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Summary. Diffusion problems occuring in practice often involve irregular- 
ities in the initial or boundary data resulting in a local break-down of the 
solution's regularity. This may drastically reduce the accuracy of discreti- 
zation schemes over the whole interval of integration, unless certain pre- 
cautions are taken. The diagonal Pad6 schemes of order 2#, combined with 
a standard finite element discretization, usually require an unnatural step 
size restriction in order to achieve even locally optimal accuracy. It is 
shown here that this restriction can be avoided by means of a sample 
damping procedure which preserves the order of the discretization and, in 
the case ~t= 1, does not increase the costs. 

Subject Classifications: AMS(MOS): 65N30; CR: 5.17. 

1. General  Discuss ion  

We consider the (linear) convection-diffusion equation 

c~tu+Au= f in ~ x ( 0 , ~ ) ,  

A = - div(~ grad) +/~- grad + 7 

subject to the initial condition 

and to the boundary condition 

(1.1) 

ulr=d, e ~ , u + b u l o e _ r = g  on(O, oc). (1.3) 

Here, Q is a bounded domain in R N, N = 1,2 or 3, with sufficiently regular 
boundary 0R consisting of two separated components F and ~ 2 - F .  The 
coefficients e,7,6 and /7=(/31, ...,/3N) as well as the data f, g and d are smooth 
functions of xE~Q and t>0 ,  up to a finite number of " jump times" at which they 

ult=0=u ~ in ~, (1.2) 
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are discontinuous in time. We assume that ~ > 0  on O and, for simplicity, that 
~,fl,), and 6 are constant in time between each two consecutive jump times. 
The initial data u ~ may be "rough",  e.g., a discontinuous function of xet2 (or 
even a sum of Dirac-measures). In practice, the coefficients ct, fl and 7 may also 
depend on t, or even on the solution u itself; also (1.1) may be a system of 
differential equations. We shall comment on these more general cases below. 

Under the foregoing assumptions, the initial-boundary value problem (1.1)- 
(1.3) has a unique solution u which is smooth for all times t > 0  other than the 
jump times. At time t = 0  and at a jump time t ,  it exhibits a certain singular 
behavior as t~0 and tJ, t,, respectively, depending on how irregular the data 
are. Because of this local break down of the solution's regularity one has to 
expect at least a local loss of accuracy when one of the usual discretization 
methods is applied to the problem. However, in practice one often finds a 
dramatic reduction in accuracy over the whole interval of integration, i.e., the 
schemes do not always have an automatic "smoothing property".  In the 
following we shall study this phenomenon for a family of discretizations of 
problem (1.1)-(1.3) by A-stable single-step schemes (Pad6 schemes), combined 
with various finite element Galerkin discretizations of the spatial variable. In 
particular, we shall propose a simple damping device for the diagonal Pad6 
schemes which guarantees that the full order of accuracy is achieved away 
from the critical times. 

Suppose that problem (1.1)-(1.3) has been discretized by using a finite 
element Galerkin method of order r>2 .  This results in a finite dimensional 
problem of the form 

~tUhq-AhUh=Fh, t~(O, ~), uh(O)=u ~ (1.4) 

where uh(t ) is sought in a finite element space S h (h characterizing the mesh 
widths). A n is a discrete analogue of the differential operator A, and the force 
term F h also contains the nonhomogeneous boundary data which has been 
built into the equation. Problem (1.4) may be written as an initial value 
problem for a linear system of ODE's  which is usually highly stiff (stiffness 
ratio ~h-2) .  This restricts the practical choice of time discretization methods 
to socalled "A-stable" schemes which are numerically stable for any choice of 
the time step k independent of h. 

Let the discrete times t,=nk, n>O, be chosen such that all the jump times 
belong to this set. Among the A-stable schemes we consider the diagonal and 
subdiagonal Pad6 methods based on rational approximations of the exponen- 
tial function. For solving a system of ODE's,  y'(t)=f(t,y(t)), one may use 
implicit difference formulas of the form 

Y. = Y.-1 + k ~.. k i-1 [ ~ , f ~  1)_ fl, f~,- 1)], (1.5) 
i=1  

where f~)=(d/dt)Jf(t., y~), and a,, fli are d&ermined as coefficients of the nume- 
rator  and the denominator  of a Pad6 approximation of e z with index (v, p), 
O<v,l~<m: 

P,u(z) =ez+O(lzl,+u+~), for z < 0 ,  (1.6) R~(z)  = O.~(z) 
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(a/=0 if i>v, fli=O if i>/t); see [4] and [5]. The global discretization error of 
the difference formula (1.5) has the order s=v+l~. For a fixed amount of 
computational work an optimum in order is achieved by the diagonal Pad6 
formulas with v=/~. However, the latter schemes are only A-stable, whereas 
those with v</~ are strongly A-stable. Since A-stable schemes do not always 
damp local errors in the computation (strongly A-stable schemes do), one has 
to expect that the diagonal Pad6 schemes propagate the high-frequency errors 
caused by the local irregularities of the data, unless the step size is appropri- 
ately restricted, k~h2; s e e  [14] and [11]. 

For practical purposes the following Pad6 approximations are of particular 
interest: 

R01(z)=(1 - z ) -  l: backward Euler scheme (s= 1), 

R 1 l(Z) = (1 - � 89  1(1 +�89 Crank-Nicolson scheme (s =2), 

R12(z)=( 1 2 1 2 -  -~z+~z) l(l+~z); (s=3), 
Rz2(Z)=(1- �89  - l(1+�89 (s=4). 

In using the difference formulas (1.5) for the linear system (1.4) one has to take 
f ( t ,  uh(t))= Fh(t ) - A  h Uh(t ). For the cases v = #  = 1 or 2, the fully discrete approxi- 
mations Uh" ,k are determined in S h by the following recurrences 

+~ h) U~.k= U~.k +~(  h +Fh"-1), (1.7) 

k 2 
+~(AhF~,-F~,t--AhF~, -1 + F~t- 1), (1.8) 

where F~,=F,(t.) and F~t=~,Fh(t.). These schemes are of order s = 2  and s=4,  
respectively. 

If all the data of problem (1.1)-(1.3) are regular, i.e. smooth and compatible 
to sufficiently high order, and if the spatial discretization is appropriate, then 
one may expect optimal order convergence of U~k to u(t,) as h,k~O, uniformly 
on bounded intervals of time (see [2] and [9]), 

max Ilu(t,,)- U~ktl =O(h~+k~), (1.9) 
O<tn<__T 

where r >2  and s>  1 are the orders of the spatial and the time discretization, 
respectively, and ]j. I[ =(~ ]" [ 2 dx) 1/2. 

For rough data the global order of convergence may reduce even to 0(1), in 
the extreme case. The main results of this paper are summarized in the 
following smoothing device: 

Suppose that the discrete initial value U~k is chosen as the L2-projection of u ~ 
onto the trial space Sh, and further, that at t o and at each of the jump times 2# of 
the diagonal (l~,#)-Pad~ steps are replaced by subdiagonal (l~-1,#)-Pad~ steps. 
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Then the approximation U~"k is accurate to optimal order, 

Ilu(t,) - U~"~II = O(h r + kS), (1.10) 

at all times t, uniformly bounded away from t o and from the jump times. 

The strongly A-stable ( # - l ,  p)-Pad6 steps provide the necessary damping of 
high-frequency error components which would normally be propagated by the 
only A-stable (#,#)-Pad6 scheme. The global order s = 2 #  of the discretization 
is not affected, since only a fixed finite number of lower order steps needs to be 
carried out. We emphasize that in this case no restriction on the step size k in 
terms of the spatial mesh size h is needed. 

For the autonomous problem (1.1)-(1.3) one usually carries out the time 
stepping procedure by computing once an L-U-decomposi t ion  of the matrix 
corresponding to the operator Quu(-kAh) which reduces the work in each time 
step to solving twice a triangular algebraic system by back-substitution. Gener- 
ally the damping procedure proposed above will increase the total amount of 
work. However, in the case # =  1 (Crank-Nicolson scheme) one may apply the 
damping steps (backward Euler steps) with step size k/2 resulting in the 
operator to be decomposed 

k A  I k Q 0 , ( - ~  h) = +~Ah=Q, , ( - -kAh)"  

Consequently, in this case the damping procedure does not necessarily increase 
the computational costs; indeed it is equivalent to once computing the average 

- -1  __1  0 Uh, k - ~(U;, k + 2 Uhlk + U~h ) 

for the Crank-Nicolson solution. The latter smoothing procedure has already 
been proposed by Lindberg [7] in connection with extrapolation of the trape- 
zoidal rule when applied to stiff ODE-systems. 

Difference formulas similar to (1.7) and (1.8) may also be obtained by 
approximating the force term Fh(t ) by numerical integration formulas; see 
Brenner, Crouzeix and Thom6e [2]. 

To date, a rigorous justification of the above damping advice has only been 
given in the case of a linear autonomous system represented by problem (1.1)- 
(1.3); see the analysis of the following section. In the linear non-autonomous 
case, A=A(t), we have been able to prove a corresponding result for at least 
the Crank-Nicolson scheme (#= 1) in [9]. The question whether this analysis 
can be extended to higher order Pad6 schemes may have a negative answer, 
since there are examples of third order one-step schemes which smooth only 
up to order two when applied to problem (1.1)-(1.3), with a---a(t); see Sammon 
[12]. However, if the time dependence only occurs in lower terms,/~=/~(t) or 7 
--~(t), one may also prove smoothing of higher order. In the nonlinear case the 
situation is even less satisfactory. Strongly nonlinear problems with a=a(u)  
cannot be rigorously analyzed yet, particularly since it is not even sufficiently 
clear how the solution u behaves at times when the data are irregular. Only in 
the weakly nonlinear case, with fl=fl(u), are there partial results: For the 
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Navier-Stokes problem we can show that the Crank-Nicolson scheme com- 
bined with two backward Euler steps is second order accurate even when the 
initial flow is not fully compatible with the given boundary condition; see [6; 
Part IV]. 

Suppose now that the discretization scheme for solving problem (1.1)-(1.3) 
has been set up accordingly to our smoothing device. The first step in analyz- 
ing its smoothing behavior is to reduce the question to the case of rough initial 
data combined with homogeneous force and boundary values. To this end, let 
t,, be any of the critical times at which the data are irregular, and let v m be the 
(unique) solution of the boundary value problem 

Av"=f[ ,=tm in f2, (1.11) 

vm]r=d]t=tm, ctO. vm +6vm[o~_r=glt=t . (1.12) 

Here, we assume without loss of generality that the operator A combined with 
the boundary conditions (1.12) is regular. By construction, the problem 

~ , v + A v = f  in f2X(tm,t.], (1.13) 

VI~=~m=vm in f2, (1.14) 

Vlr=d, e ~ , v + f v l o e _ r = g  on (tm,t.], (1.15) 

has smooth and to second order compatible data on It,,, t . ] ,  where t .e(tm, oc) 
is the jump time next to t m, or t . =  oc. Using in an analogous way higher 
powers of A one may construct initial values v" such that the corresponding 
problem (1.13)-(1.15) has compatible data to any fixed order. Then, the differ- 
ence ~7 = u -  v satisfies the homogeneous equations 

~tu+A~l=O in f2X(tm, t .],  (1.16) 

~lr=O, c~0,~+cStT[~_r=0 on (t,,, t , ] ,  (1.17) 

and the initial condition 

Ult_t=Hm~bl[t:tm--1) m in ~2. (1.18) 

In general, the initial value t~ m is not compatible with the other data. 
Suppose that, in the case t,,>O, the smoothing error estimate (1.10) is 

already known to hold on (0, tin], e.g., in particular, there holds 

II u(t,.)- g.Tk II = O(h r + kS). ( t . 1 9 )  

Let V~,keS h be the discrete solution of problem (1.13)-(1.15) corresponding 
to the initial value Vhmk=Phv'eSh (Ph being the L2-projection onto Sh). Then, 
there holds the "smooth data" error estimate (see [10] and [2]) 

sup Ilv(t,)--V~kll=O(h'+kS). (1.20) 
tm~tn~ t*  

The difference (J~k = -- U~R--V~k satisfies initially Uh0k =Ph ~7 ~ if tin=0, and 

IItT(t,,) - (Th~kl[ = O(h" + kS), (1.21) 
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if t m>0. Hence, in order to justify our smoothing device, it remains to show 
that there holds 

]1/~(t.) -- ~-]hn, k 11 = O (h r + kS), (1.22) 

for times t.~(t.,, t . ]  uniformly bounded away from tm. Clearly, without loss of 
generality we may take tr. = 0. 

2. Error Analysis for the Homogeneous Problem 

In the following we shall prove the smoothing error estimate (1.22) for the 
homogeneous problem 

O,u+Au=O in [2x(0, oo), (2.1) 

u]t-o= u~ in [2, (2.2) 

U[r=0, ~O,u+6u[m_r=O on (0, oo), (2.3) 

where the operator A is as in (1.1), the assumptions on the coefficients being 
the same as in the previous section. 

We shall use the standard notation L2([2) for the space of all square- 
integrable functions on [2 with inner product (v,w)=~vwdx and norm [lvll 

12 

=(v,v) ~/2. H"(O), m~N, is the m-th-order Sobolev space on [2 of all L 2- 
functions possessing generalized derivatives up to order m in L2([2), provided 
with its natural norm 

Ilvllm~( ~ IIV'vllip/2; 
O_<l<m 

H~.([2) is the subspace of those functions in Ht([2) which vanish on F in the 
generalized sense. Since 0[2 is smooth by assumption, the domain of definition 
of A, 

O(A)={v~n~([2), Av~L2([2), ~.v+fv[~n_r=O } 

is contained in H2([2). Without loss of generality it is assumed that A is 
coercive. Then, for peN, the powers A p/2 are well defined with domains of 
definition D(A p/2) c HP(O). 

For functions v, w~H~(f2) we introduce the bilinear form 

a(v, w) = (a grad v, grad w) + (/~ grad v, w) + (7 v, w) + [-6 v, w], 

where [4 ) ,4 ]=  S dp~,da. Clearly, there holds 
01'2- F 

(Ao, ~b)=a(v, qS), v~D(A), r (2.5) 

Below, we shall use the symbol "c" for a generic positive constant which 
may vary with the context but is always independent of the solution u and of 
the discretization parameters h and k. 
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For any initial value u~ problem (2.1)-(2.3) has a unique solution 
u(t)eH~(f2) which is characterized by 

(~tu,(a)+a(u,(a)=O V(o~H~(O), (2.6) 

for t>0 ,  and Ilu(t)-u~ as t~,0. This "weak" solution is smooth for all times 
t >0,  u(t)~D(A p/2) for peN,  and satisfies the a priori estimate 

Ilu(t)ll 2~ + II ~,~u(t)ll <cr~/2-~ Ilu~ (2.7) 

for t > 0  and O<=q/2<p, provided that u~ for a proof based on energy 
method see [8]. 

For discretizing problem (2.1)-(2.3) with respect to the spatial variable, we 
consider a finite element Galerkin method of order r > 2; the trial spaces S h are 
merely required to be (finite dimensional) subspaces of Lz(Y2), in order to allow 
for non-standard types of approximation. The orthogonal projection of Lz(f2) 
onto S, is denoted by Ph" The semidiscrete approximation uh(t)eS h to u(t) is 
determined by the equation 

(~?,un, (Oh)+ah(Uh, ~bh)=0 VqSheSh, t>0 ,  (2.8) 

where ah(., .) is a proper extension of the bilinear form a( . ,  .) to S h x S h. The 
initial value uh(O)=u~ is an approximation to u ~ of order r, which will be 
specified below. The bilinear form ah(', ") is assumed to be coercive on S h x Sn, 
i.e., ah(~bh,~bh)>0 for ~bhSSh--{0 }. Hence, the linear operator Ah:Sh~S  h de- 
termined by 

ah(Vh, C~h)=(Ah Vh, q~h), Vh, qSheSh, 

is regular. We assume that there holds 

If(A -~ -A~-a Ph)f II <chPllfllp_2, (2.9) 

for feHp-2((2),  2<=p<=r. This approximability condition is satisfied by the 
usual finite element schemes for solving elliptic boundary value problems; for 
examples see [3] and [13]. We further assume that the semidiscrete solution 
satisfies the a priori estimate 

IlOfUh(t)l[ <ct-Pl[u~ t>0 ,  (2.10) 

for O<p<=max(r/2, s); this may be shown by arguments analogous to those 
used for proving the a priori estimate (2.7). 

If, for instance, u ~ =Phu ~ we have the "smooth data" convergence result 

sup II (u - Uh) (t)I[ <= C h p ][ u ~ t] p, (2.11) 
t>O 

for u~ 0 < p < r ;  see [13] and [3]. 
For rough data, u~ we shall prove the following smoothing result: 

Theorem 1. I f  u~ then there holds 

II (u - Uh) (t)tl < C t -  */z { h '  II u ~ II + II u o _ u o tl _,}, ( 2 . 1 2 )  
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for t>0,  where 
tlvlr _r=sup {(v, qS), OeD(Ar/2), [JqSIF = 1}. 

Proof We employ the parabolic duality argument introduced in [8]. Let T >  0 
be arbitrarily fixed. For any ~bEL2(~?), H~b[]=l, let v(t)eHlr(~2) and Vh(t)eS n 
be the solutions of the "backward" equations 

Otv-A*v=O , T>t>O, (2.13) 
and 

?tVh--A*Vh=O, T>t>O, (2.14) 

corresponding to the initial values v(T)=q~ and vn(T)=P h q~, respectively. Clear- 
ly, these problems are well-posed. A* and A* are the LZ-adjoints of A and A h, 
respectively. Then, by construction there holds 

d 
~(u,  v) = (~?, u, v) + (u, ~?, v) = - (Au, v) + (u, A* v) = 0, (2.15) 

and, correspondingly, 

d 
~ (u  h,vh)=0, on [0, T]. (2.16) 

Hence, setting e = u -  ua and r/_= v -  v n, we find that 

(e(T), ~)= (u(T), v(T))- (un(T), Vh(T)) 

= (e (T) ,v  ( T ) ) _  (e (T),  ~ / ( T ) ) +  (u (T),  t / (T)) .  (2.17) 

We shall estimate the three terms on the right separately. 
First, let Oh(t)~S h be the solution of the backward equation (2.14) corre- 

sponding to initial time ~- and initial value 0 h = Ph V . Then, in view of 

(2.15) and (2.16) there holds 

(e (T) ,v  ( T ) ) =  (u (T) ,v  ( T ) ) _  (u h (T),  Oh ( T ) )  

= (uO _ u o, ~(o))  + (~o,  v (o )  - o~(o)). 

Using the smoothing a priori estimate (2.7) for v and the smooth data error 
estimate (2.11) for v - 0  h (both with time reversed), we find that 

t( e (2  )' v (T) ) <-ct-r/2 ][r [] u~ ~ H_,+ h ~ '1 u~ ,, v (T) 

-<__ c t -  '/2 {h' [[ u ~ II + I[ u o _ u o[I _,}, (2.18) 
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. 0 ~ / 0  and, i fu  h - r  h , 

By an analogous argument  we conclude also that 

?t Next, we take )~eD(A) to be the solution of the equat ion A)~=Ahu ~ ~ in 

(2. In view of (2.9) and (2.10) there holds 

Ahuh( T ]  <ct-Xllu~ , (2.21) Ilzll2<c \ z !  

and 

Further ,  let g(t)~H~(f2) and ~h(t)eSh be the solutions of the problems (2.1) and 

(2.8) corresponding to initial t ime ~- and initial values ~7 =Z and ~7 h 

=Ph ;~, respectively. Again, from (2.15) and (2.16), it follows that 

This implies, in view of (2.21), (2.22), the smooth data error  estimate (2.11) and 
the discrete a priori estimate (2.10), that 

(-t~ t~ ~L ~ II~u~,~ ~1111~ (~ ~1 +''~0- ~' '~''' 

<=ct-1 h 2 iluOll. (2.24) 

Inserting the estimates (2.24), (2.18) and (2.19) into (2.17), we find that 

He(T)II <ct -'/2 Ilu ~ -u~  _ , +  c t -  1he Ilu~ (2.25) 

and, if u ~ = Ph u~ that 

I[e(T)ll <=ct -~ h2 Uu~ �9 (2.26) 
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This provides us with the starting point for an induction argument for proving 
the full order smoothing result (2.12). 

Using the estimates (2.18) and (2.20) in (2.17), we obtain 

and, if u ~ = Ph uO, 

Clearly, starting with the basic results (2.25) and (2.26) we can use (2.27) and 
(2.28) to prove the desired result (2.12) by a finite number of induction steps. 
This completes the proof. 

We note that the L2-projection Ph u~ automatically satisfies 

I[ u ~ - Ph u~ 11 -r  + h' I[ Ph u~ I[ <= c h' I1 u ~ II- (2.29) 

Next, we consider the discretization of the semidiscrete problem (2.9) with 
respect to time. The fully discrete approximation U~keS n to u(t,) is determined 
by a diagonal (#,/~)-Pad6 scheme of order s = 2g, 

U~k=Ruu(--kAh) U ~  1, n > 2 # +  1. (2.30) 

According to our smoothing device, the first 2# values U~k, n = l  . . . . .  2#, are 
computed by (12- 1, #)-Pad6 steps 

U~",k=Ru-l,u(-kan) U"-~h,k , U~ --U~ (2.31) 

Then, we have the following result. 

Theorem 2. I f  the first 212 of the (12,12)-Pad~ steps are replaced by subdiagonal (12 
- 1 ,  #)-Pad~ steps, then there holds 

[]uh(t,)-- UI,",Rll <=ct22"kZ"jlu~ n>0.  (2.32) 

Proof In order to better illustrate the role of the damping steps (2.31), we first 
consider the self-adjoint case, Ah=A*, where a simple proof of (2.32) can be 
given by spectral arguments. (Usually, the discrete operator A h is self-adjoint if 
equation (2.1) does not contain a convection term, fi=0.) 

Let {~.i, i = 1 . . . . .  N}, N = dim S a, be the eigenvalues (real and positive) of the 
operator Ah, and let {w i, i= 1 . . . . .  N} c S h be a corresponding LE-orthonormal 
system of eigenvectors. For  n > 212, we have the expansions 

N 

Uh(tn )=e-'"Ahu~ Z ~ie-;q'"wi , 
i=1  

and 
N 

U~,k= 2 chRu- l ,u ( - k2 i )2URm, ( -kJ ' i )n -2uwi  ' 
: i=1 
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where ai=(Uh ~ Wi) are the Fourier coefficients of Uh ~ Then, by Parseval's iden- 
tity, 

where 

N 

IlUa(t.)- U~",all 2 = ~ ~2azi i,., (2.33) 
i=1 

ai,. = le -"kz' - R~_ 1, ~( - k21)2" R . . (  - k2i)"- 2% 

Setting z = k2 i, we can write 

R . _ t , . ( - -  ) {e -Ruu(- ' r )}  n-2u-1 ai, = -c2~ - .  ~. e - J . R u u ( _ z ) . - 2 u - , - j  
j=0  

2,-1 _ , )2 ,  1- , .  
+e-{" -2u)*{e-* -Ru_l , . ( - z )}  ~ e-~*R._l , . (  - 

j = o  

To estimate ai,., we note that, for z>0 ,  

l e -~ -R~ . , ( - z ) l<c ' t  2"+1, l e - ~ - R . _ l , . ( - . c ) [ < c ' c  2". 

Further, there holds 

[R~_ 1,u(-z)J <c  max (1, z -  1), "c>0, 

]R..(-z)]<=ce -a*, O < z < l ,  [ R . . ( - z ) ] < c e  -a/~, l < z < o o .  

with some constant 3>0 ;  this may be verified by using the particular form of 
the Pad~ approximations of e -~. 

Using the foregoing estimates we conclude that, for z =< 1, 

ai.,,<=c { z2u+ l e-~'~ l - e  ~t'- 2m~ } 1 --e - ~  -~- e -  (n-  20)r 272# 

<c{nz 2~+ I e -  a"* + e-"*v 2" } <cn -2". (2.34) 

(Notice that ( 1 - e - " ~ ) ( 1 - e - ~ )  -1 <cm, for x > 0  and meN.)  
For v > 1, it follows directly from the definition of % .  that 

ff i,n<=c {e-n~ + T.- 2U e -a(n- zu)/~} <=r -2u. (2.35) 

Using now (2.34) and (2.35) in (2.33), we obtain the desired result 

N k 4gt 0 2 
I, u, ,( t . )-  y # =c (-t  ,, 

' i =  1 \ t ~  ! 

If the operator A h is not self-adjoint spectral arguments do not apply. For 
this case we use the energy method combined with a time discrete analogue of 
the parabolic duality argument already employed in the proof of Theorem 1. 
For  brevity, we only sketch the main steps leading to the smoothing result 
(2.32). 
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First, we state the smooth data error estimate 

sup Itu~(t.)-gGIl<ck2UB~ 
O < t ~ <  co 

where 

(2.36) 

2# 

B~ = ~ [10] Uh(0)ll; 
j=0 

arguments for proving this may be found in [9] and in [-8]. A crucial 
assumption in what follows is that we already know a low order smoothing 
error estimate of the form 

Iluh(t,)- g,~kll <ct21kllu~ t,>0, (2.37) 

to hold, provided that at least one damping (#-1,/~)-Pad6 step is carried out 
at time t o. Such an estimate has been shown in [9] for the Crank-Nicolson 
scheme (applied to the general nonautonomous problem) under the stronger 
assumption that two damping steps are required; in the autonomous case, the 
sharp result may be proven by energy method following the line of argument 
used in the proofs of Lemmas 3.1 and 3.3 in [10]. 

Let t,>21~ be arbitrarily fixed. Since the operators R u u ( - k A h )  and R~ 1,, 
( - k A h )  commute, the fully discrete solution UT,,k is invariant with respect to 
shifting the damping steps (2.31) within the discrete set of times O < t , , < t , .  
Thus, we may assume that the 2g damping steps are carried out at times 
t o , . . . , t u _  1 and t , _ u , . . . , t , _  1. From the proof of Theorem 1 we recall the 
notation Vh(t ) for the solution of the "backward" semidiscrete problem (2.14), 
corresponding to an arbitrarily fixed initial value OheSh. Let Vh~keSh be the 
corresponding backward fully discrete solution defined by V~k = (O h and 

Vh~,s 1 = R ~ , ( _ k A h )  Vh~k, n>_m>_ 1, (2.38) 

where v=/~ for n--I~>m>=t~+l,  and v = g - 1  for n > _ m > n - l t + l  and # > m > l .  
By construction, there holds 

(Vh~.k, Vhrk)= (R.u( -  kAh) Uh7; ', Vh~,k) 

=(Uhm F ', Rv .  ( -- kA*)  Vh~,k)= (U~-1, Vh~,F ,), (2.39) 

m--uh( t , ,  ), E . . . . . .  for n > m >_ 1. We set u h - - u h - U],. k, and correspondingly, v h - v h (tin), 
H"=V"~--V.  m Then, the relations (2.16) and (2.39) imply that h ,k '  

( E~, G)=(G v~)- (v G, v G) 
~_ ( u~./ 2 [, v ~ . m )  _ , - ~, ~"E"/ ~1 , v E. /~)  

= (E lnl21, VL n/2l ) --  (g E"/21, H l"12j) + (U[h hi21 , HF"/21), (2.40) 

where for p e R + ,  [p] denotes the largest integer less or equal p. Next, let 
0~TkeS h be determined by equation (2.38) starting at time tt,121 with initial value 

[0/2] [n/21 0~,, =u  h . In view of(2.16) and (2.39), there holds 

(u~/21, Hi./21) = (uth,/21, v~/21) _ t Fr[,/21 v[,/21~ 
~ h , k  ' " h , k  ! 
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Consequently, by the smooth data error estimate (2.36) and the smoothing a 
priori estimate (2.10), 

(u~, H") <=ct; 2Uk2Ul[u~ llq~hl[. (2.41) 

In an analogous way one concludes that 

n n --2# 2,u 0 (E ,G)<c t ,  k ILua[] II~bh[I. (2.42) 

Using (2.42) and (2.41) in (2.40) leads us to 

(E", ~h)~=Ctn2UkZuHu~ Hff)hH + IIE[n/2l[[ HHin/21II. (2.43) 

We now apply the basic smoothing error estimate (2.37) to E ~"/2~ and H ~"/21 (for 
the latter with time reversed) and set ~b h = E" in (2.43), to obtain 

II E" [I -<_ c t~- 2 k 2 ]l Uh ~ II. (2.44) 

Clearly, using the same type of argument repeatedly for E ~"/2~ and H ~"/21, we 
can successively improve the result (2.44) up to the desired order O(t;2ukZ"). 
This requires exactly 2/~ damping steps; the details are omitted. 

3. Applications 

We discuss three problems to which our smoothing device may be applied; for 
two of them we also present some numerical results. 

1) Diffusion of Carbon Dioxide Through a Membrane 

A solution of carbon dioxide in water is pumped through a membrane tube 
which is surrounded by a glass cylinder. There is a steady flow of nitrogen 
through the region between the membrane and the glass wall which takes up 
the carbon dioxide penetrating through the membrane. This permits us to 
consider the diffusion process as being stationary in time. Using cylinder 
coordinates (r, z), r being the radial distance from the cylinder axis and z the 
axial coordinate starting with z- -0  at the inlet, the concentration of the carbon 
dioxide, c = c(r, z), is described by the diffusion equation 

1 
wO z oAu Gc)=0 ,  0 < r < l ,  z>0 ,  (3.1) C 

r 

subject to the initial condition 

1, 0 < r < R  (3.2) 
c(r, 0)= 0, R < r < l ,  

where R =.  2 is the radius of the membrane tube. The boundary conditions are 
of Neumann type, 

Orc(O,z)=~rC(1, z)=O, Z>0. (3.3) 
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The quantity to be computed is the carbon dioxide concentration at the outlet, 
c(r, 100). 

In this problem we are confronted with a discontinuity of the initial data 
and, hence, have to expect the gradient c3c to have a singularity at z=0 .  
Further complications arise from the discontinuity of the diffusion coefficient, 

~1.96.10 .4  , 0 < r < R  
D(r) = [0.14, R < r <  1, 

and from the fact that the coefficient w(r) (determined by the velocity of the 
water and nitrogen flows) degenerates at the boundaries, 

= ~ 2 w l { 1 - ( r / R ) 2 } ,  0 < r < R  

w(r) [ 2 w 2 { l _ r _ ( l _ R 2 ) l n r / l n R } { l + R 2 + ( l _ R Z ) / l n R } _ l  ' R < r < l ,  

where w 1 =2.5/(nRZ), w 2 =2.77/(n(1-R2)).  
The discontinuity of D(r) does not affect the accuracy of the discretization 

as long as r = R  is taken as one of the spatial mesh points. Also, our numerical 
experiment has shown that the degeneration of the coefficient w(r) at r = R  and 
r = l  has no significant influence on the global behavior of the scheme. Al- 
though, our error analysis of w 2 does not quite cover this complicated case, the 
damping advice proved to be of some value. For  discretizing problem (3.1)- 
(3.3) we used the finite element Galerkin method, the trial functions being 
piecewise linear in r, combined with the Crank-Nicolson scheme. Following the 
damping advice, the discrete starting value C O has been taken as the L 2- h,k 

projection of c(.,  0) onto the trial space and two backward Euler steps have 
been carried out at the beginning of the time stepping process. However, it 
turned out that in this problem due to the extrem change of the diffusion 
constant at r = R ,  only four backward Euler steps provided sufficient damping. 
The outflow concentration, c(r, 100), has been calculated using the fixed spatial 
mesh size h=  1/300 and the three time steps k =  10, 5, 2.5. This allowed us in 
the usual way to detect the asymptotic rate of convergence for the time 
discretization. 

1 

(R.IO0) 

I 

0 0.2 

Fig. 1. Outflow concentration c(r, 100) 

I r 

1.0 
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The figures show the concentration profile at the outlet as obtained by 
the C.-N. scheme with four b.E. damping steps (Fig. 1) and the asymptotic 
rates of convergence for the C.-N. scheme wothout damping, for the C.-N. scheme 
with four b.E. damping steps and for the b.E. scheme (Fig. 2). 

24 

0 / 
0 0.2 

Fig. 2. Rates of convergence 

/ Damped C.-N. 

C.-N. 

b.E. 

I r 
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2) Cooling of a Heated Glass Cylinder 

A heated glass cylinder is subjected to cooling by an air blast where the 
intensity of the air stream is varied discontinuously in time. Using again 
cylinder coordinates (r, z), and assuming the cylinder to have infinite length in 
z-direction, the temperature distribution T=T(r, t) is described by the heat 
equation 

8tT-as,(rS, T)=O, 0 < r < R ,  t>0,  (3.4) 
r 

subject to the initial condition 

r(r,O)=To, 0 < r < R ,  (3.5) 

and to the boundary condition 

~rT(0, t)=0, a~rT(R,t)=b{T~-T(R,t)}, t>0. (3.6) 

We consider the case when the intensity of the cooling is piecewise constant in 
time, 

b(t)=mb o, mAt<=t<(m+l)dt, m>O. 

The parameters are chosen as follows: 

R = I ,  At=5, a=4.3.10 -3, b0=6.2.10 -3, To=850, To~=20. 
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At each of the critical times, t--0,  5, 10 . . . . .  we have to expect a singularity of 
0 t r and 02 T. 

For discretizing problem (3.4)-(3.6) we used again the finite Element Galer- 
kin method, the trial functions being piecewise linear in r, and the Crank- 
Nicolson scheme. The spatial mesh size was h=  1/100, and the time steps were 
k =  1/2, 1/4, 1/8. Following the damping advice, two backward Euler steps have 
been carried out after each of the critical times. The following pictures show 
the temperature distribution at time t=20,  i.e., after three jumps of b(t), (Fig. 3) 
and the asymptotic rates of convergence found for the C.-N. scheme without 
damping, for the C.-N. scheme with two b.E. damping steps and for the b.E. 
scheme (Fig. 4). 

313.66 

Fig. 3. Temperature distribution T(r, 20) 
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0 1 

Fig. 4. Rates of convergence 
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3) Fluid Flow in a Spherical Gap 

Fluid flow between two rotating spheres (or cylinders), the Taylor-problem, is 
one of the best studied model problems in fluid mechanics; for experimental 
and numerical results see Bartels [1] and the literature cited there. We consid- 
er here the situation when the fluid's motion between two concentric spheres is 
driven by a constant accelleration co > 0 of the inner sphere. The velocity vector 
~=~(x, t) and the scalar pressure p=p(x ,  t) of the fluid (assumed to be viscous 
and incompressible, as usual) are determined by the Navier-Stokes equations 

~?t ~ + ~" grad ~ = vA ~ -  grad p, (x, t)eE2 x (0, ~),  (3.7) 

subject to the incompressibility condition, div ~ = 0, to the initial condition 

~(x, 0)=0, x~(2, (3.8) 

and to the boundary condition 

vl . . . .  =0, [~ = 0 (3.9) 

I . . . .  r~ c o s ( O ) c o t  

Here, r a and r~ are the radii of the outer and the inner sphere, respectively, and 
(r, q~, q) are the usual spherical coordinates with direction unit vectors denoted 
by fi, f~ and f,. 

For solving this problem numerically, one may use a second order finite 
element or finite difference discretization for the spatial variables (taking into 
account spatial symmetry) and the Crank-Nicolson scheme in time. Alter- 
natively, the ADI-method could be used which reduces the work to solving 
two tridiagonal systems per time step. For both methods second order ac- 
curacy requires, roughly spoken, the second time and spatial derivatives, e t~z*v 
and A ~, to remain bounded for all time t+0. However, in the present situation 
the solution has only a reduced regularity at t=0 ,  due to a non-compatibility 
of the initial and the driving boundary data. This is easily seen as follows. 
Suppose that (~t ~, A~ and gradp are continuous functions of x ~  for t~,0. Then, 
letting t+0 in (3.7) and observing ~lt-o =0, we find that 

Ot~]t=o = - g r a d p l t ~ o ,  x~(2, 

and, consequently, setting pO =P]t-o, 

~,P~ 0,P~ . . . .  = - -  ri c o s  (~b) co. 

On the other hand, multiplying (3.7) through by grad ~b and then letting t~0, we 
conclude that 

S grad p0. grad 4) dx = 0 
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holds for every "test function" qS. This shows that p0 is a harmonic function on 
f2 satisfying d,p~ and hence, necessarily p~ on ~. But this 
contradicts 

o ~,p It=,, = - rl cos (4~) o~ ~0, 

so that even Ot ~ cannot remain bounded as t+0 as a continuous function in 
x e ~ ;  for a more rigorous analysis of this phenomenon see [6; Part I]. It 
should be noted that this loss of regularity as t+0 also occurs for the (linear) 
Stokes equation when combined with the conditions (3.8) and (3.9). 

In view of the foregoing, the Crank-Nicolson scheme cannot be expected to 
show more than first order accuracy unless some precautions are taken. Al- 
though, the analysis of this paper is restricted to linear problems, our smooth- 
ing device also applies to the weakly nonlinear problem (3.7)-(3.9), as will be 
proven in [-6; Parts III and IV]. For times t>0 ,  the full second order accuracy 
of the Crank-Nicolson scheme can be achieved by starting the computation 
with two backward Euler steps; for this, no restriction on the time step k in 
terms of the spatial mesh size h is needed. 

4. Conclusion 

It has been shown that high order time discretization schemes based on 
diagonal Pad6 formulas can successfully be used in solving linear convection- 
diffusion problems even with irregular initial or boundary data. Usually the 
high frequency error components incited by local singularities are propagated 
in time spoiling the global order of accuracy. As an example, the order of the 
standard Crank-Nicolson scheme may be reduced to zero in the case of rough 
initial data. This pollution effect can be suppressed by providing additional 
damping, here, merely by starting the computation with two backward Euler 
steps. The theoretical analysis and the numerical tests show that this procedure 
yields the full second order accuracy away from the singularities and does not 
increase the computational costs. 
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