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1. Introduction 

This investigation began as an attempt to generalize to infinite groups the following 
theorem of Swan [26]. 

Theorem (Swan). Let P be a finitely generated projective module over the group 
ring 7lG of a finite group G. Then Q | P is a free QG-module. 

The conjectural generalisation consists in: (i) interpreting the theorem in 
terms of the character Zj, of P; (ii) introducing a notion of rank, r e, of P which, 
(a) makes sense even when G is infinite, and (b) determines ZF when G is finite; 
and (iii) predicting in general that r e = r e for some free module F. This conjecture 
is proved here for torsion free linear groups, and a weaker version of it is proved 
for all residually finite groups. 

The definition of re uses the "universal trace functions" introduced by Stal- 
lings [25] and Hattori [13]. While writing up the relevant preliminaries it became 
apparent that the literature contains no systematic and comprehensive exposition 
of the basic properties of these trace functions, nor a unified account of the diverse 
types of problems which have been treated by what amount  to trace function 
methods. I have attempted to approximate such an exposition here, particularly 
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because available methods can be exploited to yield many results that are sig- 
nificantly stronger and more precise than those derived in the literature. 

Following is a resum6 of the paper. 

Let k be a commutative ring. If M is a finitely generated projective k-module 
its trace function is a k-linear map T~: Endk(M)~k (cf. [4], II. 78). If A is a 
k-algebra and p: A-',Endk(M ) defines a (right) A-module structure on M, its 
character zM:A--~k is defined by zM(a)=TM(p(a)). Since zu(ab)=zM(ba) 

- Zu is a "central function" on A - ZM factors through the quotient map 
T: A--~ T(A)=A/[A, A], where [A, A] denotes the subgroup of A generated by 
all [a, b] =ab-ba.  

Let P be a finitely generated projective (right) A-module. Stallings [25] and 
Hattori [13] introduced a natural trace function Te: EndA(P )--~ T(A), whence a 
definition of the rank r e of P as Tp(1p)~T(A). These definitions lead to corre- 
sponding notions of "Lefschetz numbers" and "Euler characteristics" in T(A) 
for appropriate endomorphisms and modules, respectively. These notions, and 
the indicated "duali ty" between characters and Euler characteristics, are recounted 
in w167 2-4. 

Suppose A is the k-algebra kG of a group G. If sEG one can identify 
T(s)~ T(kG) with the G-conjugacy class of s, and T(kG) with the free k-module 
having the set T(G) of G-conjugacy classes as a basis. Thus every re T(kG) is a 
finite linear combination, r =  ~ r(r). r. This notation identifies r with a func- 

~ T(G) 

tion T(G)~-~ k with finite support, supp (r)~ T(G). We can also view r thus as a 
"central function" G--~ k by putting r(s)= r(T(s)) for s~G. This in turn identifies 
T(kG) with an ideal in the ring CF(G, k) of all central functions G-~ k, where 
the characters ZM of finitely generated k-projective kG-modules M live. If P is a 
finitely generated projective kG-module then so also is Q=HOmk(M,P), and 
rQ=ZM, re. If G is finite then Ze is defined and, as Hattori showed, 

zj , (s)= IZ~(s)l �9 rp(s -1) (1) 

for s~G (Prop. (5.8)). Here we write ZG(s ) for the centralizer in G of s and IZ~(s)l 
for its order. These and related facts are recounted in w 5. 

When P~-(kG) n one has re(1)=n and re(s)=O for s * l .  Thus, in view of (1) 
above, Swan's theorem is just the affirmation of the following conjecture when 
G is finite. 

Strong Conjecture. Let G be a group and let P be a finitely generated projective 
7~G-module. Then re(s)=O for s4:1 in G. 

The free Z-module P |  has rank ~ re(z). This motivates the: 
~eT(G) 

Weak Conjecture. re(l)= ~ re(z ). 
$~T(G) 

The strong conjecture is in the same spirit as Serre's question ([24], p. 85) 
asking whether a group of " type (FP)" is automatically of " type (FL)". The weak 
conjecture was posed as a question by Dyer and Vasquez [10], and was the 
starting point of this investigation. We prove the strong conjecture (Prop. (9.2)), 
even over C in place of 77, for a class of torsion free groups including those with 
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faithful linear representations (Th. (9.6)). We prove the weak conjecture for all 
residually finite groups (Cot. (6.10)), this being an easy consequence of Swan's 
theorem. We give here a simple proof of a more general version of Swan's theorem 
(Th. (6.6)) which is derived from the following formula (Prop. (6.1)) for the rank 
rpm of P restricted to a subgroup H of finite index in G: 

rp/i~(s) = rp/G (s) . [ZG (s): ZH(s)] 

for all s e H. Other results, examples, and questions concerning subgroups of finite 
index are discussed in w 6. 

If k has prime characteristic p then T(kG) admits a Frobenius endomorphism 
F sending ~ r(z)z to ~ r(z) p r p, where T(s) p denotes T(sP), and such that Tp(u p) = 
Tp(u) p if P is a finitely generated projective kG-module and ueEndka(P ). In 
particular rp= Tp(1p) is fixed by F. This imposes major constraints on supp(rp) 
and on the values rp(s)~ k. This was first observed and exploited by Zalesskii [27]. 
We present the properties of F in w 7. 

The complex group algebra lEG is treated in w by Zalesskii's method of 
specialization to characteristic p, where Frobenius operates, and use of the 
t~ebotarev density theorem. Specifically, let P +0  be a finitely generated pro- 
jective lEG-module, and put r =  rpe T(lEG). Kaplansky ([19]; see Th. (8.9) below) 
showed that r(1) is a totally real algebraic number >0.  He conjectured that 
r(1)sll~, and Zalesskii [27] proved this. Certainly the most interesting result 
obtained here is the following one (see Th. 18.1), proved with the aid of Zalesskii's 
methods. 

a) The field E generated by all r(s) (seG) is a finite abelian extension of II~. 
b) For all but finitely many primes p, ~ ~--,r p is a permutation of S = supp (r), 

and r(zP)=ar(r) for reS,  where a is the Artin symbol (p, E/~). 
c) Suppose seG has finite order m and r(s)+O. Let w=exp(2~i/m). Then 

r(s)~Q(w), say r(s)=f(w) where fell~[X], and we have r(sq)=f(w q) for all q 
prime to m. 

d) If G satisfies a certain "non-divisibility condition" (D) (see (9.1)) then 
r(s)=0 whenever s has infinite order (Prop. (9.2)). 

e) Linear groups satisfy condition (D) (Th. (9.6)). 

These methods have been used by Formanek [11], Passman and Sehgal [20], 
and others to investigate idempotents and units of finite order in lEG. Some of 
their results are recounted in w 8 to illustrate some nice applications of the present 
methods. 

In the final {} 10 we discuss groups of finite cohomological type. Specifically, 
suppose k (with trivial G action) has a finite resolution 

O--~P,--~ ...--+Po--~k--,O 

with each P~ a finitely generated projective kG-module; we then say G is of type 
(FP) over k, and put r~=~(-1)irp,~W(kG), x(G)=r~(1), and ~(G)= ~" re(z ), 

~T(G) 

these being various kinds of Euler characteristics of G over k. If the k-modules 
Hi (G, k) (resp., H i (G, k)) are projective, say of rank h i (resp, h i) in k, then (Cor. (10.3)), 

~ ( G ) = ~  ( -  1) ih ,=~ ( - 1)'hq 
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If Z (G):t:0 then, as Stallings showed, the center Z(G) is a finite group whose order 
is invertible in k (Prop. (10.4)). Further (Prop. (10.7)) rG(~s)=rG(s ) for any auto- 
morphism ~ of G. If H is a subgroup of finite index in G then H is also of type 
(FP) and (Prop. (10.5)), 

r~(s) = r~ (s). [Z~ (s) : Zn(s)]  

for sell;  in particular, for s=  1 we have 

z(H)=z(G ) �9 [G: HI.  

Suppose k is a subring of ~ and k c~ Q = Z. Then we have the theorem of K. Brown 
(proved for k = Z), 

~(H)=~(G) �9 EG: H] .  

The weak conjecture above, generalized to such rings k, predicts that z(G)= ~(G) 
when G is of type (FP) over such a k. Our results imply that this is so whenever 
G is residually finite (Prop. (10.5)). 

Let 1 - - - , H - - ~ G - ~ G ' ~ I  be a group extension. One has natural homo- 
morphisms %: T(kH)--~ T(kG) and n ,  : T(kG) ~ T(kG'). Suppose H is of type 
(FP) over k. Then there is a naturally defined homomorphism 7t*: T(kG') ~ T(kG) 
which remains slightly mysterious, but about which we can say the following 
(Th. (10.9)): 

a) rC*TG,(1)=e,r H. If z'~T(G') then rc*z' has support among those z~T(G) 
for which nz=r ' ,  and n, rt*z'=L(z')z' for a certain L(z')~k, with L(1)=~(H). 

b) If the k-modules H,(H,k) are projective, then r'~-,L(z '-1) is the virtual 
character of the natural action of G' on H,  (H, k). 

c) Suppose further that G' is of type (FP) over k. Then G is likewise, and 
r~ = re* (rG,) = ~ r w (z')- re* z'. Hence 

~ ' e T ( G ' )  

z(G) = z(G'), z(H). (2) 

d) If r'eT(G') then L(r'). r~,(z')= ~ ra(z'). Hence . 

~(G)= ~ L(~').rw(~' ). 
7:" ~ T ( G ' )  

In the course of preparing this manuscript I received a preprint of I. M. Chis- 
well's paper [8], where he also introduces the Euler characteristic z(G)=rG(1) 
when G is of type (FP) over k. (He writes ~((G, k) for r G and #(G) for z(G).) Several 
of his results intersect with those here, as follows: His Lemma 5 is the value at 
s = 1 part of Proposition (6.2); his Theorem 1 is part of Proposition (10.5)(c); his 
Lemma 8 is part of Proposition (5.5)(c); his Lemma 10 and Theorem 3 are con- 
tained in Theorem (10.9). Chiswell conjectures formula (2) above. He also asks 
about the relation between x(G) and ~(G) when k = 7/. 

I have just learned also of work of John Stallings, "An extension theorem for 
Euler characteristics of groups", in which the Euler characteristic z(G) is first 
introduced, and the essential substance of Theorem (10.9) is proved. 

An announcement of some of the results here appears in the proceedings of 
the conference on commutative algebra held at Queens University, July, 1975. 
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2. Hattori-Stallings Traces in T(A) 
An exposition of most of this section can be found in Stallings [25], Hattori [13], 
or Gruenberg [12], w 8.10. 

A denotes a ring; A-modules are understood to be right A-modules. 

(2.1) The Group T(A). It is the quotient A/[A,A]  of A by the additive group 
[A,A] generated by all commutators [a, b ] = a b - b a .  We write T or T A for the 
canonical projection A--~ T(A). 

(2.2) Coordinate Systems and ~(A). An A-module P is projective if and only if 
there is a family (xl) in P and (f~) in P*=HomA(P,A)  such that, for all xeP,  
Ji (x)=0 for all but finitely many i, and x = ~ x i f i ( x  ) (cf. [4], II.46). The system 

i 
(x), (f~) will be called an A-coordinate system of P. The families (xi) which can 
so occur are precisely the generating families in P, so we can choose a finite one 
if P is finitely generated. The category of finitely generated projective (right) 
A-modules will be denoted ~(A). 

(2.3) Traces T e. Let P ~ ( A ) .  Define t : P x P * - + T ( A )  by t ( x , f )=T( f ( x ) ) .  If 
a6 A then t (x a, f )  = T( f (x )  a) = T(af(x)) = t (x, a f). Thus t induces an additive 
map P | P* -* T(A). The canonical map P @a P* ~ EndA(P), where the image 
of x |  sends yeP  to xf(y),  is an isomorphism, since P ~ ( A ) ,  which we view 
as an identification (cf. [4], iI. 77). We have thus defined a homomorphism 

Te: End A (P) -* T(A) 

which is sometimes denoted Tp/A, and called the trace on the A-module P. It is 
characterized by, T e ( x |  for xeP.  f~P*.  Writing l e = ~ x i |  
amounts to choosing a finite coordinate system xi, f of P. If u6Enda(P), then 
u o (x, | f )=u(xi )  | f i and u= ~ u o (xi | f), so 

Tp(u)= T(Zfi(u(xi))). (1)  

Note that if x i is a free basis of P then f / i s  the dual basis and the uji =fj(u(xi) ) 
are the coefficients of the matrix representing u:u(x i )=~xju j i .  Formula( l )  
then reads: Te(u ) = T ( ~  Uu). J 

i 

(2.4) Ranks. If P 6 ~ ( A )  its rank, denoted r e or re~ A, is the element 

r e=  Te(1p) ~ T(A). 

If xi, f is a finite coordinate system of P then r e = ~  f~(x~). If P ~A", then r e=  T(n). 
i 

(2.5) Universal Property. The functions Te: Enda(P)--,  T(A) constructed in (2.3) 
satisfy: 

Additivity. If u ~ End a (P) and u' ~ End a (P'), then Tp ~ e, (u �9 u') = T e (u) + T e, (u'). 
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Linearity. If u, v e End a (P) then T e(u + v) = Tp(u) + Tp (v). 

Commutativity. If u: P---~P' and u': P'---~P then Te(u'u)=Te,(uu'). 
Universality. Suppose T~: End a (P)---, S is another collection of functions, defined 
for Pe~(A) ,  with values in an abelian group S, and which is additive, linear, and 
commutative as above. Then there is a unique homomorphism t: T ( A ) ~  S such 
that T~ = t o Tp for all P. 

These properties are established by Stallings in [25]. 

(2.6) Modules of  Type (FP). An A-module M is said to be of type (FP) if it has 
a finite ~(A)-resolution, i.e., if there is an exact sequence 

O--~P,--~ ...-~Po--~M--~O (2) 

for some n > 0  with each P / ~ ( A ) .  If two of the three terms in a short exact se- 
quence is of type (FP) so also is the third (cf. [1], Ch. I, Cor. (6.9)). A direct sum- 
mand of a module of type (FP) is of type (FP) (cf. [8], Lemma 4). 

(2.7) Traces for Modules of  Type (FP). Consider a resolution (2) of an A-module 
M of type (FP). An endomorphism u of M can be lifted to an endomorphism 
(u~) of the resolution. We then put 

TM(U)= ~ (-- 1)/Tp,(ui). 
i=>o 

This is independent of the resolution (2) of M and of the lifting (ug) of u, and the 
resulting functions T M: End a (M) --* T(A) satisfy: 

Additivity. If 0 ~ (M', u') ~ (M, u) ~ (M", u") ~ 0 is an exact sequence of A- 
modules of type (FP) with endomorphisms, then Tu(u ) = T M, (u')+ TM,, (u"). 

Linearity. ff u, v 6 End a (M), then T M (u + v) = T M (u) + T M (v). 
Commutativity. If u: M ~ M' and u': M' ~ M are homomorphisms of A-modules 
of type (FP) then TM(U' u)= TM.(uu' ). 

One can prove this using Grothendieck's resolution theorem ([1], Ch. VIII, 
Th. (4.2)) applied to the category C of pairs (M, u) as above and the subcategory 
C o of those for which M ~ ( A ) .  There is a universal family tM: Enda(M ) ~ T(C) 
with the above three properties, and, in view of (2.5), one need only check that 
T(A)= T ( C o ) ~  T(C) is an isomorphism. Grothendieck's theorem implies that 
K o ( C o ) ~  K o (C) is an isomorphism. T(C) is the quotient of K o (C) in which the 
commutative and linear relations are imposed, and similarly for T(Co). To obtain 
an induced isomorphism on these quotients of K o, one uses the following ob- 
servations: 

1. If u, v6Enda(M) lift to endomorphisms (ug) and (vi) of the resolution (2), 
then (ug + vi) is such a lifting of u + v. 

2. With the notation of the commutativity property, let 

...---~pi'--_~ . . .--~po--+M'-~O 

be a finite ~(A)-resolution of M'. Lift u to a morphism (ui: Pi ~ P{) of resolutions, 
and u' to (u~: Pi'-* P/). Then (uiu'i) is a lifting of uu' and(u'iui) is one of u'u. 
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(2.8) Ranks of Modules of Type (FP). If M is an A-module of type (FP) its rank, 
r m or  rm/A, is the element 

r M = TM(1M)~ T(A). 

The map M ~ r M is additive over exact sequences, so it defines a homomorphism 
r: Ko(A ) --~ T(A). 

(2.9) Functoriality: Covariance. Let ct: A--~B be a ring homomorphism. It 
induces 

~,:  T(A)--~ T(B), :t, TA(a)= TB(C~a). 

If P s i ( A )  and ueEndA(P) then c % P = P |  ) and ct. u = u |  l ~ E n d B ( e , P  ). 
The map (P,u)~-oT~.v(C%u)eT(B) is clearly additive, linear, and commutative. 
By universality therefore it induces a homomorphism T(A)-* T(B) which, on 
taking P = A ,  we see is just e . .  Explicitly, 

T~,p(e, u)=c% Tp(u). 

The analogous formula when P is only of type (FP) holds if B is a flat left A- 
module, but not in general. When u = 1e we obtain the formula 

r ,  p ~ ~ ,  rp.  

(2.10) Contravariance. Suppose B is a right A-module of type (FP). Then the 
same is true of every (right) B-module M of type (FP) (cf. (2.6)). If 

u ~ End B (M) ~ End A (M) 

we can thus define TM/A(u ). The map (M, u ) ~  TM/A(U ) is clearly additive, linear, 
and commutative, so it defines a homomorphism 

~* = TrB/a: T(B) --* T(A) 

such that 

TrB/A (Turn (u)) = TM/a (U) 

for all B-modules M of type (FP) and all u~EndB(M). 

(2.11) Examples. 1. Suppose A is commutative. Then T(A)=A and, for P ~ ( A ) ,  
Tp is the usual trace (cf. [4], II.78). The image of r: Ko(A)--*A is the subring 
generated by all idempotents. 

2. Let P ~ ' ( A )  and B=EndA(P). If Pe: A---~EndB(P) is the canonical map, 
then Tpm o PP: A---, T(B) induces a homomorphism tv: T(A)--, T(B). Suppose 
P=A"; then we can identify B with the ring M,(A) of n by n matrices over A, 
PA, is an isomorphism of rings, and tA,: T(A)--, T(M,(A)) is an isomorphism of 
groups which sends Ta(a) to TM, tA ) (diag(a, 0 . . . . .  0)). If A is commutative and 
we use tA, to identify T(M~(A)) with A then TA,m, tA): M,(A)--*A is the usual 
trace, Tr: (ai)v--~ aii, whereas TM,tA~: M,(A)---~ A is n . Tr= TrM.tm/A. 

3. If A=A~ • A 2, a product of rings, then T(A)= T(A 1) �9 T(A2). 
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3. k-Algebras 

Let k be a commutative ring. For  any k-algebra A, [A, A] is a sub-k-module of 
A; thus T(A)=A/[A,A] is a k-module so that T: A--,T(A) is k-linear. 

(3.1) Proposition (cf. [12], w 8.10, Th. 7). Let M be an A-module of type (FP). 
The map TM: EndA(M)-*T(A) is k-linear. The rank rM~T(A ) is annihilated by 
annk(M) = {aeklaM=O}. 

Let 0 - ~ P , - - - , . . - - , P 0 - - - M ~ 0  be a ~(A)-resolution of M, let ueEndA(M), 
and let aek. Lift u to an endomorphism (ul) of the resolution. Then (aui) is a 
lifting of au, so TM(au)=~" ( -  1)iTe,(aul). We are thus reduced to showing that 
T~t(au)=aTM(U) when Me~(A) .  Let x l , f  i be a coordinate system for M. Then 
T M (a u) = T(~, fi(a u (xi))) = r(a ~ fi (u (xi))) = a r M (u). The last assertion follows im- 
mediately from the first one. 

(3.2) Remarks. 1. Any ring A may be viewed as an algebra over its center, C. 
Thus T(A) is a C-module so that the maps T M are C-linear, and r M is annihilated 
by annc(M ). 

2. If X generates the k-algebra A as a k-module, then the elements [a, b] = 
a b - b a  where a, b run through X generate the k-module [A, A], because the map 
(a, b)~-~ [a, b] is k-bilinear. 

(3.3) Proposition. Let A and B be k-algebras. 

a) There is a (natural) isomorphism of k-modules T(A | B) --* T(A) | T(B) 
sending T(a| to r(a)|  r(b) for aeA, beB. We identify the two modules via 
this isomorphism. 

b) If  Pe~(A),  Qe~(B), ueEndA(P), and veEndR(Q) then Tp|174 
Tp (u) | T o (v). 

Put C = A | B. The projection T a | Ta: C ~ T(A)| T(B) is surjective with 
kernel = ([A, A] | B) + (A | [B, B]) c [ C, C]. The elements a | b generate C as 
k-module so [C, C] is generated as k-module by the elements [a | b, a' | b'] = 
[a,a']|  +a' a| Thus TA| T ~ induces an isomorphism r(c)--* 
T(A) | T(B). 

Let x~, f~ and y j, g2 be coordinate systems of P and Q, respectively. Then 
xi | Y J, f / |  g2 is a coordinate system of P | Q, so 

Tp| | v)= T(.~ (f~ | gj)(u x i | v Y J)) = T((Z fi (u xi)) | (Z gj(v y j)) 
2,J i j 

= Tp(u)| To(v). 

Remarks. 1. Suppose B is a flat k-module. Then Qe~(B) is also a flat k-module. 
If M is an A-module of type (FP) then M| is an A | of type (FP) 
and TM|174 TM(u)| for ueEndA(M). For if P - * M  is a finite ~(A)- 
resolution of M then P |  Q--~ M @, Q is a finite ~(A | B) resolution, thanks to 
the flatness assumption. If ~ e EndA(P) is a lifting of u, then ~ | v is a lifting of u | v, 
and the formula for TM| | v) follows from b) of the proposition. 

2. Let a: A - * A '  and fl: B--*B' be homomorphisms of k-algebras. Then 
( ~ | 1 7 4  T(A)|174 ). Suppose A' (resp., B') is a 
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finitely generated projective right A-module (resp., B-module). Then A'|  B' is a 
finitely generated projective right (A | B)-module, and 

TrA,|174174 T(A')| T (A)QkT(B) .  

(3.4) Corollary. Let k' be a commutative k-algebra. There is a natural isomorphism 
of k'-modules k' |  T(A)---~T(k'| sending b Q  T(a) to T(b |  for a6A,  b6k'. 
I f  P ~ ~ (A)  and u ~ End A (P) then Tk, | ~ p(1 | u) = 1 | Tp(u). 

This is the Proposi t ion (3.3) in case when B is the commutat ive  k-algebra k'. 

Remarks. 1. If k' is a flat k-module the formula in the corollary remains valid if 
P is only assumed to be of type (FP). 

2. Suppose k' is a finitely generated projective k-module,  so that k ' |  is a 
finitely generated projective right A-module.  Then for ~ek '  and a~A we have 
Trk, | | TA(a)) = Trk,/k(~ ) �9 TA(a). 

(3.5) Automorphisms. Let A be a k-algebra. An au tomorph ism ~ of A induces an 
au tomorphism M ~-. M ~'~ of the category of A-modules, where M (~ has the same 
underlying k-module as M, but  a~A acts on x ~ M  ~) by x ~--~x~(a). Suppose M is an 
A-module of type (FP). Then M ~1 is likewise, and if u~Enda(M)=EndA(M ~1) 
we have 

TM( . ) (U  ) = O~ - 1  TM(u) (1) 

where ~z acts on T(A) by s T ( a ) =  T(ea). In particular,  for u = l~t, 

rM,~, = Ct-' (rM). (2) 

It suffices to verify this when M e ~(A). Let x i ~ M, f~: M - *  A be a finite A-coordinate  
system of M. Then it is easily checked that  xi, e -  1 of~ is a coordinate  system of M t~). 
Thus TM,,,(u)= T(~e - l ( f~ (u (x3 ) ) )=e  -~ T(~f~(u(x,)))=e -~ T~(u). From (2) we 
conclude that: ~ 

If M ~ M ('~ then c~(r~) = r~t. (3) 

(3.6) Suppose k is an algebraically closed field. A k-algebra E--  k [u] generated 
by a single element u algebraic over k is i somorphic  to k [X] / ( f (X) )  where f ( X )  
is the minimal polynomial  of  u. If f ( X )  = ( X -  uO"'... ( X -  Uh) "h, where ul, . . . ,  u h 
are the distinct roots of f,  then E = E  1 x ... x E h where Ei~-k[X] / (X-u i )" ' .  If 
e i are the (orthogonal)  idempotents  corresponding to the E~, then we have 

1 = e  1 + . . .  + e  h 

u = u  1 e 1 + "''+Uh eh +V 

with v nilpotent.  If u is semi-simple, i.e., if all n i=  1, then v=0 .  
Let A be a k-algebra, M a right A-module  of type (FP), and suppose u is an 

A-endomorphism of M algebraic over k. We can apply the above discussion then 
to E = k [ u ] c E n d A ( M  ). Then M is the direct sum of its submodules M i = e i M ,  
and (M, u - v) decomposes  into the direct sum of the (Mi, u~ lu, ). Putt ing r i = rM,/A 
it follows then from Propos i t ion  (3.1) that 



164 H. Bass 

with v nilpotent, and even zero when the minimal polynomial of u has no multiple 
roots. The above formula in some sense reduces the description of TM/A(U ) for u 
algebraic over k to the two special cases when u = 1M and when u is nilpotent. 

(3.7) Examples. Suppose k is a field and A is a central simple (finite dimensional) 
k-algebra. The reduced trace Trd: A ~ k (cf. [5], w No. 3) induces a k-linear 
map Trd: T ( A ) ~ k ,  and this is an isomorphism. In view of Corollary(3.4) it 
suffices to check this when k is algebraically closed, when it results from (2.11), 
Example 2. In view of (2.11), Example 3, this determines T(A) whenever A is a 
finite dimensional absolutely semi-simple k-algebra, say with center C. Namely, 
T(A)~-C, the isomorphism being given by the reduced trace on each simple 
factor. 

4. Relation to Characters 

As in w 3, A denotes a k-algebra. 

(4.1) Characters. The dual Homk(T(A ),k) of T(A) will be denoted CF(A, k), 
and called the module of central functions from A to k. We shall often identify 
an element Z ~ CF(A, k) with the composite function A r ~ T(A) z , k, vanishing 
on [A, A]. I frET(A)we put (r, ~) =~(r). 

We denote by ~k(A) the category of A-modules M which are finitely generated 
and projective as k-modules. Its Grothendieck group (with short exact sequences 
furnishing defining relations) is denoted Rk(A ). 

A module ME~k(A ) gives rise to a character 7~M ~ CF(A, k), defined by 

zM(a )  = TM/k(aM) 
where aM: x~--~ xa for a~A, x~M. In particular 

rM/R=ZM(1). 

The map M ~-* ZM defines a group homomorphism 

Z: Rk(A)---" CF(A, k). 

(4.2) Proposition. Let PE~(A) and MEek(A). Then HomA(P,M ) is a finitely 
generated projective k-module, whose class in Ko(k ) is denoted (P, M).  Its rank 
r<p,M > is (rp ,  ZM)  (=ZM(rp))  �9 

Let e be an idempotent A-endomorphism of L =  A n with image isomorphic 
to P. Then h = HomA(e, M) is an idempotent k-endomorphism of HomA(L, M) _-__ M n 
with image isomorphic to HomA(P, M), whence the first assertion of the propo- 
sition. Ife is represented by the matrix (elj)~Mn(A) and if we identify 

Endk(HOmA(L,M)) with Mn(Endk(M)) 

then h is represented by the matrix (h i.) where hi~= ej~M; X r--+xe~. Thus r<l,M > = 
TMn/k(h) = ~ TM/k(hii) = ~ zM(e,) = ZM(~ eu) = zM(re) �9 

i i i 

Remark. The element r<e,u > = (re, XM) of k lies in the subring generated by all 
idempotents in k. If 0 and 1 are the only such idempotents, then (r e, ZM) is thus 
an integer (multiple of 1 e k). 
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(4.3) Remark. The function (P, M)~--~<P, M)  is additive in each variable, so it 
defines a pairing Ko(A ) x Rk(A )--~ Ko(k ). The Proposition (3.7) asserts the com- 
mutativity of the diagram, 

Ko(A ) x Rk(A ) <' > , Ko(k ) 

T(At x CF(A, k) ~ k. 

(4.4) Functoriality. Let St : A ~ B be a homomorphism of k-algebras. The dual 
of the k-linear map 5~, : T(A)--~ T(B), 5~, T(a) = T(Sf a), is the map St*: CF(B, k) --~ 
CF(A, k), 5g* Z=Zo6~: 

<~*Z, r> a=<Z, 5'V, r)e 

for z~CF(B,  k) and r~T(A). If M ~ k ( B ) ,  then the underlying A-module 5g*M 
belongs to ~k(A), whence a homomorphism 5r Rk(B)-~ Rk(A ), [M] ~ [5 p* M]. 
Note that Z~,M=ZM o 5 '~=J*ZM. If P ~ ( A )  then HomA(P, 5~*M)= 
Hom~(P@ a B, M), whence 

<p, 5 ~* M>A = <6P, p, M>n. 

Suppose B is a finitely generated projective right A-module. Then (see (2.10)) 
we have the commutative diagram 

Ko(B) 

T(B) 

6a* = " R e s "  

T r B / A  

Ko(A ) 

T(A). 

The k-linear map TrB/A has a dual Try/a: 
Z ~---~Z ~ Trn/A. In particular, if P6~(B)  then 

(rp/B, Tr*/AZ)B = <rp/A, Z> A" 

CF(A, k ) ~  CF(B, k) defined by 

(4.5) Proposition. Suppose B is a finitely generated projective right A-module. For 
M ~ ~k(A ) let 5r denote the right B-module HomA(B , M), where (hb)(b')= h(b b') 
for b, b'~B, hE~9~ Then 5r  ) and Z~.U=zuoTrB/A. I f  P ~ ( B )  then 
( P, 5f, M)B = (5 ~* P, M )  A. 

Let b i, f/: B --~ A be a finite coordinate system of the right A-module B, and x j, 
gj: M - + k  one of the k-module M. Define hji~SC, M and 5'~g: 5~,M--~k by 
hji(b ) = xJi(b ) and 5~i(h ) = gj(h(bi) ). Then if he 5e, M and b e B, one has 

(• hj, S~3,(h))(b) = ~. . x~ .f~(b). gj(h(b,)) = ~. x 3 �9 gflh(b,))) .f~(b) 
j , i  j , t  i 

= • h(b,) f~(b) = h( E b, f~(b)) = h(b). 
i i 
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Thus  hji , ~ji is a finite coordinate system of the k-module 6a.M. If b~B then 

Z~,M(b)= ~ ~,(hj,b)= ~ g~((hj,b)(b,)) = ~ g~(xjf,(b bi)) = ~ g~(xj~) = ZM(~), 
j,~ j , l  j , z  j 

where f l = ~ f ~ ( b b i ) e A  is such that Ta(fl)=Trn/a(Tn(b)). Thus Z~.M(b)= 
i 

zM(Tr13/A(Tn(b))), as claimed. The last assertion results from the canonical k-iso- 
morphisms Homn(P, Homa(B, M)) ~ Homa(P | B, M) ~ Homa(P, M). 

(4.6) If a, b ~ A  then La: x~--,ax commutes with Rb: xv--~xb(xeA) ,  whence a 
k-algebra homomorphism e: A |176 a |  ~--~L a o R b. Suppose A is a 
finitely generated projective k-module. Then Ta/k o e: A | A ~ ~ k induces a k-linear 
map T(A)  | T (A  ~ ---, k, T(a) | T(b) ~ Ta/k(L a o Rb). Identifying T(A  ~ with T(A), 
the latter map defines a k-homomorphism 

T(A)  ~ CF(A, k), r ~ r t 

defined by 

T(a)'(b) = Ta/k(L ~ o Rb). 

(4.7) Proposition. Suppose A is a f initely generated projective k-module. Then 
the same is true of every P ~ ( A ) ,  and Zp=rtp. Explicitly, if re= T(a) then ze(b)= 
Ta/k(L ~ o Rb)= TA/k(X ~--~axb). 

Let a~, f :  A ---, k be a finite coordinate system of the k-module A, and let x2, 
g;: P ~ A be one of the A-module P. If x E P then .~. xj a i f/(gj(x)) = ~. xj gj(x) = x, so 

/ , J  j 

x.a~,f~g." P ~ k  is a finite coordinate system of the k-module P. If b e A  then j 

xe(b) = ~f i (g j (x ja ib) )= ~ f i ( aa ,  b)= Ta/k(La o Rb) , where a = ~ gj(xj) is such that 
l , J  i j 

T(a) = r e. This proves (4.7). 

Remark. Proposition (4.7) asserts the commutativity of the diagram 

Ko(A) , Rk(A) EP] ~ [P]  

T(A)  , CF(A,  k) r~--~r t 

the upper arrow being what is in some cases called the Cartan homomorphism. In 
particular, if P ~ ( A )  then rp determines Xe. 

5. Group Algebras 
(5.1) Let G be a group, k a commutative ring, and A the group algebra kG. 
Since G is a k-basis for A it follows that the k-module [A, A] is generated by the 
elements 

[s, t] = s t - t s = s u s  -1 - u =  [su, s -1] 

where s, t, u~G and u = t s .  Thus, for s, t~G,  one has T(s)= T(t)  in T(kG) if  and 
only if s and t are conjugate in G. We shall thus identify T(s) (denoted also T~(s)) 
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with the G-conjugacy class of s, and identify T(kG) with the free k-module k (r(~' 
having the set T(G) of conjugacy classes of G as a basis. Each rET(kG) thus has a 
unique expression 

r= ~ r(r).zeT(ka) 
r~T(G) 

where z ~--~r(z) is a function T(G)-+ k with finite support 

supp(r)--- {z e T(G)[ r(z) # 0}. 

If seG we shall often write r(s) for r(T(s)), and so identify r with a central function 
G -+ k. The involution a ~ ~ of k G, defined by ~ = s- 1 for s e G, induces an involution 
rw-+P of T(kG) so that P(s)=r(s-1), and T(a)--T(a).  

(5.2) The dual CF(kG, k) of T(kG) can similarly be identified with the k-module 
k T<o~ of all functions T(G)-+ k, i.e., with the k-module CF(G, k) of all central 
functions G -+ k. Note that CF(G, k) is a commutative k-algebra with multiplication 

(zl" z2)(s)=zl(s) z~is). 

It further has an involution X ~ Z, 

Z,(s)=z(s-1). 

The remarks above furnish an identification of T(k G) with the involution invariant 
ideal in CF(G, k) of functions which vanish on all but finitely many conjugacy 
classes. In particular, this gives T(kG) the structure of a CF(G,k)-module: 
(Z" r)(s)=g(s) r(s) for zeCF(G, k), reT(kG). Further Z" r = ~  .~. 

(5.3) Let P and M be right kG-modules. Then P*=HOmk6(P, kG) and 
M" = Horn k(M, k) are right k G-modules with (fs) (p) = s- i f (p) and (g s) (m) = g(m s- 1) 
for fEP*, peP, g e m  ~, meM, and seG. Moreover M| and Homk(M, P) are 
right kG-modules with (m|174 and (fs)(m)=f(ms-l)s for meM, 
peP, f: M---~ P, and seG. The canonical k-linear map M~| Homk(M,P), 
g | p ~ (m ~-+p g(m)) is k G-linear. It is an isomorphism if M e 9t k(k G). 

(5.4) A group homomorphism ~: G--+ G' induces a k-linear map z~,: T(kG)--~T(kG') 
such that ~,  T~(s)= TwOzs ) for seG. If Pe~(kG) then zc, P=P| e~(kG' ), 
and if rp= ~ rp(z)z then r~,p=Z~,rp= ~ ( ~ rp(z))z'. When G' is the 

~:+T(G) ~:' ~T(G') It.(~)=t' 

trivial group, we find that the rank rl,| of P |  ) is ~, rv(z ). 
zET(G) 

(5.5) Proposition. Suppose Pe~(kG) and M e~'k(kG ). 
(a) P * ~ ( k G )  and rp,=~p. 
(b) M ~ k ( k G )  and ZM~ =~M" 
(C) The modules M|  and Homk(M,P)~M~| P belong to ~(kG), and 

rM| =ZM " rp, i.e., rM| ) = ZM(S- 1) rp(s) for seG. 

(a) Let x~, f :  P ~ k G be a finite k G-coordinate system of P. Define ~ :  P* ~ k G 
by ff~(f)=f(x~). One checks easily that f~, ~ is a kG-coordinate system of P*. Thus 
rp,--- T(Z ff,(f~)) = T(Zf(x , )  ) = T(Z  f~(x,) ) =?p. 
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(b) Let y j, gi: M ~ k be a finite k-coordinate system of M. Define y): MV---~ k 
y'.(g)=g(y.) Then g., y'. is a finite k-coordinate system of M v. If s~G we thus have 

3 " J 

ZM-(s) = ~y)(gj  s) = ~ (gj s)(y j) = ~, gj(yj s- 1) = XM(S- 1). 
In view of (b) and (5.3), part (c)will follow once we show that M |  ) 

and rM| = ZM" re. We shall use the following well-known lemma. 

(5.6) Lemma. Let H ~ G be a group homomorphism, L a right k H-module, and M 
a right kG-module. Then 

~: M |174 |174 

y|174 -1 | x)|  

is an isomorphism of k G-modules. 

[On the right, M| denotes the kH-module Res(M)| where Res(M) 
denotes M viewed as a kH-module.] This lemma is easily checked; see, for example, 
[1], Chapter XI, Proposition (1.5). 

Proof of (c) of (5.5). We can identify P with the image of an idempotent endo- 
morphism e of a free module Fe~(kG), and we can identify F with L| for 
some free module L ~ ( k ) .  Let xiEL, f : L ~  k be a k-coordinate system of L. Then 
xi| 1, f/@ lk( ~ is a kG-coordinate system of L| Write e(x| 1)= ~ es(x)| 

s ~ G  

for xeL. Then r e= T(~(f~ |  1)(e(x i |  1)))= T(~f~(es(si) ) s)= T(~ ass ), where 
i i , s  s 

as = ~ fi (es (xi)) = TL/R (es)" 
i 

We can identify M| with the image of l~,t|174174 
Under the natural kG-isomorphism 

ct: M|174 )--} (m|174 

of Lemma(5.5), e 1 = 1M| is transformed to the endomorphism e' such that, 
for y ~ M, x E L, one has 

e'((y | x) | 1) = ~(e x (~- 1 ((y @ x) | 1))) = a(e 1 (y | (x | 1)) = c~(y | e(x | 1)) 

= ~ ct(y|174 ~'.(ys-l |174 
s s 

Thus e's(y |  ys-1 | e~(x). Since M | L ~ ( k )  and TM| = ZM(S- 1) TL/k(es) 
we conclude that (M|174  and that rM| T(~TtM| 

s 

and therefore, for re  T(G), rM | ) = ~" ZM(s- 1) TL/k(es) = ZM(S- 1) re(s). This com- 
pletes the proof of (c). s~ 

(5.7) Remark. If Pe~(kG) there is a finitely generated subgroup H of G such 
that P'~--L| for some L ~ ( k H ) .  Then for any ME~k(kG), M|  is iso- 
morphic to (Res(M)|174 where Res(M) is M viewed as kH-module 
(Lemma (5.5)). Thus rM| is the image of rRe~tU)| L under the map T(kH)~  T(kG). 
This observation permits one to reduce certain questions raised here to the case 
of finitely generated groups. 
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(5.8) Proposition (Hattori [13]). Suppose G is a finite group and P ~ ( k G ) .  Then 

ze(s) = IZG(s)I �9 r,,(s- 1) 

for s~G. In particular rp/k(=Ze(1))= IG[-rp(1). 

Here Z~(s) denotes the centralizer of s in G. Let a = ~ a ~ s ~ k G  be such that 
s 

rp = T(a). According to Proposition (4.7), 

Zp(s) = T~ G/k (X ~ a x s) = ~. a t Tk G/k (X ~ t X S). 
l 

Now x~--~txs permutes the k-basis G of kG, and x = t x s  for x e G  if and only if 
t = x s - 1 x -  1. The number of such x's is 0 if t ~ T(s-  1), and I ZG(s) l if t ~ T (s- 1). Thus 
Zp(S)= ~, a,.lZ~(s)l--re(s-a) .IzG(s)[. 

tET(s -1) 

Remark. Let M = k G as k-module, on which G acts by x .  s = s -  1 x s for x E M, s ~ G. 
Then M S ~ k ( k G  ) and ZM(s)=IZ~(s)I. Therefore, for P ~ ( k G ) ,  it follows from 
Proposition (5.8) and Proposition (5.5)(c) that Zp = ZM" rp = rM| 

(5.9) Corollary. Suppose the order [GI of G is invertible in k. Let P ~ ( k G )  and put 
1 

ap= ~ ~ Zp(s-1)s. Then ae belongs to the center of kG and r e=  T(ae). 
s~G 

Clearly ap is central. Fix z~T(G) and s~z. The coefficient of z in T(ae) is 

1 y, ~(~(t_l) __ ;((s- l ) .  I~l ;((s-l) The latter, by Proposition(5.7), is re(z). 
IG[ ~ ,  IG[ IZG(s)l" 

Remark. If k is a field and P is an absolutely irreducible k G-module, then 
Ze(1).a~,=rp/k.a e is the central idempotent in kG corresponding to P (see, for 
example, Curtis-Reiner [9], Ch. V, Th. (33.8)). 

(5.10) Corollary. Suppose k is an integral domain in which no prime divisor of IGI 
is invertible, Then 0 and 1 are the only idempotents of  kG. 

Let p be the characteristic of k. If p > 0 then G must be a p-group and then, 
if K is the field of fractions of k, KG is a local ring (its augmentation ideal is nil- 
potent), whence the result. 

Suppose p = 0 ,  and let e be an idempotent + 0  in kG. Put P = e k G ;  its rank 
Zp(1) over k is IGl" rp(1), by Proposition (5.8). Thus Zp(1)/IGI is a rational number  
in k. Since no prime divisor of IGI is invertible in k it follows that Zp(1)/IGI~Z. 
But if the direct summand P + 0 of kG has k-rank a multiple of lGI we must have 
P=kG,  i.e., e = l .  

6. Subgroups of Finite Index 

As above, k denotes a commutative ring and G denotes a group. 

(6.!) Let H be a subgroup of finite index in G. Then kG= @~skH is a free right 
kH-module  with finite basis consisting of representatives s of the cosets G/H. 
Thus we have (see (2.10)) a k-linear map Tr=Trk~/kH: T(kG)--~T(kH), defined 
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by Tr(T~(a))=TkG/kH(L,), where, for aekG, L,: b~--~ab (bskG). If t sG then L t 
permutes the direct summands skH of kG, and it stabilizes skH if and only if 
t sH=sH,  i.e., s -~ t seH.  In the latter case t sb=s(s  -~ ts)b for bekH. It follows 
that TkG/kH(L~)= ~ Tn(s- l ts)  where s varies over representatives of G/H for 

s 

which s - l t s e H .  This proves part (a) of the next proposition. 

(6.2) Proposition. Let H be a subgroup of finite index in G, and put 

Tr = Trk6/kn: T(kG) -~ T(kH). 

(a) I f  t~G then Tr(TG(t))=~ Tn(s-lts),  where s varies over representatives 
$ 

of the cosets G/H for which s - l t s ~ H .  

(b) I f  z~ T(G) then T r ( r ) = ~ z -  a where a varies over elements of T(H) such 
~r 

that a c z ,  and where Z~=[ZG(S):ZH(s)] for any sea. In particular Tr(z )=0  
if ~nn=c~. 

(c) I f  r~T(kG) and s6H then 

Tr (r)(s)= [Zo(s) : Zn(s)] . r(s). 

In particular Tr(r)(s)=[G : H].  r(s) if seZ(G), for example if s= 1. 

It follows from (a) that, for r =  T6(t)eT(G ), T r ( 0 =  ~ z,o-, where z~ denotes 
a E  T ( H )  

the number of s as in (a) for which s - l t s e a .  Say soltSo~t7, then s ; l t s l ~ a  if 
and only if s 1 h s o t ~ Z6 (t) for some h e H, i.e., if and only if s I e Za (t) s o H. There- 
fore z, is the number of H cosets in the double coset Z6(t)soH; this is the index 
in ZG(t ) of ZG(t) c~ s o Hs o 1 = Z~oH~r ' (t). Thus 

z~ = [ZG(t) : Z~on, ~, (t)] = [ Z ~ ( s  o ~ tSo) : Z n ( s  o ~ tSo) ] ,  

and, since s o i t s o e a, this is the description of z~ claimed in (b). Assertion (c) is 
immediate from (b), so Proposition (6.2) is proved. 

(6.3) Corollary. Let M be a kG-module of type (FP). Then M is a kH-module 
of type (FP) and, for se l l ,  one has 

r~/~n(s)= [Z~(s) : Z~(s ) ] .  rM/~(s). 

In particular, r~a/kn(1) = [G : H ] .  rM/ka(1). 

In fact a finite ~(kG)-resolution of M is also a finite ~(kH)-resolution of M, 
and rM/kn= Tr(ru/k~ ). Thus the corollary results from part (c) of Proposition (6.2). 

(6.4) Corollary. Suppose that, for all s~ H, [ZG(s) : Zn(s)] is not a zero-divisor in k. 

(a) The kernel of  Tr: T(kG)--~ T(kH) is the direct sum of those kz (zeT(G)) 
for which z ~ H = dp. 

(b) I f  r~ T(kG) and aET(H) then a~supp(Tr ( r ) ) / f  and only if  a c z  for some 
z ~ supp (r). 
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(6.5) Proposition. Suppose H is a normal subgroup of finite index in G. Let 
Tn(G)={zeT(G)[zcH }. For each z~Tn(G ) put rH= ~, a, and put z =  

aeT(H)  
a c e  

[Zc,(t) : Zn(t)] for any t~ z (this being independent of the choice of t). 

(a) The action of G on H by conjugation induces an action on T(kH). The 
module of invariants T(kH) ~ is k-free with basis the family of z n (z~Tn(G)). 

(b) I f  z~T(G) then T r ( z ) - 0  if z(ETH(G ) and T r ( z ) = z  "zn if z6TH(G ). 

(c) I f  r~ T(kH) ~ has image r' under T(kH)-* T(kG) then T r ( r ' ) = [ G  : H ] .  r. 

The action of G on T(kH) permutes the basis T(H), and the elements zn 
(z6TH(G)) are just the sums of basis elements in the various orbits, whence (a). 
Part (b) follows from (b) of Proposition (6.2). It suffices to prove (c) for r = zn for 
some z 6 Tn(G), in which case r ' =  n z, and Tr ( r ' )=  n. z zn = n. z, r, where n denotes 
the number  of acT(H) such that a c z .  If z =  T~(t) then n = [ G : Z ]  where Z =  
{sEGIsts -1 e Tn(t)}=H. Zc , ( t  ). Thus [ Z : H ]  =[Za(t) : Zn(t)], so 

nz, = [G : Z ] .  [Za(t) : Zn(t)] = [G : Z] [Z : H] = [G : H], 

whence (c). 

(6.6) Theorem. Let k be an integral domain of characteristic 0. Suppose that if 
seG has finite order which is invertible in k then s= 1. Let P e ~ ( k G )  and let n 
denote the rank rp| of the k-module P | k. Assume further that G/Z(G) is 
finite. Then re=r(k,) , ;  i.e., re(1)=n and rp(S)=0 for s:4= 1. 

Since n =  ~ rp(r) (see (5.4)) it suffices to show that r l ,(s)=0 for s +  1. Sup- 
~eT(G) 

pose rp(S)4:0. The subgroup H of G generated by s and Z(G) is abelian and has 
finite index in G. Moreover, Corollary (6.3) shows that rf/k H (S) = [Z6(s ) : HI"  rp/kc,(s ). 
Thus it suffices to prove the theorem for the kH-module  P~ in other words we 
have reduced to the case of an abelian group. 

When G is abelian the theorem amounts to the well-known assertion that 
the commutative ring kG has no idempotents except 0 and 1. If G is torsion, this 
follows from Corollary (5.10). In the general case it therefore follows from the 
next lemma. 

(6.7) Lemma.  Let G be an abelian group with torsion subgroup H. Let k be any 
commutative ring. Then all idempotents in kG belong to kH. 

It suffices to treat the case when G is finitely generated, hence the direct 
product of H with a free abelian group F. Then k [G] = k [H]  [F],  so, replacing 
k by kH and G by F, we may assume G is free. By induction on the rank of G we 
finally reduce similarly to the case when G is cyclic, so kG is a ring of Laurent 
polynomials k[t, t - l ] .  Let e be idempotent in k[t, t - ' ] .  Then e~k if k is an 
integral domain. In general, therefore e lands in k modulo each prime ideal of k, 
hence modulo the nil radical N of k. Therefore, there is an idempotent e o~k 
congruent modulo N �9 k[r, t - ' ]  to e. But then e - e e  o and e o - e e  0 are nilpotent 
idempotents, so e = e o e k. 
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(6.8) Corollary (Swan). With k, G, P as in Theorem (6.6), let K be the field of 
fractions of k, and assume G is finite. Then K | P is a free K G-module. 

It suffices to show that Z~, is the character of a free module. But r e determines 
Ze (Prop. (5.8)) and r r = rtkG~, (Theorem (6.6)). 

Remark. Corollary (6.8) can be strengthened to say that Pp is a free kp G-module 
for all primes p of k. This can be deduced from Corollary (6.8) using the non- 
singularity of the Cartan matrices of the modular group algebras (k~lpkp)[G] 
(see [1], Chap. X, Cor. (1.2)). Another proof of this is given by Hattori [13], by 
showing that rpp/k p G determines the isomorphism class of Pp. 

(6.9) Remark. Suppose k is an integral domain of characteristic p > 0. Suppose 
G is a group such that G/Z(G) has finite order prime to p and all torsion in G is 
p-torsion (necessarily therefore in Z(G)). Then if P e ~ ( k G )  one has re(s)=0 for 
s 4:1. The above proof of Theorem (6.6) applies without essential change. 

(6.10) Corollary. Let k be an integral domain of characteristic zero in which no 
rational prime is invertible. Let G be a group and let P ~ ( k G ) .  I f  G is residually 
finite then 

re(l)= ~ r p ( Z )  (=rp| 
zET(G) 

Let zc: G--*G' be the projection to a finite quotient G' of G in which all 
zeT(G) for which re(z)~=O and z#:l remain distinct from 1 in T(G'). Put P '=  
P| By Theorem(6.6) re,(S')=O for all s ' + l  in G'. Therefore 

O= E re,(Z')= E E re(z)= E re(z), 
r ' sT(G ' )  ~'eT(G') re T(G) r~T(G) 

t ' * l  1:'=1=1 rc(~)= ~" z:#l 

by the choice of G'. This proves the corollary. 

(6.11) Remark. It is tempting to use the method of proof of Corollary (6.10) to 
prove even that rp(s)=0 for s4:1 in G. To do this one needs a stronger property 
than residual finiteness, viz., that distinct conjugacy classes in G can be distin- 
guished in finite quotients of G. In fact even the following condition suffices: 

(.) The characters ;(M of modules M ~ k ( G )  separate the conjugacy classes in G. 

At the (innocent) cost of adjoining some roots of unity to k, condition (*) holds 
whenever the previous condition holds. To show that re(z)=0 for z + l  when 
(*) holds, choose a k-linear combination z = ~ a M z M  of characters of modules 
Me~lk(kG), such that Z(z)+O but Z(z')=0 for all z'4=z in supp(re). Then X" rp= 
~, aMZ M �9 re= ~ aMzMv | and M v | PeN(kG) (Prop. (5.5)(c)). Therefore Corol- 
lary(6.10) implies that 0=Z(1).re(1)= ~ Z(z')re(z')=;t(z)re(z), whence 
r p ( ~ )  = 0 .  ~,~ r ~  

(6.12) Example. Condition (.) in (6.11) may well fail even for finitely generated 
linear groups, as we shall now indicate. Let f ( X ) r  IX] be an irreducible monic 
polynomial of degree n > 2 with constant term 1 such that the field Q(00 generated 
by a root 0t of f has class number > 1. Then in A = Z [~] there exist non-isomorphic 
invertible ideals L~ and L 2 . Relative to Z-bases of L~ and L 2 the action of ~ is 
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represented by matrices s 1 and s 2, respectively, in SL.(Z). Since L 1 and L 2 a r e  

non-isomorphic, s t and s 2 are not conjugate in GL.(7/). However, if k is a com- 
mutative ring such that k |  1 and k |  2 are isomorphic (k | A)-modules 
then the images S~k and S2k of S 1 and s 2 in SL.(k) are conjugate in GL.(k). Since 
L 1 and L 2 are both principal after any 7/-localisation, it follows that Slk and Szk 
are conjugate in GL,(k), s a y  S2k=UkSlkUkl, for k=Q or k=7//qTl with q any 

integer+O. LetF=SL2.(7l) andSi=(s~ ~ ) ~ F , i = l , 2 .  T h e n w i t h k a n d u k a s  

(O k O)eSL2.(k)" Moreover S~ above, we h a v e  S2k=UkSlkUk 1 where Uk= Uk 1 

and S 2 are not conjugate in F, since they define modules E 1 and E 2 o v e r  7l [X]/ 
( f (X) .  (X-1))=7/[~'], ~' the residue class of X, which are non-isomorphic. In 
fact, since E i ~L i  O) 7/" with ~' acting like 1 on 7/" and like ~ on L~, an isomorphism 
E1--~E 2 would induce an isomorphism L1--~L2, for Li={xeE~lf(ct')x=O }, 
i=  1,2. 

Claim. For all finite dimensional (• F)-modules M, zM(S1)=zM(S2). 

It suffices to show this when M is irreducible. In that case it follows from 
[2] and [23], pages 501-504, that M = V |  e W where the action of F on V factors 
through a finite quotient SLEn(7//q7Z) of F (q a n  integer 4:0) and where Wis ob- 
tained by restriction to F of a representation of SL,(Q) (in fact of the algebraic 
group SL,). Since, as observed above, the images Slk and SEk a r e  conjugate in 
SLE,(k ) for k=7//q7l and k = ~ ,  the claim follows. 

(6.13) Corollary. (cf. K. Brown I-6], Th. 3). Let k be an integral domain of char- 
acteristic zero in which no rational prime is invertible. Let G be a group, H a sub- 
group of finite index, and P~t~(kG). Then 

re| = [G:  H I  �9 rp| 

Let N be a normal subgroup of finite index in G contained in H. It clearly 
suffices to verify the corollary with G, H, P replaced by G/N, H/N, and 
P| Thus we may assume G is finite. In this case it follows 
from Coro l l a ry (6 .10) tha t  rp| and rp| SO the 
present corollary follows from Proposition (6.2)(c). 

(6.14) Let H be a normal subgroup of G, with quotient G'=G/H. The natural 
projection zt: kG--~ kG' induces zr.: T(kG)--~ T(kG'), rt. TG(s)= TG,(s'), where we 
write s' for zt(s). In general, 

7r.( ~, r(z)z)= ~ ( 2 r(z))z'. 
~eT(G) ~'~T(G') r~, ~ = ' r '  

Let P,M be (right) kG-modules. Then Homk(P,M ) is a kG-module 
((ft) (x) = f (x t- 1) t) whose H-invariants, Hom kn (P, M), form a k G'-module. 

(6.15) Proposition. Assume the quotient group G'=G/H is finite. Let P ~ ( k G )  
and M ~ k ( k G ) ,  and put Q=HOmkH(P , M). Then Q6~(kG') and 

rQ/~G,=~,(Z~, r~)= ~,(r~| 
Explicitly, if z'e T(G') then rQ (z') = ~, ZM (z). r t,(z). 

/ t ,  T~  ,r ' - 1  
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(6.16) Corollary. I f  rp(s)=O for all s=t: l in G then rQ(s')=O for all s':i= l in G'. 

We shall prove a more general form of Proposition (6.15) which applies with- 
out the assumption that G' is finite. To do so, we replace HOmkn(P, M) by its 
submodule Q=HOm'kn(P, M), defined as follows: Choose a finite set X of 
generators of the kG-module P; then f~Q if and only i f f  vanishes on Xs for all 
but finitely many coset representatives s of G/H. Note that this is indeed a sub- 
kG'-module, independent of the choice of X, and that Hom;,n(' ,  M) is a functor 
on the category of finitely generated kG-modules. We shall prove that Qe~(kG') 
and rQ = ~z, (ZM" rp). 

Identify P with the image of an idempotent endomorphism e of a free finitely 
generated k G-module, which we may represent as L | k G for some L ~ ( k H ) .  
Then L@kkG' is a right kH-kG'-bimodule, so HOmku(L| M) is a right 
k G'-module: ( f '  t') (x | s') = f (x | s' t'- l) for x e L, s', t' s G'. One checks easily 
that 

HOmkn( L @k U k G, M)--~ HOmku(L | k G', M) (1) 

f~-~f': x | |  -1 

for x e L  and seG, is a well-defined isomorphism of kG'-modules. (We recover f 
from f '  by, f (x @ s) = f '  (x | s') s.) For f~  Horn kn (L | k G, M), x eL, s ~ G, put 
f~(x)=f(x|  and f~',(x)=f'(xQs'). Then L(x)=L:(x)s. Note that 

f 6  Hom~ n (L | n k G, M) 

if and only iff~ = 0 for all but finitely many s mod H, i.e., if and only if f,', = 0 for all 
but finitely many s' e G'. Thus the isomorphism (1) carries Horn;, n (L N,  ~ k G, M) 
to Hom~,n(L @, kG', M) consisting of f '  with f~', =0  for most s'. 

The image Q=  Hom;,H(P, M) of the endomorphism f~--,fo e of 

Hom~,H (L | kG, M) 

is thus isomorphic to the image of the idempotent endomorphism e: f'~--qfo e)' 
of HOm'kn(L@ k kG', m). For xEL put e(x | 1 ) = ~  e~(x)| where s varies over 

8 

representatives of G/H. Then for s~G we have 

(ef'),, (x) = (eft) (x | s') = ( f  o e) (x | s) s-1 = f ( ~. et (x) | t s) s- 1 
t rood  H 

=( ~ f ' (e , (x) |  ~ f '(et(x)| , 
t m o d H  t m o d H  

whence 

(ef')~,= ~ f;~,(et(x))t. (2) 
t m o d  H 

To prove the proposition we shall construct a finite kG'-coordinate system 
of U = Hom~, w (L Ok k G', M) and use it to compute r e = Tv/k~, (e). Let xi,f~: L ~  kH 
be a finite kH-coordinate system of L. Then xi |  1, f |  lk~: L @ k n k G ~ k G  is 
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a finite kG-coordinate system, so r e= TL| Ta(~ (fi | 1)(e(xi @ 1))) = 
i 

TG(~(f~| Z e,(xi)| ~ ~f~(e,(xi))t), so 
i t m o d H  t m o d H  i 

r e = Ta( ~ a, t), (3) 
t rood  H 

where a t = ~fi(et(xi))~ k H. (Note that a, would be the element defining TL/kn(et) 
i 

except that e,: L-~L is not kH-linear, but rather semi-linear with respect to the 
automorphism u~---,tut -1 of H.) 

Let y~, gj: M ~  k be a finite k-coordinate system of M. Define 

H ' z j i eU= omkn(L |  

h~i" U---~ kG' 

by (z j i) ~, (x)= Y~fi (x)if s '=  1, and 0 if s '~  1, and hii ( f ' ) =  ~ gj (f~', (xi))s', the latter 
s' ~G' 

sum being finite since f~',=O for most s'. To show zj~,hj~ is a kG'-coordinate 
system of U, let f ' ~  U, x~L, and t~G. Then 

(~ zjl h~i(f'))(x | C) 
J , I  

= (~ zji y, gj (f~', (xi)) s')(x | t') 
j , i  s'~G' 

= ~ ( z j ) ( x  | t').gj(L',(x,)) 
j , i , s '  

= ~ zji(x | t's'-l)'gj(f~',(xi)) 
j , i , s '  

= E.. y~f,(x)" g~(f/(x,)) 
J,Z 

= Z f', (x,) f~ (x) = Z f ' (x ,  | t') f~ (x) 
i i 

= E f '  (xi fi(x) | t')= f '  (x | t'). 
i 

Now with the kG'-coordinate system zj~,hji we compute rQ/k~,=Tv/kG,(e) as 
follows: 

Z hji(c(zji)) 
ji 

j,  i s 'eG'  

= ~  ~ gi( ~ (zJi),'~'(e,(xi))t)s' (see (2)) 
j , i  s '~G' t m o d H  

= ~  ~ gj(yJi(e~_,(xi))s-t)s ' (s'=ns) 
j , i  s'~G' 

= ~, Y, gj(yja~-,s-t)s ' (a~=~fi(e~(xl))) 
s'~G' j i 

= E Z M ( a s  - I S - I ) S ' '  
S '6G 
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Thus re/k6,= ~, zu(ass)Tz,(s '-1) and re/ko=TG( ~ ass), by (3). Define a 
s' r  s m o d H  

k-linear map Z from kG = (~) kHs to T(kG') by ~((b) = zu(b) T G, (s'- 1) for b~kHs. 
s r n o d H  

If s,t~G then z(st)=zu(st)T~,((st)'-1)=zM(ts)Tc,((ts)'-l). Thus Z induces a 
k-linear map Z: T(kG) ~ T(kG'), 

z(T~(s)) = ZM(S)" T o, (s'-1). 

We have l~(rp/kG)=)(.( E ass)= ~ xu(asS)T6.(S'-I)=rQ/k6,, by the formulas 
s rood H s mod  H 

derived above. Writing r e = ~ re(z ) r, we conclude that 
~ e T ( G )  

rQ/k6,=z(re) = ~ re(z)ZM(Z)n,z -1= ~ ( ~ re(z)ZM(z))z' 
? : e T ( G )  r ' ~ T ( G ' )  ~ T ( G )  

~ ,  T = Z  ' - I 

=~,( Y~ r,,(~)ZM(~)~-~)=~,(zM.r~). 
~ T ( G )  

By Proposition (5.5), ZM.re=ru| This concludes the proof of Proposition 
(6.15). 

I had hoped the formula of Proposition (6.15) would yield a simple direct 
proof of the following theorem of Ken Brown ([6], Th. 7). 

(6.17) Theorem (K. Brown). Assume the quotient G'=G/H is finite and that k 
is a field. I f  P~(7ZG)  and Me~tk(kG ) then Homztt(P , M) is a free kG'-module. 

If char(k) =0  this follows from Corollary (6.16) whenever P satisfies the strong 
conjecture (re(s)=O for s=~ 1 in G). 

Brown proves this theorem under the assumption that G is finitely generated. 
In fact the general case can be reduced to that when G is finitely generated. It 
suffices (see Remark (5.7)) to observe that if G is a subgroup of a group G 1 with 
normal subgroup H 1 such that G 1 = H  I �9 G and H = H  1 c~G, and if P ~ ( Z G )  
and M ~ k ( k G 1 )  then the kG'-modules Homzu (P, M) and HomzH ~ (P | ;EG1, M) 
are isomorphic. (We identify G'= G/H with G~/H L .) One first identifies Homzn(P M) 
with Homzn, (P|  ) and then notes that the natural map from 
P| to P |  1 is bijective. 

7. Characteristic p : Frobenius 

Let k be a commutative ring of prime characteristic p, i.e. an IF~-algebra. 

(7.1) Proposition. Let A be a k-algebra. (a) There is an additive endomorphism 
F: t ~--,t p (called the "Frobenius endomorphism') of T(A) such that T(a) p-- T(a p) 
for a~k and T(~a)P=~PT(a)P for ~ k .  

(b) Let M be an A-module of type (FP) (see (2.6)) and let u~Enda(M ). Then 
TM(u p) = TM(U) p. In particular, r~ = r u. 

Let a, b~A. According to Jacobson ([15], V, No. 7) 

(*) (a+bF=aP+bP+s(a,b), with s(a,b)~EA, A]. 
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Suppose, for some u, v~A, we have a=uv  and b = - v u .  Then a+b=[u ,  v] and 

a p + b p = u v(u v) p - 1 _ (v u) p- 1 v u = [u, v(u v) p - 1 ], 

whence 

[u, v]P= [u, v(uv) p- l]  + s(u, v)e[A, A ]. 

From this and (*) we conclude that: If c e [ A , A ]  then cPe[A,A] and so 
(a + c) p -  a p rood [A, A]. It follows that T(a) ~--~T(a p) is a well defined additive 
endomorphism of T(A); clearly T((aa)P)=~PT(aP) for aek, since T is k-linear; 
this proves (a). 

The preceeding considerations, applied to EndA(M) in place of A, show that 
the maps UF--~TM(u p) for M an A-module of type (FP), and ueEnda(M),  are 
additive, linear, and commutative in the sense of w 2. The universal property of 
T(A) implies therefore the existence of an endomorphism ~o of T(A) such that 
~OTM(U)= TM(U p) for all (m, u) as above. Taking M = A ,  we see that q~ is the p-th 
power map constructed above. This proves Proposition (7.1). 

(7.2) Let G be a group. Then the iterated Frobenius F m" T ( k G ) ~ T ( k G )  is 
given by 

vm( Z r(z)z)= Z r(z)P=C~ 
r~T(G) reT(G) 

a e T ( G )  ~pm= a 

where, for z = T(s) with s~ G, Fmr = C m =  T(sPm). The latter shows that F m is the 
semi-linear extension of the set map Fm: T ( G ) ~  T(G), z ~ z pm. 

(7.3) Lemma. Let s~G and n~=l be such that F"T(s)=T(s) ,  i.e. such that s is 
conjugate in G to s p". I f  s has finite order m then m is prime to p. I f  s has infinite 
order then s belongs to a subgroup H of G isomorphic to the additive group of the 
ring 7l [1/p]. 

The first assertion is obvious, so assume s has infinite order and s=tsP"t -x. 
Put s~=Fst-"  for r > 0 .  Then s rp~ so the group H 
generated by s o =s,  s 1 , s 2 . . . .  is isomorphic to Z[1/p] ,  say by sending s, to p-"L 

(7.4) Lemma (7.3) suggests the interest of the following condition on G. 

(Dfl If s~G is conjugate to s p" for some n > 1 then s has finite order (necessarily 
prime to p). 

Equivalently, if F" fixes T(s) for some n > 1 then s has finite order. 

(7.5) Proposition. Let r = ~ r ( z ) z  be an element of T(kG) fixed by F m, m> l. 
Put S = supp(r) = {z I r(z) +- 0}, and let R denote the subring of k generated by all r(z). 

pra pm 
(a) F ~ permutes S, and r(z )=r(z)  for zeS.  Moreover r (1)~=r(1) .  

(b) Suppose s~G and T(s)6S. There is an integer n, l_<n_<Card(S), such that s 
is conjugate to s pro'. I f  s has finite order, its order is prime to p. I f  s has infinite order, 
s belongs to a subgroup of G isomorphic to the additive group of Z[1/p].  (Condition 
(D p) on G forbids the latter possibility.) 
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(c) The ring R is a finite product of finite fields. Its dimension over Fp is 
pro.Card(S) 

We have r-=rPm=~r(z)PmC% so, for all a~S, r(a)= ~, r(r) pro. It follows that 

the finite set FInS must contain S, so, by the box principle, F m must induce a 
bijection S -* S. It follows that r(z gin) = r(z) pm for z e S. In particular 

r(1) = r(lPm) = r(1) p" if r(1) #0,  

and likewise if r(1)= 0, whence (a). 
Assertion (b) follows from Lemma (7.3) with n the cardinal of the orbit of 

T(s) under Fm. 
Let n 1 . . . .  ,n u be the cardinals of the orbits of F m in S, so that Card(S)= 

nl + . - .  + n u. If z i belongs to the orbit of cardinal ni, and if r i = r(zi) , then h, ..., r 
generate the ring R, and rfm~ r i. Thus R is a quotient of the tensor product R' of 
the rings Fp[ X]/ (X p"~'- X), of dimension pmn, over Fp. S i n c e  F p [ X ] / ( X  p n -  X)'~ 
1-I Fp, and dim R__< dim R' = 1-[ pm~,= pm.CardtS~, assertion (c) follows. 
din i 

Remark. Suppose K is a field. With the notation of the last part of the proof, we 
then have IFp [rl] =lFpl ~, where f/divides mnl; hence f~ln~ if m= 1, i.e. if F fixes r. 
Moreover, R=IFp~ where f i s  the least common multiple of the f~. 

(7.6) Corollary. Let P6~(kG)  and let u be an automorphism of P of finite order n 
prime to p. Let m denote the order of p in (Z/nZ)*. Then r =  Tp/ko(U ) is fixed by F m, 
so the conclusions of Proposition (7.5) apply. In particular rr= Te/k6(le) is fixed 
by F, so Proposition (7.5) applies to r e with m = 1. 

In fact, since pm___ 1 modn we have uP"= u, so Proposition (7.1)(6) implies that 
r = Te(u ) = Tp(u p~) = T(u) p". 

Remark. The corollary applies equally well if P is only a k G-module of type (FP). 

(7.7) Corollary. Suppose k is an algebraically closed field and P ~ ( k G ) .  There is a 
finite field k' contained in k and a P' ~ ( k '  G) such that rp=rp,~T(k'G). Moreover 
rp(1)eFp. 

It clearly suffices to prove the analogue of the corollary where we take for k' 
the algebraic closure of Fp in k; the P' then obtained will be defined over a finite 
subfield of k'. Let k 1 be a finitely generated k'-algebra in k such that P g k | P~ 
for some Ple~(k 1G). Choose a retraction f :  k~-~k' (Nullstellensatz), and put 
P ' = k ' |  ). We have re=re=~re( 'c)z and re,=~f(re(Z))z. But Propo- 
sition (7.5) and Corollary (7.6) imply that re(z)~k' so f(re(z))= rp(Z) for all veT(G). 
Thus re,= r e, as required. The fact that re(1)P= re(1 ) (Proposition (7.5)(a)) implies 
finally that re(1)eF p. 

(7.8) Proposition (cf. Passman [28], Th. 2.2). Let r = ~  r(z)zez(kG) and suppose 
F m r = 0 for some m > 1. 

(a) For all treT(G), ( ~, r(z))Pm=0. 
~pm 

(b) Suppose r(s)=0 whenever s has finite order divisible by p. Then r(s)P"=O 
whenever s has finite order; in particular r(1)Pm= 0. 
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We have 0 = F m r = ~ ( ~ r(z)) p" a (see (7.2)), whence (a). Let S O c S = supp (r) 
~prn:a 

consist of those T(s)~S for which s has finite order. Then F"S  o and Fro(S-So) 
are clearly disjoint, and the hypothesis of (b) implies that the restriction of F m 
to S o is injective; in fact some power of F fixes each element of S o. Thus it follows 
from (a) that r(z) pm =0  for all z~So, whence (b). 

(7.9) Remarks. 1. Suppose, in Proposition(7.8), that k is reduced, i.e. has no 
nilpotent elements 4: 0. Then (a) and (b) of (7.8) can be strengthened as follows: 

(a') For all acT(G),  ~ r(r)=0.  
~pm=ff 

(b') Suppose r(s)=O whenever s has finite order divisible by p. Then r(s)=0 
whenever s has finite order; in particular r(1)=0. 

2. The following conditions on G are clearly equivalent: 

(i) F: T(G)-+ T(G) is injective. 

(ii) G contains no element of order p, and, if s, t are elements of infinite order 
in G such that s' is conjugate to te, then s is conjugate to t. 

Under these conditions, if r~T(kG) then Fmr=O if and only if r(s)'m=0 for all 
s~G. Hence F: T(kG)-~ T(kG) is injective ilk is reduced. 

(7.10) Corollary. Let M be a kG-module of  type (FP), and let v be a nilpotent 
endomorphism of M, say v "~ = O. Then r = TM(v ) is annihilated by F m, so the con- 
clusions of Proposition (7.8) apply to r. 

In fact O= Tu(O)= TM(vV~)= TM(v) "m--Fret, by Proposition (7.1)(b). 

(7.11) Remarks. Let M be a kG-module of type (FP) and let t bc an automorphism 
of finite order of M. Then we can write t = sv = vs where v has order a power 
pm ofp  and s has order n prime to p. We have v-- l u + u  with 1M=v'~= 1M+u "m, 
so u '~=0 .  Moreover t = s v = s + s u = s + u s  and (su)Pm=O. It follows that TM(t)= 
TM(s ) + TM(u s). Information about TM(s ) furnished by Corollary (7.6); for example 
the conjugacy classes of finite order in supp(TM(s)) have order prime to p, and 
these exhaust supp(TM(s)) if G satisfies condition (D,) of (7.4). On the other hand 
information on TM(us) is furnished by Corollary (7.10). For example if G has no 
p-torsion then there is no torsion in supp (TM(u s)) if k is reduced (Remark (7.9)). 

Suppose, more generally, that u is an endomorphism of M which is integral 
over k, i.e. k [u] c Endk~(M ) is a finitely generated k-module. Then Tu(u ) belongs 
to the finitely generated k-module TM(k [u]) which is stable under F. It follows that, 
for some finite set S c  T(G), supp ( r ) cS  for all r~TM(k[u]), in particular for all 
F" TM(u), m >= 1. 

8. The Complex Group Algebra 

Here we investigate the ranks r e of finitely generated projective modules P over 
a complex group algebra CG. The main result, Theorem (8.1), gives some detailed 
information about arithmetic properties of the numbers re(s), including Zaleskii's 
theorem that re(1)~ Q. The method we use was originated by Zaleskii. Kaplansky's 
theorem, that re( l )>0 if P 4:0, is recalled, and applications of these results are 
given here and in w 9. 
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(8.1) Theorem. Let G be a group. Let r=rM= ~ r(x)z be the rank of a CG- 
~ T ( G )  

module M of type (FP). Put S = supp(r) = {zlr(z) 4= O} and R = {r(z)lz~ T(G)}. Let 
E = Q(R), the subfield of C generated by R. 

(a) E is a finite abelian extension of  Q; put F = Gal(E/Q). 
There is a finite set H of  rational primes, including those ramified in E, with the 

following properties. 

(b) I f  p is a prime not in H then z ~--oz p is a bijection S -*  S, and r(zP)=t~r(z) Jbr 
z 6 S, where a is the Artin symbol (p, E/Q) (cf. [22], Ch. I, w 8). 

Let s~G be such that T(s)eS. 

(c) I f  p is a prime not in H then s is conjugate in G to sP" for some n, 1 <_ n <_ Card S. 
(d) Suppose s has finite order m, and put w=exp(2~zi/m). Then r(s)6Q(w), say 

r(s) =f (w)  for some polynomial f eQ IX]. We have r(sq)= f (w q) for all q prime to m. 
In particular r ( 1 ) ~  (Zaleskii [27]). 

(e) Suppose s has infinite order. Then s belongs to a subgroup H of G isomorphic 
to the additive group of all rational numbers with denominator prime to all primes 
in II. 

Let A = Z  [R], the subring o f t  generated by R. Choose Po,/]1 ~ ( ~ G )  so that 
r = rvo- rv. We can choose a subring B of �9 with the following properties (i)-(iv): 

(i) B is a finitely generated Z-algebra. 
(ii) The module P/is isomorphic to C | for some finitely generated projec- 

tive BG-module P/. 
This condition permits us to identify r with rp6-rvieT(BG); in particular 

A c B .  

(iii) If z E T(G) and r(z) # 0 then r(z) is invertible in B. If z'e T(G) and r(z) 4: r(z') 
then r(z)-r(z ')  is invertible in B. 

(iv) B is integrally closed. 
To achieve (ii) B need only contain all coefficients of elements of G in the 

entries of idempotent matrices defining Po and/]1, and (iii)-requires inversion of a 
finite number of non-zero elements. The integral closure of the Z-algebra generated 
by this finite collection of elements is still finitely generated (cf. [18], (31.H), 
Th. 72). Note that condition (iii) implies: 

(iii') If z, z 'eT(G) and r(z)#O then, for any proper ideal I of B, r(z)~O modI,  
and, if r(z) # r(z'), then r(z) ~g r(z') mod I. 

According to the generic freeness lemma of Hochster-Roberts ([14], No. 8) 
there is an integer u 4:0 such that A, and Bu/A . are free ;r where the 
subscript denotes localization by inverting u. Let p be a rational prime. The 
condition 

(v) pgu 
implies that the homomorphism A/pA ~ B/pB is unchanged by inverting u. 
Since A, is a direct summand (as Z~-module) of B~ it follows that A/pA --~ B/pB 
is injective, so we can identify/1 = A/pA with the subring of/~ = B/pB generated 
by the image R of R. But if Pi denotes the /~G-module P~'/PPi' (see (ii)) then 
rpo-rp~T(BG)  is just the reduction modpB,  L of r. Thus .4 is the Fv-algebra 
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generated by the coefficients of r~o - rpl. It follows therefore from Proposition (7.5) 
and Corollary (7.6) that A is finite and reduced. Moreover 

dim~p(A) = dim~p(A,/pA,) = rankz,(A,), 

so we conclude that A, has finite rank over Z u. Thus the field of fractions E =  Q(R) 
of A is a finite extension of Q. Let E' be the smallest galois extension of Q in C 
containing E, and put F =  Gal(E'/Q). 

Continuing the discussion above, condition (iii') implies that S = supp (F). Thus 
Proposition (7.5) and Corollary (7.6) further imply that: 

(vi) z ~-,zP defines a bijection S ~  S and r(TP)---r(~)PmodpB for zeS. 

Let aeF.  By the t2ebotarev density theorem (cf. [17], Ch. XV, w 5, Th. 6, Ex. 1), 
there are infinitely many primes p of E' unramified over Q such that a is the 
Frobenius automorphism (p, E'/Q). In all but finitely many cases we may identify 
p with a prime ideal of B '=  B c~ E', and then a is characterized by the condition: 
a ( x ) - x P m o d p  for all xeB' ,  where p is the rational prime over which p lies. For  
all but finitely many p's, p will satisfy condition (v), and hence also condition (vi). 
From the congruences a r ( z ) -  r(z) p mod p and r(z p) = r(z) p modpB, we conclude 
that a r(z)=-r(z p) mod p. Since S is finite condition (vi) implies that, for infinitely 
many p and p as above, z p takes the same value, say z 1 e S, whence ar ( z ) - r ( r l ) e  p 
for infinitely many primes p of B'. It follows that a r (z)=  r (~)eR,  so that F stabilizes 
R, whence E = Q ( R )  is galois over Q, i.e. E=E'.  Further, condition (v) implies 
that A , = B ' .  In view of condition (iii') the congruence ar ( z ) - r ( zP)modp  now 
further implies that a r(z)= r(zP). In view of (vi) we then have ar ( z ) - r ( r )  p modpB, 
whence, a(a)-= a p modpAu for all a e A ,  = Z,  [R]. Consequently a is the Frobenius 
automorphism (t0', E/Q) for all primes p' above p (satisfying (v)). It follows that a 
coincides with its conjugates, so is central in F. Since a was arbitrary we conclude 
that F is abelian and that a =(p, E/Q), the Artin symbol. This proves assertions 
(a) and (b) of the theorem, where H is taken to be the set of primes dividing u. Note 
that if p.~u, i.e. if p satisfies (v), then we have seen that A/pA = A, /pA,  is reduced, 
so p is unramified in E. Assertion (c) follows from (b). 

For  q an integer not divisible by any primes in 17 we can define the Artin 
symbol aq = (q, E/Q) in F so that it is multiplicative in q; it then follows from (b) 
that, whenever T(s)eS, we have aq r(s)= r(sq). Suppose s has finite order m. Since 

~-+zq is a permutation of S (by (b)), q must be prime to m. Further r(s) is fixed 
by the Artin symbols aq with q--1 modm, so it lies in E c~Q(w), where 
w=exp(2ni/m),  say r(s)=f(w)  with f a polynomial in Q[X] .  We then have 
r(s q) = a q f ( w ) = f ( w  q) for q as above. Note that such q's represent every invertible 
element of Z/m7l. This proves (d). 

To prove (e), consider, for each s~ G, the multiplicative monoid C(s) of positive 
integers q such that s is conjugate in G to s q. If T(s)eS then, according to (b), for 
each prime p r C(s) contains p" for some n such that l<n_<CardS.  Let M 
denote the multiplicative monoid generated by all primes pCH. Putting 
N -- (Card S) !, we conclude that if T(s)~S then qNsC(s) for all qeM.  Writing 
s = t s q ~ t - ~ = ( t s t - t )  qN we see that s=u  q" with T(u)=T(s )eS .  List the primes 
p CFl: Pt,P2 . . . . .  P . . . . . .  Put a,=p~ ... pn and b ,=a  1 ... a,. By induction on n we 
can construct a sequence s o, s 1 . . . . .  s . . . . .  in T(s) so that s o = s and s, b" = s,_ ~. The 
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subgroup H of G generated by this sequence is clearly isomorphic to the direct 
limit of the sequence of groups and homomorphisms 

Z b~__,Z b ~ Z  , . "  - - ,Z  >Z b~ > . . .  

which can be identified with the additive group of rational numbers with de- 
nominator in M. 

This concludes the proof of Theorem (8.1). 

(8.2) Remark. Keep the notation of Theorem (8.1). It seems reasonable to con- 
jecture that r ( s )=0 for all s of infinite order. Conditions under which this is the 
case are described in w 9, Proposition (9.2) and Theorem (9.6). 

(8.3) Corollary. Let P be a finitely generated projective C G-module. There is a 
finite field extension L of Q and a finitely generated projective LG-module fi such 
that r~ = rp. 

It clearly suffices to prove the analogous assertion with L replaced by the 
algebraic closure U~ of Q. Let A be a finitely generated Q-algebra in C so that P 
arises by base change A --* C from a finitely generated projective AG-module P~. 
Then rp = re1 e T(AG). Choose a Q-algebra homomorphism f :  A -~ Q (Nullstellen- 
satz), and put P = Q | P1- If r e = ~ r(r) z = rp, then rp = ~ f(r(~)) z. Part (a) 

~e T(G)  re  T(G) 

of Theorem (8.1) asserts that r(z)~Q for all z, whence rp =re, as required. 

(8.4) We next propose to show, in certain cases, that traces (over CG) of nil- 
potent endomorphisms vanish. The method of proof involves the following 
condition on the group G: 

(C) If s 1 , s 2 ~ G are such that s p is conjugate to s~ for all but finitely many primes 
p, then s~ is conjugate to s 2 . 

(8.5) Theorem. Let M be a CG-module of type (FP), let v be a nilpotent endo- 
morphism of M, and put r= TM(v)= ~ r(z)z. 

(a) r (s)=0 for all s of finite order. 

(b) I f  G satisfies condition (C) of (8.4) then r = O. 

(c) I f  G has a faithful linear representation over some field then G satisfies (C). 

Remark. Assertion (a) for s = 1 and M = �9 G is Corollary (2.3) of Passman [28]. 
We use the same method of proof here. 

According to [1], Chapter XII, Proposition (6.2), there is a finite resolution 
P--~M of M, P =  (. . . 0 --, P, --, ...--~ Po--~ 0) with each P/e~(CG),  and a lifting of v 
to a nilpotent endomorphism (vi) of P. Then r =  TM(V)=~(-1)iTe,(vi), so it 
suffices to prove the theorem when M is a projective module P. 

Choose a finitely generated subring B of C such that there is a module 
P'e~(BG)  and a nilpotent v'~EndBG(P') such that (P,v) is isomorphic to 
(C|174 this is clearly possible, and we then have r=Tp,(V')eT(BG). 
We can further assume that all non-zero r(z) are invertible in B. 

Let p be a prime not invertible in B (this excludes only finitely many). Put 
B=B/pB,  P = B |  and ~=/3|  Then Tp(-f)eT(BG) is the reduc- 
tion mod Bp, -f, of r, to which we may apply Proposition (7.8). Suppose p does 
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not divide the order of any s of finite order for which r(s)4:0; this excludes only 
finitely many primes. Then Proposition (7.8)(b) and Corollary (7.10) imply that, 
for some m>0,  r(s)Pm=O mod Bp whenever s has finite order. But if r(s)~O then 
r(s) is invertible in B, by construction of B. Thus the congruence above implies 
that r (s)=0 for all s of finite order, whence (a). 

Suppose G satisfies condition (C). Then, for almost all primes p, the map 
~--~P is injective on supp (r). Choosing such a p large enough so that v 'P=0 we 

conclude from Corollary (7.10) and Proposition (7.8)(a), applied to ? = Tp(~), that 
r ( r ) P - 0 m o d  Bp for all ~. But if r(z)+0,  it is invertible in B, so the congruence 
implies that r (~)= 0 for all z, whence (b). 

Assertion (c) follows from the next result. 

(8.6) Proposition. Let  F be a f ield and let G be a subgroup o f  GLn(F) for some 
n > 1. Suppose gl,  g2 E G are such that for infinitely many primes p, there is a power 
qp > 1 o f  p such that g~p and ggp are conjugate in G. Then gl and g2 are conjugate 
in G. 

There is no loss in assuming F is algebraically closed. Let gi=s iu i=uis i  be 
the Jordan decomposition of gl in GLn(F ), with s~ diagonalisable and u~ unipotent 
(cf. [33, Chap. I, Cor. 1 of Prop. (4.2)). Let H denote the infinite set of primes 
alluded to in the statement of the proposition, but from which we exclude the 
characteristic of F, if it is > 0. For  each p ~ / / choose  hp ~ G such that hp ggp hp- 1 = g~. 
From the uniqueness of the Jordan decomposition, we conclude that h p s ~ h ~ l =  
s~" and hpuq~h~ 1 = u ~ .  Since p4:char(K) the map u~-,u qp is injective (even bi- 
jective) on the set of unipotents u in GLn(F). (If char(K)= l > 0  then u has order 
a power of l, prime to qp. If cha r (K)=0  then u =exp  (1/qp log (u~)).) Thus from 
(hpu2h~ l) q~ =u~, we conclude that hpu z h~ 1 = u  1. Thus, after replacing g2 by one 
of its conjugates in G, we can arrange that u 1 = u2; call this element u. Then the 
preceeding discussion shows that, for all p e l I ,  we have 

hps~'hp 1 = s  qp, h,  Uhp 1 = u .  

We may further conjugate G by an element of GLn(F) to put s 1 in the diagonal 
form s 1 = diag (a I . . . . .  a 1 , a 2 . . . .  , a 2 . . . . .  a . . . . . .  % )  where a 1 . . . . .  a~ are the dis- 
tinct eigenvalues of sl. A power s~ of s~ has the same centralizer ZoL.~v)(s q) in 

q ~ a  q whenever i:t:j, in other words if(ai/aj)q+ 1 for i:l:j. GLn(F) as s I provided a i 
Let //o denote the set of primes dividing the order of some a]a: of finite order. 
Then if q is divisible by no prime in //o the discussion above shows that 
ZGLn(Fj(Sq)=ZGLn(F)(S1). Choose two primes Pl, P2 in H - H  o and put qi=qp, and 
h i = h p ,  i=1 ,2 .  Put g 3 = h l g 2 h ~ l = s 3 u ,  so that gq'3 =gq', and so s g ' - s ~  ~ -  . Put 
h = h z h ? l ' T h e n h c ~  q~h-l-3 - h2 g2q~ h2-1__ gl q~, so h s ~ h - t - s ~  ~ -  . 
Thus s~ ~q' =(hsg~h-1) q' _h(~q,~q~z,-1 =hs~,q~h-1, so hEZGL e (S~ 'q~) By the choice - - ,~  0 3 ! t~ n( ) . 

of Pl and P2 outside of H o, therefore, h centralizes s 1 , and hence sg' = s q' for i = 1 
- -  q I  tl and 2. Writing 1 = t I ql + t2 q2 with q ,  t 2 e Z we see that s i -  (s i ) �9 (s~]~) t~ is the 

same for i=1  or 3, i.e. s~=s  3. But then gl = g a - - h l g 2 h l  1, so g~ and g2 are con- 
jugate in G, as claimed. 

(8.7) Proposition. Let  M be a CG-module o f  type (FP). Let  ueEndco(M) be 
h 

algebraic over C, say f ( u ) = 0  where f ( X ) = I -  [ (X-ui )"% u 1 . . . . .  u h being the 
distinct roots o f f .  i=x 
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(a) M is the direct sum o f  the modules M i = K e r ( u  i. 1M-u)"' ( l < / = h ) .  Put 
r i = rM, ~ T(ff~ G). 

(b) TM(u ) = u a r a + . . .  + u h r h + TM(v ) where v is a nilpotent endomorphism o f  M,  
which is zero i f  all n i = 1. 

(c) I f  G satisfies condition (C) of  (8.2), for  example if  G admits a faithful linear 
representation over some field, then T M (v)= O. 

Assertions (a) and (b)just formulate the conclusions of (3.6) in the present 
setting. Assertion (c) results from Theorem (8.5)(b) and (c). 

(8.8) Remark. Suppose u is even algebraic over Q, so that u 1 . . . . .  u h are algebraic 
numbers. Then it folloes from Theorem (8.1) that, if r---u 1 r 1 +-. .  + u h rh, then r (s) 
is an algebraic number for all seG.  For example suppose urn= 1M. Then TM(u)= r 
by Proposition (8.7)(b), and r(s) belongs to a cyclotomic field for all seG.  

To draw further conclusions we shall invoke the following well known theorem 
of Kaplansky. 

(8.9) Theorem (Kaplansky). Let  G be a group and let P ~ ( C G ) .  I f  P#:O then 
the rational number re(1 ) (cf. Th. (8.1)(d)) is >0.  

In fact this was proved before Zaleskii's result on the rationality of re(l), and 
it was shown by Kaplansky that re(1 ) is a totally real algebraic number >0.  The 
proof is phrased in terms of the trace of the coefficient of 1 ~ G of an idempotent 
n by n matrix over CG. A published proof, with details only for n=  1, can be 
found in [19]. See Passman [28], Theorem (2.6) for further references. 

(8.10) Corollary. Let  P be a projective CG-module with n generators. Then 
O<re(1)<n .  I f  rp(1)=0 then P=0.  I f  re (1)=n then P~(CG)  n. 

Writing P |  we have r l , (1)+re,(1)=n,  and the corollary follows 
from Theorem (8.9). 

(8.11) Corollary. Let  k be a subring o f  C in which no rational prime is invertible. 
Then any idempotent e in kG equals 0 or 1. 

Put r = T ( e )  and r ' = T ( 1 - e ) .  Then r(1) and r'(1) belong to k c ~ Q = Z ,  they 
are >0,  and r (1)+r ' (1)=l .  Hence either r(1)=0, so e=0,  or r (1)=l ,  so e = l ,  
by Corollary (8.10) (with P = e C G ) .  

(8.12) Corollary. Let  e =  ~. e(s)s be an idempotent in CG. I f  e ( 1 ) = ~  e(s) then 
e = 0  or e=  1. s~G s 

In fact ~ e(s), being the augmentation of e, is an idempotent of (E, hence 
S 

either 0 or 1. Thus the corollary follows, as above, from Corollary (8.10). 

(8.13) Remarks.  1. The condition that (E G contain no idempotents except 0 and 1 
is very strong. Indeed let K be any algebraically closed field and let A be a K- 
algebra. Then the following conditions on A are equivalent. 

(a) A contains no idempotents except 0 and t. 
(b) Every finite dimensional subalgebra B of A is of the form B = K + N with 

N a nilpotent ideal. 
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(c) Every element of A algebraic over K is a scalar plus a nilpotent element. 
(d) Every unit of finite order not divisible by char (K) in A is a scalar. 

(a) =~ (b): Let N be the radical of B. Since idempotents of B / N  lift to idem- 
potents of B, the semi-simple K-algebra B / N  has no non-trivial idempotents, 
hence is just K. 

(b) ~ (c): If u e A is algebraic over K we apply (b) to B = K [u]. 
(c)=,(d): If u has finite order not divisible by char(K) then K [ u ]  is semi- 

simple, so (c) implies u is a scalar. 
(d)=~(a): If e is a non-trivial idempotent and z is a non-trivial root of unity 

in K then u = z e + (1 - e) is not scalar and has finite order not divisible by char (K). 

2. If G contains non-trivial elements of finite order then clearly CG contains 
non-trivial idempotents. If, on the other hand, G is torsion free, than it is believed 
that CG should contain no non-trivial idempotents (nor even any divisors of 
zero). We shall indicate in w 9, (Prop. (9.2)) a large class of torsion free groups G, 
including all those with faithful linear representations (Theorem (9.6)), for which 
lEG contains no non-trivial idempotents. 

3. A general conjecture is that, if k is an integral domain, then kG contains 
non-trivial idempotents only if G contains an element of finite order n > 1 in- 
vertible in k. 

4. It was shown by Burns I-7] that, for an arbitrary commutative ring k and 
group G, if e = ~ e(s)s is a central idempotent in kG, then the (normal) subgroup 

s ~ G  

generated by supp (e) = {sl e (s) 4= 0} is finite. 
The following nice result of Passman is announced by Sehgal in [20]. We 

include a proof since it is a pleasant application of the results at hand, and then 
present some interesting consequences drawn by Sehgal. 

(8.14) Proposition (Passman). Let  k be a subring o f  ff~ in which no rational prime 
is invertible. Let  u= ~ u(s)s be a unit o f  f inite order n>  1 in kG and o f  augmenta- 

se~ G 

tion ~'u(s)  equal to 1. Then u(1)=0.  
s 

(Note that the group of units of kG is the direct product of those of k with 
those of augmentation 1.) 

The decomposition of the semi-simple subalgebra ~ [u] of CG leads to an 
expression of u in the form u = u 1 el + . . .  + u h e h where the u i are distinct n th roots 
of unity, and where the e i are non-zero pairwise orthogonal idempotents with 
sum 1. Put r = T ( u )  and r i = T ( e i ) ( l < i < h ) ,  in T(~G) .  Then r = u l r l + . . . + u h r  h 
so u(1) = r(1) = u I r 1 (1) + . . .  + u h r h(1). By Theorem (8.9) each ri(1) is a rational 
number > 0, and their sum is 1. Moreover h > 1 for otherwise u would be a scalar 
of augmentation 1, hence equal to 1, contrary to our hypothesis that n >  1. Thus 
u(1) is a proper convex rational linear combination of roots of unity, so it, as 
well as all of its conjugates over Q, lies in the interior of the unit circle. Therefore 
u(1) is an element of k algebraic over Q whose norm from Q(u(1)) to Q has ab- 
solute value < 1. Since no rational prime is invertible in k, u(1) must be integral 
over Z, so its norm is an integer, of absolute value < 1, hence 0. The proposition 
now follows. 
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(8.15) Corollary (Sehgal [20]). I f  n =ph for some prime p then there is an element 
s~G of order n such that u(s)r 

We have uP"=l whereas uPh-'+ 1, so Proposition (8.14) implies uP"-'(1)=0. 
For i > 0  let S i denote the set ofzesupp(r)for  which z p'= 1. Then, applying Fro- 
benius in T((k/kp)G), we conclude that 1 = ( ~  r(z))P"modkp, whereas 0 ~  

r~Sh 

( ~ r(z)) p"-' mod kp. It follows that 1 =(  ~ r(z)) p" modkp.  The corollary 
~ESh--I ~fiSh--Sh-i 

follows by taking a suitable s e G such that T(s)ES h -  S h_ 1" 

(8.16) Corollary (Sehgal [20]). I f  G is torsion free 1 is the only unit of finite order 
and augmentation 1 in k G. 

9. Non-Divisibil ity Conditions on G 

(9.1) Theorem(8.1) suggests introducing the following condition(D) on a 
group G (cf. Formanek [11], No. 4). 

(D) Suppose H is a finitely generated subgroup of G, s E H, N is an integer > 0, 
and, for all but finitely many primes p, s is conjugate in H to sPN; then s has finite 
6rder. 

(9.2) Proposition. Let M be a C G-module of type (F P). I f  G satisfies condition (D) 
then r~(s)=0 for all s of infinite order in G. 

It clearly suffices to prove this when M is a projective ~G-module P. Then 
there is a finitely generated subgroup H of G and a QE:~(ff~H) such that 
P"~=Q | . If s~H has infinite order and r,~(s)~ N (:re(s))~=O then there is an 
integer N > 0  such that s is conjugate in H to s p for almost all primes p, by 
Theorem(8.1)(c). (One can take N=c!  where c=Card(supp(rQ)).) But this 
contradicts condition (D) on G. 

(9.3) Corollary (cf. Formanek [11], Th. 9). Let G be a torsion free group satisfying 
condition (D). Then r contains no idempotents except 0 and 1. 

Let e= Z e(s)s be an idempotent in ~G.  Then T(e)=rp= ~ r(z)z where 
s~G zET(G) 

P=(ff;G)e and r ( z ) = Z  e(s). Proposition (9.2) implies that r(z)=0 for z~= 1; 
S E $  

whence re= e(1). 1, and e(1)= ~ e(s). Now it follows from Corollary (8.12) that 
e = 0  or 1. s~G 

(9.4) Theorem. Let G be a group satisfying condition (D), and let P be a finitely 
generated projective QG-module. Then r e is a Q-linear combination of the elements 
reH where PH = Q [G/H] = Q G | Qn, H being any finite cyclic subgroup of G, 
and Qn the Q H-module Q with trivial H-action. 

It follows from Theorem (8.1)(d) and Proposition (9.2) that re(s)=0 if s has 
infinite order, and that r e takes the same value on two generators of the same 
finite cyclic subgroup H of G. For each such H let arts T(QG) be the sum of the 
conjugacy classes that contain a generator of H, i.e. an(s)= 1 if s generates a 
conjugate of H, and an(s)=0 otherwise. The preceeding remarks show that r e 
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is a Q-linear combination of the elements a n, so it suffices to express the an's in 
terms of the rn's. But both a n and r n are images in T(QG) of the corresponding 
elements of T(QH). Thus we reduce to the case when H = G. In this case, for each 
finitely generated QG-module  V, we have ~(v = IGl 'rv,  and it is well known that 
a G is a Q-linear combination of the characters ZQw/m where H varies over sub- 
groups of G (cf. Serre [21], Chap. II, w 8). This proves Theorem (9.4). 

Remark. Theorem(9.4) is analogous to Artin's theorem on induced rational 
characters of finite groups, to which the last part of the proof  refers. 

(9.5) Condition (D): Remarks and Examples. 

1. Condition (D) is clearly stable under passage to subgroups and to filtered 
direct limits. 

2. Let H be a normal subgroup of a group G such that G/H satisfies condi- 
tion (D). Then G satisfies (D) if either H is a torsion group (e.g. if H is finite), or 
if each element of H has a finite G-conjugacy class. 

3. Condition (D) is a consequence of the following condition on a group G: 

(D') An element s~G has finite order if, in some finitely generated subgroup H 
of G containing s, s is a pth power for infinitely many primes p. 

The next theorem shows that linear groups satisfy (D'), and hence (D). 

4. We do not known whether all residually finite groups satisfy condition (D). 

(9.6) Theorem. Let F be a field, and let G be a finitely generated subgroup of 
GL, (F). Suppose g~ G is such that, for infinitely many primes p, the equation g = x p 
is solvable with x6G. Then g has finite order. 

Since G is finitely generated there is a finitely generated subring A of F such 
that G ~ GL, (A). In fact this is the only finiteness property of G we use, so we may 
even assume G = GL,(A). After extending F and A slightly w e m a y  further assume 
that A contains the eigenvalues of g. There is no harm in supposing also that F 
is the field of fractions of A, and that A is integrally closed in F. Let/~ be an alge- 
braic closure of F. According to Proposition (A.4) of the Appendix, there is an 
integer N > 0  such that if c~eff is such that [F(7) : F]  < n  and e ' e F  for some m 
prime to N then ~eF.  

Let S c A denote the set of eigenvalues of g. Let aE S. If g = x p with x eGL, (A)  
then a = e  p for some eigenvalue cteff of x and IF(e):  F] < n  (since e is a root of 
the characteristic polynomial of x). If p is prime to N (as above) then ~ e F, and so 
s e a  since ~ is integral over A, and A is integrally closed in F. It follows that, 
for such p, a is a pth power in the group A* of units of A. According to a theorem 
due essentially to Rosenlicht (see [16], II, w Cor. of Th. 5), A* is a finitely gen- 
erated abelian group. Hence an element of A* which is a pth power for infinitely 
many primes p must have finite order. The hypothesis on g thus implies that all 
eigenvalues a of g are roots of unity. Some power u -  gr of g then has all eigen- 
values equal to 1, i.e. u is unipotent. If char (F )=q  then for q > 0  we have uq"= 1, 
so the theorem is proved in this case. Suppose q=0 .  Clearly u inherits the hy- 
pothesis made on g: For infinitely many primes p, u = x  p is solvable for some 
x~ GL, (A). The eigenvalues of such an x are then pth roots of unity of degree < n 
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over F, whence equal to 1 once p is sufficiently large, by Proposition (A. 3) 9 f the 
, 4  - -  

Appendix. For such p, x itself is unipotent, whence x = e x p  ( l  log(u)). Put 

X 2 X 3 X n 
u = l + X ,  so that X"=0,  and put L=log(u)=X--~-+- f f -  . . . .  ( -1)"-1--n  

+(tL)" 
Then E(t )=exp( tL)=l+tL+ +"" n! is a polynomial in t with matrix 

coefficients over the ring B=A [1/n !]. Further, we know that E(1/p) is a matrix 
in GL.(A) for infinitely many primes p. The next lemma therefore implies that 
the polynomial E(t) is constant, whence u=E(1)=E(O)= 1, and the theorem is 
proved. 

(9.7) Lemma. Let B be a finitely generated subring of a field F of characteristic O. 
Let f (t)=bo + b 1 t+ ... + b.t", b.+O, be a polynomial in B[t] such that f (1/p)~ B 
for infinitely many primes p. Then f is a constant. 

Let C be a finitely generated integrally closed subring of F containing B and 
the inverse of the product of all non-zero coefficients o f f .  All but finitely many 
primes p are not invertible in C. Such a p belongs to finitely many height one 
prime ideals p of C. For such a p the ultrametric inequality for the p-adic valuation 
v implies that v(f(1/p))=-n.v(p) .  But for infinitely many p's as above 
v(f(1/p))>O by hypothesis. Since v(p)>0 it follows that n=0,  i.e. f is constant. 

Appendix on Cyclotomic Extensions 

Let F be a field, f an algebraic closure of F, and, for each integer m>  1, let/z,, 
denote the group of mth roots of unity in/7. Put 

q~r(m) = [F(/~m) : V]. 

(A.1) Examples. 1. F=/7: ~0F(m)= 1 for all m. 

2. F = Q: q0 o (m) = ~p (m) = Card (TZ/m 7l)*. 

3. Let p be the characteristic exponent of F and write m = pr m' with m' prime 
to p. Then qgv(m)=q~r(m'). In fact /~,,=#m'" 

4. F=Fq with q=p": For m prime to p, q~vq(m)=the order of q in (77/m71)*. 

Let F o denote the prime field in F, and F1 the algebraic closure of F o in F. 

(A.2) Lemma. ~Ov(m)=q>vl (m) for all m. 

Since the field F 1 is perfect and algebraically closed in F, F is a regular ex- 
tension of F 1 . Consequently the F-algebra F | F1 (/~m) is a field, isomorphic to 
F(#m); whence the lemma. 

Remark. If F is a finitely generated extension of F o then so also are its subfields, 
whence F~ is a finite extension of F o . 

(A.3) Proposition. Suppose F is a finitely generated extension of its prime field 
Fo; let p denote its characteristic exponent. 
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(a) Given an integer n > 0, there are only finitely many integers m prime to p 
such that (pF(m)~n. 

(b) Suppose F o = Q. There is an integer m 1 > 1 such that for all integers m 
prime to ml, one has (pF(m)= (pQ(m) ( =  (p(m)). 

In view of Lemma (A.2) and the Remark above, it suffices to treat the case 
when F is a finite extension of F o, say of degree d = [F : Fo]. Then d- (pr (m) = 
[F(#,,) : Fo] is a multiple of (pFo(m), SO (PF(m)>(pFo(m)/d, and assertion (a)follows 
from the special case: F = F o. When F o = Q the assertion is an obvious property 
of the Euler (p-function. When Fo=F p and p)[m we have m<]Fp(#m)l=p~r~ (m), 

whence (pr (m)> log (m), thus proving (a) also in this case. 
- log  (p) 

F(#.,) 

F Fo(# m) 

Fo 

To prove (b) we may, after enlarging F if necessary, assume F is galois over Q. 
Let F"b=Fc-~Q(#o~), where #~ denotes the group of all roots of unity. Choose 
m I so that F"bcQ(# , , ) .  The claim is that, for m prime to m~, (pr(m)=(pQ(m), in 
other words that the extensions F and Q(#m) of Q are linearly disjoint. Since they 
are galois over Q it suffices to show that F c~ Q(#m)= Q. Since 

F c~Q(#, , )cF c~Q(#~)=F"bcQ(pml),  

it suffices to observe that Q (#m)c~ Q(/I,,~)= Q;  the latter is a well known property 
of cyclotomic extensions of Q (cf. [17], Chap. IV, p. 75). 

(A.4) Propos i t ion .  Suppose F is a finitely generated extension of its prime field; 
let p denote its characteristic exponent; let n be an integer >0.  The integers m> 1 
prime to p for which (pF(m)< n are finite in number (Proposition (A.3)(a)); let m o 
denote their product. I f  ~ f f  is such that [F(ct):F] < n and og'~F for some m prime 
to p. m o. n! then ~6F. 

All conjugates of �9 over F are of the form w~ with w~# m. It follows that 
Npt,)/r(~)=w~" for some we#, ,  and r=[F(~):F]<n.  Note that r is prime to m 
so we can write l = a r + b m  with a, beZ .  Then F contains the element (w~d) ". 
(ct'~)b= w"~. It follows that F(ct)=F(w ~) so that r =  (pv(m') where m' = t h e  order 
of W ~, a divisor of m, hence prime to Pmon!. But (pF(m')=r~n so, by definition 
ofm o, we must have m ' =  1. Thus w" = 1 so ~teF as claimed. 
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10. Euler Characteristics of Groups of Type (FP) 

As usual k denotes a commutative ring and G a group. 

(10.1) Definition. We say G is of type (FP) over k if k (with trivial G action) is a 
kG-module of type (FP). In this case we call r k = rk/kGET(kG ) the complete Euler 
characteristic of G over k, and rk(1)e k, which we denote ;((G), the Euter characteristic 
of G over k. We also define the homological Euler characteristic of G over k to be 
z(G)= ~, rk(Z)ek. 

*~T(G) 

Remarks. 1. Let 0--~ P~--~--.--~ Po--" k--~0 be a resolution with each Pi~ ' (kG),  
so that rk=~,(--l)irp. If k' is a commutative k-algebra then tensoring with k' 
over k yields a similar resolution of k' over k'G, so G is of type (FP) over k', and 
r k, E T(k' G) is the image under base change of r k ~ T(k G). Similarly for z(G) and ;((G). 

2. If G is of type (FP) over any k 4:0 then, since the augmentation ideal of k G 
is finitely generated, so also is the group G (cf. [6], Proof of Th. 4). 

3. If G is finite then G is of type (FP) over k if and only if its order ]G] is in- 
vertible in k. Then k is isomorphic to (kG)e where e is the central idempotent 

1 1 
e = - - ~ s ,  and rk(S)= 1 for all s~G (cf. Prop.(5.8)). We have z(G)--IG I 

IGI ~G IZ~(s)l 
and ;~(G)= 1. 

4. Suppose G is abelian and of type (FP) over k. From 2. we conclude that 
G = H  x F with H finite and F free abelian. Since H has finite cohomological 
dimension over k, its order [H[ must be invertible in k. As in 3. therefore kH = k x R 
for a certain ring R. Similarly k G = (kH)IF] = k IF]  x R IF], and the k G-module 
k is annihilated by 0 x R IF]. Therefore rk~ k IF] x 0. A free resolution of k over kF 
can be obtained from the Koszul complex associated to the sequence 
1 - s 1 . . . . .  1 - s, where s 1 . . . . .  s, is a free basis of F. From this one sees that r k = 0 
if n > 0, i.e. if F 4: { 1}. In conclusion, r k = 0 unless G is finite, the case discussed in 3. 

(10.2) Proposition. I f  k is a kG-module of type (FP) the same is true of every 
k G-module M e Rk (k G), and 

rM = ~ "  rk~T(kG). (1) 

I f  k is a field the k-modules Hi(G , M) and HI(G, M) are finite dimensional, and one has 

( -  1) i dimHi(G, M)= ~ XM(Z- 1) rk(Z ) (2) 
i>=O t~T(G) 

( -  1)' dimH~(G, M)= ~ XM(Z) rk(Z ). (3) 
i>=O t,~T(G) 

[The left sides of (2) and (3) should be interpreted as elements of k.] 
Let 0-~  P, --~ ... --~ Po --~ k -~ 0 be a resolution with each P~ ~(k  G), so that 

rk=~,(--1)~rp,. Then (Prop.(5.5)) O - - ~ P , | 1 7 4  is a 
i 

resolution with each Pi| M s ~ ( k G )  and rp, | = ~M" rp. Thus r u = ~ ( -  1) I ~':a" r,~ 
i 

= ~u" rk" The augmentation ~ r M (z) = ~ ;(M(z- i) rk(Z ) ~ k is the alternating sum of 
T 

the ranks of the k-modules (P~|174 these being the components of a 
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complex whose homology is Hi(G, M), whence (2). Similarly H*(G, M) is the 
homology of the complex HOmk~(P~, M), so (3) will follow if we show that the 
k-module HOmkG(P/, M) has rank ~ZM(z).rv,(z ). But this results from Propo- 
sition (6.15) (with H =  G). 

Remark. It is clear from the above proof that the assumption that k is a field is 
stronger than necessary; one only needs to know that the k-modules Hi(G , M) 
and Hi(G, M) are of type (FP), in which case we use their ranks over k in place of 
"dim" in formulas (2) and (3). This remark applies as well to the next corollary. 

(10.3) Corollary. I f  k is a field and a kG-module of type (FP) then 

)~(G) = ~ ( -  1) i dimH~(G, k)-- ~ ( -  1) i dim Hi(G, k). (4) 
i_->o i>o 

This is the case M = k of formulas (2) and (3). [Of course the members of (4) 
must be interpreted as elements of k.] 

Corollary (10.3) shows that our definition of z(G) agrees with that of K. Brown 
[6], w in case k=TZ. It also motivates the terminology "homological Euler 
characteristic" for ~(G). 

(10.4) Recall ((3.1) and (3.2)) that the center Z(kG) of kG acts on T(kG) so that 
T: kG---~ T(kG) is Z(kG) linear. 

Proposition (cf. Stallings [25], or 1-12], w 8, 10, Th. 7). Suppose k is a kG-module of 
type (FP). 

(a) I f  c~ Z(k G) has augmentation c o ~ k then c r k = c o r k. In particular z r k = r k for 
all z~Z(G). 

(b) I f  z(G) 4:0 then Z(G) is a finite group whose order is invertible in k. 

Part (a) results from Proposition(3.1) (cf. Remark(3.2)). It implies that 
rk(ZS) = rk(S) for all s~G and z~Z(G); in particular rk(Z ) = rk(1 ) = Z(G) for all z~Z(G). 
But only finitely many elements of Z(G) can belong to supp(rk). Thus, if z(G)~0, 
then Z(G) is finite. Since k has finite projective dimension as a kZ(G)-module 
(because G is of type (FP)) the finite group Z(G) must have order invertible in k. 

Remarks. 1. When k = Z the conclusion of (b) implies that Z(G)= { 1 }. 

2. The hypothesis rk(1)4:0 in (b) can be relaxed to suppose only that supp(rk) 
contains some finite conjugacy class of G. 

3. If k=2~ and G is residually finite then }(G)4:0 implies Z(G)= {1} (cf. [12], 
w 8.9, Prop. 13). For in this case Proposition (10.5)(d) below implies that z(G) = z(G). 

(10.5) ~Proposition. Suppose k is a kG-module of type (FP). Let H be a subgroup of 
finite index in G. 

(a) k is a kH-module of type (FP), and 

rk/ktt(t ) = rk/kG(t ) �9 [ Z ~ ( t ) : Z n ( t ) ]  

for all t~H. 

(b) z(H) = z(G)" [G:n] .  
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Suppose k is an integral domain of  characteristic zero in which no rational prime is 
invertible. 

(c) ~(n)= ~(G). [G:n]. 
(d) I f  G is residually finite then z(G) = }(G) (and z(H) = f~(H)). 

(a) is a special case of Corollary (6.3), and (b) is the case t = 1 of (a); (c) results 
from Corollary (6.13) and (d) from Corollary (6.10). 

(10.6) Comparison with Definitions of  Serre [24] and Brown [6]. Let H be a 
subgroup of finite index in G, and suppose Z is a ZH-module of type (FP) (thus G 
is of type (VFP) in the notation of [24]). Then ~ is a QG-module of type (FP), 
since ~ is a QG-direct summand of ~[G/H]  =ff~G| ~. Over tO then ziG) is 
defined and we have 

z(/-/) 
z (G) -  [G:H]  (Prop. (10.5)(b)). (5) 

It follows that this z(G) coincides with that defined by Serre [241 when G is of 
"type (VFL)", say when H is of "type (FL)" over 71. As observed in [6], page 218, 
this extension of the definition of z(G) so that z(G)~TZ when G is of type (FP) 
over E affirmatively answers a question of Serre ([241, p. 101). 

Let ~(~(G) denote the Euler characteristic defined by Ken Brown ([61, w 4). It 
follows from Corollary (t0.3) that zn(H)=z(H), and so f,n(G)=}(H)/[G:H1. This 
definition is justified by the fact that 

x(H) (Prop. (10.5)(b)) (6) z(G) = [G:H]  

whenever G is of type (FP) over 7/. Conjecturally zB(G)=z(G), equivalently 
z(G)=z(G ) whenever G is of type (FP) over Z. Proposition (10.5)(d) affirms this 
whenever G is residually finite. 

If G is of type (FP) over a k different from 71, z(G) and z(G) need no longer 
coincide. Formula (5) remains valid, but not (6) in general. 

(10.7) Proposition. Suppose k is a kG-module of  type (FP). 
(a) I f  ~eAut(G) and se G then rk(O~S ) = rk(S ). 
(b) I f  z~ T(G) and rk(r ) 4= 0 the orbit of  z under Aut(G) acting on T(G) is finite. 

Extending ct to an automorphism of kG, we have k(~)=k, with the notation 
of (3.5), so (3.5)(3) implies r k is fixed by ~ acting on T(kG), whence (a). This implies 
that the finite set supp(rk)c T(G) is stable under Aut(G), whence (b). 

(10.8) Normal Subgroups. Let H be a normal subgroup of G and put G'= G/H. 
The inclusion e: H--~G and projection n: G ~ G '  induce homomorphisms 
e,: T(kH)-* T(kG) and n , :  T(kG)--r T(kG'). G acts by conjugation on H, therefore 
also on T(kH), H,(H,  k), etc. In fact this makes H,(H, k) a kG'-rnodule. 

(10.9) Theorem. Suppose k is a kH-module of type (FP); put rn = rk/kn. 
(a) Let t~H. We have rn(sts-1)=r~(t) for all s~G. Put nt= [G: H.  Z6(t)]. Then 

rn(t)=O and (5, rn)(t)=0 unless n t is finite, in which case (5, rH)(t)=n z . rH(t ). In 
particular, (e, ru)(l ) = rn(l ) =)~(H). 
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(b) kG' is a kG-module of type (FP), and rk~,/k G = e, r n. Hence (see (2.10)) there 
is a natural homomorphism n*: T(kG')--* T(kG) and n* Ta,(1)= e, r n. 

(c) Let z' ~T(G'). Then rt*z' has support among those z~T(G) for which nz=z ' .  
Hence n ,  n* z '= L(z')z' for a certain element L(z')E k. 

(d) Let s' e G'. There is a finite complex P'= (P/') of finitely generated projective 
k-modules, whose homology is H,(H,  k), and an endomorphism g'=(g'i) of P' such 
that, (i) L(s') = ~ . ( -  1) I Te~/k(g'i), and (ii) H, (g') is the natural action of s' - 1 on H , (H, k). 

i 

We have L(1)=)((H). I f  the k-modules Hi(H, k) are projective then L is the virtual 
character of the natural action of G' on H,(H,  k). 

(e) Suppose further that k is a kG'-module of type (FP); put ra,=rk/ka,. Then 
k is also a kG-module of type (FP); put r G = rk/ka. We have 

rG=rc*(rs,)= ~ r~,(z').rc*z'. 
t ' ~T(G')  

Explicitly, if ssG and ~zsez' then rG(s)=rG,(ns).(rc*z')(s ). I f  s e l l  then r~(s)= 
x(G') " (e, rn)(s ), which is evaluated in (a). For s = 1 we obtain x(G)= x(G') " x(H). 

(f) 7r, r~=L. ra,. Explicitly, if ( e T ( G ' )  then L(z').rG,(z')= ~ r~(z). Hence 
z(G)= ~ L(z')ra.(z'). '~*=~' 

~'eT(G')  

If t e l l  and z =  Ta(t) then n t=[G:H.  ZG(t)] is the number of H-conjugacy 
classes a contained in z. If n t is finite let ~ denote the sum of these a's in T(kH). 
Applying Proposition (10.7) to the action of G by conjugation on H, we conclude 
that r n is a linear combination of such ~'s. Since e, ? =  n t �9 z, this proves (a). 

Let 

0--+ P.--~ ..- -~, Po --~ k --, 0 

be a kH-resolution with each P i ~ ( k H ) .  Then 

O-~ P~ | ... --~ Po |  kG' --~ O 

(8) 

(9) 

is a k G-resolution with each P/| k G ~ ~ (k  G), whence (b). 
Let s~G. If M is a kH-module we shall write M t~ for the kH-module with 

underlying k-module M, but where a~kH acts on x ~ M  by x ~-~xsas -1. One can 
identify M ts~ with M |  with respect to the change of rings kH--*kH,  
a ~--~s -1 as. The functor M ~--*M t~ induces k-isomorphisms H,(H,  M)--~ H,(H, Mt~). 
We have ktS~=k, and the corresponding automorphism of H,(H,  k) is just the 
natural action on H, (H,  k) of s'-~, where s '=  nse  G'. We can compute this auto- 
morphism from a kH-homomorphism of resolutions 

o - ,  P~ , . . .  , P o - - - - - - + k  , 0  

0 , e~s~ _ , . . .  , ~ s~  , k , 0  

Here gi is a k-linear endomorphism of Pi such that gi(x a) = gi(x)s a s- 1 for x e Pi 
and aekH.  The k-module P{=Pi |  can be canonically identified with 
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P~(~) | k, so that g'i = gl (~kH k is then a k-linear endomorphism of P/'. The complex 
(P/) has homology H.(H,  k), and its endomorphism (g~) induces in H.(H, k) the 
natural action of s ' -  1. Put 

E(s')= ~ ( -  1) i Tp,(g'i)~k. 
i__>0 

(It is not difficult to see that this depends only on s'.) The arguments above show 
that, if the k-modules H.(H, k) are projective, then L' is the virtual character of 
the action of G' on H.(H, k). Further, if s = 1 we can take all gi to be the identity. 
Then we find that E ( 1 ) = ~ ( - 1 )  i rp,flk. Since r n = ~ ( - 1 )  i rpdkt t we conclude that 

a e T (H) 

Consider now the endomorphism g~ | s of P~ (~kH k G sending x | t to gg(x)| s t 
for x~P/, t6 G. It is well defined since, for heH, 

gi(xh)| |174 

Moreover it is kG-linear, and (gi| is an endomorphism of the resolution (9) 
covering the endomorphism a ~-.s'a of kG'. By definition of z~*, therefore, 

re* TG,(s') = ~, (-- 1)' Tp,|174 ). 
i > o  

To evaluate this more explicitly, fix an i, put P = P~, g = gi, and let x ~  P, fj: P -* k H 
be a finite kH-coordinate system. Then x i |  1, f j |  lk6 is a finite kG-coordinate 
system of P| so Tp|174 Tk6(CQ, where 

~,= ~ ( f  j.| l )((g |174 l ))= ~ ( f  j |  l )(g(x)| s)=a,s, 
) J 

where ai=~fj(g(x))ekH. We thus have g*To,(s')=T~o(as ) where a =  
J 

( -1) ia~kH.  It follows that lr* To,(s') has support among those z for which 
i>__o 

z~ = T~,(s'), and so g ,  7r* TG,(s' ) = L(s'). To,(s' ) for a certain L(s')~ k. This proves (c). 
We compute z~, It* TG,(s' ) directly by applying - |  to the resolution (9) 

and its endomorphism (g~ | s). We can identify 

(Pi@k!_lkG)| with (Pi|174 kG'= Pi' | kG' , 

so that the endomorphism (gi|174 becomes g'i| sending x'| to 
g'i(x')| t' for x'~P/', t' ~G'. Thus 

n ,n*  T~,(s')= ~ ( -  1)' Te~|174 
i > o  

= ( 2 ( -  1)' Te~/k(g'i) ) �9 To,(s')= E(s'). T~,(s'). 
i_>o 

This shows that E(s')=L(s'), and thus incidentally that E(s') depends only on s'. 
Now the claims made about L in assertion (d) follow from the properties of E 
established above. 

Since k G' is a k G-module of type (FP) so also is every k G'-module of type (FP), 
in particular k itself in case k is a kG'-module of type (FP). We then further have 
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rk/k~ = n*(rk/kG,), whence ro = ~ r~,(r') n* r', According to (c) the elements it* ~' 
r'~T(G') 

have pairwise disjoint supports, whence the formulas for rG(s) given in (e). The 
formulas in (f) are immediate from (c) and (e). This proves Theorem (10.9). 

(10.10) Examples. 1. Suppose, in the setting of Theorem (I0.9), that G'=G/H is 
finite, of order invertible in k. Then (see (10.1), Remark 3) k is a kG'-mocule of 
type (FP), and rw(s' ) = 1/[Z~,(s')l for s'e G'. From Theorem (10.9)(0 we thus find that 

L(s')/IZ~,(s')t= Y~ r~(~) 
nr= TG,(S') 

and 

" G  1 _ , 

K. Brown points out that the latter translates into virtual characters the iso- 
morphism of H*(G, k) with H*(H, k) w. 

2. Suppose that G = H .  Ze(H), for example that H is central in G, or that the 
k-modules H~(H, k) are projective and G' acts trivially on them. In any of these 
cases we have L(s')=L(1)=;((H) for all s'EG', and so ~ ,~*r '= ; ( (H)- r '  for all 
r'~T(kG'). Suppose further that G' is of type (FP) over k. Then Theorem (10.9)(0 
implies that 

~(G) = ~(H) ~(G'). 

In case H is abelian and infinite then (see (10.1), Rem. 4) rn=0,  so we conclude 
that z(G)= ~(G)=0. This strengthens Stallings' theorem (Prop. (10.4)) in special 
cases. 

(10.11) Corollary. Suppose, in Theorem(lO.9), that k is an integral domain of  
characteristic zero, G' is finite, and no prime divisor of lG'l is invertible in k. Suppose 
k is a kG-module of type (FP), and put ra=rk/k6. 

(a) n, r e =(2(H)/IG'I). TwO ) 
(b) L=z(H) .  zke,. 
It follows from Swan's Theorem (Cor. (6.8)) that 

~,rG=n'TG,(1), where n=~c, r6(1 ). (10) 

The field of fractions K of k is a KG'-module of type (FP), and r e, = rK/ic G, is given 
by ra,(s')= I/[Zw(s')[ (see (10.10)). From (10.9)(t") we have ~, r~ = L- rG,, so n, re(s') = 
L(s')/] Zw(s')]. It follows now from (10) that L(s') = 0 for s' + 1, and that n = L(1)/[ G' [. 
By (10.9)(d), L(1)= z(H), whence (a) and (b). 
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