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The Global Homological Dimension 
of Some Algebras of Differential Operators 

Jan-Erik Bj/Srk (Stockholm) 

Introduction 

In this paper we compute the global homological dimension of some 
filtered rings whose associated graded rings are commutative and 
regular noetherian rings. Here follow some "classical" examples. 

When K is a field we let A , ( K ) = K [ X  1 . . . .  , X , ,  ~/OX 1 . . . . .  ~1/c9X,] be 
the Weyl Algebra. It is the ring of differential operators in n variables. 
A filtration on A, (K)  arises if we introduce the usual degree of a differ- 
ential operator and the associated graded ring is the polynomial ring in 
2n variables over K. 

Another example is F,(K) = K [X~. . .  X,]I [c?/cgX1... ~?/OX,], the ring 
of differential operators with coefficients in the ring of formal power 
series in n variables over K. 

A closely related example is H,(A")= 6.(A")[O/?z~ ... ~/~z,], the ring 
of holomorphic differential operators with coefficients in the ring of 
germs of holomorphic functions on the closed polydisc A" in C". 

In [10] Roos proves that the left global dimension of A,(K)  is n, 
provided that K is a field of characteristic 0. We remark that if char (K) + 0 
then the global dimension of A,,(K) is 2n (see [8]). 

The Main Theorem, proved in Section 5, only computes global 
dimensions when algebras of differential operators arise from abelian 
Lie algebras of derivations on a regular commutative noetherian ring. 
To what extent our present results can be generalised to non-abelian 
cases remains open. A typical example arises if we consider the n-sphere 
S" in R "+~ and let D(S") be the algebra of differential operators on S" 
which is generated by the real-analytic functions and the vector fields 
on S" which are invariant under the usual action of SO(n+ 1) on S". It is 
easily verified that n<l .  gl. d im(D(S") )<2n and we believe that the 
correct value is n. 

Because of these possible extensions we have introduced a rather 
general class of rings of differential operators in Section 1 and in Sec- 
tion 3 we have proved some results which may have applications to 
non-abelian cases. We will use some standard results, collected in Sec- 
tion 2, dealing with flatness, localisations and filtrations etc. 
5* 
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The core of this paper occurs in the Main Lemma from Section 3. 
With its aid we compute the global dimension of F.(K) and then we 
have only continued with several technical steps in order to arrive at 
the Main Theorem. 

1. Constructing Rings of Differential Operators 
The material in this section is wellknown and we refer to [9] for 

more details. Consider a commutative field K and a commutative K- 
algebra R. There arises the Lie algebra Der~(R,R) consisting of all 
K-derivations on R. Let L be a finite dimensional K-subalgebra of 
Der K (R, R). 

Given a K-basis {u 1...u.} for L a ring B = R L [ X  1 . . .XJ  is con- 
structed as follows: 

Let R{YI... I1,} be the free left R-module whose basis consists of all 
non-commuting monomials M~(Y) in the variables Y~...Y,. Then 
R{Y~...Y,} becomes an associative ring via the multiplication rules: 
Yi x = x Yi + ui(x) for all x in R and each i=  1... n. 

Finally B is the ring R{Y~... Y,}/J, where J is the two-sided ideal 
generated by the elements Y/Yk--Yk Yi--~Cikv Yv. Here {Clkv}~K are 
the structure constants of L, i.e. [Ui, Uk]=~Clk~U ~ and finally the 
canonical map from R { Y1... I1,} onto B is R-linear and maps Y/into X i. 

The Poincare-Birkhoff-Witt Theorem holds for B. So if F k is the 
two-sided R-submodule of B generated by all monomials M~(X) of 
total degree [~[=cq+...+~,__<k, then {Fk} is a filtration on B. The 
associated graded ring is the polynomial ring in n commuting variables 
over R. 

It follows that B is noetherian (i.e. left and right noetherian) if and 
only if R is so. From a general result in [-12] we have the following 
estimates for the left global dimensions: 

1. gl. dim (R)__< 1. gl. dim (B) =< l. gl. dim (R) + n. 

Suppose next that R is an integral domain and let S be a multiplica- 
tive subset of R \ 0. We have the localisation R s and each 6 ~ Derr(R, R) 
is extended to a K-linear derivation on R s by the rule: 5(x/s)= 
(6 ( x ) s - x  6 (s))/s 2. In particular the previous Lie algebra L gives rise to 
a Lie algebra LscDerK(Rs,  Rs), so we may construct the ring Bs= 
(Rs)Ls [X1. . .X,] .  It is easily verified that B s is the classical two-sided 
quotient ring of B constructed from the multiplicative subset S of B. In 
particular Bs| and B s is a flat extension of B, i.e. B s contains 
B as a subring and it becomes flat both as a left and as a right B-module. 

Suppose now that R o is a K-subalgebra of R and assume that each 
6 s L  maps R o into itself. The restricted action of L to R o gives a Lie 
algebra L o c DerK(R o, Ro) and we get the ring B o =(R0)Lo [Xl ... X.]. 
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B o is a subring of B and using the filtrations on B and B o the result 
below follows from the mater ial  in [-12]. 

Lemma 1.1. Let  R o ~ R and L be as above. I f  R is f lat  (resp. faith- 
fully flat) over R o, then B is so over B o. 

2. Preliminaries 

2.a. A Remark on Global Dimensions. For  a ring A which is noe- 
therian, i.e. left and right noetherian,  its global dimension can be com- 
puted via flat resolutions. We say that a (non-zero) left A-module  M 
has weak dimension n if and only if 

Tor,a+ 1 (N, M) = 0 for all right A-modules  N, 

while Yor a (N*, M ) +  0 for some N*. 

If A is noether ian and if w. dim A(M)< n for all left A-modules  M, 
while equality holds for some M, then the left and the right global 
dimension of A are both equal to n. Recall here that  when A is noe- 
therian and if gl. d im (A)= n >  1, then A contains a left ideal L such that  
w. d im A(L) = n -  1. 

When A is noether ian and {M,} is a family of left A-modules,  then 
w. d i m A ( m ) = n ,  where n = s u p { w ,  dima(M,)} and m = l -  I M, .  

2.b. Flat Extensions. Let A be a subring of the ring B. We say that  
B is a flat extension of A if B is flat as a left and as a right A-module.  
When M is a left A-module  we get the extended left B-module  (B~M = 

B |  

The following wellknown result holds. 

L e m m a  2.b.I. Let  A c B and suppose that B is f lat  as a right A-module. 
Then w. dims(IB)M)_-<w, dimA(M ) Jbr all left A-modules M. 

Next  we consider a left B-module  N and via scalar restriction we 
get the left A-module  A N. Under  the condit ion that  B | B ~ B it follows 
that  N~--tB)(A N) and the result below holds. 

L e m m a  2.b.2. Let  B be a .flat extension of  A satisfying B|  
Then w. dimB(N)<__w, dim~(AN ) Jbr all left B-modules N. As a conse- 
quence gl. dim(B)_-<gl, dim (A) provided that A and B are noetherian. 

Here  follows ano ther  wellknown result. 

L e m m a  2.b.3. Let  B be a f iat  extension of  A and let M be a left A- 
module. I f  M o = A (~B~M), then w. dim A (M o) _-< w. d im a (~n)M). 

Recall that  B is a faithful f iat  extension of A when B is flat over A 
and when proper  one-sided ideals of A remain proper  in B after an 
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extension, i.e. BL4=L for all left ideals L4=A and similarly for right 
ideals. 

When  B is faithfully flat over  A it follows that  L = BL  ca A for all 
left ideals L of A. As a consequence the A-linear m a p  from M into 
A ((B) M) is injective for all left A-modules  M. 

Next  follows a very useful result discovered by McConnel l .  

L e m m a  2,b.4. Let A c B be a pair of noetherian rings and suppose 
that B is a faithful f lat extension of A. I f  we also assume that gl. dim (A) 
and gl. d im (B) are both .finite, then gl. d im (A) < gl. dim (B). 

Proof Suppose  that  s = gl. dim(A) > gl. dim(B). Choose  a left A-module  
M such that  w. d i m A ( M ) = s  and put ]fq=B| Then L e m m a  2.b.3 
shows that  w. d im A (A~/) < gt. d im (B) < s. 

If  Q = f / l /M is considered as a left A-module  we get the exact sequence 
0 --*M---, AT/---, Q --, 0, which implies that w. dim a (Q) = s + 1, a contradic-  
tion. 

We finish this section with another  useful result. 

L e m m a  2.b.5. Let B be a noetherian ring and let J be a two-sided ideal 
of  B. Suppose that w. d i m ~ ( J ) = s ,  where J has been considered as a left 
B-module. I f  now gl. dim (B/J) = t > O, then w. dim 8 (L) < s + t for each left 
ideal L of  B containing J. 

Proof When B/J is considered as a left B-module  we see that  
w. dimB(B/J)<s+ 1 and hence w. d i m B ( K ) < s +  1, where K is a projec- 
tive left B/J-module which has been considered as a left B-moduLe. 

Using induct ion over  w. dimB/j(K) it follows that  w. d imB(K)<  
s +  l + w .  dimB/j(K) for every finitely generated left B/J-module K. In 
par t icular  K =  L/J is a finitely generated left ideal of B/J and hence we 
get w. dims~ J (K) <_ gl. d im ( B / J ) -  1 which gives w. dim B (K) __< s + t. 

Finally the exact sequence O ~ J ~ L ~ L / J - - ,  O, implies that 
w. dim~ (L) < s + t. 

2.c. Krull Dimensions. We employ  Krul l  d imensions  in the sense of 
[7]. Let us consider  the following s i tuat ion '  R is a local noether ian ring 
whose Krul l  d imension is n. Let B be a flat extension of R and suppose 
also that  B is noe ther ian  and that  the max imal  ideal ~ of R is such 
that  B~r is a p roper  two-sided ideal of  B. Let k be the left Krul] dimen- 
sion of the ring B/B ~.  

Using the fact that  L = BL ca R holds for all ideals L of R the result 
below easily follows, using an induct ion over  the deviat ions of  decreas- 
ing sequences of  ideals in R. 

L e m m a  2.c.1. In the situation above it follows that the left Krull 
dimension of B is at least n+ k. 
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Here follows a case where the situation above occurs. Let R be a 
local noetherian ring containing a field K such that R = K + ~ and let 
n be its Krull dimension. Let L be an s-dimensional K-subalgebra of 
DerK(R, R) and put B=RL[X  ~ ...X~]. 

If 6 ( ~ ) c  ~t for all 6 e L, then B m is a two-sided ideal of B and B/B m 
U(L), where U(L) is the envelopping algebra of the Lie algebra L over 
K. Using Lemma 2.c.1 we conclude that the left (and the right) Krull 
dimension of B is at least n +  Kr. dim(U(L)). 

Since B also admits a filtration whose associated graded ring is the 
polynomial ring in s variables over R we also have Kr. dim(B)<__n+s. 
As a consequence Kr. dim(B)=n+s, provided that L is abelian. 

3. The Main Lemma 

In this section R is a commutative, noetherian and regular K- 
algebra. L is an s-dimensional K-subalgebra of DerK(R, R) and we put 
B=RL[X~...Xs]. To each multiplicative subset S of R \ 0  we get the 
ring B s as in Section 1. We write B~ instead of B s, when S=R' , . f i  for 
some prime ideal p of R. 

With these notations we have the result below. 

Main Lemma.  Let J/g be a family of multiplicative subsets of R. I f  
gl. dim(Bs)<gl, dim(B)=k >=2, for each S in Jg, then B contains a left 
ideal L o such that w. d i m ~ ( L o ) = k - 1 ,  while LoC~R is a prime ideal of 
R which intersects each S in ~#. 

Proof. Let L be a left ideal of B such that w. d i m B ( L ) = k - 1 .  Since 
B is left noetherian we may assume that L is maximal among all left 
ideals with this property, i.e. that w. d i m B ( L l ) < k - I  if L 1 is a left ideal 
strictly containing L. 

Put M--B/L  and Ms=Bs|  for each S in ,,g, while _~/= [ J  M s. 
There is a B-linear map ~b which sends meM into I-[ l |  in ~7/. We 
know that 

w. dimB(Ms)<w, dimBs(Ms)<=gl, d im(Bs)<k- I  for each S. 

It follows that w. dimB(.V/)<k-1 and then the sequence 0~M--- ,  
M ~  Q-~ 0, with Q = ~I/M, cannot be exact because it would follow that 
w. dimB(Q) = k  + 1. 

Hence there is some re:t:0 in M such that ~b(m)=0 which means that 
the left R-ideal Anne(m ) intersects each S in J / .  Because R is noetherian 
we can find ml~M such that AnnR(m 1) is a prime ideal fl of R contain- 
ing AnnR(m ). Let xIeB'- .L be mapped into m I and put 

L I = B x 1 + L  and W={bEB:bx leL} .  
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Then L~/L ~ B /Wand  W c~ R = ~. It remains to show that w. dim~(W) 
= k -  1. The maximal property of L shows that w. dimB(L 0 < k -  1 which 
implies that w. dimn(L1/L)=k and hence w. dimB(B/W)=k which gives 
w. dimn(W ) = k -  1. 

Remark. The idea to use the map q5 is due to Roos who employed 
such a map in [10, Proposition 1]. 

Here follow some useful consequences of the Main Lemma. 

Lemma 3.1. Let R and B be as before. Then 

gl. dim (B) = sup {gl. dim (B,~)}, 

as ~ runs over all maximal ideals of R. 

Lemma 3.2. Let R, L and B be as before and recall that dim a (L)= s. 
I f  gl. dim (B) > s, then B contains a left ideal L such that L c~ R is a non- 
zero prime ideal of R while w. dimB(L)>s. 

Proof. We can apply the Main Lemma where J / c o n s i s t s  of the set 
S = R \ O .  To see this we notice that Bs=DL~[X ~ ...X~], where D is the 
quotient field of R and then a result in [12] shows that gl. dim(Bs)<S. 

4. Computation of gl. dim (F. (K)) 
From now on we will only consider rings of differential operators 

arising from abelian Lie algebras of derivations. The rings obtained in 
the abelian case are called Ore's polynomial rings and here we describe 
how these are constructed. 

Let 6 be a derivation on a ring R, where R need not be commutative, 
then Ore's polynomial ring B = R ~ [ X ]  arises as follows: 

B is a free left R-module, with a basis given by { 1 , X , X  2 . . . .  } and 
it becomes a ring via the multiplication rule r X =  X r + 6 ( r )  for all r in R. 

More generally we let A = {61} ~ be an s-tuple of commuting deriva- 
tions on R and get the ring B = R ~ [ X ] = R ~ ,  .~[X l. . .Xs].  

Here {Xi} ~ commute in B while rXi=Xir+b~(r)  for all r in R. It is 
important  to notice that B also arises as follows: 

Put B~=R~, [)(1] and extend 62 to a derivation on B~ by the rule 
J 2 ( X 0 = 0 .  This gives the ring Bz=B~2[X2]  and finally Bs=B. 

When R and B = R ~ [ X ]  are as above a result in [12] gives the esti- 
mates: 

1. gl. dim (R)< 1. gl. d im(B)< I. gl. d im(R)+ s. 

Theorem4.1. Let K be a field of characteristic' 0 and let F,(K)= 
K[_X1... X,~ [~/~X~ ... ~/c~X,]. Then gl. dim (F, (K))= n. 
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Proof To each 1 <_s<_n we put R s = K [ X  ~...Xs~ and recall that R 
is a regular local noetherian ring of dimension s, The group GL(n, K) 
operates on F,(K) as follows: If {=(k,.i)eGL(n, K) we put 

2~=~'k,,~X~, and ~=~p~,,Y,~, where (&,.t=~ ' i n  GL(n,K). 

Then there exists an automorphism of the K-algebra F,,,(K) which 
sends X i into J~i and Y/into ~. 

Suppose now that gl. dim(F.(K))=n+s, with s >  1. It follows from 
Lemma 3.2 that F.(K) contains a left ideal L whose weak dimension is 
n+s-1 ,  while Lc~ R.=t=0. 

Using the Preparation Theorem in R. we may assume that L c~R. 
contains a Distinguished Weierstrass Po lynomia l f eR ._  ~ [X.]. If neces- 
sary we perform an automorphism of F.(K) by some element in GL(n, K) 
to obtain this. 

The division in R. shows that R.=R. . f+R._  l IX,,] and since f~,(K)= 
M . R . .  where M~ runs over all monomials in {?/?Xi} we conclude 

'that F.(K)=F,,(K)f + B~. where 

B~ = F~_, (K} [X,, a/(:x,]. 

In particular L =/:~,(K) L o where L o = L c~ B,. Since R. is a flat exten- 
sion of R._,[X.] it follows from Lemma 1.1 that F,,(K)is so over B~. It 
follows that L~-{v.~m~L o and then Lemma 2.b.I gives 

w. dim~;,~Kl(L)< w. dimB, (Lo). 

The last inequality implies that gl. d im(B~)>n+s.  
Now we consider the ring M, =.// , ,_, IX,,, i'/?X~ ... ?/?X,,], where 

oil,_, is the quotient field of R,_~. Since ,// ,_, IX, ,  ?/?X,] is the Weyl 
Algebra in one variable over the field Xr ~ of characteristic 0, its global 
dimension is 1. We conclude that 

gl. dim(M0 < n. 

since M l arises from this Weyl Algebra and n - 1  derivations, namely 
~/~Xl... ~/?X._ l" 

Observe that M, also arises as the localisation of B, by the multi- 
plicative set R._~'-.0. An application of the Main Lemma shows that 
if gl. dim(B,)=n+k, with k > l ,  then B, contains a left ideal L~ such 
that Lj c~ R._ 1 :# 0 while w. dimB~ (L 0 = n + k - 1. 

Again we may assume that L 1 c~ R._ 1 contains a Weierstrass poly- 

nomial from R._ 2 IX._  1-1. So if we put 

B2= F._ 2(K) [X._,, X~, t/~X._~, t/OXo], 



74 J.-E. Bj6rk: 

then it follows that L~ is generated by L 1 c~ B 2. The same argument as 
before implies that 

gl. dim(B2)>gl, dim(B 0 and hence gl. d im(Bz)>n.  

Now we consider M 2 = J/ /n--  2 [Xn- 1, Xn, ~/~XI... G~/~Xn] and observe 
that M 2 is Ore's Polynomial Ring over the Weyl Algebra A2(,///,_2) 
arising from n - 2  derivations, namely O/~X x ... t3/?~X,_ 2. 

Using Roos' result on the Weyl Algebra A2(Jc',_z) it follows that 
gl. dim (Mz) < n. 

If we let B 3 = F,_ a (K) [X._2 . . .  ?/OX,] together with the established 
estimate gl. dim(B2)>n, we can prove that gl. dim(B3)>gl, dim(B2)>n 
by the same methods as above. 

Inductively we finally arrive at B, and obtain gl. dim(B,)>n. But 
here B, is the Weyl Algebra in n variables over K, so this contradicts 
the result by Roos. Hence we conclude that gl. dim (F,(K))< n must hold. 

Replacing the Scalar Field K by a Ring 

Theorem 4.2. Let R be a regular, noetherian and commutative ring of 
dimension k. Assume also that R contains the.field of rational numbers. 
For n > 1 we consider the ring 

F,(R) = g ~_X~... X,]l [c~/~Xl... O/c~X,]. 

Then gl. dim(F,(R))= k + n. 

Proof We use induction over dim(R) and observe that Theorem 4.1 
gives the result when dim(R)=0.  Let us put B=F,(R)  and observe that 
B is already free as a left R[[X~.. .X,~-module,  which implies that 
gl. d i m ( B ) > k + n  holds. 

An obvious companion to Lemma 3.1 shows that 

gl. dim(B) =sup {gl. dim(R,, [[X~... X,-B [(~/(~XI... (~/~Xn])}, 

as ~ runs over all maximal ideals of R. Hence we may assume that R 
is local. The induction hypothesis implies that 

gl. dim (R/, IVX]] [O/OX] ~ n + dim (R), 

if p is a prime ideal of the local ring R strictly contained in its maximal 
ideal ~ .  

Since s = gl. dim (B) > n + dim (R) an application of the Main Lemma 
shows that B contains a left ideal L such that 

w. d i m ~ ( L ) = s - l ,  while B ~ c L .  



The Global HomologicaI Dimension of Differential Operators 75 

Notice that B ~  is a two-sided ideal of B and that B / B ~ - F , ( K ) ,  
where K is the field R/z.z. Since R is a Q-algebra it follows that char(K)=0 
and then Theorem 4.1 implies that gl. d im(B/B~)=n .  

Next the regularity of R implies that ~ is generated by k parameters 
an application of the Standard Resolution (see I-2, pp. 150-153]) implies 
that w. dim~(B ~)_<- k -  1. 

At this stage an application of Lemma 2.b.5 shows that w. dimB(L)_-< 
n + k - 1 ,  which gives the desired estimate s < n + k .  

5. The Main Theorem 

In this section R is a commutive, noetherian and regular ring satis- 
fying the additional property below. 

Assumption (A). R contains a subfield K of characteristic 0 such that 
R/zn is an algebraic extension of K for each maximal ideal ~ of R. 

Suppose next that A is a local ring containing a subfield K such 
that A = K +.~, where ~, is its maximal ideal. Let d = {3,.}~ be an s-tuple 
of commuting derivations on the K-algebra A. Ro each i we get a K- 
linear map T~ from the K-space V= ~z/y.v 2 into K as follows 

Ti(.'rc)-bi(x)~.,~, for all x in ~ .  

The K-dimension of the family {T~}~ in the dual space of Vgives an 
integer denoted by rank~(~.~). 

Suppose now that R is a ring satisfying (A) and let A = {6i} ~ be an 
s-tuple of commuting K-derivations on R. Let us then define an integer 
rank~(,~), when ,~ is a maximal ideal of R. 

Firstly we take the local ring R,, and extend each 6~ to a K-deriva- 
tion on this ring. Let A = / ~ ,  be its completition in the ~-adic topology. 
If K~ is the integral closure of K in A, then K~ is a field and 

A ' ~ K I [ X t . . . X , ] ,  where n=dim(R~,). 

Each ~ admits a unique extension to a derivation 3~ on A. Since 
cha r (K)=0  and each 6~(K)=0, it follows that 3~(Kt)=0. 

Now we define rank~(,~) to be rank~(~),  where d~= {31}~. 

Main Theorem. Let R be a commutative, noetherian and regular ring 
satisfying the condition (A) with respect to a subfield K. Let d = {6i} ~ be 
an s-tuple of commuting K-derivations on R and put B=R~[X] .  

Then gl. dim(B)=sup{dim(R,~)+s-rank~ffN)},  as ~ runs over the 
maximal ideals of R. 

The proof requires some technical results dealing with a commuting 
family of K-derivations on the local ring S,(K)=K[[_X1...X,-II whose 
maximal ideal is denoted by ~. Our aim is to establish the result below. 
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Proposition 5.1. Let A = {6i}~ be an s-tuple of commuting K-deriva- 
tions on S,(K) and let t = rankA(,,z ). Then there exists (k~,~)~GL(n, K) such 
that if we put ) , i=~ k,, i ~,., then ~ has generators ~-1 . . . . .  ~, such that if 
S,(K) is identified with K [ ~ . . . ~ , ~ ,  then ),i=O/~i for l <_i<_t while 
7 j ( ~ ) ~  for t < j <  s. 

The p roof  follows from a series of preliminary results. 

Lemma 5.1. Let J be a K-derivation on S~(K) such that 6(~) is not 
contained in ~.  Then eye has generators ~1 . . . . .  ~ ,  such that J (~l )=  1 while 
b(~i ) =O for 2 <_i< n. So if S,(K) is identified with K I[C,i... ~,~, then ~ is 
the usual derivation ~/~-1. 

Proof Since b i s  K-linear we can choose (k,,i)~GL(n, K) such that 
if Yl = ~ k,,i x~, then 6 ( y l ) -  1 ~m and b0' /)~m for 2 < i <  n. 

Then we can find t l . . . t  ~ in 2 such that 6 ( ) ' l+ t l ) - - lE~n  2 and 
J(Yi+ti)E~m 2 for 2<_i<_n. For  example 6 ( ) h ) = l + k l ) '  a + . . .+ k . y .+ u ,  
where kicK and u ~  2. Then we can put t l = - ( k l y ~ / 2 + k e . r l Y 2 + . - .  
+k~y~y,). 

In general we see that if x ~ ' ;  and 6 ( x ) ~ #  for some v=> 1, then 
~(x)=y~'fo+.. .+f~+u, where u ~  ''+~ and f/ is a homogenous  poly- 
nomial  of  degree i in K[y2. . .y ,] .  

If  we put  x' = - (y ' l  "+l/v + 1 + y~ fl/c +.. .  + Yl f')' then we see that 
x' ~ ?  "+l and 6(x + x ' ) e ~  ~+1. 

In this way we can inductively find "")- " t,, e ~  for all v >  1, such that 
6(Vi  _1_ tO')_t - (i) t" �9 - . + t ~ ) ~  for all v > 2  and 2_<i<n,  while 6()q+t~2~l+ ... 
+ t~J I) - 1 e ~ ' ,  

Finally we put ~i=yi+V~tl,!)for each i. Then Nakayama ' s  Lemma 
shows that ~ . . . . .  ~n generate ,r and Krull 's Intersection Theorem shows 
that 6(~1)= 1 while 6 ( ~ ) = 0  for 2<i<n.  

L e m m a  5.2. Let 6 be a derivation on S n ( K ) = K [ x  ~ ...Xn]] which com- 
mutes with ~/~3x~. Then 6(xi)~K[[x2...Xn~=Sn_l(K) for l <_i<_n. 

Proof We can write 6(xi)=So+X~S~+X~S2+..., with sisSn_~(K). 
Then (~/?x~)(b(xi)) = 6((?xi/~x 0 = 0 and hence 0 = s~ + 2 x~ s 2 + 3 x 2 s 3 + . . - ,  
which gives s~ = s  2 . . . . .  0, as required. 

L e m m a  5.3. Let 6 e be a K-derivation on Sn(K)=K[[_X ~...xn~ which 
commutes with 6~ =c~/gx~ and satisfies 62 (x2 ) - l em  and 6 2 ( x 0 ~ .  Then 

has generators ~ ,  "",~n such that when Sn(K) is identified with 
K[[~ ... r then 6~ = ~ / ~ 1  and (~2 =~ / (~2"  

Proof Firstly L e m m a  5.2 shows that 62 induces a derivation on the 
subring Sn_~(K)=K[[x2...Xn-~. Using Lemma5.1  we can find Y2""Yn 
which generate the maximal  ideal ~0  of S,_~(K) while 621Sn_ ~(K)= 
O/OY2, as Sn_~(K) is identified with K[[_y z ... y,~. 
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Now 62(X1)E~ and it follows from L e m m a  5.2 that  62(X1)E~r O. The 
explicit calculat ions in L e m m a  5.1 show that there exists a sequence 
{tv}, with t , ~  for v > 2, such that  62 (x I + t 2 +. . .  + tv)E~,~ ~' for all v > 2. 

At this stage the desired result follows if we put ~1 = xl + ~  tv and 
~.i=Yi for 2<_i<n. 

The next result follows by iterating the previous computa t ions .  

L e m m a  5.4. Let A = {6i}tl he a commuting, family of  K-derivations on 
S , (K)  such that r a n k d ( ~ ) = t .  Then ~ has generators ~1 ... s such that if 
S , (K)  is identified with Kill1 ... ~,~, then 6i=~/~i for i = 1  ... t. 

We finally remark  that  Proposi t ion 5.1 is an easy consequence of 
L e m m a  5.4. Next  follows the first step in the proof  of the Main Theorem.  

Proposition 5.2. Let A = {61} ~ be an s-tuple of commuting K-derivations 
on S , (K)  with t=rank4(~,~). ([ B=S , (K)4[X1 . . .X~] ,  then gl. d i m ( B ) <  
n + s - t .  

Proof. We may  assume that  the conclusion of Proposi t ion 5.1 is 
a l ready satisfied with y~ = 6~ and ~ = x~. 

An appl icat ion of Theorem 4.2 to the ring R=K[[x ,+I . . .  x,]] proves 
that  if B 0 = S, (K)~, .~, [XI ... X,] ,  then gl. dim (B o) = n. 

Since B=Bo .  ~ ...... a,[X,+I. . .X~],  we conclude that  gl. d i m ( B ) <  
n + s -  t, as required. 

Suppose  next that  R is a regular local noetherian ring satisfying 
condit ion (A) and let m be its maximal  ideal. Its ,~-adic complet i t ion 
/~ is faithfully flat over  R and it follows from L e m m a  1.1 that  /3= 
114, I X ]  is so over  B = R 4 IX] ,  when A = {6~}~ is an s-tuple of commut ing  
K-der iva t ions  on R. 

Using L e m m a  2.b.4 and Proposi t ion 5.2 it follows that  gl. d im(B)<  
dim (R) + s - t, where t = rank 4 (~). 

At this stage it follows from L e m m a  3.1 that  the est imate gl. d im(B)<  
sup {dim (R,,) + s - rank  4 (~,~)} holds in the Main Theorem.  

It remains  only to prove that  equality holds. Using L e m m a  2.b.2 it 
is sufficient to prove  equality when R is local. 

So let R be local with its maximal  ideal ~ and we let A = {6~}~ be 
an s-tuple of  commut ing  K-der ivat ions  on R with t = r a n k 4 ( ~ ) .  Then 
we can choose (k,,i)eGL(n, K) such that  if 7 i=~k , , i 6~ ,  then ~ ( ~ ) ~  
for t < j < s .  

Let us put  B~ = R~ ...... ~., IX,+ 1... X~]. Then L e m m a  2.c.1 shows that  
the left Krull  d imension of BI is at least n + s - t ,  where n = d i m ( R ) .  
Since B is Ore 's  Polynomial  Ring BI,~,...~,,[XI...Xt] it follows that  the 
left Krul l  d imension of B is at least n + s - t .  

The  p roo f  is now finished by another  recent result due to Roos.  The 
result below is a special case of more  general results dealing with Krull  
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dimensions and global dimensions of filtered (non-commutative) Goren- 
stein rings (see [1l]). 

Theorem of Roos. Let R be a filtered noetherian ring whose associated 
graded ring is a commutative regular noetherian ring. Then the left (and 
the right) Krull dimension of R is at most gl. dim(R). 

We finish by stating two consequences of the preceeding material. 

Corollary 5.1. For each ring arising in the Main Theorem the left and 
the right Krull dimension equals the global dimension. 

Corollary 5.2. Let R and B be as in the Main Theorem. I f  B is a simple 
ring, i. e. !f B has no proper two-sided ideals, then gl. dim(B) = sup(dim(R), s). 

Acknowledgement. The ingenious proofs by J.-E. Roos in [10] have been the starting 
point for the present paper. His methods and some of his recent results will be used at 
several places. 
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