
Inventiones math. 60, 249-267 (1980) Inventiones 
mathematicae 
�9 by Springer-Verlag 1980 

Triple Collision in the Planar Isosceles 
Three Body Problem 

Robert L. Devaney* ** 

Department of Mathematics, Tufts University, Medford, MA 02155, USA 

Abstract. We employ a device due to McGehee to discuss the qualitative 
behavior of orbits which reach or come close to triple collision in a special 
case of the planar three body problem. We show that there exist infinitely 
many orbits which both begin and end in triple collision. Nearby orbits 
behave in different ways depending on whether they pass close to the 
collinear or equilateral triangle central configuration. Finally, we discuss a 
new type of orbit in the three body problem which we call "billiard shots". 

Introduction 

The goal of this paper is to investigate the qualitative behavior of solutions of 
the planar isosceles three body problem which begin of end in triple collision or 
which pass close to a triple collision. The isosceles problem is a special case of 
the planar three body problem which reduces to a Hamiltonian system with two 
degrees of freedom. Briefly, one takes two equal masses whose initial position 
and velocity are symmetric with respect to the y-axis in the plane, and a third 
mass whose initial position and velocity lie along this axis. So the masses form a 
(possibly degenerate) isosceles triangle in the plane. Because of the symmetry of 
the problem, the masses will remain in such a configuration for all time. Hence, 
after fixing the center of mass at the origin, we have a system with only two 
degrees of freedom. 

The main tool in the study of triple collision is a device due to McGehee by 
which the singularity due to triple collision is replaced by an invariant two- 
dimensional manifold over which the flow extends smoothly. If one understands 
the flow on this collision manifold completely, then one can "read off" the 
behavior of orbits which reach or pass close to triple collision. 

This is precisely the procedure McGehee followed in studying triple collision 
in the collinear three body problem [3]. There he showed that, for most choices 
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of the masses, a near-collision orbit tends to leave a neighborhood of triple 
collision with the masses receiving an arbitrarily large velocity. Two of the 
masses travel in one direction in a tight binary system, while the third mass 
separates from them in the opposite direction. 

A natural question is how do these results extend to the planar or three 
dimensional problem. Various authors have discussed the triple collision ma- 
nifold in the planar case [10, 13]. This manifold turns out to be four-dimen- 
sional and the flow on it is not at present well understood. We hope that 
studying the simpler flow on the triple collision manifold in the isosceles case 
will give some insight into the structure of this flow in the planar problem. 
Certainly most of the phenomena we describe below will occur in some form in 
the full three-body problem. 

One of the major differences between the isosceles and the collinear prob- 
lems is the possibility of both collinear and equilateral triangle central con- 
figurations in the former. We recover easily the classical result that any orbit 
which begins or ends in triple collision must assume one of these configurations 
as it approaches the singularity. Furthermore, we show that the natural collinear 
collision orbit is the only one which approaches the collinear central con- 
figuration, while there are two smooth one parameter families of orbits which 
tend to the triangular configurations. 

When the third mass is relatively small, the structure of these orbits is 
extremely complicated. We exhibit infinitely many orbits which both begin and 
end in triple collision (the so called ejection-collision orbits) and which may be 
characterized as follows. The binary system simply makes one cycle near the x- 
axis, beginning and ending at the origin and with exactly one point of zero 
velocity for each mass. Meanwhile the third mass oscillates rapidly near the 
origin up and down the y-axis. In fact, we show that for any sufficiently large 
integer k, there is an ejection-collision orbit of this type in which the third mass 
passes through the center of mass of the binary system exactly k times. This 
proves a result determined numerically by Broucke [1]. 

We remark that these ejection-collision orbits are all close to the natural 
collinear ejection-collision orbit in which the binary system remains on the x- 
axis and the third mass is at rest at the origin. Thus this orbit is unstable in the 
sense that nearby orbits follow it for a long time before jumping off into a 
triangular configuration and colliding. 

As in the collinear three body problem, the flow on the triple collision 
manifold also allows us to determine the behavior of orbits which pass close to 
triple collision. There are basically two possibilities. Either the binary system 
escapes along the x-axis with finite velocity, leaving the third mass oscillating 
near their center of mass, or else the third mass leaves either up or down the y- 
axis with arbitrarily large velocity. In this case, the binary system travels in the 
opposite direction, undergoing a sequence of binary collisions in the process. 

The flow on the triple collision manifold also allows us to prove the 
existence of "billiard shot" orbits in the isosceles problem. These are orbits 
which feature a rapid binary oscillation and the third mass traveling up the y-axis 
before triple collision. After passing close to collision, the third mass (or billiard 
ball) is left oscillating rapidly through the center of mass while the binary system 
separates in opposite directions near the x-axis. 
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1. The Triple Collision Manifold 

Our goal in this section is to exploit a device introduced by McGehee [3] to 
blow up the singularity in the system at triple collision. Most  of the material 
here is exactly the same as in McGehee 's  paper. We refer to that paper or to [2] 
for motivation of some of the changes of variables below. However, for com- 
pleteness, we include all of the technical details here. 

Recall the setting of the planar isosceles three body problem. One is given 
three mass points in the plane with masses m 1 = m  2 and m 3. The third mass is 
initially positioned on the y-axis, with velocity parallel to the y-axis. The two 
equal masses have initial position and velocity symmetric with respect to the y- 
axis. So the particles initially lie at the vertices of an isosceles triangle. The 
masses are assumed to attract each other under the Newtonian law of attraction. 
Because of the symmetry of the problem, the particles will then always lie at the 
vertices of some isosceles triangle. 

Note  that binary collisions are only possible between the two equal masses" 
if m 3 is involved in a collision, it must necessarily collide with both ml and m z at 
the same instant. It is this particular occurrence we shall be mainly concerned 
with below. 

If  we fix the center of mass of the system at the origin, then the system has 
only two degrees of freedom. One can use either heliocentric or Jacobi coor- 
dinates to describe the resulting motion;  we shall use the latter. Let x~ denote 
the distance from m 2 to m~, so x I >0.  See Fig. 1. Also let x 2 denote the directed 
distance along the y-axis from the center of mass of m~ and m z to m 3. So x 2 is 
positive when m 3 lies above the binary system, and negative when m 3 lies below. 
We have a binary collision precisely when x~ =0,  and we have total collapse or 
triple collision whenever x a = x  2 = 0. 

S ~  

rn 2 

• 

WI 3 

• 

m 1 

Fig. 1. Jacobi coordinates in the plane 
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In these coordinates, the equations of motion may be written 

--2m 1 8m3x 1 
2" 1 -- X2 (X 2 + 4X2) 3/2 

_ 8 (2rnx + m3) x2 (1.1) 
2"2= (x~ +4x2)3/2 

See Pollard [4] for the derivation of these equations. 
Let Pl and P2 denote the momenta conjugate to x I and x 2 defined by 

Pl =ml  xl /2 

P2 =2ml  m3 x2/(2ml -+- m3) 

Then the equations of motion may be written as a first order system of 
differential equations in Hamiltonian form 

dx i _c~H dpi _ OH 
(1.2) 

dt cqp i dt ~3xi 

with the Hamiltonian or total energy given by 

p~ (2m 1 +m3)P2 2 m 2 4ml m 3 
H(Xx,X2,Pl,P2) = - q  ml 4m 1 m3 Xl (X12 +4X2)1/2 (1.3) 

It is well known that H is a constant of the motion for (1.2). 
We may write this system more compactly by introducing the following 

notation. Let x = ( x l ,  x2) and P=(Pl ,  P2). Let M = 2 m  1 + m  3 be the total mass of 
the system. Then we may write 

H(x,  p) = (1/2) p' A -1 p + V(x) (1.4) 

where A-1 is the 2 • 2 matrix 

A_,  (2!O ~ 0 
M / 2 m  I m3 ) (1.5) 

and where the potential energy V(x) is given by 

m 2 4m 1 m3 
V ( x ) -  (1.6) 

x I (x2+4x22) 1/2 

Note that V(x) < 0 and that Vis homogeneous of degree - 1. 
Thus we have an analytic Hamiltonian system defiried for x 1 >0,  i.e., on the 

space N + x N x  N 2. Our initial goal will be to extend this system to the 
boundary x 1 = 0  where the collisions occur. This will be accomplished using a 
sequence of changes of variables due to McGehee. 

We first introduce "polar"  coordinates into configuration space, together 
with a scaling of  the radial and tangential components of momentum. That  is, 
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we int roduce 

r =(x t  A x )  a/2 

S ~ X / r  

v = r  1 / 2 ( s . p )  

u = r l / 2 ( A  -1 p--:(s .p)s) 

(1.7) 

No te  tha t  s t A s - - 1  and s z A u = 0. Also, r is the m o m e n t  of  inert ia of  the system. 
We also scale the t ime variable  of  the system by 

dt=r3/2 dz 

In these variables,  the system (1.2) becomes  

dr 
- -  ---~. r l) 
dz 

dv 
- - = u t  A u + ( 1 / 2 )  v2 + V(s) 
dz 

ds - - = u  
dz  

du 
dz - (1/2) v u -  (u' A u) s -  grad  V(s) 

(1.8) 

Here  V(s) is 
represents  its gradient  in the metr ic  induced by A. 

N o w  introduce 

S = (A-1)1/2 (cos 0, sin 0) 

u = u (A - 1)1/2 ( _  sin 0, cos 0) 

with - 7~/2 < 0 < ~/2. The  equat ions  become  

dr 
- -  -~- r l) 
dz 

dv 
~-~=u 2 +(1/2)  v 2 + V(O) 

dO 

d'r 

du 
d-~ = - (1/2) v u - V'(O) 

the restr ict ion of  V to the sphere s t A s = l ,  and grad  V(s) 

(1.9) 

The  energy relat ion (1.4) goes over  to 

r e = (1/2) v 2 + (1/2) u 2 + V(O) (1.10) 
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where e is the constant value of the Hamiltonian and where 

V(0)= rn~ 4ml m3 (1.11) 

~ c o s 0  ~/(2/mOcos20 + 2M sin20 
ml m3 

Note that binary collisions at x 1 = 0  and x2>O correspond to O=n/2, while 
x l =0,  x 2 < 0  corresponds to 0 = -  n/2. Finally, triple collision x 1 = x 2 = 0 corre- 
sponds to r = 0. 

Now the system (1.9) is analytic at r=0 .  In fact, when r=0 ,  we have dr~dr 
=0. Hence r = 0  is an invariant manifold for the flow. Thus we have removed 
the singularity which corresponds to triple collision. In its place we have pasted 
a smooth manifold which is called the triple collision manifold. Orbits which 
previously began or ended at triple collision in finite time are now slowed down 
so that they tend to the triple collision manifold as t ~ -  co or t~co .  And orbits 
which pass close to triple collision now behave very much like orbits on the 
triple collision manifold itself. Hence understanding the flow on this manifold 
gives a good deal of information about these near-collision orbits. It is this flow 
which we now study. 

The system (1.9) defines an analytic vector field for 0 < r < c o ,  v~IR, 
-n/2<O<n/2, uelR. We first extend this system over the boundary 0 =  +n/2. 
This is accomplished by using a regularization due to Sundman [11, 12]. Our 
treatment here differs slightly from McGehee's. 

Let W(0)=-(cos0)V(O) .  Note that W is a positive analytic function on 
[ -  n/2, n/2]. We introduce a new variable 

cos 0 
W = ~  u 

as well as another change of time scale 

dr cos 0 

dt 

We remark that this new time variable t is different from the original time 
variable. 

The system (1.9) now goes over to 

dr cos 0 
d =/V05 r v 

cos0 2 ' 
(v - a r e ) )  

dO 
- - ~ - W  
dt 

cos0 2 _ 2 r e )  ) ~ = ( s i n  0) ( -  1 + ~ - ~ ( v  

v w cos 0 W'(0) 2 
- + ~ cos 0 -  w /2) 

2 W I / ~  w t v J  

(1.12) 
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with the energy relation 

W 2 COS 0 1 =~(~(re--v2/2) (1.13) 
2cos0 

This system is an analytic vector field on [0, Go)• ~ • [-n/2, n/2] • IR, so the 
singularities due to binary collisions have now been removed. Actually, since 
dv/dt>O when 0=  +_n/2, it follows that solu{ions have been extended through 
binary collision by an elastic bounce. 

The triple collision manifold remains intact under this change of variables 
and is given by the energy relation in r = 0 :  

0 2 COS 2 0 
W2/2 -1 - -  = COS 0 (1.14) 

w(o) 

This surface is sketched in Fig. 2. Note that it is topologically a sphere with four 
points removed. This is exactly the same as in the collinear three body problem. 
However, the flow induced by (1.12) on this surface is dramatically different 
from the collinear case. 

The flow on this manifold is determined by the differential equation 

cos/9 

dO 
dt 
dW=(sinO)( 1 vEc~ 

- 

w ' ( o ) ,  o ~-~-tcos tJ- w~/2) 

vwco s0  

2 ~  

(1.15) 

/ 
W 

Fig. 2. The triple collision manifold in the isosceles three body problem 
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We shall discuss the main properties of this flow in the next section. 

Remark 1. W(0), and hence the collision manifold, depend on the choice of 
masses m 1 and m 3. One can remove this dependence by introducing r/ 

= v / l / -W~.  The differential equation becomes 

W'(O) 
dqdt = 1 - (1/2) qz cos 0 - (1/2) ~ -  r/w 

dO 
dt w (1.16) 

dw 
= (sin O) ( - 1 + r/2 cos O) - (1/2) r/w cos 0 

+ W'(O) ( c o s 0 -  w2/2) 
w(o) 

with energy relation 

w 2 + r/: cos z 0 = 2 cosO (1.17) 

which is independent of the masses. 

Remark 2. If we let e denote the mass ratio m3/m 1, then one computes easily that 

W(O)=m~/2 (~2 ~ 

W'(O) 

4e 3/2 cos0 1 

- 8 ]//2 e3/e(2 q- e) sin 0 

W(O) (2e+4sin20)(] / /2e+4sin20 + 4 V ~ g  3/2 cos0)" 

Since W' /W depends only on e, it follows that (1.16) represents a one parameter 
family of vector fields depending on the mass ratio. 

2. The Flow on the Triple Coll is ion Manifold 

The object of this section is to describe in detail the flow generated by (1.15) on 
the triple collision manifold. We will show that there are some striking differ- 
ences between this flow and that studied by McGehee in the collinear three 
body problem. In the next sections, we will interpret what these results mean in 
terms of actual collision and near-collision orbits in the isosceles problem. 

One of the most important features of the flow on the triple collision 
manifold is the equilibrium or rest points. These correspond to the central 
configurations of the isosceles problem, as we show below. First, however, we 
compute the equilibrium solutions on the triple collision manifold. 
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Proposition 1. Suppose (Vo, 0o, Wo) is a rest point for the f low on the triple collision 
manifold. Then 

1. wo=O 
2. V'(0o) =0  
3. v 2 = - 2 V(Oo). 

Proof From the energy relation (1.14), it follows that dv/dt and dO/dt vanish iff 
Wo=0. If Wo=0, we also have 

~ = s i n 0 '  W'(O) ~ -cosZOV'(O) 
~---w-~ c~ w(o) 

dw= 0 since V(0)= - W(O)/cosO. Hence dt iff V(0o)=0. Hence we have a rest point 

iff w o = 0  and V'(0o)=0. The energy relation then determines %. qed 

So to each critical point 0 o of V(O), there correspond exactly two equilibrium 
solutions of the flow on the triple collision manifold, one with v o < 0 and the 
other with Vo>0. Such critical points are called central configurations. One of 
our results below is that any triple collision orbit approaches one of these 
equilibrium solutions. That is, we have proven the classical result that the 
masses approach a central configuration as they approach triple collision. 

Before proving this, we calculate the number of central configurations in the 
isosceles problem. 

Proposition 2. There are three central configurations for the planar isosceles three 
body problem. These are a non-degenerate minimum for V at 0 = 0  and two non- 

degenerate maxima at 0= arctan( + 3]/~3/M ). 

Proof This is a straightforward calculation, qed 

Our next observation about the flow is that it is gradient-like. Recall that 
this means that there is a smooth real-valued function which increases along all 
non-stationary solutions. On the triple collision manifold, the projection onto 
the v-axis serves as this gradient function. Indeed, from (1.15), we have 

d--v-v = W(O) I/2 ~--- O. 
dt 

So v is non-decreasing along orbits. Only when w = 0  do we have dv/dt=O. But, 
at such points, 

dw . ~ W'(O) ,, 
dt = s m o + - W ~ C ~  

- v'(o) cosZ0 
4=o 

w(o) 

provided V'(O)~:O. Hence v in fact increases along all non-stationary orbits of 
the system. We record this fact as another proposition. 
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Proposition 3. The coordinate v increases along all non-equilibrium orbits of the 
flow on the triple collision manifold. Hence the flow is gradient-like. 

Suppose now that a solution of the isosceles problem begins or ends at triple 
collision. Such a solution must be forward or backward asymptotic to the triple 
collision manifold. Since the flow there is gradient-like, it follows that t r ip le  
collision orbits must be asymptotic to one of the equilibria. This fact has a 
classical interpretation in terms of central configurations. 

Suppose first that a triple collision orbit approaches one of the two equilib- 
ria at 0 = 0. Interpreting this in terms of the original coordinates, it follows that 

X 2Ix1 ~- (M/4 m3) sin 0/cos 0 ~ 0 

so that the masses tend toward a straight line as they approach collision. This is 
the collinear central configuration discovered by Euler. Similarly, if the orbit 
approaches the equilibria at 0 = arctan( _+ 3 maiM)l~2), then 

x2/x 2 = M sin 20/4m 3 cos 2 0 --~ 3/4. 

This means that the masses approach an equilateral triangle configuration as 
they tend toward collision. Thus we have recovered the following classical 
theorem. 

Theorem. (Euler, Lagrange). Any triple collision orbit in the isosceles three body 
problem tends to either a collinear (0 = O) or an equilateral triangle (0 =b O) central 
configuration. 

In the sequel, we will identify the collinear central configuration by 0 0 and 
the two triangular central configurations by 0+ and 0 ,  with 0_ < 0 <  0+. 

Remark. At this point it might be helpful to recall the relationship between the 
new r, v, 0, w coordinates and the old Jacobi coordinates. The variables r and 0 
represent polar coordinates (in the A-metric) in configuration space, while v and 
w are scaled velocity coordinates, v in the radial direction and w in the 0- 
direction. For  solutions which pass close to triple collision, r must pass close to 
zero, and the 0-coordinate then describes the configuration assumed by the three 
particles. For  example, if 0 = 0, the particles lie close to a straight line, while for 
0 =  _+n/2, the equal masses are close to double collision with m 3 (relatively) far 
away and above or below them. See Fig. 3. 

I I I 

- T  ~ o o --o 

Fig. 3 

7r 

~ T 
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We now compute the characteristic exponents of the rest points on the triple 
collision manifold. There will be an additional characteristic exponent in the 
direction transverse to the triple collision manifold which we will calculate later. 
All of these exponents occur as the eigenvalues of the linearization of (1.12) at a 
rest point (0, v, 0, 0). The resulting matrix is 

vcos0 t 0 

| 2 e c o s 0  - v c o s 0  

0 0 . 0 0 1 
- cos20 V"(O) sgn v /  0 W(O) - (cos 0/2) 1/2 

(2.1) 

This is easily computed from (1.12) using the energy relation (1.13), Proposition 
1, and the fact that 

dod (~t )=Jo (sino+ W'(O)c~ ) 
_ d (-cos2OV'(O)  

,tO \ f 
- c o s  z 0 V"(O) 

w(o) 

at a rest point. 
One checks easily that the characteristic exponents of the restriction of the 

flow to the triple collision manifold are then given by the eigenvalues of the 
submatrix ( 0  , ) 

- cos 20 V"(O) (2.2) W(O) ((cos 0)/2) l/2 sgn 

These eigenvalues are easily computed and are found to be 

0 4 c os  2 0 V"(O) 
+ = - (1/2)((cos 0)/2) 1/z sgn v + ( 1 / 2 )  [ / c 7 ~  - 

- v z  w ( o )  

At the Lagrange (triangular) equilibria, Proposition 2 gives that V"(O)<0, so 
the expression inside the radical is positive and greater than ((cos0)/2)1/2/2. 
Hence one of ~+ is positive and the other is negative. Consequently the 
Lagrange equilibria are saddles for all values of the masses. 

At the Euler central configuration 0o, the situation is quite different. Pro- 
position 2 gives that V"(0)>0, so both ~• have real parts with the same sign as 
- ( 1 / 2 )  ((cos 0)/2) 1/2 sgn v. In particular, the equilibrium point is a sink when v > 0 
and a source when v < 0. Moreover, the expression inside the radical is negative 
for certain values of the masses. 
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Proposition 4. The sink and source at Oo have complex eigenvalues provided 
m 3 <(55/4) m 1 , 

Proof Since 0o=0, the expression inside the radical for (+ is negative when 

1 +8V"(0) <0 
v(0) 

One computes easily that 

m~/2 4m3/2 m 3 
v ( o )  -- 

v"(0)= 7m #/V 

The results then follows immediately, qed 

In particular, when m 3 is relatively small, orbits on the triple collision 
manifold tend to spiral into the sink and away from the source. This will have a 
dramatic effect on the orbits which approach triple collision near the collinear 
central configuration. 

We now turn our attention to the remaining qualitative feature of the flow 
on the triple collision manifold-the ultimate behavior of the stable and 
unstable manifolds of the four equilibria associated to the triangular central 
configurations 0+. Where the stable manifolds originate and the unstable 
manifolds die is of crucial importance for understanding near-collision orbits. 
Note that there are three major possibilities for the unstable manifolds. Since v 
must increase along these orbits, a typical branch of the unstable manifold may 
run up the left or right "arm" of the triple collision manifold, or else it may die 
in the sink. A degenerate possibility is that the unstable manifold might exactly 
match up with the stable manifold of one of the saddles. 

Our first observation is that, by symmetry, one need only discuss a few of the 
invariant manifolds. Indeed, the system (1.15) is invariant under the reflection 
(v, 0, w) ~ (v, - 0, - w) and reversed by the reflection (v, 0, w) ~ ( -  v, - 0, w). Con- 
sequently, the system is also reversed by the composition of these reflections 
(v, 0, w) --* ( -  v, 0, - w). Hence these symmetries preserve the invariant" manifold 
structure of the system. 

Our next observation is that some of the invariant manifolds of the saddles 
are easy to describe. For example, at the rest point (+v0,0+,0) with %>0, one 
branch of the stable manifold must emanate from the source, while the other 
must run up the lower arm with 0=n/2. This follows immediately from the 
gradient-like property of the flow together with the fact that dO/dt>O when 
w>0 and dO/dt<O when w<0. By the symmetries above, one can then de- 
termine the stable manifold at ( -vo,  0 , 0 )  as well as the unstable manifolds at 
(+ Vo, 0) and (+ Vo, 0_, 0). These are depicted in Fig. 4. 

Now consider the branches of the unstable manifold at (+ Vo, 0• which 
satisfy: the w-coordinate along the local unstable manifold is positive. Let -r 
denote the branch at (-Vo, 0+, 0) and y_ the branch at the other equilibrium. As 
above, symmetry arguments determine the remaining invariant manifolds in 
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0_ 8 0 0+ 

Fig. 4. Some of the invariant manifolds of the saddles 

k., 

Fig. 5. The behavior of y§ and y_ in the allowable case 
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Fig. 6. The phase portrait of the flow on the collision manifold when the set of masses are allowable 

terms of 7+ and 7_. For  example, the first symmetry maps 7+ and 7 -  to the 
remaining branches of the unstable manifolds at 0_ and 0+ respectively. Hence 
the ultimative behavior of all of the remaining invariant manifolds depend on 
the behavior of 7+ and 7_. These must be determined numerically. R. Moeckel 
1-15] has some results along these lines for both this problem and the full planar 
problem. 

For  all values of the masses we have computed thus far, 7 + tends to run up 
the upper a rm of the triple collision manifold with 0 = - n / 2  as depicted in Fig. 
5. We conjecture that this is in fact true for all masses. The situation for 7 -  is 
somewhat  more subtle. Again, for all values of the masses that have been 
checked, 7 -  runs up the same arm as 7+. However, in doing so, 7_ passes close 
to the saddle point (vo,0_,0). It is conceivable that, for some values of the 
masses, 7-  meets the stable manifold of lhis saddle, or even falls into the sink. 
One checks easily that if ~+ runs up the arm with 0 =  -7r/2, then y_ cannot run 
up the arm with 0 = n/2. 

Most of our results below depend only on the behavior of 7 +. We will call a 
set of masses allowable if both ~ + and 7_ run up the arm with 0 = - n/2. Figure 
6 gives a complete picture of the flow in case the masses are allowable. Whether 
this picture holds for all masses is an interesting question which awaits further 
numerical study. 
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3. Collision Orbits 

In this section we use the results of the previous section to describe the set of 
orbits which begin or end in triple collision. Orbits which begin at collision are 
called ejection orbits; orbits which end at triple collision are called collision 
orbits; and orbits which do both are known as ejection-collision orbits. As we 
showed in the previous section, any such orbit "must be asymptotic to one of the 
equilibria associated to a central configuration. That is, they lie on the stable or 
unstable manifolds of these equilibria. We denote the set of ejection and 
collision orbits at 0 0 by E(Oo) and C(Oo) respectively. Similarly, E(O• and C(O• 
denote the set of ejection and collision orbits at the triangular central con- 
figurations. 

The linearization (2.1) can be used to show that all of the equilibria on the 
collision manifold are hyperbolic and thus that the ejection and collision orbits 
form immersed submanifolds of phase space. To see this, observe that 
vcosO/W(O) 1/2 is an eigenvalue of (2.1) with associated eigenvector (v,e,O,O). 
This eigenvector is tangent to the energy level corresponding to e, as is seen by 
differentiating (1.13). Hence we have in addition to the dimensions in the triple 
collision manifold, one additional unstable eigenvalue whenever v 0 > 0  and one 
stable eigenvalue whenever v o < 0. 

Hence we have the following: 

Proposition 5. In any energy level H=e,  both E(O • and C(O • are two-dimen- 
sional manifolds, while E(Oo) and C(Oo) are one-dimensional. All ejection orbits 
emanate from the equilibria with v o > O, whereas all collision orbits are asymptotic 
to the equilibria with v o < O. 

This reproves the classical result due to Siegel that the set of collision and 
ejection orbits forms a union of lower dimensional submanifolds of each energy 
level. It also reproves a result of Saari [6] which in the isosceles case states that 
triple collision is improbable in the sense of Lebesgue measure. (Note that 
binary collisions occur for a large open set of initial conditions.) 

There are some special classical solutions of the three body problem as- 
sociated with each central configuration. Assume V'(0)=0, so that 0 is one of 
the central configurations. Assume moreover that w=0.  At such a point, the 
system (1.12) becomes simply 

dr cos 0 
dt - ~ r v  

dv recosO 
d t  - ( 3 . 1 )  

dO dw 

dt dt 

Thus the two-dimensional r,v-plane is invariant whenever V'(0)=0 and w=0.  
We sketch the solutions of (3.1) in Fig. 7. 
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FiR. 7. The phase portrait in an invariant r, v-plane 

r 

Note that one can obtain these curves as the IeveI sets of the restriction of 
the energy relation to the r, v-plane, which is given by 

cos 0 cos 0 
- - V 2 - - 1  
2W(0) =W(O) re" 

The two horizontal solutions shown in Fig.6 occur when e=0 .  For  e<0 ,  
there is a unique solution which begins at the equilibrium point with v > 0 and 
ends at the equilibrium point with v<0.  This solution is called a homothetic 
solution of the system. It is one in which the masses retain their configuration 
(up to a scale factor) for all time. See Wintner [14] for more details. 

In particular, it follows from the above considerations that the one-dimen- 
sional sets C(Oo) and E(Oo) consist precisely of these special solutions of the three 
body problem. For  negative energy, we therefore have that C(Oo)=E(Oo), and 
thus we have a heteroclinic solution connecting the two equilibria associated to 
0 o. This orbit is easy to describe in configuration space: the third mass is fixed 
at the origin while the other pair are ejected from either side of it, travel a finite 
distance along the x-axis, reach a point of zero velocity, and finally return to the 
origin and triple collision. 

4. Near-Collision Orbits 

In this final section, we show how the flow on the triple collision manifold can 
be used to give an almost complete description of the qualitative behavior of 
orbits which pass close to 'triple collision. For  simplicity, we shall confine our 
attention to a single negative energy surface. Some of the results below can be 
extended to zero and positive energy levels with the obvious modifications. 

We first consider a neighborhood of the collinear homothetic orbit described 
at the end of the last section, One branch of the stable manifolds of both of the 
Lagrangian equilibria with vo<O emanates from the source which corresponds 
to 00. For  ms small enough, each of these branches spirals around the source 



Triple Collision in the Planar Isosceles 265 

infinitely often, as we see from Proposition 4. Consequently, C(Oo) lies in the 
closure of both C(O§ and C(O), and if we cut C(Oo) by a local transversal 
section S, then C(O+_)~S is again an infinite spiral converging down to C(Oo)nS 
for m 3 small enough. 

Similar statements hold for E(Oo) and E(O• 
Now consider an initial condition p in the transversal S. If S is small enough, 

the orbit through p either meets C(O• or C(Oo)nS, or else approaches but 
does not achieve triple collision. In the latter case, the orbit tends to follow 
orbits in the unstable manifold of the source which are not in the stable 
manifolds of the saddle points with v o < 0. Figure 5 shows that, in the allowable 
case, all such orbits run up the upper arms of the triple collision manifold. 
Hence the orbit through p behaves similarly if S is chosen small enough. 

This has the following interpretation. An orbit close enough to the collinear 
homothetic solution either ends in triple collision or else passes close to triple 
collision but leaves in one of two ways: either m 3 exists up the y-axis and the 
binary system down the y-axis, or vice-versa. The closer the orbit approaches the 
triple collision manifold, the higher the v-value it achieves before leaving a 
neighborhood of triple collision. This implies that each mass leaves with very 
large velocity. The fact that orbits in the triple collision manifold tend to wind 
around the arms infinitely often also has an interpretation relative to the full 
flow: orbits which come close enough to triple collision feature an arbitrarily 
large number of binary collision between m 1 and m 2 while leaving a neigh- 
borhood of triple collision. 

One has similar conclusions for the backward orbit through p. Such an orbit 
is either ejected from the origin, or else approaches and leaves a neighborhood 
of triple collision in a similar manner to those above. This leads to the 
possibility of orbits close to the collinear homothetic orbit which both begin and 
end in triple coll is ion-i .e ,  additional ejection-collision orbits. These orbits of 
course must begin and end at the equilateral triangle central configurations, 
not at the collinear configurations. Their existence may be verified as follows. 

Assume m 3 is small enough so that the source has complex eigenvalues. 
Choose a local transversal section S O which contains a smooth piece of the zero 
velocity curve in the energy surface, containing the point q at the intersection of 
the collinear homothetic orbit and the zero velocity curve. Our results above 
imply that C(O• are both smooth spirals in S O converging to q. each of 
these spirals must therefore intersect the zero velocity curve infinitely often. By 
symmetry, any such point of intersection must then also lie in E(O• Hence such 
initial conditions lead to ejection-collision orbits. See Fig. 8. 

Observe that, as one of these orbits approaches triple collision, it crosses the 
hyperplane 0 = 0  a large number of times. This implies that x 2 = 0  at each such 
crossing. Hence these ejection-collision orbits feature an oscillation of m 3 
through the center of mass of the binary system. 

We also observe that such an orbit looks almost like a collinear collision 
orbit until just before triple collision when the masses jump into a triangular 
configuration. 

We close with a description of all possible behaviors for an orbit which 
passes close to triple collision with m 3 initially travelling up the y-axis. Let ~ be 
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Zero velocity 
COf've 

s o 

Fig. 8. The intersection of C(O+) and the zero velocity curve in S o 

an orbit  on the triple collision manifold which runs up the lower a rm with 0 = 
- n / 2 .  We will describe non-coll ision orbits close to y. 

There are three main  possibilities for y in the allowable case: 

i. y runs up the a rm with v > 0, 0 = - n / 2 .  
ii. ~ runs up the a rm with v > 0, 0 = + n/2. 

iii. ~ dies in the sink. 

In  each case, nearby orbits behave in dramatical ly  different ways. In case i, m 3 
leaves a ne ighborhood  of  triple collision in the same direction in which it 
arrived, i.e. travelling down the y-axis. Meanwhile,  rn~ and  m 2 travel up the y- 
axis, oscillating in a tight b inary  system with a large number  of  double  
collisions. 

In case ii, the si tuation is exactly opposi te :  m 3 exists up the y-axis and the 
binary system travles down the y-axis, again experiencing binary collisions. 

Case iii is perhaps the mos t  interesting; these are the orbits which we call 
"bill iard shots". On  the approach  to triple collision the "cue-bal l"  m3 races up 
the y-axis while the remaining masses m 1 and m z oscillate in a tight binary pair  
moving  down the y-axis. After passing close to triple collision, m 3 is left 
oscillating rapidly near the center of  mass of  m 1 and m 2, while these masses fly 
apar t  in opposi te  directions along (roughly) the x-axis. 
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Note added in proof 

Since this paper was written C. Simo has studied the behavior of the invariant manifolds on 
the triple collision manifold. He finds that there are, in fact, more possibilities than our allowable 
case 1161. 


