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In this paper we prove the following conjecture of Frankel [7].

Main Theorem. Every compact Kdhler manifold of positive bisectional curvature is
biholomorphic to the complex projective space.

The case of dimension two was proved by Andreotti-Frankel [7] and the case of
dimension three by Mabuchi [18] using the resuit of Kobayashi-Ochiai [12].
Our method of proof uses harmonic maps and the characterization of the
complex projective space obtained by Kobayashi-Ochiai {15]. According to the
result of Kobayashi-Ochiai the complex projective space of dimension n is
characterized by the fact that its first Chern class equals Ac,(F) for some A=n
+1 and some positive holomorphic line bundle F over it. Since by the result of
Bishop-Goldberg [2] the second Betti number of a compact Kéhler manifold M
of positive bisectional curvature is 1, for the Main Theorem it suffices to show
that ¢, (M) is A times a generator of H*(M, Z) for some 4>=1+dim M. This can
be done by proving that a generator of the free part of H,(M,Z) can be
represented by a rational curve, because the tangent bundle of M restricted to
the rational curve splits into a direct sum of holomorphic line bundles over the
rational curve according to the result of Grothendieck [11]. The existence of the
rational curve is obtained in the following way. According to the result of Sacks-
Uhlenbeck {22] and its improved formulation by Meeks-Yau [19], the infimum
of the energies of maps from S? to M representing the generator of n,(M) can be
achieved by a sum of stable harmonic maps f; from S$* to M (1 <i<m). The key
step in our proof is to show that each f; is either holomorphic or conjugate
holomorphic. The known methods of proving the complex-analyticity of a
harmonic map use the formula for the Laplacian of the energy function [23, 25,
26] or a variation of it [24]. Here we use instead the second variation formula of
the energy function. In this second variation formula a 2-parameter variation
has to be used to imitate the situation of holomorphic deformation. After this
key step we use holomorphic deformations of rational curves in M to show that
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m=1. This is done by proving that in case m>1 we can holomorphically deform
the images of some holomorphic f; and some conjugate holomorphic f; so that
they are tangential to each other at some point. By removing a disc centered at
the point of contact from each and joining the two disc boundaries by a suitable
surface, we obtain a map from $% to M with energy smaller than the minimum
energy. Thus m=1 and the image of f, is a rational curve representing a
generator of the free part of H,(M, Z).

In our proof the existence of a rational curve plays a very important role.
This important role of a rational curve has already been observed earlier by
Hartshorne and Kobayashi-Ochiai [13].

We learn that very recently Mori [20] has also given a proof of Frankel’s
conjecture by using the method of algebraic geometry of characteristic p>0.
Mori’s result is stronger than ours. He needs only the assumption that the
tangent bundle of the manifold is ample, whereas we have to assume that the
manifold has positive holomorphic bisectional curvature. Though our result is
weaker, our proof has the advantage that it uses only methods of Kihler
geometry to answer a question in Kéhler geometry. On the other hand, even in
the case of complex manifolds Mori’s proof involves the use of methods of
algebraic geometry of characteristic p>0.
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§1. Second Variation Formula

Suppose M, N are compact Kihler manifolds whose Kihler metrics are re-
spectively m _
dsyy=2Re Y hgdz*dz’

a, f=1
and

dsi=2Re Y g;dw dwl.

i, j=1

Let f(1): N> M, teC, |t|<e, be a family of smooth maps parametrized by an
open disc in €. The pointwise d-energy of f is defined by

10f 1P =87 £ Phaps
where the summation convention is used and
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In order to compute 3 |df1? at a point P of N, we choose local holomorphic
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coordinate systems at P and Q = f(P) such that

and
dhaB=

ayaahw:() at Q

This is possible because the metrics of M and N are both Kihler. Direct
computation yields

o () P ) ()
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ot ot

Consider the vector field &€ on N defined by
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where 3 is the covariant differentiation with respect to the connection of the

tangent bundle of M, i.e.
0? . oftof”
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MI}, being the Christoffel symbol of M. The divergence of ¢ at P is
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Now assume that f is harmonic at 0. Then at P and t=0
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Hence at t=0

# s (D \(D (P o\ (D,
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where
Ruvaﬂ=6u6§haﬁ—h?”6 h . 0.h,; hgs

ptayy

is the curvature tensor of M.

§ 2. Relation of Energy and J-Energy

Suppose M, N are as in § 1. Let f: N— M be a smooth map. Similar to |df|?, the
pointwise d-energy |8f|? of f is defined by

0f 1 =817 hop

ks
5= 5w

where

The pointwise energy e(f) of f, which is defined as the trace of f *(dsz,) with
respect to dsf, is therefore equal to |0f|*+|0f|*. Now assume dimg N =1. The
pullback of the Kéhler form of M under f is

-5 of* of* af* of* ) _
a f _
|/~1haﬁdf Adff =V Lh,p (6w 5 R dw A dw.
Hence '

glaflz—&( |5f|2=£ﬁha3df“Adﬁ

which is equal to the Kéhler class w(M) of M evaluated at the homology class
[f(N)] defined by f: N— M. It follows that

Igl@fl2=%£ e(f)+1w(M)[f(N)],
£I6f12=%£ e(f)—To(M) Lf (N)].

As a consequence, the energy- minimizing maps from N to M are precisely the
same as the J-energy-minimizing maps.

Remark. This last fact was first observed by Lichnerowicz [16].
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§ 3. Complex-Analyticity of Energy-Minimizing Maps

Suppose M is a compact Kdhler manifold with positive holomorphic bisectional
curvature. Let f,: IP, > M be an energy-minimizing map.

Proposition L. If f* ¢, (M) evaluated at IP, is nonnegative (respectively nonpositive ),
then f, is holomorphic (respectively conjugate holomorphic ).

Proof. Since the proof of the other case is similar, we prove here only the
holomorphic case.

Let T,, be the holomorphic tangent bundle of M, let w be a local coordinate
of IP,, and let pr be the covariant differentiation, in the antiholomorphic
w
direction, of local cross sections of f§f T,, with respect to the connection of T),.
. .. D
Let # be the sheaf of germs of local cross sections s of f¥ T, with a—_s=0.
W
Clearly # is an analytic sheaf over IP,. We claim that & is locally free and the
holomorphic vector bundle associated to % is topologically isomorphic to
f& Ty
It suffices to show that for an arbitrary point P of IP; there exist local cross
. D
sections sy, ..., S,, at P such that a—_siEO, 1<ism, and s (P), ...,s,(P) form a
w
basis of the fiber f*T,, at P, where m=dim¢ M.
These local sections s; can be constructed as follows. Choose the local co-
ordinate (z*) of M at Q=/f,(P) such that the metric tensor h,; of M satisfies
dh,;=0 at Q. Every local cross section s of f;* Ty, at P can be written as

0
S:;S Pt
Then at P

D Js* 0
o =L o

Choose smooth local cross sections

of ffT,; at P, 1 <i<m, such that the matrix

(t?)l <o, ism
is nonsingular at P and each ¢ is holomorphic at P as a function of w. Then
D . .
——t; vanishes at P. Solve the equations

ow !

ow ' w—w(P)ﬁti )
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for u, locally at P by using the Cauchy kernei

1 dw Adw
2ny ~1 w—{_

and the standard classical iteration process of Korn-Lichtenstein (see e.g. p. 394
of [21]; cf. pp.254-267 of [1]). Since the right-hand side of () is bounded, it
follows that u; is e-Ho6lder continuous for any 0 <e<1. Define s; by

s;=t,—(w—w(P)) u,.

Then s, satisfies the requirements.

Now we can regard f;f Ty, as a holomorphic vector bundle over IP, (after its
identification with the holomorphic vector bundle associated to %). By the
theorem of Grothendieck [11], f§fT,, is a direct sum of holomorphic line
bundles L,,..., L, over IP,. Since the first Chern class of f§f T, evaluated at IP,
is nonnegative, it follows that for some i, c,(L;) evaluated at IP, is nonnegative. By
the theorem of Riemann-Roch, we can find a nontrivial global holomorphic
section

a
0z*

of L, (and hence of f*T,,) over IP,.
Construct a smooth family of smooth maps f(t): IP, - M, teC, |t|<e, such
that f(0)=1;, and at t=0

0
Ef (=0
and

4 L4 o <&
af (t)——-s .

Since s is a holomorphic cross section of f§f T},, it follows that at t=0

Do ., D D ,_
siow’ awoar ow o
Moreover, /
D& . Do
Gow awar )
at t=0.

From the second variation formula derived in §1, it follows that at t=0

af* o ofr of”
g L B ) )

where R,;,; is the curvature tensor of M. By §2, f, is d-energy minimizing.
Hence at t=0 we have

at ot p j 1of 1" 20.
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Since the holomorphic bisectional curvature of M is positive, i.e.

R, 58 n*nP <0
for (&%), (n™)e@™—0, it follows from (}) that

% _

0
ow

on IP, - Z for all o, where Z is the zero-set of s. The map f, is holomorphic,
because Z is a finite subset of IP,. Q.E.D.

§ 4. Existence of Energy-Minimizing Maps

Let M be a compact Riemannian manifold and S? be the 2-sphere. For each C!
map f: S*—> M, we let E(f) be the energy of f and let E([ ) be the infimum of
the sum of the energies of maps whose sum is homotopic to f. The following
proposition is proved by using the method of Sacks-Uhlenbeck [22] (see also
[19] for results related to the present situation).

Proposition 2. For every C' map f: S?— M there exist energy-minimizing maps
fi: 8o M, 1<i<m, such that the sum of f, is homotopic to f and E([f])

= ¥ B

Proof. It is proved in [22] that any nonconstant harmonic map or any
homotopically nontrivial C' map from S into M has energy > c for some fixed
positive constant c¢. Let k be the smallest nonnegative integer such that

ke
E(f)§7

We are going to prove the proposition by induction on k. The case k=0 is true.
We want to prove the case k=n+1 under the assumption that the. case k=n is
true.

By [22] for a>1 we can find smooth maps f,: S~ M which minimize the

functional
E,(g)= | (1+|dg|*)
sZ

over the space of all C' maps homotopic to f. Let x, be a point of 82 so that
|dfa|2(xa)=ﬂslzp ldf, 2.

If sup |df,)? is uniformly bounded in «, the f, converges to an energy-minimizing
S2
map and the assertion is proved. If sup |df,|* is unbounded in o, then for some
S2

disc D, with center at x, the map f,{D,, after identifying D, with an open disc in
R? by a suitable homothetic map, converges on compact subsets to a harmonic
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map g: RZ— M. It is proved in [22] that g can be extended to a harmonic map
g: 82> M and we can assume that f,|0D, has arbitrarily small length.

As in [19], we can construct a map f,': S2—> M so that E(f,!) is arbitrarily
close to E(f,)—E(g) and f is homotopic to the sum of f! and g. For later
purpose, we outline the argument as follows. Fix a disc D so that f,| D converges
smoothly on D to §|D and the energy of § over D is close to the energy of §. We
define maps f, from S? into M by extending f,|D to S? in the following way.
Since f,| @D is close to §|0D, we can join each point f,(x) to g(x) (for xedD) by a
short geodesic and obtain a map A, from an annulus into M whose image has
small area. Then we obtain a map f, from S? into M by putting together the
maps f,|S2—D, h, and §|S*—D.

By approximation, we may assume that the map f, is a smooth immersion
from S? into M and the area of the image of f, is close to the sum of the areas of
the images of f,|S*>—D, h,, and §|S?—D. The map f, pulls back the metric from
M to a metric on $? which defines a conformal structure on S2. Since there is
only one conformal structure on §2, there isan orientation preserving diffeomor-
phism from S$? into S? which pulls this conformal structure back to the standard
conformal structure on S2. We define f! to be f, composed with this diffeomor-
phism so that f;! is conformal. Observe that the area of the image of a map from
a real surface to a Riemannian manifold is the same as the energy when the map
is conformal. Since § is conformal (see for example [19]) and E(g|S*—D) is
small, the area of the image of the map §|S?— D is small. This together with the
smallness of the area of the image of h, implies that E(f}) is close to E(f))
—E(@@).

Since ¢ is harmonic, E(g)>c¢ and E( fal)_S_n—zc— for o sufficiently close to 1. By

induction hypothesis, for a sufficiently close to 1, we can find energy-minimizing
maps f;: S?—>M, 1 £i<m—1, such that the sum of f; (1 <i<m—1) is homotopic

to /! and EC4D= 3. E(f).
Set f,,=g, then )
E(Lf))=lim E(f)=lim E()+E@)

ZE(LfD+E®
- ¥ £

On the other hand, from the definition of E([ f]), it is clear that
EQ/DS Y EG).

Hence E([f])= Y E(f). It follows from the definition of E([f]) that f,, is
i=1

energy-minimizing. Q.E.D.
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§ 5. Holomorphic Deformation of Rational Curves

Let M be a compact complex manifold of complex dimension m whose tangent
bundle T, is positive in the sense of Griffiths [10]. Let C, be a rational curve in
M, possibly with singularities, that is, C, is the image of a holomorphic map
fo: IP, > M, which is the normalization of C,.

Let V<IP, x M be the graph of f,. Let

n: P, x M—>1P,,
o: P xM->M

be the natural projections. Since Ty, is isomorphic to n* T, @ c* Ty, and Ty, is
isomorphic to n* Ty, , it follows that o* T | V' is isomorphic to the normal bundle

 of Vin IP, x M, that is, f* T}, is isomorphic to N;,.

Let D be the moduli space when V is deformed as a subspace of IP, x M (see
[3]). Let D be the irreducible component of D which contains the point x, of D
corresponding to V. The infinitesimal deformation of V is given by I'(V, N;)). We
claim that H*(V, N,) vanishes so that all infinitesimal deformations are realized
as actual deformations and x, is a regular point of D of dimension equal to the
dimension of I'(V, Ny,).

Since Ty, is positive, the u'® symmetric tensor product T of T,, is ample in
the sense of Griffiths [10] for u= some positive integer u,. Take veV such that
at y=n(v) the map f, is an immersion. Then for p=yu,, we have an exact

sequence
0—F = I'(V, N)—(N#),—0

so that the natural map F—(N¥),®(T;¥), is surjective. By a theorem of
Grothendieck [11], N, splits into a sum of holomorphic line bundies L, ..., L
over V. Then for u=u, and 1 <i<m we have an exact sequence

m

0-F—-I'(V, L) —(L5),—~0

so that the natural map F,—(I%),®(T3¥), is surjective. Hence each L, is a positive
holomorphic line bundle over V. By the theorem of Riemann-Roch, H*(V, L)=0
for each i. It follows that H'(V, N,)=0.

We have a complex subspace % of D xIP, x M with the following property.

Let
a: €—-D,

p: €—-1P, xM

be the natural projections. Then & is «-flat and for every xeD, B maps o~ !(x)
biholomorphically onto the complex subspace of IP, x M corresponding to the
point x. In particular, 8 maps «~!(x,) biholomorphically onto V.
Let € be the subset of € consisting of all we® such that
i) the structure sheaf of & is reduced at w,
ii) D is regular at a(w), and
iii) the map « is a submersion at w.
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Clearly € — %' is a subvariety of €. The fiber a~!(x,) is contained in %". Let
D, =a(¢—%'). Then D, is a proper subvariety of D.

Let Q} (respectively %) be the sheaf of germs of holomorphic 1-forms on D
(respectively %) in the sense that it is locally the sheaf of germs of holomorphic
1-forms on an ambient manifold modulo the defining functions and their
differentials. Let % be the linear space over € associated to the coherent
analytic sheaf QL/a* Q) on &, i.., the sheaf of germs of holomorphic functions
on £ which are linear forms along the fibers of # is isomorphic to QL/a*Q}
(see [6]). When restricted to €', & is isomorphic to the vector bundle of tangent
vectors along the fibers of €. Let IP(#) be obtained by replacing each fiber of &
by the projective space of all complex lines, i.e. IP(%) is the orbit space of &
under the C* action on the fibers. The projection o : € — M induces a holomor-
phic map

(0B),: P(L)—P(Ty),

where IP(T,,) is the projectivization of the tangent bundle T,,. We claim that
(6 B), is surjective.

Since D is compact (see {8,17]), it follows that % is compact and IP(%) is
compact. Hence the image of (af), is a subvariety of IP(7,,). To prove the
surjectivity of (¢ f),, it suffices to show that (o p),, is open at some point. Take a
regular point y, of C,. Then it corresponds to a point w, in €, ie. a(wy)=x,
and (o ) (wo)=y,. Let J,€IP, be the point such that f,(§,)=y,. Let { be a local

. . 0 . .
coordinate of IP, at j, vanishing at y,. Then w, and (?) determine a point 6,
Yo

in IP(#). We are going to show that (¢ ), is open at 6,,.

Let E be the divisor of the differential df;, of f, and let [E] be the line bundle
over IP; associated to the divisor E. Then T, ® [E] is a line subbundle of f* 7,,.
Let Q be the quotient bundle f*T,,/T, ® [E]. By the theorem of Grothendieck
[11], Q splits into a direct sum of holomorphic line bundles Q,, ..., Q,, over IP,.
Since f§f Ty, is positive, each Q,, 2<v<m, is a positive line bundle over IP,. Let
[7,] be the line bundle over IP, associated to the divisor §,. For 2<v<m there
exists a holomorphic cross section s, of @, ®[7,]~' over IP, which does not
vanish at j,. We can regard s, as a holomorphic cross section of Q ® [,]*.
Consider the following exact sequence

F@®y, (fF T @ ol > TP, Q®[Fo] ") »H'(P,, Tp, ® [E1® 5,171

coming from the exact sequence

0- T ®LEI®[Fe]™ ! > (fFT)®[Fol ' —0Q ®[F,17 1 —>0.
Since

HY(IP;, Tp, ® [E1®[Fo]1)=0

by the vanishing theorem of Kodaira, the cross sections s, 2ZSv<m, can be
lifted to holomorphic cross sections §, of fF T, ® [7,]~ ! over IP,.

Let ¢ be the holomorphic cross section of [7,] over IP, whose divisor is j,,.
Let u,=5,t. Then u, is a holomorphic cross section of f* T,, over IP,, 2<v<m,
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and these sections have the property that 1uv, 2<£v<m, form a basis of
(/2 Tl Tose ‘

For 1=v<m—1 there exists a holomorphic cross section s,,, , of Q,,, over
IP, which does not vanish at j,. We can regard s,,,, 1SvS=m—1, as a
holomorphic cross section of Q. Consider the following exact sequence

(P, f+ T,) - TPy, Q)— H (P, Ty, ®[E])
coming from the exact sequence

0-Tp, ®[E] - f5* Ty~ Q0 —0.
Since
HI(IPp T]pl® [E])ZO

by the vanishing theorem of Kodaira, the sections s, ,, 1SvSEm—1, can be
lifted up to a holomorphic cross section u,,, ,, 1 Sv<m—1, of ff T, over IP.

- Each u,, 2£v<2m~—1, defines a tangent vector v, of D at x, and defines
&€l (o Y(x,), T,) such that

i) (da)(&,)=v, at every point of a~*(x,), and

ii) (d(aB) (&) at wea~(x,) equals u, at nf(w).
Choose a local submanifold R of D at x,, such that the tangent space of R at x,
is spanned by v,,...,v,, ;. At w,, we choose a local coordinate system
ty,..esty,_y Of a7 '(R) such that

i) t, is of the form ¢, o a for 2<v=2m—1,

ii) t;(Wg)=...=t,,,_1(wg)=0,
. 0
iii) 5t—=£v (2=v=2m—1) at a~!(x,), and

v) t;=Cofg ' o(ap) on &~ (xy).

Choose a local coordinate system z,, ..., z, of M at y, such that

i) C, is defined by z,=...=2,=0, and
il) z,=(ofy ! on C,.
Let m 9
Z 5_ 2gvEm-1)
1
where u,, is a holomorphic function on IP, near j,. Since ~u,, 2<v<m, form a
basis of (fg* Tyy/Ty)y,, it follows that the matrix ¢
(7)
~u
C v 22v,uZm

is nonsingular at j,. Let
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on C, near y,. Then on C, near y, we have

5
e 0
(d(U'B))a—tv=21 ugl awg‘: (2§V§m).

Let

m

0 0
(d(Uﬁ))§= Y bvug (m<v<2m).

u=1 [
Since u,, m<v<2m, form a basis of (fg* Ty/Thp)s, it follows that the matrix

(bvu)m<v<2m,2§u§m
is nonsingular at y,.

Now we calculate the Jacobian matrix of the map (gp),, restricted to
IP(Z}| R, with respect to local coordinate systems we are going to describe and
verify that the Jacobian matrix has rank 2m—1 over C at 6,,.

Since «~!(x) is of complex dimension 1 for every xeD, for we¥%' the fiber of
P(¥) at w consists only of a single point. Hence we can identify IP(.#)|%’ with
%' and use f,,...,t,, _, as local coordinates at w, for IP(¥) (after identification
of IP(¥)|¥¢ with €').

Every element 5 of T,, can be written as

; vﬁz

i) the functions

and we use as local coordinates of IP(T},) near (yo, 3
Z

The map o8 makes z, ..., z,, functions of ¢,,...,t,,_,. The Jacobian matrix of
(o B),, restricted to IP(Z)|R, with respect to the coordinate systems

Liy ooty
and
Zl""’Zm’&’ ‘”’f’_’ﬂ,
1y 1
equals to the (2m— 1) x (2m— 1) matrix (4, B), where
-
Ot Jisvsom-1,15pusm
%z,
o | ot
B= it §
ét, | 0z,

Oty [ 1svsam—1,25usm
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We have
0
5?:5”1 (the Kronecker delta) for 1Su<m,
1
0
5_?:=tlav“ for 25vEm, 1Su<sm,
3 .
aj“:bw for m<v<2m,1Zusm

v

on o~ *(x,) near w,. Now

o,\ 05,05, 0 0z,
o [ ot ot o, aty dr, 6_z£_a
o, \ oz, | 0z, dz, at, *

ot, ot, oty

at wy for 2<v=<m, 2 u<m. Since the matrices

(avu)Z sSv,usm
and

(bvu)m< v<2m,2Zspus<m
are nonsingular at y,, it follows that (4, B) is nonsingular at w,. This concludes
the proof that (g B),, is open at 6.

Let G be the subset of IP(T,,) consisting of all points j of IP(7},) such that
(6B); ' () is entirely contained in the restriction of IP(¥) to ¥’ —a~'(D,). Let Z
=IP(T,,)—G. Then Z is a proper subvariety of IP(T,,). We thus have proved the
following.

Proposition 3. Let M be a compact complex manifold whose tangent bundle T, is
positive. Let C be a rational curve in M and f;: IP,— C, be its normalization.
Then there exists a proper subvariety Z of IP(T,,) with the following property. If
yeM and (e(Ty),—0 define an element of P(Ty)—Z, then there exists a
holomorphic map f: IP—M homotopic to f, (when f, is regarded as a map from
IP, to M ) such that y is a regular point of f(IP,) and the tangent vector of f(IP,) at
y is a nonzero multiple of &.

§ 6. Proof of the Main Theorem

Suppose M is an m-dimensional compact Kéhler manifold of positive bisec-
tional curvature. Since the Ricci curvature of M is positive, it follows from the
theorem of Bonnet-Myers that the universal covering of M is compact. Since IP,,
has no fixed-point-free automorphism, in order to prove the Main Fheorem, by
replacing M by its universal covering, we can assume without loss of generality
that M is simply connected. It follows that n,(M) is isomorphic to H,(M, Z).
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Since the holomorphic bisectional curvature of M is positive, by the result of
Bishop-Goldberg [2] (see also [9]) the second Betti number of M is 1. From the
universal coefficient theorem it follows that H*(M, Z)~Z. There exists a posi-
tive holomorphic line bundle F over M whose first Chern class ¢ (F) is a
generator of H*(M,Z). Let g be a generator of the free part of H,(M, Z) such
that the value of ¢,(F) at g is 1. Let f: IP, » M be a smooth map so that the
element in n,(M) defined by f corresponds to g in the isomorphism between
n,(M) and H,(M, Z).

By Proposition 2, there exist energy-minimizing maps f;: IP, > M, 0<i<k,

k

such that the sum of f; (0<i<k) is homotopic to f and E([f1)= Y. E(f).
i=0

By Proposition 1, each f; (0Zi<k) is either holomorphic or conjugate
holomorphic. So each f(IP,) (0<i<k) is a rational curve. Since ¢,(T},) is a
positive integral multiple of ¢,(F) and the value of ¢,(F) at g is 1, it follows that
at least one f; is holomorphic. If k>0, then at least one f; is conjugate
holomorphic. We distinguish now between two cases.
Case 1. k=0.
We use the notations of § 5. The line bundle T,, ® [ E]is a subbundle of ff T, and the
quotient bundle( f§* T,)/(T,, ® [E])splitsintoadirectsum oflinebundlesQ,, ..., @,,.
Each Q; (2<i<m) is a positive line bundle. It follows that

¢ (fof Ty)=c(Ty) +c([E])+ 'Zz c1(Q)

Hence ¢,(T,,) evaluated at gis =n+ 1. Thatis, c,(T;,) = Ac,(F)for someinteger A= n
+ 1. By the result of Kobayashi-Ochiai [14], M is biholomorphic to 1P,,.

Case 2. k>0.
Without loss of generality we can assume that f,, is holomorphic and f; is conjugate
holomorphic. From Proposition 3 we obtain a proper subvariety Z of IP(T,,) for the
rational curve f,, (IP; ) of M. Similarly we obtain a proper subvariety Z' of IP(T,,) for the
rational curve f; (IP,) of M. Takea point ye M and a nonzero tangent vector £ of M at y
so that the point of IP(7},) defined by y and ¢ does not belong to Z U Z'. The map f,,
(respectively f,) is homotopic to a holomorphic map f, (respectively conjugate
holomorphicmap f;)fromIP, to M such that yisaregular point of f (IP, ) (respectively
f1(Py)) whose tangent vector at y is a multiple of . Since for v=0, 1 both E(f,) and
E(f)areequal to the absolute value of the Kihler classof M at [ f,(IP,)], by replacing
£, by f, (v=0,1) we can assume without loss of generality f,=f] (v=0, 1).
Choose a local coordinate system z, ..., z, at y with y as the origin such that £
=a—(z—1—. Choose a local coorsiinate system { of IP, so that both f; () and fi'(y)
correspond to {=0 and f, (v=0, 1) is of the form

z,=(

z,=f,0 Q@Qsu=m
near {=0.



Compact Kihler Manifolds 203

For é>01et 4, be the closed disc in € of radius d centered at 0. For d sufficiently
small, weremove f,(4;) from f,(IP,) (v =1, 2)and replace these two discs by the surface
S, defined by

z,=0d¢é"

= tfo(0e')+(1—1) f1(6€")

for 0£60<2n and 0<r<1. The surface
S,0( 1) £ -4,)

oriented in the obvious way is the image of a map f from S2 to M which is
homotopic to the sum of f, and f,. Moreover, for d sufficiently small the area of
this surface is strictly less than the combined area of f,(IP,) and f,(IP,). By
smoothing out f we obtain a smooth map f from $? to M such that the area of
F(8?) is strictly less than the combined area of fo(P,) and f,(IP,). We make f
conformal by replacing it by its composite with a suitable diffeomorphism of §2.
Then E(f)<E(fy)+E(f,). The sum of f and f,, ..., f, is homotopic to f and yet

E(f)+ A_ZZ E(f)< ‘_ZO E(f)=ELSD,

which is a contradiction. Hence k=0 and M is biholomorphic to IP,.
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