Inventiones math. 17, 79 – 84 (1972) © by Springer-Verlag 1972

A Characterization of Orders of Finite Lattice Type

M. Auslander (Waltham) and K.W. Roggenkamp (Bielefeld)

In this paper we give a characterization of orders of finite lattice type via the global dimension and a property of relative injective and projective lattices. Since an order is of finite lattice type if and only if this is true at all completions (cf. [4]), it is enough to treat the local problem here.

§ 1. Notation and Statement of the Results

We shall us	e the following notation throughout this paper.
<i>K</i> =	p-adic completion of an algebraic number field at the
	finite prime p
<i>R</i> =	ring of integers in K
$\pi R =$	Jacobsonradical of R
A, B =	finite dimensional semi-simple K-algebras
$\Lambda, \Gamma =$	R-orders in A and B resp.
(We recall that a	an R-order A in A is a subring of A with the same identity
as A, containin	g a K-basis of A and consisting entirely of integral ele-
ments over R.)	
$_{A}\mathfrak{M}^{f}(\mathfrak{M}^{f}_{A}) =$	category of finitely generated left (right) A-modules
$_{A}\mathfrak{M}^{0}(\mathfrak{M}^{0}_{A}) =$	category of left (right) A-lattices
(A left Λ -lattice M is a finitely generated left Λ -module, which is R-free.)	
$_{A}\mathfrak{P}(\mathfrak{P}_{A}) =$	category of projective left (right) A-lattices
$_{A}\mathfrak{I}(\mathfrak{I}_{A}) =$	full subcategory of injective objects in ${}_{A}\mathfrak{M}^{0}(\mathfrak{M}^{0}_{A})$
$_{A}\mathfrak{B} = _{A}\mathfrak{P} \cap _{A}\mathfrak{I} =$	bijective objects in ${}_{\mathcal{A}}\mathfrak{M}^0$.
For $M \in \mathfrak{M}^0$ we denote by	
ME the full	subcategory of ${}_{A}\mathfrak{M}^{0}$, whose objects are $N \in {}_{A}\mathfrak{M}^{0}$, $N M^{(s)}$
for sor	ne non-negative integer $s(X Y)$ indicates that X is iso-
morph	ic to a direct summand of Y, $Z^{(s)}$ is the direct sum of s
copies	of Z)
$G \in \mathfrak{M}^0$ is calle	d an additive generator for A if ${}_{G}\mathfrak{E} = {}_{A}\mathfrak{M}^{0}$
n(A) = numbe	r of non-isomorphic indecomposable objects in ${}_{\mathcal{A}}\mathfrak{M}^{0}$, or
infinity	, if this number is not finite
$_{\mathcal{A}}\mathfrak{N} = \{M_1, \ldots\}$	M_{t} = a set of all non-isomorphic indecomposable
objects	in $_{\mathcal{A}}\mathfrak{M}^{0}$, if $n(\Lambda) < \infty$.

Since lattices are R-projective, we have a duality

$$\mathfrak{D}: {}_{A}\mathfrak{M}^{0} \to \mathfrak{M}^{0}_{A},$$
$$M \mapsto M^{*} = \operatorname{Hom}_{R}(M, R),$$

with $\mathfrak{D}^2 \sim l_{\mathfrak{A}\mathfrak{M}^0}$, which preserves isomorphism and decomposition etc. Hence there are only finitely many non-isomorphic indecomposable

left Λ -lattices if and only if the same is true for the right lattices.

The above notation is changed accordingly for other orders under consideration.

(1.1) Remark. If $n(\Lambda) < \infty$, ${}_{\Lambda} \mathfrak{N} = \{M_1, \dots, M_t\}$, then $G = \bigoplus_{i=1}^t M_i$ is an additive generator for Λ . Conversely, if Λ has an additive generator, then $n(\Lambda) < \infty$.

(1.2) **Theorem.** I) Assume that Λ has an additive generator G and put $\Gamma = \text{End}_{\Lambda}(G)$. Then Γ is an R-order in the semi-simple K-algebra $B = \text{End}_{\Lambda}(K \otimes_R G)$, satisfying:

(i) the left and right global dimension of Γ is ≤ 2 ,

(ii) there exists a projective resolution of left Γ -lattices

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow \Gamma^* \rightarrow 0$$

with $P_0 \in \Gamma \mathfrak{I}$,

(iii) A is Morita-equivalent to $\operatorname{End}_{\Gamma}(P_0)$.

We call an R-order satisfying (i) and (ii) an A-order.

II) Conversely, assume that Γ is an \mathfrak{A} -order in B, and let P_0 be as in (ii). Then $\Lambda = \operatorname{End}_{\Gamma}(P_0)$ is an R-order in $A = \operatorname{End}_{B}(K \otimes_{R} P_0)$ satisfying

(i) $n(\Lambda) < \infty$, ${}_{\Lambda} \mathfrak{N} = \{ \operatorname{Hom}_{\Gamma}(P_0, I_i), 1 \leq i \leq s \}$, if $I_i, 1 \leq i \leq s$, are the non-isomorphic indecomposable objects in ${}_{\Gamma}\mathfrak{I}$,

(ii) Γ is Morita-equivalent to $\operatorname{End}_{A}(G)$, where $G = \bigoplus_{i=1}^{s} \operatorname{Hom}_{\Gamma}(P_{0}, I_{i})$.

(1.3) **Lemma.** The left global dimension of Λ (gl. dim (Λ)) $\leq n+1$ if and only if the left global dimension of ${}_{\Lambda}\mathfrak{M}^{0}$, (gl. dim ${}^{0}\Lambda$) $\leq n$.

The proof consists of a straightforward generalization of [1, 2.2].

(1.4) Remarks. 1) By means of (1.2) the orders of finite lattice type are known, if one knows all \mathfrak{A} -orders. Moreover, this connection is a very close one, since as a bonus one also gets the non-isomorphic indecomposable lattices.

2) To test whether an order Γ is an \mathfrak{A} -order one has to do the following two things:

(i) Find a minimal projective resolution for the Jacobson-radical $J(\Gamma)$ of Γ and check whether this resolution has length ≤ 1 ,

(ii) compute Γ^* and check, whether the projective cover of Γ^* is bijective.

Given a particular order, (i) and (ii) are easily checked.

3) (1.2) can also be formulated globally.

§ 2. Proof of (1.2), I)

Let G be an additive generator for A. Let $\Gamma = \operatorname{End}_{A}(G)$.

To avoid too complicated notation we write $(X, Y)_A$ for $\text{Hom}_A(X, Y)$ etc.

With G we associate the functor

(2.1)
$$\mathfrak{F}: {}_{A}\mathfrak{M}^{0} \to {}_{\Gamma}\mathfrak{M}^{0},$$
$$M \mapsto (G, M)_{A},$$

which is faithful, since G is a generator in ${}_{A}\mathfrak{M}^{0}$. (A generator in ${}_{A}\mathfrak{M}^{0}$ is a left Λ -lattice M such that $\Lambda | M^{(n)}$ for some n. This should not be confused with additive generator.) Moreover, it induces an equivalence between

(2.2)
$${}_{\mathcal{A}}\mathfrak{M}^0 \text{ and } {}_{\Gamma}\mathfrak{P} \quad (cf. [2]).$$

(2.3) **Lemma.** The left and right global dimension of Γ is ≤ 2 .

Proof. Let $T \in \mathfrak{M}^{f}$, and choose a resolution

$$0 \to \operatorname{Ker} \varphi \to Q_1 \xrightarrow{\varphi} Q_0 \to T \to 0$$

with $Q_i \in {}_{\Gamma} \mathfrak{P}$, i = 1, 2.

Because of (2.2), $Q_i \cong (G, M_i)_A$ with $M_i \in \mathcal{M}^0$, i = 1, 2. Then

$$(Q_1, Q_0)_{\Gamma} \cong ((G, M_1)_A, (G, M_0)_A)_{\Gamma} \cong (M_1, M_0)_A;$$

i.e., there exists $\psi \in (M_1, M_0)_A$ such that $\varphi = \text{Hom}(1_G, \psi)$. But \mathfrak{F} is left exact and so Ker $\varphi \cong (G, \text{Ker } \psi)_A$. By (2.2) we conclude Ker $\varphi \in_{\Gamma} \mathfrak{P}$ and the left global dimension of Γ is ≤ 2 .

As for the right global dimension we observe that $\Gamma = (G^*, G^*)_A$ and so we have a functor

(2.4)
$$\mathfrak{F}^*: \mathfrak{M}^0_A \to \mathfrak{M}^0_F,$$
$$M \mapsto (G^*, M)_A,$$

which is faithful, since G^* is an additive generator for \mathfrak{M}^0_A . Now one shows as above, that the right global dimension of Γ is ≤ 2 .

6 Inventiones math., Vol. 17

We now come to the proof of (1.2), (ii):

Since G is a generator, we have $A|G^{(n)}$ for some n and so

 $G \cong \operatorname{Hom}_{\mathcal{A}}(\mathcal{A}, G)_{\Gamma} | \operatorname{Hom}_{\mathcal{A}}(G^{(n)}, G) \cong \Gamma^{(n)}.$

Hence $G \in \mathfrak{P}_{\Gamma}$. Similarly $G^* \in \mathfrak{M}^0_A$ implies $G^* \in_{\Gamma} \mathfrak{P}$. Therefore $G^* \in_{\Gamma} \mathfrak{B}$ and $G \in \mathfrak{B}_{\Gamma}$.

Since ${}_{A}\mathfrak{I} = \{P^* \colon P \in \mathfrak{P}_A\}$, every Λ -lattice M has an injective envelope in ${}_{A}\mathfrak{I}$. Let $I \in \mathfrak{I}_A$ be an injective envelope for $G^* \in \mathfrak{M}^0_A$. Then we have an exact sequence

$$(2.5) \qquad \qquad 0 \to G^* \to I \to C \to 0$$

with $C \in \mathfrak{M}^0_A$. We apply the functor \mathfrak{F}^* to this sequence and obtain the exact sequence of right Γ -lattices

 $0 \to \Gamma \to (G^*, I)_A \to C' \to 0,$

where C' is a Γ -lattice, since it is a submodule of $(G^*, C)_A$. Applying the duality \mathfrak{D} to this sequence we get the exact sequence of left Γ -lattices

(2.6)
$$0 \to C'^* \to (G^*, I)^*_A \to \Gamma^* \to 0.$$

Then $(G^*, I)_A^* \in_{\Gamma} \mathfrak{I}$, since it is the dual of a projective lattice. We have to show that $(G^*, I)_A^* \in_{\Gamma} \mathfrak{P}$. But this is the case if and only if $(G^*, I)_A \in \mathfrak{I}_{\Gamma}$.

But $I|A^{*(n)}$ for some *n*; hence

$$(G^*, I)_A | (G^*, \Lambda^*)_A^{(n)} \cong (\Lambda, G)_A^{(n)} \cong G^{(n)}.$$

But $G \in \mathfrak{I}_{\Gamma}$, and so $(G^*, I)_A \in \mathfrak{I}_{\Gamma}$. By (1.3) and (2.3) $C'^* \in_{\Gamma} \mathfrak{P}$. This shows that Γ satisfies (ii) of (1.2). Observe that in (1.2), (ii) we have $P_0 = (G^*, I)_A^*$.

Finally we prove (1.2), (iii). Put $A' = \operatorname{End}_{\Gamma}(P_0)$. Then

$$\Lambda' = ((G^*, I)_A^*, (G^*, I)_A^*)_{\Gamma} \cong ((G^*, I)_A, (G^*, I)_A)_{\Gamma}.$$

But \mathfrak{F}^* is faithful, and so we have

$$\Lambda' \cong (I, I)_A \cong (I^*, I^*)_A.$$

Observe that all the above isomorphisms are natural. It therefore remains to show that $(I^*, I^*)_A$ is Morita-equivalent to Λ ; for this it is necessary and sufficient that $I^* \in {}_A \mathfrak{M}^0$ is a progenerator. Firstly $I^* \in {}_A \mathfrak{P}$ since $I \in \mathfrak{I}_A$. Moreover, because of (2.5) we have an epimorphism of left Λ modules.

$$I^* \rightarrow G \rightarrow 0$$

Therefore I^* is a generator, G being one. This completes the proof of (1.2), I).

§ 3. Proof of (1.2), II)

Let now Γ be an \mathfrak{A} -order and let P_0 be the projective cover of Γ^* . Then P_0 is bijective, and if we put $\Lambda = (P_0, P_0)_{\Gamma}$, then the functor

(3.1)
$$\mathfrak{G}: {}_{\Gamma}\mathfrak{M}^{0} \to {}_{A}\mathfrak{M}^{0},$$
$$N \mapsto (P_{0}, N)_{\Gamma}$$

is dense, P_0 being projective.

Let $_{\Gamma}\mathfrak{L}$ be the full subcategory of $_{\Gamma}\mathfrak{M}^{0}$, whose objects are those lattices $N \in_{\Gamma} \mathfrak{M}^{0}$ such that there exists an epimorphism

$$P_0^{(n)} \to N \to 0 \quad \text{for some } n$$

If $\tau_N: P_0 \otimes_A (P_0, N)_{\Gamma} \to N$, $p \otimes \varphi \mapsto p \varphi$ is the trace map, then $N \in {}_{\Gamma} \mathfrak{L}$ if and only if τ_N is an epimorphism.

(3.3) **Lemma.** \mathfrak{G} induces an equivalence between ${}_{\Gamma}\mathfrak{L}$ and ${}_{A}\mathfrak{M}^{0}$.

Proof. (i) $\mathfrak{G}|_{r\mathfrak{L}}$ is faithful; in fact, we have for $N_1, N_2 \in \mathfrak{L}$:

$$(N_1, N_2)_{\Gamma} \cong (P_0 \otimes_A (P_0, N_1)_{\Gamma}, N_2)_{\Gamma}$$
$$\cong ((P_0, N_1)_{\Gamma}, (P_0, N_2)_{\Gamma})_A.$$

For the first isomorphism observe that Ker τ_N is the torsion part of $P_0 \otimes_A (P_0, N)_{\Gamma}$.

(ii) $\mathfrak{G}|_{r\mathfrak{Q}}$ is dense, in fact let $M \in \mathfrak{M}^{\mathfrak{Q}}$ be given. Then $M \cong (P_0, N)_{\Gamma}$, since \mathfrak{G} is dense. Put $N_1 = \operatorname{Im} \tau_N$. Then $(P_0, N)_{\Gamma} \cong (P_0, N_1)_{\Gamma}$ and $\mathfrak{G}|_{r\mathfrak{Q}}$ is dense.

(3.4) **Lemma.** $N \in_{\Gamma} \mathfrak{L}$ if and only if $N \in_{\Gamma} \mathfrak{I}$.

Proof. (i) If $N \in \mathfrak{L}\mathfrak{Q}$, then we have an exact sequence

$$0 \to C \to P_0^{(n)} \to N \to 0$$

of Γ -lattices. Applying the duality \mathfrak{D} , we get the exact sequence of right Γ -lattices

$$0 \to N^* \to P_0^{*(n)} \to C^* \to 0.$$

Since P_0^* is Γ -projective, and since C^* has homological dimension ≤ 1 , $N^* \in \mathfrak{P}_{\Gamma}$ (cf. (1.3)). But then $N \in_{\Gamma} \mathfrak{I}$.

(ii) Let now $N \in_{\Gamma} \mathfrak{I}$. Then $N | \Gamma^{*(n)}$ for some *n* and we surely have an epimorphism $P_0^{(n)} \to N \to 0$. Hence $N \in_{\Gamma} \mathfrak{L}$.

We now are in the position to prove (1.2), II).

Let I_1, \ldots, I_s be the non-isomorphic indecomposable objects in $_{\Gamma}\mathfrak{I}$. Then because of (3.3) and (3.4),

$$_{A}\mathfrak{N} = \{(P_{0}, I_{1})_{\Gamma}, \dots, (P_{0}, I_{s})_{\Gamma}\}.$$

84 Auslander and Roggenkamp: A Characterization of Orders of Finite Lattice Type

Let $I = \bigoplus_{i=1}^{s} I_i$; we have to show that Γ and $\operatorname{End}_A((P_0, I)_{\Gamma})$ are Morita-equivalent. However

$$\Gamma' = \operatorname{End}_{\Lambda}((P_0, I)_{\Gamma}) \cong \operatorname{End}_{\Gamma}(I) \cong \operatorname{End}_{\Gamma}(I^*),$$

and it remains to show that I^* is a progenerator for \mathfrak{M}_{Γ}^0 . In fact, this says that the categories \mathfrak{M}_{Γ}^0 and \mathfrak{M}_{Γ}^0 are Morita-equivalent. But then also the categories $_{\Gamma}\mathfrak{M}^0$ and $_{\Gamma}\mathfrak{M}^0$ are Morita-equivalent via the duality \mathfrak{D} . I^* surely is projective. Moreover, $\Gamma^*|I^{(n)}$ for some *n* and therefore $\Gamma|I^{*(n)}$ and hence $I^* \in \mathfrak{M}_{\Gamma}^0$ is a generator. This completes the proof of (1.2), II).

References

- 1. Auslander, M., Goldman, O.: Maximal orders. Trans. Am. Math. Soc. 97, 1-24 (1960).
- 2. Dress, A.: On the decomposition of modules. Bull. Am. Math. Soc. 75, 984-986 (1969).
- Jacobinski, H.: Genera and direct decomposition of lattices over orders. Acta Mathematica 121, 1-29 (1968).
- Jones, A.: Groups with a finite number of indecomposable integral representations. Mich. J. Math. 10, 257-261 (1963).
- Roggenkamp, K. W., Huber-Dyson, V.: Lattices over orders I. Lecture Notes in Mathematics 115. Berlin-Heidelberg-New York: Springer 1970.
- Roggenkamp, K. W.: Lattices over orders II. Lecture Notes in Mathematics 142. Berlin-Heidelberg-New York: Springer 1970.

K.W. Roggenkamp Fakultät für Mathematik der Universität D-4800 Bielefeld, Kurt Schumacher-Str. 6 Germany

(Received February 9, 1972/April 20, 1972)