) ew.%,=ew.w,, i f  w, w' ~ lTV and l(w.w')=l(w)+ l(w') 
2) 2 _  es - ( q s -  1)" G + G  .e, ,  (seS). 
3) Let s, s' e S be distinct and let m = re(s, s') be the order of s. s'. Then m is finite, 
except if ISI = 2, and we have 

(e~.e,,)r.es=e~,.(G.e~,) ", if m(s ,s ' )=2r+l ,  

(G" G,) r = (G" G)', if m(s, s)' = 2 r. 

4) Let wel~, seS and assume that l(s. w)<l(w). Then 

G ' % = ( G - 1 ) % + G ' G w .  

5) The algebra H 0 is generated, as an R-algebra, by 1 and the elements e~ (seS). 
The relations (2), (3) form a presentation of H o. 

Let ~ e 4.  It defines a permutation of (G)~s given by 

e s ~ ~ �9 e s = eocs). 

By the above, this permutation extends to an automorphism of H 0. Let R[ff] 
be the group algebra of ~ over R and let R [ ~ ] ( ~ H  o be the ordinary tensor 
product R I - ~ ] |  o of modules, endowed with the product defined by 

6) (~ |174174 '. 

Then [11: w or [4: IV, w Ex. 25] 

7) H~R[~P]@H o. 

3.3. Characters of Degree One. Two elements s, s' of S are conjugate in ~" if and 
only if there exists a chain of elements of S: s--s o, sl . . . .  , s~ = s' such that si.s~+ a 
is of finite odd order for i=0 ,  1, . . . ,  q - 1  [4: IV, 1.3, Prop. 3]. The intersections 
S i of S with the conjugacy classes of Vr are therefore the connected components 
of the graph obtained by erasing the multiple edges in the Coxeter graph Cox S 
of S. The number m of such classes in equal to 

1 if Cox S is of type A. (n > 2), D. (n > 3), E i (i-- 6, 7, 8), 

2 if Cox S is of type A 1 , B. (n > 2), G 2 , F 4, 

3 if Cox S is of type C. (n > 2). 
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3.4. Proposition. Let K be a commutative algebra over R. Let S i (1 < i<m) be 
the intersections of S with the conjugacy classes in # .  A map (es)~s--~ K is the 
restriction of a homomorphism Ho=H(Go,B)--~K,  if and only if it is constant 
on each S~ and equal to - 1  or qs (seSi) on S i. In particular, H(Go,B ) has 2 m 
characters of  degree one. 

The necessity of the condition follows from 3.2 (2), (3) and its sufficiency 
from 3.2 (5). 

3.5. Proposition. Let z e ~  be a character of ~, and a a character of H o. Then 
Z = a | z is a character of H if and only if a is constant on the orbits of ~ in S. 

This is obvious. 

Special Cases. a) The algebra H o has a unique character a o which is equal to 
- 1 on every e,, to be called the special character of H o. If z e ~, then z | a o is a 
character of H, also to be called special. 

b) Clearly, qs=qs, if s and s' are conjugate in # .  The map e~--~qs extends 
therefore to a character a 1 of degree 1 of/4o; it satisfies a~ (ew)=q w for all w e # .  
Given S e ~ ,  the map se-~b(s) extends to an automorphism of Go; therefore qs 
is constant on the orbits of ~, and, for any character z of ~, the product z |  i 
is a character of H. 

3.6. Proposition. Let (r, E) be a finite dimensional representation of H(G, B). 
7hen the elements r(eg) (ge G) are invertible. 

In view of 3.1 (3), (4) it suffices to show this for g = $ .  w ($ e T;  w e #.). From 
3.1(10), it follows that ~b~--~r(e,) is a representation of T, hence r($) is invertible. 
If w e # .  and w = s  i ... sq (q=l(w)) is a reduced decomposition of w, then r(ew)= 
r(esj ... r (e , )  by 3.2(1), hence there remains only to show that r(es) is invertible 
for seS. But this follows from 3.2(2), which shows more precisely that the only 
possible eigenvalues of r(e,) are q~ and - 1. 

w 4. Admissible Representations 

The following lemma and its proof are due to F. Bruhat. The proof will be given 
in w 

4.1. Lemma (F. Bruhat). Let U be a compact open subgroup of G O (cf. 3.1). There 
exists a number do>0 with the following property: given a chamber C of the build- 
ing X of  CJ such that d s ( C, Co)> do, there exists a chamber D adjacent to C satisfying 
the two following conditions: 

(i) ds(O, Co)=ds(C, C o ) - l .  

(ii) the group U is transitive on the set ( C, D) of chambers C' such that C' c~ D = 
C ~ D .  

If C 1 is a chamber of X, then ds(C1, Co) is the integer d such that the minimal 
galleries connecting C 1 and C o have d + 1 elements. We recall that two distinct 
chambers C~, C z are said to be adjacent if their intersection is a face ofcodimension 
one. If so, we let (C~, C2) be the set of chambers C such that Cc~ C z = C 1 n C 2. 
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4.2. To use 4.1, we give first an interpretation in X of the convolution formula 

( f ,  es)(x)= ~ f ( x . y ) ,  (x~Go, s~S, f~C(Go/B,E)), (1) 
y~BsB/B 

which is a special case of 1.1(4) since es=~ s. Let Cos be the face of C o which is 
fixed (pointwise) under the reflection s. As is well-known, the isotropy group of 
Cos is the group B~8~=BsBuB and is transitive on the set of chambers of X 
containing Cos. 

Therefore, if 

BsB= LI xiB, (2) 
i<i<qs 

then x i �9 C O runs through all chambers of X which contain Cos and are 4: Co, i.e. 

U x,. c O = { c ' l  c '  n c O = Cos}, (3) 

and if x~ G and x.  C O = C1, then 

Ux"  xiCo={C'lC' n c 1 =x .  Cos}; (4) 
i 

with the notation introduced at the end of 4.1, (4) can also be written 

U xx~. Co=(C, Cl), (5) 
i 

if C is any chamber such that C n C1 = x- Cos. We recall further that if x, x ' s  G O 
map C O onto C~, they define the same isomorphism of C O onto C (since G o 
consists by definition of special automorphisms): hence x.  Cos=X'. Cos. This is 
the face of type s of x .  C o. 

In view of this, (1) translates into the following: let C, D be adjacent chambers 
of X and s the type of C n D. Then 

( f*  es)(O)= ~ f(C'), (feC(Go/B,E)). (6) 
C' e(C, D) 

Card (C, D)= qs. (7) 

4.3. Proposition. Let U be a compact open subgroup of G o. Then Co(U\ Go/B ) 
is an Ho-module of finite type, with respect to convolution on the right. 

Let d be a positive number, and D(d)={CIds(C, Co)__<d }. The latter is a 
finite set. We may replace U by a smaller open subgroup, hence assume U c B. 
Then Do(d ) is stable under U. 

Let La be the Ho-submodule of Cc(U\ Go/B ) generated by the elements of 
C~(U \ Go/B ) with support in D(d). Since D(d) consists of finitely many chambers, 
L d is finitely generated. It suffices therefore to show that if d is equal to the d o of 
Lemma 4.1, then La= C~(U\ Go/B ). 

By 2.1, the Go-module C(Go/B) ~176 is the contragredient module to C~(Go/B), 
the pairing being given by 

( r  E r (~oeC(Go/B) ~176 ~eC~(Go/B)). (1) 
x~Go/B 
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We have then also 

<q~,h,~k>=<r (opeC(Go/B) ~176 ~keCc(Go/B), hello). (2) 

Under the pairing (1), the space 

c(u . .  Go~B)= C(Go/B) v 

is the dual to 

Cc(U'. Go~B)= G(Go/B) U. 

To prove our assertion, it is enough therefore to show that if 2e C(U'-. Go/B ) 
is zero on L~o then 2 = 0. 

We prove first that 2(C)=0 if CeD(do). Let Zc be the characteristic function 
of U. C in Go/B. Then (1) shows that 

c'2(C)=<2, Zc>, where c = C a r d U .  C; (3) 

but, since U. D(do)=D(do), the function Zc belongs to Ldo hence 2(C)=0.  
Let now CCD(do). Let D be as in 4.1 and s be the type of C n D  (4.2). Then U 

is transitive on (C, D), hence 2 is constant on (C, D) and 4.2(6)(7) yield 

(2 ,G)(D)= ~ 2(C')=%.2(C). (4) 
C" E(C, D) 

Using induction on d~(C, Co) and 3.1 (8), we see that, given a chamber C not 
in D(do), there exist wr  and a chamber C'~D(do) such that 

(2 * e~,)(C')=qw" 2(C). (5) 

Let c '=Card  U. C'. By (2), (3) and (5) 

<2, Zc' * ~w> = <2 * ew, Zc.> = c'-(4 * ew)(C) = c'. qw" 2(C). 

Since Zc,*eweL~o this shows that 2(C)=0.  

4.,1. Theorem. Let (r, E) (resp. (to, Eo) ) be a finite dimensional H = H (G, B)-module 
(resp. no=n(Go,B)-module). Then PB, G(E) and In,~(E ) (resp. Pn, oo(Eo) and 
18, ~o(Eo)) are admissible G-modules (resp. Go-modules ). 

By 2.6, Pa.~(E) and PB,~o(E) are the contragredient modules to IB, a(E') and 
Is, Go(E'o) respectively. It suffices therefore to prove our statement for the induced 
modules Is, o(E ) and Iij,~o(Eo). We next reduce the proof to the case of G o . 

We have G=L. G o, where L normalizes B (3.1). Since B is its own normalizer 
in Go, it follows that each orbit of G O on G/B contains exactly one fixed point 
under B. If x is such a point, then g~--~g, x provides an isomorphism of Go/B 
onto G O �9 x, whence a canonical Go-equivariant bijection of G/B onto the disjoint 
union of m= [G: G o] copies of Go/B. This yields canonical Go-equivariant iso- 
morphisms 

Cc(G/B, E) ~ , C~(Go/B, E) ~ ... ~ Cr(Go/B, E), (m summands), (1) 

C(G/B, E ) "  ~ C(Go/B, E) G ' "  �9 C(Go/B, E), (m summands). (2) 
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These isomorphisms are furthermore Ho-equivariant, H o being identified to a 
subalgebra of H-~ R [ ~ ]  ~ H o (see 3.2 (7)) by the map h~--, 1 | h (he Ho). 

Since G O is open, normal, of finite index in G, a G-module is smooth (resp. 
admissible) if and only it is so with respect to G O . Thus we have to show that 
IB.G(E ) is admissible as a Go-module. Since H o is a subalgebra of H, the module 
I (E)= Cc(G/B)| is a quotient of Cc(G/B)| But, by (1), the latter is the 
direct sum of m copies of IB, Go (E), hence it is admissible if and only if Is, G~ (E) is. 

Let U be a compact open subgroup of G o. Then 

Is, Go (Eo) v = C~ (U'., Go/B ) | Eo" 

Since Cc(U\Go/B)  is a Ho-module of finite type (4.3), this shows that the 
left-hand side is finite dimensional, hence IB, ao(Eo) is admissible. 

4.5. Remark. Theorem 4.4 can be proved directly for the coinduced modules 
without using 2.6. In fact this was my original argument. P. Cartier suggested 
that it would also yield 4.2 and that ! consider the modules I(E) as well. 

We outline here the argument for the coinduced modules. First, it is easily 
seen that Pn, G(E) is a Go-invariant subspace of the direct sum of m copies of 
PB, Go (E), whence the reduction to G O . 

Let U be a compact open subgroup of Go, and d o be as in Lemma 4.1. To 
show that PB, Go (Eo) v is finite dimensional, it suffices to prove that if f e  PB. o,(Eo) v 
is zero on D(do), then it is identically zero. Let C be a chamber such that 
d~(C, Co)>d o. Let D be as in 4.1, and s the type of Cc~D. We have then again, 
using 4.2 (6), (7): 

( f  * e~)(D)= q~ . f (C) ,  (1) 

whence, by induction, the existence of w~W and C'eD(do) such that 

( f  * ew)(C') = q~, . f (C) ;  (2) 

this yields 

qw " f (C)=ro(ew). f (C'), (3) 

and our assertion. 

4.6. Let ~ ; ~ -  be two opposite minimal parabolic k-subgroups of fr162 
~ ~ -  their common Levi subgroup and JV, JV-  their respective unipotent 

radicals. We may (and do) choose them in such a way that B admits the "Iwahori  
factorization" [7: 1.4.4]: 

B = N o . M o .  No, ( N o = N - c ~ B ;  M o = M c ~ B ;  No=NO, B), (1) 

and that M o is the greatest compact subgroup of G O c~ M. In particular, M o is 
normal in M. 

We shall use some notation and results of [7]. If V is a smooth N-module, 
V N denotes the greatest quotient of V on which N acts trivially [7: 3.2]. If V is 
a P-module, VN is viewed as an M- or P-module in the obvious way and the 
projection V ~  V N commutes with P. The assignment V~--, V N defines an exact 
functor from smooth N-modules to vector spaces [7: 3.2.3]. 
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The following lemma is a slight strengthening of Theorem 3.3.3 in [7], valid 
for Iwahori subgroups: 

4.7. Lemma. Let {re, V) be an admissible G-module. Then the canonical projection 
V--* V u induces an isomorphism of V ~ onto (Vu) M~ 

Let ct be the restriction of V ~  V u to V s. Obviously ~(VB)~(Vu) M~ 
Recall that for a~G, e,~H(G, B) is the characteristic function of the double 

coset BaB and % its volume (1.1). It follows from the definitions that we have: 

n(e . ) . v=q , ,  n(el), n(a) .v ,  (veVB). (1) 

By [7: 4.1.4], there exists aeG such that moreover: 

induces an isomorphism of r~(el)" re(a). V B onto (Vu) M~ (2) 

However, the restriction of n(e,) to V B is an invertible automorphism (3.6), 
hence, by (1), n(e~). ~(a). VB= V B. 

4.8. Lemma (Casselman). Let E be an admissible G-module. Assume that E is 
generated by E s as a G-module and that, if E' is a non-zero G-submodule of E, 
then E'B +O. Then 

(i) Any exact sequence of admissible G-modules 

O--* E-~  F--~ F'---~ O 

where F'B=0, splits. 

(ii) if E' is a G-submodule of E, then E' is generated by E 'B as a G-module. 

Proof. By 4.6, 4.7: 

(F~)M~ (EN)M~ M~ and ~t: E ~-o(EN) u~ is an isomorphism. (1) 

The exact sequence [7: 3.2.3] 

O--~ Eu---) F~c--~ F;~-~O (2) 

gives then rise to a direct sum decomposition 

Fu = (Eu) M~ �9 L (3) 

where L is the sum of the isotypic subspaces of Mo in F u for the irreducible re- 
presentations of Mo different from the trivial representation. Since M o is normal 
in M, both spaces are stable under M. Thus (3) is also a direct sum decomposition 
of M- or P-modules. 

Let V be the space of the unnormalized induced representation Ind((Eu)M~ , G) 
[7: 2.2]. By Frobenius reciprocity [7: Thm 2.4.1], the projection flu: Fu ~ (Eu) M~ is 
the map canonically associated to a G-morphism fl: F --, V. We want to prove: 

Ec~kerf l=0,  f(E)=fl(F).  (4) 

fin is an isomorphism of E N =(FN) M~ onto itself. Hence, by 4.7, the homomorphism 
f :  FB=E 8---, V n is injective. Our second assumption on E then implies the first 
part of (4). 
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The G-module fl(F)/fl(E) is isomorphic to a decomposition factor of V. The 
space (fl(F)/fl(E)) B is a quotient of (F/E) B hence is zero. That fl(F)=fl(E) then 
follows from the following known fact (see 4.9 below) 

(.) Let a be a finite dimensional representation of M trivial on M0, and L a 
non-zero decomposition factor of lnd (a I P, G). Then L 8 ~ O. 

This proves (4). It follows that ker fl is isomorphic to F' as a G-module and 
is a supplement to E whence (i). 

Let now E' be a G-submodule of E and E" the G-submodule generated by E 'B. 
By (i), the exact sequence 

O- .  E"-~ E'--, E'/ E"--~ O, 

splits, hence E'/E" may be identified with a G-submodule of E'. However 
(E'/E") B = E'B/E ''B = 0, whence E' = E". 

4.9. The assertion (.) above is essentially proved in [7]. A similar one is also 
announced in 1-14: p. 19]. We indicate briefly how to derive it from [7]. To refer 
freely to [7] we remark first that, since the modulus 6e of P is trivial on the com- 
pact group M 0 and since, by definition [7: 3.1] the normalized induced represen- 
tation Ind (alP, G) is Ind (a6~[P, G), we may shift from one to the other. 

By 1-7: Thm. 3.3.3], it suffices to prove that LN40.  Since the functor a~--~Ind a 
is exact, as follows from its definition, we may, by an easy induction on the length 
of a Jordan-H61der series of a, assume that a is irreducible. The G-module L 
has finite length [7: 6.3.8], so we may assume it to be irreducible. But then L 
embeds in an induced module (Ind (ziP, G), where z is a finite dimensional irre- 
ducible representation of M trivial on M o [7: 6.3.9] and LN:~0 by [7: 3.2.5]. 

Here, B need not be an Iwahori subgroup. It suffices that it be a compact 
open subgroup of G admitting an Iwahori factorization (4.6(1)). 

4.10. Theorem. Let (r, E) be a finite dimensional H(G,B)-module. Then the 
canonical morphism j: IB, ~ (E) - .  PB, ~ (E) is an isomorphism. The G-module IB. ~ (E) 
is irreducible if and only if E is an irreducible H(G, B)-module. The assignment 
E~-~ I(E) (resp. E~--~P(E)) is an exact functor from finite dimensional H-modules 
to admissible G-modules. The H-module Cr is fiat. 

Let M be the G-submodule of P(E) spanned by G. P(E) s, and V= P(E)/M. 
Every non-zero G-submodule of P(E) contains a non-zero B-fixed vector (2.4). 
On the other hand, VB= P(E)B/M B is zero. By 4.8, the exact sequence of G-modules 

0---~ M ~ P(E)--~ V~O,  

splits. Thus V may be viewed as a G-submodule of P(E) and the equality V~=0 
implies V=0  by 2.4. Therefore P(E) is generated by E as a G-module and j is 
surjective. This also applies to P(E'). Since P(E') is the contragredient to I(E) 
(2.6), it follows that every non-zero G-submodule of I(E) has non-zero B-fixed 
vectors [7: 2.2.3], hence j is injective; furthermore, if V is a G-submodule of I(E), 
then V is spanned by G. V B (4.8); if E' is an H-submodule of E, then the smallest 
G-submodule F of I(E) containing E' is a quotient of I(E'), hence (2.4) satisfies 
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FB= E'. These two remarks imply the irreducibility statement. Let 

E '  ~ , E  t~ ,E" ,  (1) 

be an exact sequence of finite dimensional H-modules, and 

I(E') '(~), I(E) '~), I(E"), (2) 

the corresponding sequence of induced modules. Let F =ker  I(fl). By assumption 
and 2.5, F A =ker  fl = Im ~. Since, by the above, F is generated by F B as a G-module, 
we have F = I m  I(at). This proves the third assertion for induced modules. In 
view of the first one, it also follows for coinduced modules. By the definition of 
induced modules, the last one is just a reformulation of the third one (for induced 
modules). 

4.11. Corollary. Let V be an admissible G-module and assume that V is generated 
by G. V ~. Then the canonical morphisms I(VB)J~ V-L~ P(V n) are isomorphisms. 
Every G-submodule of V is generated as a G-module by its B-fixed vectors. 

The composition vo# is the morphism j of 4.10 hence is an isomorphism. 
Moreover, ~ is surjective since V is generated by G.  V B. This proves the first 
assertion. The second one follows from 2.4 and 4.8. 

4.12. Corollary. Let V be an admissible G-module. Let M be the G-submodule 
generated by V ~. Then V is the direct sum of M and of a G-submodule N such that 
N~=0.  

By 4.11, M = I ( V  B) and every G-submodule of M is generated by its B-fixed 
vectors. Since (V/M)B= VB/VB=O, 4.12 follows from 4.8. 

w 5. Square Integrable Representations Induced from Characters of Degree One 

In this section, R is the field C of complex numbers; G' stands for G or G O (3.1). 

5.1. Let L 2 (G'/B) be the space of elements f ~  C(G'/B) such that 

Ilfll 2= ~ If(x)12< ~ 
x~G'/B 

Endowed with the scalar product 

( f , g ) =  ~ f (x) .g(x) ,  (f, gELZ(G'/B)), 
xeG'/B 

it is a Hilbert space on which G' acts by unitary transformations via left trans- 
lations. It contains Cc(G'/B ) as a dense subspace. It follows from 4.4(2) that 
L 2 (G/B), viewed as a Go-module, is the direct sum of finitely many copies of 
Lm(Go/B). Since B is compact, Lm(G'/B) may be identified with a closed G'-sub- 
module of Lm(G'/B), hence the closed non-zero irreducible G'-submodules of 
L z(G'/B) are members of the discrete series of G'. We want to determine those 
which are of the form Pa, a' (Z), where Z is a character of degree one of the Hecke 
algebra H(G', B). 
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5.2. Proposition. Let a be a character of degree 1 of H o and z a character of ~P 
such that Z = t~ o z is a character of H (see 3.5). Let Px = PB, a(Z), l-z = L2 (G/B) c~ Px, 
P~= P~.Go(a) and L~= L2(Go/B)c~ P~. Then 

(i) L x , O  ~ L~,t=O .*~ Pz=Lz,  
(ii) L,#-Oc*, L~ W-Oe*. P , = L , ,  

and these conditions are equivalent to 
(iii) C , =  ~ q,~t .a(w)2<oe. 

weft" 

The convolution on the right by an element of H(G', B) obviously preserves 
L 2 (G'/B) and is continuous. Hence L, and L z are closed subspaces of L 2 (Go/B) 
and L 2 (G/B) respectively. 

Let M be a closed invariant subspace of L 2 (G'/B) and pr u the orthogonal 
projection of L 2 (G'/B) onto M. Then pru(Cc(G'/B)) is dense in M. Since Cc(G'/B ) 
is the space spanned by the G'-transforms of e~, it follows that pru(e l )~0 if 
M ~ 0 .  This yields the first equivalence in (i), (ii); the second one follows from 
the irreducibility of Po and Px (4.10). We have e,=~s, hence a(ew)=a(~w) , since 
the a(es)'s commute. Therefore, by 2.4(ii), the space (p,)B is spanned by 

f~= ~" q~la(ew)ew, (1) 
WEI~ 

and in view of 3.1(3)(4)(10)(11), (Px) B is spanned by 

fx = ( ~2 v (O))" f~. (2) 

We have 

Ilfxll2=l~l �9 IIf~ll 2, ( l ~ l = C a r d ~ ) .  (3) 

Since G O is the disjoint union of the B w B  (wel2V), we havc 

IILII z= ~ Z f.(x)2; (4) 
w~lTV x~BwB/B 

f ,  being constant on BwB (wslTv), this gives 

llf~ll 2= ~ q~.lf ,(w)] 2= ~ qw ~ .~(w)2=Cr (5) 

Therefore 

L~ :#0 ,:* II f~ll 2 < oe .,~ C~ < oo ~ II fx II 2 < o0 ,=. L~ :t=0, 

whence the equivalence of (iii) with the conditions in (i), (ii). 

5.3. Proposition. We keep the notation of 5.2 and assume that L~ ~ O. Let d, 
(resp. dz) be the formal degree of the representation of G O in L o (resp. G in Lz), 
computed with respect to the Haar measure dx for which B has volume 1. Then 

dx=l~ ' l - l d , ,  d =C21. 

The orthogonal projection of e 1 onto L, is non-zero (see proof of 5.2), in- 
variant under B, hence is a non-zero multiple off~. We may therefore write: 

f ~ = c . e t  +u 
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with u e L  2 (Go/B) orthogonal to L, ,  whence 

c ,=(L ,L)=c"  (L, e,)=c . L ( 1 ) =  c, 

f~ = C~.  e 1 + u (u e L 2 (Go/B), u-L L , ) .  

By definition of the formal degree, we have 

I(L, Ix .L)12 d x = d ~  ~ . IILH'. 
Go 

From (1) we get 

(L ,  l~ . f ~ ) =  C,(f~, l , .  e , )= C~ �9 f~(x-~), 

hence 

( f . ,  I ,-f~)= C, .  f~(w) = C~-q,~'- a(w), 

and, by (2) 

(x e Go), 

(we 17r x e B .  w -1 �9 B), 

A. Borel 

(1) 

(2) 

(3) 

I (L,  tx .L)lZdx = c#. IILll2 = CS~=ds 1 r lLI l '=d~  -1 �9 c~,  
eo 

which yields our assertion for d,. The proof for d x is the same. 

5.4. We now discuss the finiteness of C,, assuming that fr is almost simple over 
k. As in 3.3, we let S i (1 < i <  m) be the intersections of S with the conjugacy classes 
in 1~ and put qi = qs for s e S i (3.5). For w e l/J z, the number of elements of S t occuring 
in a reduced decomposition of w depends only on w (as follows from Prop. 5, 
p. 16 of [4]) and will be denoted li(w ). Thus 

l ( w ) =  ~. l,(w). 
l < i < m  

We let t i be an indeterminate, 

l ( w ) = ( l l  (w), . . . ,  tin(w)), t = ( q ,  ..., t,,), 

tlew)= 1-[ t~' 'w, 
l < i < m  

and consider the formal power series 

w({t,})= Z t'(w'" 
weft" 

Given a character a of degree 1 of Ho, let us put 

1 if a ( e , ) = q ,  for seS~,  

- 1 if a(es)= - 1 for s e S i .  

We have 

a (ew) 2 = ]-[ ql' +'0 t,tw), 
i 

a(ew)2/qw = I-I q~' t,(w), 
i 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

whence the 
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5.5. Lemma. The sum C o is finite if  and only i f  W({tl} ) converges for ti=q~' , and 
then we have 

C~= W ({q~,}). 

5.6. The series W(t) represents a rational function [15: Prop. 26], which, accord- 
ing to [12] can be written in the form 

w ( t ) = P ( t ) .  Qj(t) , 

where P(t) is a polynomial with positive coefficients and Qj(t) is of the form 

Qj(t)= 1 -  t lqJ1 ... t~m, (qji>=O, integral). 

Therefore 

C,, < ~ <:~ [-[ q~iqj, < 1 for j = 1 . . . . .  I. (1) 
i = l  

We have q i=q"  with q>=2, and a~> 1, integral, hence (1) may be written 
m 

C ~ < ~ r  ( j= 1, . . . , /) .  (2) 
i = l  

5.7. If a is the special character, then e~ = - 1 for all i and the conditions of 5.6(2) 
are fulfilled. The representations L, or L x are the special representations con- 
structed by Matsumoto [13] and Shalika [16], to which we shall come back 
in w 6. In fact, in this case 

C~,=E q.~'. (1) 

If m = 1, this is then the only square integrable representation we obtain in 
this way. 

5.8. We now consider the cases where m>2.  By [12], the polynomials Qj(t) 
(1 _-<j=< l) are 

(1 - t 1 t2)  

(1-tF 2+j. t9 

(1 - t [ -  2 + i  t2 ta ) 

( 1 - t 3 t 2 " ~ l  2I, ( 1 - t 4 t 3 " ~ l  2/, ( 1 - t s t 3 ~ l  2J, ( t - - t ~ t ~ )  

(1--t2 t2), ( l - - t3  t2~ 
1 2Y' 

for the type A1 

for the type B t ( />3) 

for the type C~ (l > 2) 

for the type F 4 

for the type G 2 

with the following assignment of the ti's to the conjugacy classes in S 
t l  
% 

B / :  
o / , 1  tl t l  t2 

t l  

Cz �9 ,.. ,-~--- . . . .  , o 
t 3 t 1 t l  t 2 

F4: ~ ~ " '~ ~ 
t 1 t 1 t 1 t 2 t 2 

G 2 :  o . . . .  
t l  t t  t2 
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In the sequel we denote a character by the sequence of the ei defined by 5.4(4). 
For each type, and possible set of values of the q~, we shall indicate the a such 
that L, belongs to the discrete series, as given by application of 5.6(2) and 5.8. 

(i) Assume first the q{s to be equal. This is the case if G is split over k or, more 
generally, if G is quasi-split over k and splits over a totally ramified extension 
of k. The characters different from the special one which yield a square integrable 
representation are then 

( - 1 , - 1 , 1 ) ,  ( - 1 ,  1 , -1 ) ,  ( - 1 , 1 , 1 )  

( - 1 , -  1, 1), ( -  1, 1, --1) 

( - 1 ,  1) 

for the types Ct (l > 4), 

for the types C2, C3, 
for the types B~ (1> 3), F 4, G 2 . 

(ii) Assume the q:s are not equal. If 1= 1, and say, ql <q2, then ( - 1 ,  1) gives 
rise to a square integrable representation, whereas (1, - 1 )  does not. 

Let now l > 2. The following table gives for each type, the possible values of 
the qi, which were communicated to me by J. Tits, and the characters other than 
the special one which yield a square integrable representation. 

Type of I~V (q~, q2) Characters Type of W (q,, q2) Characters 

B, (I>=4) (q, q2) ( -  1, 1) F 4 (q, q2) (1, - 1) 
B, (/>_2) (q2, q) ( -  1, 1) F 4 (q2, q) ( - -  I, 1) 
B l ( l>=3) (q2, q3) ( -  1, 1) G 2 (q, q3) (1, - 1) 

G2 (qa, q) ( - 1, 1) 

For the type C~, the list is as follows. 

(ql, q2, q3) l Characters (ql, q2, q3) l Characters 

2 ( 1 , -  1 , -  1) , ( -1 ,  1 , - 1 )  2 ( 1 , - 1 , - 1 )  
(q,q, q2) >3 ( - 1 ,  - 1 ,  1 ) , ( -  l, 1, - 1) (q2,q, q4) >2  ( - 1 , -  1, l), ( -  1, 1, - 1) 

>5 ( - 1 , 1 ,  1) > 4  ( - 1 , 1 ,  1) 

2 (1, - 1, - 1) 2 (1, - 1, - l) 
(q, q2, q2) _>_2 ( - 1 , -  1, 1), ( - 1 ,  1,--1) (q2, q2, q3) >_2 (-- 1, -- 1, 1), (-- 1, l, -- l) 

>=6 (--1,1,1) =>4 (--1, 1,1) 

(q2, q, q) >_2 ( - 1 ,  - 1 ,  1) , ( -1 ,  1, - 1 )  
>3 ( -1 ,1 ,1 )  

>2  ( - 1 , - 1 , 1 ) , ( - 1 , 1 , - 1 )  
(q2,q, q2) >=3 ( - 1 ,  1, 1) 

(q2, q, q3) 
>2 ( - 1 ,  1 , - 1 )  
>3 ( - 1 ,  - 1 ,  1) 
>4  ( - 1 , 1 ,  1) 

(q2, q3, q3) 

(q2, q3, q4) 

2 (1, -1, -1) 
_>2 ( - 1 , -  1, l),(-1, 1,-1) 
>__5 ( -1 ,1 ,1 )  

2 ( i , - 1 ,  - 1 )  
~ 2  ( - 1 , - 1 ,  1 ) , ( -  1, 1, - 1 )  
>5  ( - 1 , 1 ,  1) 

5.9. Remarks. (1) Let a be a character of H 0 and ~ the representation of G O in 
L~. We use the notation of 4.6, 4.7. By 4.7 and 4.7(1), the space (L~) N is one- 
dimensional and we have 

It(a) �9 v=a(ea),  q~-X .v, (ve(Lo)N; aeA- ) ,  (1) 
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where A- is a suitable negative Weyl chamber in a k-split torus of M. Moreover, 

qa=16e(a)1-1, (a~A-). (2) 

It follows that (n, L,) embeds in the induced representation Ind (xIP, G) where 
Z is the character of P which is equal to a(a)6,(a) on A-.  

(2) [7: 6.5.1] gives a criterion for the square integrability of an irreducible 
submodule of an induced representation. In view of the previous remark it yields 
in our case 

[a(a)l<(qa) �89 (a~A-). (3) 

It can be checked directly that this is equivalent to 5.6(2). In fact, the first 
determination of the square integrable L, ,  obtained with the help of J. Tits, was 
based on a criterion quite similar to (3), proved by some geometric considerations 
on euclidean reflection groups. 

(3) I understand that the results stated without proof or reference in 5.8 will 
eventually be found somewhere in the sequel to [5]. 

5.10. Remarks on the formal degree. It follows from 5.3 and 5.5, 5.6 that d, is a 
rational number. If a o is the special character and a:~a o, then la(w)l>lao(W)] 
for all w~l~, and I~r(w)l:~l~o(w)l for at least one w, hence d,<d,o. Examples 
show that in general neither of d, and doo is an integral multiple of the other. We 
note that the elements of the discrete series constructed here are not cuspidal, 
since the coefficient x~-+(f,, l~ .f,) is not compactly supported in view of 5.2(1). 

5.11. The algebra H=Hc(G, B) is in a natural way an involutive Lie algebra, the 
involution h~-+h* being defined by f~--+f* where f*(x)= f (x  -1) (f~ Cc(B\ G/B), 
x~G). In particular e w* = ew- ~ (w~G). Let E be a finite dimensional Hilbert space. 
A representation r of H into EndE is self-adjoint if, for every h~H, r(h*) is the 
adjoint of r(h). In particular, every one-dimensional representation is so. Clearly, 
if (n, V) is an admissible unitary representation of G, then the associated represen- 
tation of H into V B is self-adjoint. It is not known whether conversely, if (r, E) 
is self-adjoint, the representation P(E) is unitary. If l = 1, however this is the case 
according to [14: p. 20]. 

w 6. The Special Representation and Cohomology of Buildings 

In this section ~ is simply connected and almost simple over k. 

6.1. As before, X is the Bruhat-Tits buildung of G. It is a locally finite simplicial 
complex of dimension l, union of its simplices of dimension l, which are called 
the chambers. We let CJ(X) (resp. C~(X)) be the space of j-dimensional complex 
valued cochains with arbitrary (resp. compact) supports on X. In particular 
CI(X)=C(G/B) and CIc=Cc(G/B). We let d: CJ-+C j+l be the coboundary 
operator and 6: CJ(X)--+ Ci-I(X) its adjoint with respect to a suitable scalar 
product [1; 9] which, for j=l, coincides with the one introduced on C(G/B) 
in w 5. A element c of C~(X) is harmonic if it is annihilated by d and 6. If c is square 
integrable, this is equivalent to being annihilated by the Laplace operator d = 
d6+6d [1;9]. 
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HI(X ) (resp. Hi(X)) is the j-th cohomology group with compact supports 
(resp. j-th homology group with arbitrary supports) of X with complex coefficients. 
In particular 

H~(X)=C'c(X)/dC'c -1, H,(X)=C'(X)c~kerG=Z,. (1) 

C{(X) is the space of square integrable j-cochains, and H{ the space of square 
integrable harmonic cochains. In particular, Ctz ~-LZ(G/B); there is an orthogonal 
decomposition 

L2(G/B)= C 2'-- H 2t @dC~-I (2) 

where denotes closure in the Hilbert space LZ(G/B) [1; 9]. An element 
u~ Cl(X) is a cycle if and only if, viewed as an element of Ct(G/B), it satisfies the 
relations 

f *  e, = - f ,  (s e S). (3) 

It follows that f is a cycle if and only if 

f ,  h =Go(h).f, for all hell(G, B), (4) 

where a 0 is the special character (3.5). By 5.2, the identification Ct(X)= C(G/B) 
then provides isomorphisms of G-modules 

HI(X ) = P~ HI2 = P~ r L 2 (G/B), (5) 

where P~ is as in 2.3 and 

H,(X) ~ -=- P(ao) = L,o. (6) 

Let pr h be the orthogona] projection of C~ onto H i. Since CZc(X)c Cl2, ker pr h 
contains d C~- I (see (2)) and this projection induces a homomorphism of G-modules 

rl: H[(X)-~ n' 2 = L~o. (7) 

6.2. Theorem. The homomorphism tl: H~(X)---+ HI2 is injective. Its image is the space 
of smooth elements of HI2 . 

Since H~(X) is a quotient of C~(X)= C~(G/B), it is generated by G.e 1 and is 
smooth, hence Im t/is generated by G-t/(e~) and contained in L~o. As remarked 
in the proof of 5.2, r/(e,)4:0, hence Im r/is a non-zero G-submodule of Loo. Since 
the latter is irreducible (4.10; it also follows from the irreducibility of the special 
representation and [7: 2.1.5]), Imr/is equal to Loo. There remains to show that t/ 
is injective. 

The scalar product on CI(X) defines a pairing between C(X) and C'~(X). It 
is well-known, and elementary, that Z,= Cl~ke r6  is the annihilator of dClc -1, 
so that we may identify Ht(X ) with the dual of H~(X) in such a way that the canonical 
pairing is defined by our scalar product. By [3: 5.6, 5.10] the G-space H~(X) is 
admissible. Therefore H~(X) ~ is admissible and is the contragredient to H~(X) 
[7: 2.1.9] in particular, if U is a compact open subgroup of G, then H,(X) v is 
canonically isomorphic to the dual of H~(X) v and we have 

dim Ill ( S) v = dim H~ ( S) v. (1) 

On the other hand, since r/is surjective, LVo is a quotient ofH~(X) v. 
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However, by 6.1(6), L,o=Ht(X) ~, hence by (1), dimL~o=dimH~(X)V and r/ 
is injective on H~(X) v. Since H~(X) is the union of such subspaces, our assertion 
follows. 

6.3. Let ~ be a minimal parabolic k-subgroup of G, �9 the set of roots of ff with 
respect to a maximal k-split torus contained in ~ and A the set of simple roots 
associated to ~.  Let ~ (I c A) be the parabolic k-subgroups of f~ containing ~ ,  
and C~ the space of locally constant complex valued functions on G/P~. 
It is an admissible G-module (with respect to left translations), the unnormalized 
induced representation Ind(l[P~, G). Let 01 be its character. In the Grothendieck 
group of admissible G-modules, we have, by [3: 5.6, 5.10], the equality 

H~(X)= ~. ( -  1) lIt C~(G/P~), (1) 
I=A 

where III = Card I. The character of the admissible G-module H~(X) is then the 
alternating sum 

~,, ( -  1) Ill 0i, (2) 
I c a  

the "Steinberg character" of G. In view of 6.2, we have 

6.4. Corollary. Let 01 be the character of lnd(llP~, G) (/cA). Then the character of 
the special representation is equal to 

( -  1)1~10~. 

6.5. Remark. As we saw, the fact that in 6.2 t t ~o rl(H~(X)) = (H2) is rather elementary, 
so that the main point is the injectivity of ~/, which is equivalent to H~(X) being 
an irreducible G-module. If the isomorphism 6.3(1) is granted, this is in turn 
equivalent to the right hand side of 6.3(1) representing the class of an irreducible 
admissible G-module. This is included in a more general Theorem announced 
in [8]. 

w 7. Proof of Lemma 4.1 

7.1. In this section, we use freely some terminology and known facts on buildings, 
to be found in [5]. Much of what we need is also reviewed in I-3: ~j 4, 5]. 

As in 3.1, C O is the chamber fixed under/3 and A o the apartment of X fixed 
under/~ =/~ c~ ~r. We recall that an apartment (resp. a wall) in X is the transform 
by some element of G of A o (resp. of the fixed point set of a reflection in 1~). Any 
two chambers are contained in an apartment [5: 2.3.1]. A half-apartment is a 
closed half-space in an apartment whose boundary is a wall. If ct is one, then d~ 
denotes the wall which is its boundary (in any apartment containing it) and U~ 
the greatest unipotent subgroup of G which fixes it. Thus U~ is normal in the 
fixer G~ of~ in G, and G~ is the semidirect product of H and U~. 

We let d(, ) be the canonical metric on X [5: w It is invariant under 
and induces ~ euclidean metric on each apartment. If M is closed and N compact 



258 A. Borel 

in X, then 

d(M, N)= min d(x, y). 
x~M,yeN 

The ball of radius a and center x ~ X is the set of y ~ X such that d(x, y)< a. 

7.2. Lemma. (i) Let C be a chamber of X.  Let A be an apartment containing C 
and C O and ~ a half-apartment of  A such that C r  and C n S ~  is a face of co- 
dimension 1 of C. Let D be the chamber contained in ~ such that D c~ C = C n 8~. 
Then U~ is transitive on the set of chambers C' of X such that C' n D = C n D. 

(ii) There exists a constant 2 > 0  with the following property: if a is a half- 
apartment and x ea, then U~fixes the ball of  radius 2.  d(x, ~ )  and center x. 

(i) follows from 5.1.10, p. 86, and (ii) from 7.4.33, p. 179 in [5]. We note that 
it suffices to prove the existence of 2 for one given half-apartment, since the half- 
apartments form finitely many orbits under t~. 

7.3. Lemma. Let a o be a strictly positive real number. There exists a number a 1 > 0 
with the following property: if C is a chamber of  X,  ds(C, Co)> a 1 and A is an 
apartment containing C, Co, then there exists a half-apartment c t cA  such that 
d(Co, 8 ct) _>_ ao, C o ~ ~, C c ( A - ~) u 8 o~ and C c~ 8~ is a face of codimension one of C. 

Since G is transitive on the set of pairs consisting of an apartment A' and a 
chamber C ' c  A' [5: 2.26, p. 36], it suffices to prove this in a given apartment, 
say A o. It follows there by an elementary argument in euclidean geometry, using 
the fact that the chambers are all congruent polysimplices and hence that the set 
of angles of two faces of codimension one of all chambers is finite. 

7.4. Lemma. Let U be a compact open subgroup of  G. There exists a constant b o 
with the following property: let C be a chamber of  X such that ds(C , Co)> b o. Then 
there exists a minimal gallery 7={Co,  C 1 , . . . , C m = C } ,  (m=ds(C, Co)+l),  
connecting C o and C such that U is transitive on the set (C, C,,_1) of chambers C' 
in X such that C' n Cm_ 1 = C ("~ f r o _  1. 

We may replace U by a smaller group, hence assume that U ~ B  fixes C o. 
Let D be a ball in X, with center a point Xoe Co, big enough so that the subgroup 
of G which fixes it is contained in U. Let r be the radius of D, a o = r/,~, and choose 
a 1 as in 7.3. Let C be a chamber such that d,(C, Co)>a 1. Let A and �9 be as in 7.3. 
Then the wall d~ contains a face of codimension 1 of C and separates C and C o. 
There exists therefore in A a minimal gallery ~ = ( C  o, C 1 . . . . .  C,~= C) such that 

C~c~(O<i<m) ,  CC~Cm_I = C n S ~ = C , ~ _ l c ~  (1) 

[4: IV, w 1, Ex. 16]. The gallery 7, being minimal in A, is also minimal in X [5: 2.3.6, 
p. 38] hence 

m=d~(C, Co)+ 1, d~(Cm_ 1, Co)=d~(C, C o ) -  1. (2) 

By 7.2(ii), the group U~ fixes the ball of radius 2.  d(x o, 8~). Since 

d(x o, 8a) > d( C o, 8 ~t) > a o = r/2, 
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the g roup  U, fixes the ball D chosen above hence, 

t;~ c v .  (3) 

Finally, the chamber  Cm, Cm_ 1 satisfy, with respect to A and e, the assumptions 
imposed on C, D in 7.2(i), therefore U, is transitive on the set of (C, Cm_l). This 
proves 7.4, with b 0 = a 1. 

7.5. Proof of Lemma 4.1. Since the isogeny e): d---, G induces a h o m o m o r p h i s m  
(~ -~ G O which commutes  with the actions of G and G O on X, it suffices to consider 
the case where G = G, hence G O = G. 

Let U be a compact  open subgroup of (~. Choose  b o as in 7.4. Then, by 7.4, 
all our  conditions are fulfilled if we take d o = b 0 and choose for D the element 
Cm_ 1 of  the gallery 7 (see 7.4(1), (2)). 

References 

1. Borel, A.: Cohomologie de certains groupes discrets et laplacien p-adique. S6m. Bourbaki 26~me 
ann6e (1973/74), Exp. 437, 24 p 

2. Borel, A., Serre, J-P.: Cohomologie h supports compacts des immeubles de Bruhat-Tits; application 
/l la cohomologie des groupes S-arithm&iques. C.R. Acad. Sci. Paris 272, 110-113 (1971) 

3. Borel, A., Serre, J-P.: Cohomologie d'immeubles et de groupes S-arithm&iques. A paraitre dans 
Topology 

4. Bourbaki, N.: Groupes et alg~bres de Lie, Chap. IV, V, VI, Act. Sci. Ind. 1337. Paris: Hermann 1968 
5. Bruhat, F., Tits, J.: Groupes r~ductifs sur un corps local. Chap. I. Publ. Math. I.H.E.S. 41, 1-251 

(1972) 
6. Casselman, W.: The Steinberg character as a true character. Harmonic analysis on homogeneous 

spaces. Proc. Symp. pur. math. 26, 413-417 (1974) 
7. Casselman, W.: Introduction to the theory of admissible representations of ~-adic reductive 

groups. To appear 
8. Casselman, W.: On a p-adic vanishing theorem of Garland. Bull. A.M.S. 80, 1001-1004 (1974) 
9. Garland, H.: p-adic curvature and the cohomology of discrete subgroups of p-adic groups. Annals 

of Math. 97 (2), 375-423 (1973) 
10. Higman, D.G.: Induced and produced modules. Canadian J.M. VII, 490-508 (1955) 
1 i. Iwahori, N., Matsumoto, H.: On some Bruhat decompositions and the structure of the Hecke 

rings of p-adic Chevalley groups. PuN. Math. I.H.E.S. 25, 5-48 (1965) 
12. MacDonald, I.G.: The Poincar6 series ofa Coxeter group. Math. Annalen 199, 161-174 (1972) 
13. Matsumoto, H.: Fonctions sph6riques sur un groupe semi-simple p-adique. C.R. Acad. Sci. Paris 

269, 829-832 (1969) 
14. Matsumoto, H.: Analyse harmonique dans certains syst~mes de Coxeter et de Tits. Analyse sur les 

harmonique et groupes de Lie. Lecture Notes in Math. 497, 257-276. Berlin-Heidelberg-New York: 
Springer 1975 

15. Serre, J-P.: Cohomologie des groupes discrets. Prospects in Mathematics, Annals of Math. 
Studies 70. Princeton: Princeton University Press 1970 

16. Shalika, J.A.: On the space of cusp forms of a p-adic Chevalley group. Annals of Math. 92 (2), 
262-278 (1970) 

Armand Borel 
The Institute for Advanced Study 
School of Mathematics 
Princeton, N.J. 08540 
USA 

Received December 23, I975 


