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Semi-Regularity and de Rham Cohomology 

Spencer Bloch (Princeton) 

w Introduction 
Let X be a smooth, projective variety over C. (We will work over C 

to fix ideas. By the Lefschetz principle, all our results are valid over 
any ground field of characteristic 0.) Let Z c X  be a subscheme of 
codimension p which is a local complete intersection. After some pre- 
liminaries on de Rham cohomology and deformation theory, we define 
the semi-regularity map 

n: HI(Z,  Nz~x)--* HP+I(X,(2~-I), 

where Nz, x is the normal bundle of Z in X. Z is said to be semi-regular 
if n is injective. 

Our principal results are: 

Theorem. Suppose Z is semi-regular in X. Then the Hitbert .scheme 
Hilb(X/C) is smooth at the point corresponding to Z. 

Theorem. Let f :  X - + S  be a smooth, projective morphism, with S 
smooth, connected, and of finite type over C. Let o~S and let 
zffF(S, RZPf,(~;~s)) be a horizontal section of the de Rham cohomology. 
Suppose that zo=z[Xo~H2u~(Xo[C) is algebraic, representing a local 
complete intersection Z o ~ Xo which is semi-regular in X o. Then z S = z IX s 
is algebraic for all s~S. 

This theorem is related to a conjecture of Grothendieck ([8], foot- 
note 13). More precisely, it reduces Grothendieck's conjecture to the 
problem of finding semi-regular representatives for a given algebraic 
cycle class. 

The central point in the argument is the following compatibility. 
Consider a diagram with cartesian square 

Zo ~ XoC-----~ X 

f l ~  l 1 th .... 

So ~- -~ S, 
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where S is affine, So is defined by a square-zero ideal I, and Z o is a 
local complete intersection in Xo. The obstruction to lifting Z o to 
Zc-~X is given by ~H~(Zo,Nzo/Xo)@I; we can view rc(~) as a class 
in H p+ l (X, I fl~sl). 

On the other hand, the cohomology class [ Z o ] 6 F  p H~(Xo/So) lifts, 
at least under suitable hypotheses, to a horizontal class V~ F p- 1 H2~(X/S) 
(here F ~ is the Hodge filtration). Then (again under suitable hypotheses), 
the class V~HP+~(X, f2]~s ~) induced by V is given by rt(~). In particular, 
V~ F p H ~  (X/S) if and only if rt (ct) = 0. 

w 1. Definition of Semi-Regularity Map: Examples 
Let X be smooth and projective of dimension n over C, and let Z c X 

be a local complete intersection of codimension p. If I c (9 x is the defining 
ideal, the normal bundle is given by 

Nz/x = ~ ' z ~ z  (I/I 2, (Pz) 

P 

and is locally free. Write co x = f~x/c, coz/x = A Nz/x, coz = r | cox. We 
remark that 

p--1 
OP-1 ~ ( ~ x - P + l ) *  | cox, A ~ * Nz/x = N~/x | O~z/x. 

(Let me ignore the problem of signs in defining these isomorphisms. For  
our purposes, it is sufficient that maps be defined up to sign.) 

The natural map 

e: N~*/x--~ f21x | Cz 
gives rise to an element 

p--1 p--1 
/~ ~ ~ ~ o ~ z ( / x  N*, ay,-' | oz)= r((~x- p+') * @ cox | coz/x | N*) 

= 9r (fPx -v+l,  o9 z |  

The induced map on cohomology 

p--i 
A e: Hn-P-I(X, Onx -p+I) --~ H"-P-I(Z, coz | N*) 

dualizes (Grothendieck duality, cf. Kleiman [14] or Hartshorne [13]) 
to give the semi-regularity map 

re: HI(Z, Nz/x)---~ HP+ I(X, (2~-1). 

(1.1) Proposition. Suppose Z is a divisor on X. Then the semi-regularity 
map it: H 1 ( Z, N) ~ H 2 ( X, Cgx) arises as the boundary map in the cohomol- 
ogy sequence associated to 

O--, (gx---~ Ox(Z)---~ N---~O. 
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The notion of semi-regularity for divisors (with the definition of rr 
given in (1.1)) is due to Kodaira-Spencer [17-]. They prove: 

(1.2) Theorem. (i) Let Z c X  be a divisor which is semi-regular in X. 
Then the corresponding point Z~Hilb(X/C) is smooth. 

(ii) Suppose Z is smooth of codimension >I and HI(Z, Nz/x)=(O). 
Then Z ~ Hilb (X/C) is smooth. 

I have two examples of semi-regularity in codimension > 1 with 
H l (Z, Nz/x) :~ (0). 

(1.3) Example. Let Z be a non-singular non-hyperelliptic curve of 
genus 3, and let X be the Jacobian. Then Z is semi-regular in X. 

Proof. It suffices to show the map 

cp: F(Z, f2~r | (fiz)--~ F(mz | N*) 

dual to rt is surjective. The exact sequence 

0-~ A 2 N*--* ~2~ | (~z--~ N* | 

gives rise to a sequence of cohomology 

0 ---, F( A 2 N*) --~ F(f2~ | Cz) ~ , F(e)z | N*) 

--~ HI( A 2 N*) ~ H l (f22x | (gz) --~ H 1 (Oz | N*)--~ 0, 

and we must show 

(1.3.1) h' (C2~ | (fiz) = hi( A2 N*) + hl(oz | N*). 

Note 
3 ( 3 - I ) - 3 = 9  (1.3.2) h I (f2~ | (9z)= 2 

and by Riemann Roch 

(1.3.3) h~(AeN)=hl(cOz~)=h~176 

I claim the map 
r" F(Q~ @ COz)--~ F(~oz ~2) 

induced from the exact sequence 

(1.3.4) 0--~ N* | Oz--~ f2~ | egz --* ~Oz~ 2 --* 0 

is surjective. To see this, factor r 

r ( o ~  | ~z) ~ ' r ( ~  ~) 

r(f~x) | r(oz)~- r(oz) | r(o)z). 



54 S. Bloch:  

By a classical theorem of Noether, p is surjective in 
elliptic case, proving the claim 

Now the cohomology sequence of (1.3.4) gives 

the non-hyper- 

(1.3.5) 
h~(N * | COz) = h' (~2~ | COz) - h' (e)z ~ 2) 

= h I (~J~ @ COz) = 3. 

Combining (1.3.2), (1.3.3), and (1.3.5) proves (1.3.1). 

(1.4) Example. Let W be smooth and projective of dimension 2 m +  1 
over C. Let Z =  W be a smooth subvariety of dimension m. One can 
show that there exist smooth hypersurface sections X = W of arbitrarily 
large degree with Z c X .  Moreover, for X of sufficiently large degree, 
Z is semi-regular in X; although it may well happen that H 1 (Z, Nz/x) + (0) 
for any such X. 

w 2. Deformation Theory 

A standard reference for this section is [10], 221. 
Let A be an artinian C-algebra, I c A  a squa re - ze ro  ideal, Ao=A/I .  

Write S =  Spec(A), So = Spec(Ao), and consider a diagram 

Z 0 

Xo~--~ X 

So~--~ S 

with cartesian square. Assume f is smooth and of finite type, and Z o is 
a local complete intersection of codimension p in Xo. 

Let Jo c (~Xo (resp. Jo c (gx) be the ideal of Z o in X o (resp. Z o in X). 
We have exact (locally split) sequences 

(2.1) O- , I| 

l d |  

(2.2) 0 , (2~/c | ~/Zo-- 

1 
(2.3) 0 - - - ,  ~ , e  | (gXo 

, y /Y2 yo/y  

' P l x , c  | (~Zo - ... . . .  ~ Q I  Xo~So Q (gZo 

,' Xo,,So 

,0  

~0 

,0 .  
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Corresponding to these sequences, there are elements 

~ Extlezo(Jo/J~, I | (gZo) 
(2.4) 

l ]~ EXt~xo(f21Xo.So, (2~,c | (~Xo) 
and we have 

(2.5) (1 |  ~ = u* ([~ @ CnZo). 

(2.6) Proposition. The obstruction to liJHng Z o to a local complete inter- 
section Z c X is giren by ~. 

Proof  We must show that Z u lifts if and only if (2.1) splits. Suppose 
first that Z c X  lifts Zo, and let J ~ ( 9  x be the ideal of Z. Then J=J~  
and the induced map 

J/J  c5 j~z _~, jo/ j2  

is an isomorphism. Indeed, this is straightforward because Z is a local 
complete intersection in X. 

Conversely, let K: Jo/J 2 ~Jo/J 'o z be a splitting of (2.1) and let J =  
K(Jo/J2o)+J~)ZcJ~. I claim (gxj ~ is flat over (_9 s. Indeed, since Z o is flat 
over So, it suffices (E.G.A.0.6.6.9.1) to show 

(gx/J | I ~ I .  ((gx/j) 
or in other  words 

I ( g x n d =  Id .  

But a section v of I (9 x c~ d vanishes in Jo/d2o and so necessarily lies in 
j~2 c~ I (gx. Since I @ CZo~-~J~/J~ 2 we get 

JD 2 n I  (gx=ldD=ld .  

Finally, (9 z flat over (9 s implies that Z = X  is a local complete inter- 
section [20]. 

(2.7) Remark. The Kodaira-Spencer  class 

K x,s/ce Ext~( Q~x/s, ~?~s,c | Ox) 

is the class of the extension 

("11 ~ tt~l O. 0 - ,  P~;c | Cx -~ oox,c ~ox/s -~ 

With reference to (2.4), we have fl = Kx/s/c | (-gso. 

w 3. de Rham Cohomology 

In this section are listed some properties of de Rham cohomology  
to be used in the sequel. 

(3.1) Notation. Given a morphism of schemes f :  X - * S ,  we write 
~I~R(X/S)=Rqf,(x,s), where P~:,s is the de Rham complex and R q 
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denotes the q-th hyperderived functor. When S is affine, we set H~R = 
F~f~R �9 

(3.2) Theorem (Deligne, [2]). Let S be a scheme over Spec(Q) and let 
f :  X--~ S be a proper, smooth morphism. Then: 

(i) The sheaves Rq f ,  (f2fr/s) are locally free of finite type and commute 
with base change. 

(ii) The spectral sequence 

El' q = R q f ,  (f2~/s) =~ o~oPg + q (X/S) 
degenerates at E~. 

(iii) The sheaves ~'~*R are locally free of finite type and commute with 
base change. 

Let S be a T-scheme, M = ~ R  (X/S). There is a canonical integrable 
connection, the Gauss-Manin connection, 

(3.3) ~7 : M --~ M |163 
~s 

The spectral sequence (3.2)(ii) induces a filtration 

M = M (~ D M m ~ . . .  ~ M (q)~ (0) 

by locally free, locally direct summands on which the connection acts by 

(3.4) ~7 (M (p)) c M tp- 1) | t2~/r (Griffith's Transversality). 

Recall (2.7) there is a canonical Kodaira-Spencer class 

Q1 (3.5) Kx/s/reExt~x( x/s, Q~s/r| 

(3.6) Proposition. The Gauss-Manin connection is related to the Kodaira- 
Spencer class (3.5) by the commutative diagram 

M(P)/M(p+ 1) v .--~ M( p- 1)/M(p) | ~'~S/T 

[ f l D  X U K x / s / T  
Rq-P f ,  t~"-x/s) -------~-~-~3.5~ gq-P+l f* (O}-[s 1) | s 

Proof. See Griffiths [5]. 

We note a general fact about modules with an integrable connection: 

(3.7) Proposition. Let k be a field of characteristic 0, M a finite 
k[[tl ,  ..., t,]]-module with integrable connection V .  Let M v =Ker(V) .  

Then M ~ M v | k lit1 . . . . .  t,]]. 
k 

Proof. See Katz [15]. 



Semi-Regularity and de Rham Cohomology 57 

There is the following analogous result for the de Rham cohomology. 

(3.8) Proposition. Let A be a complete, local, augmented C-algebra 
(e.g. A artinian), S=Spec(A), f :  X--+S a smooth, proper morphism. Let 
Xo ~ X be the closed fiber. Then H~R (X/S) ~- H* (X o, C) | A. 

C 

Proof Using [12], (III.4.1.7) (the fundamental theorem on proper 
morphisms), one easily reduces to the case A artinian (this case will be 
the only one used in the sequel). 

Let X a" be the associated analytic space, O~o,/s the complex of 
analytic differentials. The map 

A x:, -+ Q~o-/s 

is a quasi-isomorphism (Deligne [2]), so 

H* (Xo, C) | A ~- H* (X:", Axo, ) = H* (X:", (2]o,/s) ~ H*n (X/S) 
(GAGA) 

proving (3.8). 

(3.9) Remark. In technical terms, (3.8) gives a stratification on H*R(X/S). 
Cohomology classes of the form c |  csH*(Xo ,C)  are said to be 
horizontal. 

w Deformation of de Rham Cohomology 

Consider a Cartesian diagram 

X o ~ X 

So , S 

with f smooth and projective, S=Spec(A) for an artinian C-algebra A, 
and So defined by an ideal I of square zero. Let F p H~R(X/S ) denote 
the p-th level of the Hodge filtration on HqR, and write 

p--1 
(4.1) V �9 H q (Xo, O]o/So) --~ H q +' (Xo, f2Xo/So) | (2~s/c 

6s  

for the map induced by fl = Kx/s/c | CSo (2.7). 

(4.2) Proposition. Let vo6F v H~R(Xo/So) be a horizontal section, and let 
p -fio~Hq-V(Xo,f2Xo/So) denote the induced class. Let v ~ H ~ ( X / S )  be the 

unique horizontal class lifting Vo, and assume the natural map 

d : I --* ~ / c  Q (-gso 
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is injective. Then vEFPHq(X/S)  if  and only if 

V ( ~ ) = 0  in Hq-P+l (X  o (2 p- l  ~ n l  ' XO/SO) ' ~  ~ S / C  �9 

Proof. Recall (3.2) that H~R(X/S  ) is a free A-module,  and the 
FPH~R(X/S)  are direct summands.  Let co I . . . . .  ~o M . . . . .  ~o N . . . . .  ~op he a 
basis for H~R(X/S  ) such that ~)1 . . . . .  r is a basis for F p and ~1 . . . . .  O~N 
is a basis for F p- l .  Write v = ~ a i ~ o i  with ai~I, i > M .  Let ~7 denote the 
Gauss-Manin  connect ion on H~, g (X/S) and note (3.4) 

M N 

By assumption,  v is horizontal  so 

o= ~(~)=2~, | d,, +~  a/~? (~,t. 
It follows that 

o~ i | d a i e F p - '  | ~2~A + I (H;R | QIA). 
i > N  

Hence, d a i ~ I Y21A, i > N. Because d: I --~ 01A | A / I  is injective, a i = O, i > N. 
Moreover ,  v 6 F  p if and only i fa i =0 ,  i >  M, and this is equivalent to having 

2 (Di | d a i = 0 (mod F p @ Ola + IH~R | (21A). 
i > M  

Since v is horizontal ,  

~7 ( Z a, o9,)- - Z o J, | d a, (mod I). 
i < M  i > M  

By (3.6), the left-hand side taken m o d F P |  is equal to V (v0). 
This proves (4.2). 

w 5. Local Cohomology. The Cycle Class 

Let X be a topological  space, Z c X  a subspace, and F an abelian 
sheaf on X. Then there are defined [ 11 ] local cohomology groups Hiz (X, F) 
which fit into an exact sequence 

(5.1) - - . H ~ z ( X , F ) - . H ' ( X , F ) - - ~ H ' ( X  - .  '+' - Z, F) H z (X, F) -*. 

When X is a scheme, Z m X a closed subscheme, and F a coherent  
sheaf of (9x-modules, there are canonical  i somorphisms 

(5.2) H i (X, F) ~ ~ Ext~x (r F) 
k 

where I c (9 x is the ideal of  Z. 
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The above definitions can be localized to give cohomotogy sheaves 
, ~ ( X ,  F). In particular, when X and Z are as in (5.2) there are isomor- 
phisms 

(5.3) ~ ( X ,  F) ~ ~ ~xe~,~ ((gx/I k, F), 
k 

(5.4) ~ ( X , F ) ' ~ R } 5 1 ( F I X - Z ) ,  i>1 and j: X-Z~--~X,  

The functors ovg z and Hz are related by a spectral sequence 

{5.5) E~ ,q = H p (X, Jfd (X, F)) ~ Hf  +q (X, F). 

Finally, these notions can be extended to define hypercohomology func- 
tors H~ (X, F') and H~ (X, F') when F" is a complex of sheaves. 

Let f :  X ~ S be a smooth, projective morphism of schemes, where 
S=Spec(A) is the spectrum of an artinian, local C-algebra. Let Z c X  

i �9 be a local complete intersection of codirnension p. We write F f2x/s for 
the complex 

0 j < i  
(Fi (2xls)J = (2ixls j >= i. 

(5.6) Proposition. There exists a canonical cycle class 

{ Z} ~ H~ p (X, F p f2}/s) 

mapping to the de Rham class under the composition 

HZzP (X, FPf2 ~ --* HZP(X, FPO ~ --~ H ~ ( X / S ) .  

Proof We first describe a class {Z}'~HP(X, f2~,s). Since Z is a local 
complete intersection and Ov is locally free, ~fz~(X, f2P)=(0), q:#p, so 
the spectral sequence (5.5) degenerates and 

H~(X, a~)~- r(x, ~ f  (x, a~)). 

It therefore suffices to describe {Z}' locally. 
Let { Ui} be an open affine cover of X such that Z c~ Ui:J} m . . . .  =fltp) = 0 

for ji(i)~F(Ui, t0x). The differential form 

(5.7) dfi m A. . .  A dfi <p) 
A"~ . . . f y  ~ 

gives rise to a cocycle in ~P-~(V~, f2P), where Vii is the open affine cover 
of U~-Z  by sets V~(~= G - { f ~ = 0 } .  Hence we get a class 

{2}' [ U~ e F(U~, el ,-  1(f2' [U~ - Z))(~..,,F(U~ ,,Yff (X, OP)). 



60 S. Bloch: 

These sections can be shown to patch to give {Z'} e F(X,  ~ z  p) ~ H E (X, O p) 
(cf. [10] Expos6 149 and [13], p. 176). We note also that the image 
of { z y  in HP(X, f2 p) is the Hodge class [10]. 

The exact sequence of complexes 

0 ~ F p+I 0~/s ~ FPI2~/s ~ f2~/s [ -  p] ~ 0 
gives 

Hz2 P(X, F p +'O) ~ Hz2P(X, Ft'~2)---, HE(X, 0 p) o , H~p + ' (X,  F p + '0) .  

(5.8) II 
(o) {zy 

One sees that the left hand term of (5.8) vanishes by the degeneracy 
of (5.5). For the same reason 

HZV+"Xz , , F v+' Q)"F(X,_ ~zP(X,  QP+')) 

and 8 {zy  is represented by the cocycles 

^ - . . ^  ~i / - " l U  Rp-I(Op +1 (5.9) d ~ f - ~  "" f -~5-]  ~ ' ~  ', ~, I U~- Z)). 

The left hand side is clearly O, so O{Z}'=O and {Z}' lifts to a unique 
{Z} eHzzP(X, FP (2). 

Let [Z] denote the image of {Z} in H2~(X/S).  With notation as 
in (3.8), we have 

[Z] ,0 

(5.10) H2~ (X/S)  - " , H ~  ( X -  Z/S)  

l l 
[Zo]a.R. (~/ /eH2p(Xo,  C) ~) A rtop , H2p(Xo _ Z o ,  C) (~ A. 

c 

The kernel of rio p is isomorphic to A with generator [Z0]d.R. | 1, SO 
we are reduced to showing/~= 1 in (5.10). 

Since X is projective over S, we can intersect Z with a linear space 
section of complementary dimension and reduce to the case dim Z - 0 .  
By a trace argument we can reduce to the case Z is an S-point of X, 
then that Z is the intersection of n = d i m X  hyperplanes in general 
position, and then that Z is itself a hyperplane. Finally, this case can 
be checked by the exponential sequence 

O ~ Zx  -~ Ox -~ ~ -~ O. 

Details are omitted. 
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w 6. Semi-Regularity 

In this paragraph, the semi-regularity map n is reinterpreted via 
local cohomology, and the relation between n and deformation of 
de Rham cohomology is established. 

Let notation be as in w 5. Recall we defined a section of the local 
cohomology sheaf 

dfi m dfi ~p) 
^ ... ^ ~ r ( ~ ,  ~ , ( x ,  op)). 

Note that this section is killed by multiplication by any function g 
vanishing on Z. In fact, g = ~ a j f ~  ~j) so it suffices to check for g=f~J). 

But J 
df,"~ dfy~ 

^ --- ^ d fy '  ^ ... ^ f - - y - e  ~ - ' ( v , ,  a")  
f i" '  

is a (~ech coboundary, so the assertion follows. 

Let J c ( 9  x be the ideal of Z, and define Nz/x=,k~c,~r 2, (gz). It 
follows from the above that there is a morphism of sheaves 

(6.1) _1 {Z}': Nz/x -* ~z"(X, O"-1). 

P 
Indeed, dfi m ^ . . .  ^ dfi tp) defines a section ai~F(Ui, A N~x ), and interior 
multiplication ~t i _A ai makes sense for aieF(U~, N). We can lift ~ _] ai 
to a section flieF(U~, f2~,-~s ~) which is determined upto adding a section 
g. z with g vanishing along Z. Thus 

fl, 
f / , . . . f y ~  - ~  2 {z}'  

gives a well-determined class in Jcfze(x, f2v-~). 

(6.2) Proposition. The diagram 

Ha(Z, Nz/x) -Jlzl' , Hv+ I (X, f2]-~s 1) 

\ / 
H p+l (X, s v-t) 

is commutative, where n is the semi-regularity map (w (n was defined 
for X smooth over C, but the definition extends without difficulty.) 

Proof. Recall the fundamental local isomorphism ([13], p. 176) gives 

(6.3) g~gg~, ((~z, F) ~- F ~ ~Oz/x 
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P 

where F is an Cx-module and Ogz/x = A Nz/x. This gives mappings on 
the sheaf level 

(6.4) 

where 

p-1 p p 
Nz; x ~- A N~*/x | A Nz/x (") , f2PxSs 1 | A Nz/x 

l(b) 
~ p ~  ,~:z'/Px(~Oz,~'~ p-I ) 

~ f  ( X , f2P- 1) 

(a) is induced from 1/12~-*Qlx/s @ (9z; 

(b) is (6.3) with f = OP/sl; 

(c) is (5.3). 

The semi-regularity map ~z is dual to 

p-t 
A ~: H ' - P - I ( X ,  f2"-p+I~x,s p -+ H ' -P+l (Z ,  ogz@N*x)  . 

Tracing through the duality construction [13], one gets u via 

HI(Nz/x) "~.Hp+I(x,(2 p-I) 

HI(p)] 

H' ( ~  (X, ~ - q )  ~_ H~- ~(X, ~-'). 

The proposition now follows from 

Claim. The maps p (6.4) and �9 _1 {Z}' (6.1) coincide. 

Proof of  Claim. Most of this is straightforward checking and is left 
to the reader. We note only that the map 

can be computed locally as follows: let 

E=(9v, fi ~ Q . . . O  (gv, Jl Ip) 

and consider the Koszul resolution 

p p--I 
0--* A E - 4  A E-* . . . - -~  E - ~ C v  -*(gz~v -~O. 



Semi-Regular i ty  and  de R h a m  C o h o m o l o g y  63 

A section q~ of 83-/~'~((9 z, ~-2 r - l )  over U~ is represented by a homo- 
P 

morphism ~5: A E - * f 2  p-1. Then (c)(q0)is represented by the cocycle 

A f(P)) (P ( . f / ( I ) A ' ' "  . ; i  

j ;(, , . . . . f /r) 
in Cr - l (V i ,  O r 1). This completes the proof of (6.2). 

In what follows, we wil l  consider a diagram 

(6.5) 

Z o  C ~ Z 1 

X,) c ~ X1 c__. , X 

t I : 
Spec (C)C-~ Spec (All) c_~ Spec (A) 

with A an artinian local C-algebra, I c A  an ideal such that I .  ma=(0), 
f a  smooth map, and Z 1 a local complete intersection of codimension p. 
The obstruction to lifting Z 1 to a local complete intersection Z c X  
is given (2.6) by an 

(6.6) 0~ e Ex t~,z, (J , /J( ,  l CqZl) ~ H~ (Zo, NZo, Xo) c@ I 

where dl c (gx, is the ideal of Z 1 . 

Finally, we write 

(6.7) fl= Kx , sc  | 6's,~ ExtJox,(Q~,,s,, g~x, | Q~,c). 

For the restriction of the Kodaira-Spencer class. 
d: I 1 -~ f2s/c | 6)so be the natural map. 

(6.8) Proposition. With the above notations, 

fl~ [zd =(1 | | 1)(~). 

P [Zl]  �9 H p (Xl,  g2x,/s) 

(6.9) 

(2.7), and let 

I~:~  Hp+I(XI, p-x 1 Ox,.s, | •s,c) 

1 | 

H,+ 1 (Xo, (2]o l) | I 
C 

l rc| 

~ H ' ( Z o ,  NZo/Xo)s? I. 
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Proof Note first that 

~2x~/s~ | Hp+I(Xo,Q]ol) Qc I~_Hp+,(X1, p-1 I) 

by base change, so the map 1 | d in (6.9) makes sense. Replacing 
cohomology in (6.9) by local cohomology and using (6.2), it suffices 
to show 

f lu  {Z}'=(1 | d)(~ _2 {Z}'). 

This equality follows easily from (2.5). 

(6.10) Corollary. With notations as above, assume that d: I ~ (21s/c | d)so 
is injective, and Z o is semi-regular in X o. Then Z1 lifts to Z ~ X if and 
only if [Z1]d.. ~. ~ H ~  (XJSO lifts to a horizontal class z ~ F v HZ~ (X/S). 

Proof 

Z1 lifts ~ ~ = 0 ~ (1 | d) (n | 1) (a) = 0 ~ f l u  [Z1] = O(~.2)[Zl]d.. R. 

lifts to a horizontal section of FPHEp(x/s).  

w 7. Applications 

(7.1) Theorem. Let X- -~S  be a smooth, projective morphism with 
S=Spec(CE[q,  ..., tr]]). Let X o c X  be the closed fiber, and let Z o c X  o 
be a local complete intersection of codimension p. Suppose that the 
topological cycle class [Z o] ~ H 2p lifts to a horizontal class z ~ FP HZD~(X /S), 
and that Z o is semi-regular in X o. Then Z o lifts to a subscheme Z c X .  

Proof Let S N = Spec(C l i t  I . . . . .  tr]]/(t) N+l) and note the maps 

d: (t)N/(t) N +l 1 ~2s,,/c | (gs,,_ , 

are injective. Applying (6.10), we may lift step by step to find Z N c XN = 
X • SN fiat over S N. Let H be the Hilbert scheme of X/S. The correspond- 

s 
ing diagram H 

/ "  / / ~  
/ 

S N ~ ' "  ~ S I  ~ S o c S  

gives rise to an S-point Z: S ~ H lifting Z o. The resulting scheme Z c X 
is the desired one. 

(7.3) Theorem. Let X be smooth and projective over C. Let Z ~ X  be 
a local complete intersection which is semi-regular in X. Then the 
corresponding point Z ~ Hilb (X/C) is smooth. 

Proof Let V be the cotangent space to H=Hi lb (X /C)  at Z, and 
write S= Spec(Symc(V)), where Sym A denotes the completed symmetric 
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algebra. Applying (6.10) to X x S, we see that given a diagram 
C 

H x S = Hilb(X x S/S) 

///?lZ l 
/ / / I  

SN+I~SN~SocS,  

there exists a dotted arrow rendering the whole commutative. This 
implies that H is smooth at Z, as claimed. 

(7.4) Theorem. Let X Y--~ S ~ , Spec(C) be morphisms, with f smooth 
and projective and g smooth, connected, and of finite type. Let 
z~F(S, R2pf,(~2~/s)) be a horizontal section and let o~S. Suppose the 
restricted class z o ~H2o~(Xo/C) is algebraic, representing a local complete 
intersection, Z o c X o  which is semi-regular in Xo. Then for all s~S, 
zs ~ Hg~ (Xs/C) is algebraic. 

Proof. Since zoEFPHg~(Xo/C), it follows from the results of Deligne 
[3] that zeF(S, FPR2Pf,(f2")). Let S=spec((~s.o), X = X x S ,  and let 

s 
2eFPHZ~(R/S) be the pullback of z. Clearly, 2, Z 0, X satisfy the 
hypotheses of (7.1), so letting H=Hilb(X/S), we have a diagram 

H 

S = Spec (C) c S. 

By a theorem of Artin [1], the existence of zZ implies that Z o extends 
to an analytic map Z: U-*  H, where U c S is some complex neighborhood 
of o. Hence Zo lifts to an analytic family over U, so z~ is algebraic for 
se U. A simple argument using the Hilbert scheme shows 

T= {seSlz s is algebraic} 

is contained in a countable union of closed subvarieties of S. Since 
U ~ T, it follows that T = S, proving (7.4). 

(7.5) Remark. Let IeF(S, RZ.f,(O~ be the polarization class. The 
hypothesis on z 0 in (7.4) can be weakened to read: there exist integers 
a, b, a 4: 0, such that a Zo + b lg is the class of a subscheme Z 0 c X o which 
is semi-regular and a local complete intersection. This gives a way of 
making the class z o "effective". The problem of constructing semi- 
regular representatives for algebraic cycle classes of codimension > 1 
remains, however, wide open. 
5 lnventiones math., Vol. 17 
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