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Semi-Regularity and de Rham Cohomology

Spencer Bloch (Princeton)

§0. Introduction

Let X be a smooth. projective variety over C. (We will work over C
to fix ideas. By the Lefschetz principle, all our results are valid over
any ground field of characteristic 0.) Let Z<X be a subscheme of
codimension p which is a local complete intersection. After some pre-
liminaries on de Rham cohomology and deformation theory, we define
the semi-regularity map

n: H'Y(Z, Ny x)— HP (X, Q871),

where N,y is the normal bundle of Z in X. Z is said to be semi-regular
if 7 is injective.
Our principal results are:

Theorem. Suppose 7 is semi-regular in X. Then the Hilbert scheme
Hilb (X /C) is smooth at the point corresponding to Z.

Theorem. Let f: X — S be a smooth, projective morphism, with S
smooth, connected, and of finite type over C. Let o0eS and let
zel(S,R?*7f, (%,5) be a horizontal section of the de Rham cohomology.
Suppose that zy=z|X,e H5%(X,o|C) is algebraic, representing a local
complete intersection Z, = X, which is semi-regular in X,. Then z,=z|X;
is algebraic for all seS.

This theorem is related to a conjecture of Grothendieck ([8], foot-
note 13). More precisely, it reduces Grothendieck’s conjecture to the
problem of finding semi-regular representatives for a given algebraic
cycle class.

The central point in the argument is the following compatibility.
Consider a diagram with cartesian square

Zy— X, —— X

fl\‘ lsmoolh

S,&=— S,

4%
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where S is affine, S, is defined by a square-zero ideal I, and Z, is a
local complete intersection in X,. The obstruction to lifting Z, to
Z—X is given by ae H'(Zy, Ny, x,) ® I; we can view m(a) as a class
in HP* (X, I1Q5%)).

On the other hand, the cohomology class [Z,]e F? H35(X,o/So) lifts,
at least under suitable hypotheses, to a horizontal class Ve F?~* HE(X/S)
(here F* is the Hodge filtration). Then (again under suitable hypotheses),
the class Ve HP*(X, ©%75') induced by V is given by n(«). In particular,
Ve FP HEE(X/S) if and only if 7 (a)=0.

§ 1. Definition of Semi-Regularity Map: Examples

Let X be smooth and projective of dimension n over C, and let Zc X
be a local complete intersection of codimension p. If I = Oy is the defining
ideal, the normal bundle is given by

NZ/X = ”moz (1/12, @z)

p
and is locally free. Write wy=Q%,c, Wz x= ANzx, 0z=wzx @ wy. We
remark that

p-1
Q=P ® wy, A Nzx=Nfix ® wzx.

(Let me ignore the problem of signs in defining these isomorphisms. For
our purposes, it is sufficient that maps be defined up to sign.)

The natural map
e Nix—» %0,
gives rise to an element

P

~1 -1
A se Homa, (A N* Q41 ® 07) =T (4" )* ® wx ® wzx ® N¥)
= Hoomgy (@, 0, @N).

The induced map on cohomology

p—1
Ae: H P YX,Qy P ) > H" P YZ, 0, @ N*)

dualizes (Grothendieck duality, cf. Kleiman [14] or Hartshorne [13])
to give the semi-regularity map

n: H'(Z, Ny x)— HP (X, Q%7Y).

(1.1) Proposition. Suppose Z is a divisor on X. Then the semi-regularity
map n: H'(Z, N)— H*(X, Oy) arises as the boundary map in the cohomol-
ogy sequence associated to
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The notion of semi-regularity for divisors (with the definition of n
given in (1.1)) is due to Kodaira-Spencer [17]. They prove:

(1.2) Theorem. (i) Let Z< X be a divisor which is semi-regular in X.
Then the corresponding point ZeHilb(X/C) is smooth.

(ii) Suppose Z is smooth of codimension 21 and H'(Z, Ngx)=(0).
Then ZeHilb(X/C) is smooth.

I have two examples of semi-regularity in codimension >1 with
HY(Z, Ng;x) #(0).

(1.3) Example. Let Z be a non-singular non-hyperelliptic curve of
genus 3, and let X be the Jacobian. Then Z is semi-regular in X.

Proof. It suffices to show the map
@: T(Z,Q3® 07)— I'w;® N*)
dual to 7 is surjective. The exact sequence
0> AN* > Q2 R0,>N*Q@w,—0
gives rise to a sequence of cohomology
0T (A’ N*)->T(Q3® 0y 2> T'w,; ® N*)
— H'(A* N*)— H'(Q3 ® O7) > H'(0,® N*)— 0,

and we must show

(1.3.1) W (Q% ® O)=h(A? N*)+ h'(w; @ N*).
Note 351
(13.2) R (R ® 0,)= B=1 3 9

and by Riemann Roch
(1.3.3) (A2 N)=h'(0;)=h’(0$?)=3-3-3=6.

I claim the map
r: TQy®@ wg)— INwf?)

induced from the exact sequence
(1.34) 0->N*Q@u,—» A ®w;—»wf?—0
is surjective. To see this, factor r

I(Qy ® wz)—">T'(wF?)

[

I(2%) ® MNwz)=T'(w,) ® [Nwg).
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By a classical theorem of Noether, u is surjective in the non-hyper-
elliptic case, proving the claim

Now the cohomology sequence of (1.3.4) gives

H(N* @ wz)=h'(Qk ® wg) —h'(w§?)

135
( ) =h'(Qy ® wy)=3.

Combining (1.3.2), (1.3.3), and (1.3.5) proves (1.3.1).

(1.4) Example. Let W be smooth and projective of dimension 2m—+ 1
over C. Let Zc W be a smooth subvariety of dimension m. One can
show that there exist smooth hypersurface sections X = W of arbitrarily
large degree with Z < X. Moreover, for X of sufficiently large degree,
Z is semi-regular in X ; although it may well happen that H'(Z, Ng,x)=(0)
for any such X.

§ 2. Deformation Theory

A standard reference for this section is [10], 221.
Let A be an artinian C-algebra, [ = 4 a square —zero ideal, 4,=A/I.
Write S=_Spec(4), S, ==Spec(A4,), and consider a diagram

Zy

1

Xp—X

]

A

with cartesian square. Assume f is smooth and of finite type, and Z, is
a local complete intersection of codimension p in X, .

Let J, < Oy, (resp. Jy < Oy) be the ideal of Z, in X, (resp. Z, in X).
We have exact (locally split) sequences

Q1) 0— I®WO, —— JJ2 —— JJJE —0
d®1 u

22 0—> QIS/C ® Oz, — ch & Oy ——— Qi(mso ® Oz,—0
4

23) 0— QL ROy, —— @Oy, — Q% ¢ —0.
/ 0 i 0 0/30
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Corresponding to these sequences, there are elements
terxtéZO(JU/Jg, I1®0,,)

(2.4)
BeExty, (%, s, b, ® U,)

and we have
(2.5) (1®d),a=u*(® ).

(2.6) Proposition. The obstruction to lifting Z,, to a local complete inter-
section Z< X is given by a.

Proof. We must show that Z, lifts if and only if (2.1) splits. Suppose
first that Z< X lifts Z,, and let J< @y be the ideal of Z. Then J<J;
and the induced map

JIT NI > Jy)JE

is an isomorphism. Indeed, this is straightforward because Z is a local
complete intersection in X.

Conversely, let K: J,/J2 — J,/J;* be a splitting of (2.1) and let J=
K(Jo/J3)+Ji? < Jg. 1 claim Oy, is flat over Og. Indeed, since Z, is flat
over Sy, it suffices (E.G.A.0.6.6.9.1) to show

Oy @1 —"-1-(0x)
or in other words
[10ynJ=1J.

But a section v of 10y J vanishes in J,/J2 and so necessarily lies in
Ji? N1 0x. Since I ® 05, J5/J3* we get

JEAI0y=1J)=1J.

Finally, ¢, flat over ¢g implies that Z< X is a local complete inter-
section [20].

(2.7) Remark. The Kodaira-Spencer class
Kys,c€ Ext!(Q% 5, Q5,c ® O)
is the class of the extension
0-— Qé;c ®Ox— Q)loc - Qg(/s —0.
With reference to (2.4), we have =Ky 5,c ® Us,.

§3. de Rham Cohomology

In this section are listed some properties of de Rham cohomology
to be used in the sequel.

(3.1) Notation. Given a morphism of schemes f: X — S, we write
HSr(X/S)=RIf,(Q%,s), where Q% is the de Rham complex and R?
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denotes the g-th hyperderived functor. When S is affine, we set Hip=
T8y

(3.2) Theorem (Deligne, [2]). Let S be a scheme over Spec(Q) and let
f: X — S be a proper, smooth morphism. Then:

(i) The sheaves R f, (§%,s) are locally free of finite type and commute
with base change.

(ii) The spectral sequence

ED =R f,(Q%5) = AgR *(X/S)
degenerates at E,.

(i) The sheaves H#y are locally free of finite type and commute with
base change.

Let S be a T-scheme, M = #7z(X/S). There is a canonical integrable
connection, the Gauss-Manin connection,

(3.3) Vv: M—»M((?Q};,T.
The spectral sequence (3.2)(ii) induces a filtration
M=MOsMD5...5MD5(0)
by locally free, locally direct summands on which the connection acts by
(3.4) VIMP)cMP~ V@04, (Griffith’s Transversality).
Recall (2.7) there is a canonical Kodaira-Spencer class

(3.5) Ky sr€Exty, (s, 257 ® Ox).

(3.6) Proposition. The Gauss-Manin connection is related to the Kodaira-
Spencer class (3.5) by the commutative diagram

M(p)/M(pH) v >M”’““/M“”®Q}WT

l l

RI7P £, (Q%5) —2 X% RIP* £, (575 © Qb1

Proof. See Griffiths [5].
We note a general fact about modules with an integrable connection:

(3.7) Proposition. Let k be a field of characteristic 0, M a finite
k[[t,, ..., t,])-module with integrable connection V. Let MV =Ker(V).
Then M_Mv@k[[tl,.. , 611

Proof. See Katz [15].
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There is the following analogous result for the de Rham cohomology.

(3.8) Proposition. Let A be a complete, local, augmented C-algebra
(e.g. A artinian), S =Spec(4), f: X — S a smooth, proper morphism. Let
Xo< X be the closed fiber. Then Hg(X/S)=H*(X,,C)® A4.

C

Proof. Using [12], (I11.4.1.7) (the fundamental theorem on proper
morphisms), one easily reduces to the case A artinian (this case will be
the only one used in the sequel).

Let X" be the associated analytic space, Q%ans the complex of
analytic differentials. The map

Axan 4 Q}a ns
is a quasi-isomorphism (Deligne [2]), so

H*(X,, O @ A= H*(X™", Ayan)=H*(X*", Qxans) = HEg(X/S)
(GAGA)
proving (3.8).

(3.9) Remark. In technical terms, (3.8) gives a stratification on H}g(X/S).
Cohomology classes of the form ¢®1, ce H¥*(X,,C) are said to be
horizontal.

§4. Deformation of de Rham Cohomology

Consider a Cartesian diagram

Xo—— X

| o

Sg——S

f

with f smooth and projective, S=Spec(4) for an artinian C-algebra A4,
and S, defined by an ideal I of square zero. Let F? H}z(X/S) denote
the p-th level of the Hodge filtration on Hjg, and write

4.1 V i HY(Xo, %50~ H ' (X0, Q”J/éo)g@ ¢
S

for the map induced by f=Kjys5,c ® s, (2.7).

(42) Proposition. Let vye F? Hyx(X/So) be a horizontal section, and let
Doe H"P(X,, 2%,s,) denote the induced class. Let ve H g (X/S) be the
unique horizontal class lifting vy, and assume the natural map

d: I->Q.IS/C®@SQ
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is injective. Then ve FP HY(X/S) if and only if

V@©=0 in HI"P*(X,, Q=1 )® QL.

Proof. Recall (3.2) that H{,(X/S) is a free A-module, and the
FP HLR(X/S) are direct summands. Let w,,..., @y, ..., Oy, ..., wp be a
basis for Hjz(X/S) such that w, ..., w,, is a basis for F? and w,, ..., @y
is a basis for FP~!. Write v=) a; w; with g;el, i>M. Let V denote the
Gauss-Manin connection on H{z(X/S) and note (3.4)

M N
V(@Awi) =@ ;.
1 1
By assumption, v is horizontal so
0= \~7(v)=2w,~ Qdu;+ Y a;V (w,).

It follows that
Y 0,®daeFP '@ QY+ 1(Hir ® Q).

i>N
Hence, d a;e1QY, i> N. Because d: [ — Q' ® A/I is injective, ¢;=0, i> N.
Moreover, ve F? if and only if a; =0, i > M, and this is equivalent to having
Y 0;®da;=0 (mod F?® Q'+ TH%, ® Q).
i>M

Since v is horizontal,

v (Y a;w)=— 3 o;®da; (mod I).

isM i>M

By (3.6), the left-hand side taken mod F? ® Q4+ is equal to V (v,).
This proves (4.2).

§5. Local Cohomology. The Cycle Class

Let X be a topological space, Zc X a subspace, and F an abelian
sheaf on X. Then there are defined [11] local cohomology groups Hy (X, F)
which fit into an exact sequence

(51) —HL(X, F)> H(X,F)—> H(X~Z, F)—> H;* (X, F) —.

When X is a scheme, Z< X a closed subscheme, and F a coherent
sheaf of @y-modules, there are canonical isomorphisms

(5.2) Hy(X, F)=lim Exth, (Ox/I*, F)
k

where I = (0 is the ideal of Z.
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The above definitions can be localized to give cohomology sheaves
H# (X, F). In particular, when X and Z are as in (5.2) there are isomor-
phisms

(53) X, F)xlim &2, (Ox/1% F),
k

(5.4 A} X, F) xR FIX-Z), i>1andj: X—Z—X.
The functors #, and H; are related by a spectral sequence
(5.5) EZ1=HP?(X, #F (X, F))= H5 %X, F).

Finally, these notions can be extended to define hypercohomology func-
tors H (X, F*) and H} (X, F*) when F* is a complex of sheaves.

Let /2 X — S be a smooth, projective morphism of schemes, where
S=_Spec(A) is the spectrum of an artinian, local C-algebra. Let Zc X
be a local complete intersection of codimension p. We write F' Q5,5 for

the complex 0 j<i
Qs =i

(F QX/S)j={

(5.6) Proposition. There exists a canonical cycle class
(ZyeHEP (X, F? O3)

mapping to the de Rham class under the composition

HZP(X, FP Q") —H??(X, F?Q*)— HEE(X/S).

Proof. We first describe a class {Z} e HZ(X, Q% ¢). Since Z is a local
complete intersection and Q7 is locally free, #7 (X, QF)=(0), g=*p, so
the spectral sequence (5.5) degenerates and

Hy(X, Q) =T (X, #7 (X, Q7).

It therefore suffices to describe {Z} locally.

Let {U;} be an open affine cover of X such that Zn U [{V=-.. =P =0
for feI'(U;, Oy). The differential form

dfO A AdfP
JZC

gives rise to a cocycle in C?~!(V;, QP), where V; is the open affine cover
of U;—Z by sets VV=U,—{f;=0}. Hence we get a class

(5.7)

{ZY|Uel (U, RE~H(QF|U;— 2)) )F(Ui,%ZP(X,Q”)).

o~
(5.4
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These sections can be shown to patch to give {Z'}e ' (X, #F)= H2(X, QP)
(cf. [10] Exposé 149 and [13], p.176). We note also that the image
of {Z} in H?(X, Q) is the Hodge class [10].
The exact sequence of complexes
0 FPHQy s — FPQ%s— %s[—p]1 -0

gives

HEP(X, FP*'0)—~ HEP(X, F*Q)— HY(X, 0°) —> HE" (X, F** Q).
(58) I w

() {zy

One sees that the left hand term of (5.8) vanishes by the degeneracy
of (5.5). For the same reason

HZ7 (X, P! Q)= I(X, #7 (X, 27+Y)
and 0{Z} is represented by the cocycles

afo e
59  d (—f.ﬂ“ nen

The left hand side is clearly 0, so ¢{Z} =0 and {Z}' lifts to a unique
{Z}eHZ?(X, FPQ).

Let [Z] denote the image of {Z} in HZE(X/S). With notation as
in (3.8), we have

[Z] —0

)EF(U,., R:HQP U —-Z)).

(5.10) HiE(X/S)—T— HB(X —Z/S)
[Zo]ur. ® #EHZP(XO> O (? A —hL’HZP(Xo_Zo’ O®A4.

The kernel of ,,, is isomorphic to 4 with generator [Z,]yz. ® 1, s0
we are reduced to showing u=1 in (5.10).

Since X is projective over S, we can intersect Z with a linear space
section of complementary dimension and reduce to the case dimZ=0.
By a trace argument we can reduce to the case Z is an S-point of X,
then that Z is the intersection of n=dim X hyperplanes in general
position, and then that Z is itself a hyperplane. Finally, this case can
be checked by the exponential sequence

0-Zy— 0x— 0Ff—0.

Details are omitted.
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§6. Semi-Regularity

In this paragraph, the semi-regularity map n is reinterpreted via
local cohomology, and the relation between n and deformation of
de Rham cohomology is established.

Let notation be as in §5. Recall we defined a section of the local
cohomology sheaf

df.-m df,'(”)
1o AR £ el (

Note that this section is killed by multiplication by any function g
vanishing on Z. In fact, g=) a; ) so it suffices to check for g=f1.
j

But
df f(p)
(1) (p)
fi "7

is a Cech coboundary, so the assertion follows.

Let J <=0y be the ideal of Z, and define Ny =#om,,(J/J?, Oy). 1t
follows from the above that there is a morphism of sheaves

(6.1) H{ZY': Nyyx— AP (X, Q7.

U, #F (X, Q7).

A "Adfi(j)A eCr- 1( , Q7

P
Indeed, dfi" A -+ AdfP defines a section g, I'(U;, A Nj;x), and interior
multiplication «; _| o; makes sense for a;el’(U;, N). We can lift «; o,
to a section ;eI (U, 2%5') which is determined upto adding a section
g -7 with g vanishing along Z. Thus

Bi
T e

gives a well-determined class in J#7 (X, QF~1).

=q, 1{Z}

(6.2) Proposition. The diagram
HY(Z, Nyjx) —# HEY (X, Q%))
HPHY(X, Qr )

is commutative, where m is the semi-regularity map (§1). (n was defined
for X smooth over C, but the definition extends without difficulty.)

Proof. Recall the fundamental local isomorphism ([13], p. 176) gives

(6.3) 6zt § (O, F)=F @@ Wz/x
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p
where F is an Oy-module and w,x= A Nzx. This gives mappings on
the sheaf level

1

P p P
NZ/X; /\ NZ"k/X ® /\ NZ/X—J?)—) Q&)/_SI ® /\ NZ/X

\ (b)

Ell (05, Q07

(6.4)

(c)

HE(X, QP
where
(a) is induced from I/I*— Q% ¢ ® Uy;
(b) is (6.3) with F=Q&!:
(c) is (5.3).
The semi-regularity map = is dual to
p—1
ANe H PN X, Qd ) - H' " Y Z, 0, ® Nix).
Tracing through the duality construction [13], one gets © via

H' (Ngjy) —"— HP* (X, QP

|

H' (o7 (X, Q) > HE™ (X, QY).

H'(p)

The proposition now follows from
Claim. The maps p (6.4) and - _1 {Z}' (6.1) coincide.

Proof of Claim. Most of this is straightforward checking and 1s left
to the reader. We note only that the map

g/rjgx ((923 Qr- 1) — %p(x’ Qr- l)
can be computed locally as follows: let

E=(9ulf,~”’ DD 0U,f;‘p)

and consider the Koszul resolution

p p—1
O-ANE> ANE—--—»E—> 0y — 0,y —0.
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A section ¢ of 8x/F (05, Q") over U, is represented by a homo-
p
morphism @: A E— QP~! Then (c) (¢) is represented by the cocycle
GUD A AL

jl(_l) S
in C*~Y(V,, Q"~"). This completes the proof of (6.2).
In what follows, we will consider a diagram

Zy——— Z,
n

d

(6.5) P X, X

Spec(C)—— Spec(A/I) < Spec(A4)

with A an artinian local C-algebra, I =4 an ideal such that I-m,=(0),
fa smooth map, and Z, a local complete intersection of codimension p.
The obstruction to lifting Z, to a local complete intersection Zc< X
is given (2.6) by an

{6.6) aeExté,zl(Jl/Jf. 10,)=H"(Zy, Nz x,) (? I
where J, < Oy, is the ideal of Z,.

Finally, we write
(6.7) f=Kxs5c® @steEXtcloxl(Q;,,sl’ Oy, ® Q).

For the restriction of the Kodaira-Spencer class. (2.7), and let
d: I — Q¢ ® s, be the natural map.

(6.8) Proposition. With the above notations,
BulZ]=01®d) (r® 1)(a).
[Z,JeH (X, Q%,s) = HP (X, Qfs, © Q40

1®d
6.9) HP* (Xo, 2%, @ 1

n®1

0eH' (Zos Nooxo\® 1
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Proof. Note first that
HP (X, Q%) Qé) I=H" ' (X,,Q%4,®1)

by base change, so the map 1 ®d in (6.9) makes sense. Replacing
cohomology in (6.9) by local cohomology and using (6.2), it suffices

to show
Bu{ZY =(1@d)(« 1{Z}).
This equality follows easily from (2.5).

(6.10)  Corollary. With notations as above, assume that d: I — Qf,c ® Os,
is injective, and Z, is semi-regular in X,. Then Z, lifts to Z< X if and
only if [Z,]s.r.€ HER(X,/S)) lifts to a horizontal class ze FP HAE(X/S).

Proof.
Z lifts<e> =0 (1@ (r® 1)(oc)=0©ﬁu[Zl]=0(f;)[Z,],,_.R_

lifts to a horizontal section of F? H35(X/S).

§7. Applications

(7.1) Theorem. Let X —S be a smooth, projective morphism with
S=Spec(C[{t,,...,t,]]). Let Xy X be the closed fiber, and let Zy= X,
be a local complete intersection of codimension p. Suppose that the
topological cycle class [Z )€ H?? lifts to a horizontal class ze FP H3E(X/S),
and that Z, is semi-regular in X,. Then Z, lifts to a subscheme Z=X.

Proof. Let Sy=Spec(C[[t;,...,1,]]/(t*!) and note the maps
d: (t)N/(t)N+1 - Qé)v/c ® @SN—l

are injective. Applying (6.10), we may lift step by step to find Zyc Xy=
X X Sy flat over Sy. Let H be the Hilbert scheme of X/S. The correspond-
ing diagram H
e
(7.2) Zy " 2.,/ j
-~ Ve
.7 e

Syo--28; 25,8
gives rise to an S-point Z: S — H lifting Z,. The resulting scheme Z< X
is the desired one.

(7.3) Theorem. Let X be smooth and projective over C. Let Z<X be
a local complete intersection which is semi-regular in X. Then the
corresponding point ZeHilb(X/C) is smooth.

Proof. Let V bci the cotangent space to H=Hilb(X/C) at Z, and
write S=Spec(Sym¢(V)), where Sym  denotes the completed symmetric
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algebra. Applying (6.10) to X X S, we see that given a diagram
HxS=Hilb(X x §/S)

Ve
7
Ve
e
7
e
e
Ve

Sn+128y 25,8,

Z

there exists a dotted arrow rendering the whole commutative. This
implies that H is smooth at Z, as claimed.

(74) Theorem. Let X —— S —%- Spec(C) be morphisms, with f smooth
and projective and g smooth, connected, and of finite type. Let
zel'(S,R?7f, (Q%5)) be a horizontal section and let o€S. Suppose the
restricted class zo€ H3R(Xo/C) is algebraic, representing a local complete
intersection, Zy< X, which is semi-regular in X,. Then for all seS,
z,e H3R(X,/C) is algebraic.

Proof. Since zoe F? H3%(X,/C), it follows from the results of Deligne
[3] that zel'(S, FPR2?f,(Q*). Let S=spec({s o), X=X xS, and let
ZeFP H32(X/S) be the pullback of z. Clearly, z, Z,, X satisfy the
hypotheses of (7.1), so letting H=Hilb(X/S), we have a diagram

H

Z Zo

S > Spec(C)cS.

By a theorem of Artin [1], the existence of Z implies that Z, extends
toan analytic map Z: U — H, where U < § is some complex neighborhood
of 0. Hence Z, lifts to an analytic family over U, so z, is algebraic for
seU. A simple argument using the Hilbert scheme shows

T={seS|z, is algebraic}

is contained in a countable union of closed subvarieties of S. Since
Uc T, it follows that T=S, proving (7.4).

(1.5) Remark. Let Iel'(S,R*f,(Q%) be the polarization class. The
hypothesis on z, in (7.4) can be weakened to read: there exist integers
a,b, a=0, such that az,+b 4 is the class of a subscheme Z, < X, which
is semi-regular and a local complete intersection. This gives a way of
making the class z, “effective”. The problem of constructing semi-
regular representatives for algebraic cycle classes of codimension >1
remains, however, wide open.

5 Inventiones math., Vol. 17
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