
Inventiones math. 36, 257-274 (1976) Iyl l;ell tio~le$ 
mathematicae 
�9 by Springer-Verlag 1976 

Relations between K 2 and Galois Cohomology 

John Tate (Cambridge, Mass.) 

To Jean-Pierre Serre 

w 1. Introduction 

In this paper we establish a natural isomorphism, for a global field F, between 
K2F and the quotient of the Galois cohomology group HI(F,(Q/Z)(2)) by its 
maximal divisible subgroup. This isomorphism, first conjectured by Lichten- 
baum, is not new; indeed it and some of its consequences have already been used 
by several authors I-4-6, 9, 10, 14, 15] in studying K z of global fields. But so 
far only a sketch of a proof has been published, in [25] together with [24]. Here we 
give the details of that proof, in a slightly simpler arrangement in which no use 
is made of Iwasawa's theory of Z~-extensions. 

The organization of the paper is as follows. In w 2, we review some general 
facts about the continuous cochain cohomology of groups, especially with l-adic 
coefficient modules. The facts are quite well known and elementary but are 
basic for the sequel. Therefore we include a summary of them for the convenience 
of the reader. 

In w 3 we construct, for any field F, and any prime l~: char F, a homomorphism 
h from KzF to H2(F, Zt(2)). The construction of h depends on the description of 
K2F by symbols, i.e., on Matsumoto's theorem. We show that ifa certain auxiliary 
homomorphism h 1 is injective, then Ker h is /-divisible and Coker h has no 
/-torsion. It follows that if the field F satisfies the two conditions (a) that K2F is a 
torsion group with no non-zero divisible subgroup, and (b) that h a is injective 
for F, then h induces an isomorphism from the /-primary part of KzF to the 
torsion subgroup of HZ(F, Zl(2)). Condition (a) is known to hold for a global 
field F; the aim of w167 4 and 5 is to show that condition (b) does also. 

In w 4 we give a criterion for h a to be injective for a field F. To show injectivity 
one can assume F contains the/-th roots of unity, in which case h 1 : K 2F/IK 2F ~ Br~ F 
is a map given by the theory of cyclic algebras. (Br t F is the group of elements 
of order dividing l in the Brauer group of F.) It is an open question whether h 1 
is injective for every field. We show that the injectivity of hi is equivalent to the 
kernel of F ' |  Br z F being generated by the elements of the form a| con- 
tained in it. (Incidentally, the question whether h~ is surjective is the classical 
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one of whether an element of order l in the Brauer group is a product of cyclic 
algebras.) 

In w 5 we show, using class field theory, that our criterion for h 1 to be injective 
is satisfied for a global field F, and the basic isomorphism between K2F and Galois 
cohomology (Theorem (5.4)) follows as indicated above. 

In w 6 we derive some consequences. For a global F containing a primitive 
l-th root  of unity z we show that every element of order l in K2F is of the form 
{z, a} for some aeF',  and that if A denotes the group of aeF" such that {z, a} = 1, 
then A/(F') s is of order l '2+1 where r 2 is the number of complex places of F. We 
also establish the isomorphism mentioned at the beginning of this introduction 
and in addition show that the maximal divisible subgroup of H~(F, (Q/Z)(2)) is 
isomorphic to ((Q/Z)') r2 (where the ' means omit the p-primary component if F 
is a function field of characteristic p). 

This last result, whose statement has nothing to do with K z, is equivalent 
to the fact (Theorem (6.5)) that H~(F, Zz(2)) is a Zcmodule of rank r 2 . In the func- 
tion field case this can easily be proved directly using the fact that q2 is not an 
eigenvalue for Frobenius acting on the Jacobian. (By Weil's theorem those eigen- 
values have absolute value ql/Z.) In the number field case this result is equivalent 
(as indicated in [25]) to the fact that Zt(2 ) does not occur as a submodule of 
Iwasawa's module X = Gal (M/K) (cf. [13]). In the number field case I know of 
no proof of this which does not go back via theorems of Matsumoto and Bass 
to Garland's proof that H2(SL,(OF),R)=O for large n, a proof which involves 
Riemannian geometry and harmonic forms! 

These results are presumably part of a broader picture. Lichtenbaum and 
Quillen conjecture (cf. [15]) that for i=  1, 2 and for n ~  1 the Galois cohomology 
group Hi(F, Zz(n)) is related to  Zt@K2n_iF. On the other hand, one form of 
Leopoldt's conjecture is that H 1 (F, Zt) be isomorphic to Z~ +r~ (of. [13], w 2). 

w 2. Continuous Cochain Cohomology 

In this section we review the basic definitions and properties of the cohomology 
theory which is used in the sequel. Let G be a topological group and M a topolog- 
ical G-module. For  each integer n > 0 we denote by C"(G, M) the group of continuous 
maps of the n-fold product G" into M. One defines homomorphisms 

d, : C'(G, M) --, C"+X(G, M) 

as usual, by 

( d o f ) ( s ) = s f ( . ) - f ( ' )  (where.  is the unique element of G~ 

(d, f )  (s, t) = s f  (t) - f (s t) + f (s), 

(d 2 f )  (s, t, u) = sf(t ,  u ) - f ( s  t, u) +f (s ,  t u ) - f ( s ,  t), etc. 

In this way one gets a complex C'(G, M) whose cohomology groups are denoted 
by H"(G, M). The group H~ M) can be identified with M e via the map f~-~f(.). 

Exact Cohomology Sequence. Suppose 

O--~ L-~  M--~ N--~ O 
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is an exact sequence of topological G-modules such that the topology of L is 
induced by that of M, and such that the map M ~ N has a continuous section, 
this section being just a map, not necessarily a homomorphism.  Then the resulting 
sequence of complexes 

0 -~ C'(G, L) ~ C'(G, M) -~ C'(G, N) ~ 0 

is exact, and we obtain an exact cohomology sequence 

�9 . . - .  H'(G, M) --~ Hr(G, N) ~, Hr§ L) --, Hr+ I(G, M) --~ .... 

Note that this sequence is at our disposal in particular in case L is an open sub- 
module of M and N = M/L is the quotient module, with the quotient topology, 
which is discrete. 

Cup Products. Suppose 

B: M 1 • M2---~ M 

is a continuous G-pairing, i.e., a continuous biadditive map such that (sx~). (sx2)= 
s(x 1 .x2), for x ieMi ,  s~G, where x I .x  2 denotes B(xl,x2).  Then B induces bi- 
additive maps 

CA(G, M1) • Cn(G, M2) --~ cm+n(G, M) 

via the well-known formulas 

( f • g )  (sl . . . . .  s,,+,)= f (sl . . . . .  SA) " S 1 ... Smg(SA+,, ... , SA+,)" 

This "cup-product"  of cochains satisfies the identity 

6 ( f w g ) = ( f f ) ~ 3 g + ( -  1)mf u ( f g )  

and consequently induces pairings 

HA(G, M1) x H"(G, M2) ---+ HA+"(G, M). 

Restriction and Transfer. Let H be a subgroup of G and M a topological G-module. 
Restriction of cochains from G to H gives a homomorphism of complexes C'(G, M) 

C'(H, M) which induces "restriction" homomorphisms 

res: H"(G, M) --~ H"(H, M). 

Restriction commutes with the maps in exact cohomology sequences, and with" 
the cup products. In dimension 0, it is the inclusion MG~--~M H. 

I f H  is open and of finite index in G, as we now suppose, then there is a "transfer" 
homomorphism going in the direction opposite to restriction. Let R be a set of 
representatives of the right cosets of H in G, so that G = U Hr, disjoint union. 

rER 

With the aid of R we define a homomorphism of complexes tR: C'(H, M)-~ C'(G, M) 
as follows: 

(tR f )  (s 1 . . . . .  s,) = ~-~ rol f (rosl r~ - I, rl s2 r21 . . . .  , r,_ l Snr;1), 
r~R 
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where the tieR are determined inductively as functions of r and the given n-tuple 
(s 1 . . . .  , s,)~ G" by 

ro=r,  and ri~Hri_xS i, l<i_<r.  

The homotopy class of t R is independent of R, and so also are the resulting 
"transfer" homomorphisms 

tr: H"(H, M) --~ nn(G, M). 

In dimension 0 the transfer is the trace: M H ~ M  ~ which carries x ~ M  ~ into 
r - t  x. The transfer maps commute with the maps in exact cohomology se- 

r6R 

quences. In relation to the cup-product they satisfy 

t r (xures  y)=(tr x)uy ,  for x~Hm(H, M1), yeH"(G, M2). 

This can be verified by very tedious direct computation. (For our application 
the cases m, n < 1 will suffice.) 

l-Adic Cohomology. Let I be a prime number, Z t the ring of l-adic integers and T 
a topological G-module which, as topological group, is a finitely generated Z c 
module with the natural topology, and on which G operates Zrlinearly. 

(2.1) Proposition. Let Y be a finitely generated Zt-submodule of H~(G, T). The 
quotient group H"(G, T)/Y contains no non-zero subgroup which is l-divisible. 

(A group Z is said to be l-divisible if Z = lZ.) 

Suppose x ie H~(G, T), 0 < i < ~ ,  such that x i -  lx i+ 1 (mod Y) for all i. We must 
show Xo~ Y. Let yj, i <j<m, be a finite set of generators for Y. For each i, let f/ 
be an n-cocycle representing xi, and for each j, let gj be an n-cocycle representing yj. 
Then there are ( n -  1)-cochains h i and elements aij~Z z such that 

f i= l f i+ l  + ~ aijgj+dhi 
j = l  

for each i > 0. Multiplying this equation by l i and summing over i gives 

lifi ~- ~ lifi q- ~ ~" liaij + E lidhi 
i>=O i>=l i>O j = l  i_-->O 

or 

fo = ~, ajgj+dh 
j=l 

with aj= ~ lialj and h=  ~ lihi. The use of infinite sums here is formally justified 
i_~O i>O 

by the fact that T is the inverse limit of its quotient T/l i T and consequently 

C~(G, T)--  lim C~(G, T/liT) 
'-7- 

is a projective limit of modules, each of which is killed by a fixed power of I. 

Corollary. The Zt-module Hn(G, T) is finitely generated if and only if 
Hn(G, T)/IH"(G, T) is finite. 
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Indeed, if the quotient Hn/IH" is finite there is a finitely generated submodule 
Y such that H" = IH" + Y, i.e., such that H"/Y is /-divisible. Then H" = Y by the 
proposition just proved. 

(2.2) Proposition. For each n > 0 there is an exact sequence 

0 ~ lim 1 H n-1 (G, T/l i T) ~ Hn(G, T) --. ~ H"(G, T/l i T) ~ O. 
i i 

Corollary. I f  the groups H "-1 (G, T/liT) are finite for each i, or if the maps 
H"-I(G, T/li+tT)--~H"-'(G, T/liT) are surjective for each i, then we have iso- 
morphisms H"(G, T) -% lira H"(G, T/l i T). 

Let ui: C"(G, T/Ii+IT)-~ C"(G, T/liT) be the canonical map. Since T/liT is 
discrete, this map is surjective for each i. It follows easily that the sequence 

(*) O ~  C"(G, T)-~ [I  C"(G, T/liT) 1-,, I]  C"(6, T/liT)-~O 
i > l  i > l  

is exact, where the map 1 - u  is defined by 

((1 - u )  f ) i=  f i -u i f i+  1 

for f=( f~)e  I-[ C"(G, T/liT). The proposition follows immediately from the long 
i__>l 

exact cohomology sequence associated to the short exact sequence of complexes (.). 

Suppose now that T is torsion free. Tensoring it, over Z~, with the exact 
sequence 0 ~ Z t ~ Qz ~ Ql/Z~ ~ 0 gives an exact sequence 

(**) 0 ~ T---~ V--~ W-* 0 

in which V is a finite-dimensional vector space over Qi, T is an open compact 
subgroup, and W a discrete divisible/-primary torsion group. 

(2.3) Proposition. Suppose G is compact. 7hen, in the exact cohomology sequence 
associated with (**) the kernel of the connecting homomorphism 

6: Hn-a(G, W)--~ Hn(G, T) 

is the maximal divisible subgroup of H n- 1 (G, W), and its image is the torsion sub- 
group of Hn(G, T). 

Since V is a vector space over Qz, so is H n-' (G, V), and its image, Ker 3, is 
therefore divisible. On the other hand, by Proposition (2.1), each divisible sub- 
group of H "-I(G, W) must be in Ker 6. Since G is compact and W discrete, 
a cochain f :  G n- ~ -~ W takes on only a finite set of values, and since W is a torsion 
group, it follows that H n- I(G, W) is a torsion group. Thus the image of 6 is a 
torsion subgroup of Hn(G, T). On the other hand, the image of 6 is the kernel of a 
map to the Qcvector space Hn(G, V) which is torsion free, and consequently all 
the torsion in Hn(G, T) must be in Im 6. 

w 3. The l-Adic Symbol 

Let F be a field, F~ a separable algebraic closure of F, and G e = Gal (FJF) the 
Galois group of F~ over F. For each integer m => 1 prime to the characteristic of F, 
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let p,, denote the group of m-th roots of unity in F~. For any field E, let E" denote 
the multiplicative group of E. 

Let l be a prime different from the characteristic of F. For each integer i > 0  
we have a commutative diagram of discrete GF-modules 

, ~ ,  ,F~ " , F ;  , 0  

0 ,ktl,+, ,f~'- l,+' ,f~" --  ,0 

in which the rows are exact. Passing to the inverse limit over i we obtain a sequence 

0---~ Z,(1) ~ li_mm F" ---~ F" ---, 0. 

Since the maps /~,,+, ~#~, are surjective this last sequence is exact, and Z,(1)= 
lim (#l,) is a free Zt-module of rank 1. For integers meZ  we define Gv-modules 
Zl(m ) inductively by 

Zt(0)=Zt,  Zt(m+ 1)=Zl(m ) | Zl(1 ) for m>=0, 
and z, 

Zt (m-  1)=Horn (Z~(1), Zz(m)), for m<0.  

For any (Zl, Gv)-module M and any integer mEZ we put M(m)=M|  Zl(m). 
Zr 

There are canonical isomorphisms M (m) (n) ~- M (m + n). 
As is often done in writing about Galois cohomology, we will write Hr(F, M) 

instead of H'(G F, M) to denote the continuous cochain cohomology groups of 
G F with coefficients in M. Since F~ is discrete, the exact sequence above gives 
rise to an associated cohomology sequence and in particular to a homomorphism 

d r : F'=H~ F;)--~H'(F, Z~(1)). 

(3.1) Theorem. There exists a unique homomorphism 

h =h v : KzF--~ H2(F, Zt(2)) 

such that 

h({a,b})=dvaudvb 

for each pair of elements a and b in F'. 

Let (a, b)v=dvawdvb. To prove the theorem we have to show that (,)v is a 
"symbol",  i.e., is bilinear and satisfies 

(*) (a, 1 - a ) v = 0 ,  if a~F', a+-l. 

The bilinearity is obvious from the definition. To prove (.) we let D r denote the 
subgroup of HZ(F, ZI(2)) which is generated by the elements of the form 
TrE/v(a, 1--a)E, where E is any finite extension of F in Fs, and a~E', a4:l, and 
where trE/v denotes the cohomological transfer from G E to G v. To prove the 
theorem it suffices to show Dr=O, and by Proposition 2.1 (with the Y in that 
proposition equal to 0) it is enough for this to show Dr is/-diMsible. 
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Let acE' ,  a+  1, where ElF is a finite subextension of Fs/F. Let X t - a  =I - [ f i (X)  
i 

with f i (X)  monic  and irreducible in E [ X ] .  For  each i, let a~ be a roo t  of  f t ( X  ) 
in F s and let Et=E(a~). Then 

1 - a = 1-[ f~ (1 )  = l -  I NE,/~ (1 -at). 
i t 

Hence 

(a, 1 - a)e = (a, 1-I N~,/E (1 -- a~))E = ~ (a, NE,/E (1 -- at))e. 
i i 

By L e m m a  3.2 below we can write this as 

trE, m (a, 1 - a,)~, = Z trE,/E (atz, 1 -- a,)E, = ~ l trE, m (at, 1 -- a)E ' . 
i i i 

Finally, applying try/v and using the transit ivity of the transfer we find that  an 
arb i t ra ry  genera tor  tr~/v(a, 1 - a) e of D r is in lD e. Thus D F is/-divisible as claimed. 

In the p roof  just finished we used for the extensions E~/E the following 
l emma:  

(3.2) Lemma .  Let ElF be a finite subextension of Fs/F. Let aeF" and beE' .  
Then trE/v(a , b)E = (a, NE/~ b)v. 

We mus t  show 

trE/r (d~ a w d E b) = d v a u d v N~/v b. 

This follows f rom the identity 

tr (res ~ w fl) = ~ w tr fl, 

together  with the fact that  d commutes  with restriction and transfer. 

Consider  now the following diagram,  in which E = F(#t), A =Gal(E/F) ,  and 
the maps  are as explained below: 

(#t| ~ _~ K2 F t , K2 F , K z F / I K 2 F  

1 (3.3) ~ii h h ~ hi 

n~(F,ut| ~ ~ H~(F, Zt(2)) t , H2(F, Zt(2)) --~n2(f,~'| 

, 0  

The  b o t t o m  row is par t  of the exact cohomology  sequence associated with the 
exact sequence 

0 4  Z t ( 2 ) ~  Z~(2)-~ #~| 0. 

The  top row is not  necessarily exact at the left-hand KzF,  but is exact everywhere  
else. We define the h o m o m o r p h i s m  y and the i somorph ism i first in the case 
E = F ,  A =(1), i.e., in the case in which the /-th roots  of  1 are in F. In that  case, 
~/is the h o m o m o r p h i s m  defined by y ( z |  {z, a} for z e #  t, aeF ' ,  and i is defined 
by i(z | a)= z w d 1 a, where dl: F ' ~  H 1 (F, #t) is the connecting h o m o m o r p h i s m  in 
the c o h o m o l o g y  sequence associated with O ~ # t ~ F ~  ~ - - ~ F ~ O .  Since 
HI(F,F~)=O (Hilbert  T h e o r e m  90), the m a p  d x induces an i somorph i sm 
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(Z//Z) | F" = F'/IF" ~ , H 1 (F, #t), whether or not ]/2 C F. When #l = F it follows 
that the map i is an isomorphism 

#t | F" ~ , / a  t | n I (F,/at) = nx (F,/at | 

In the general case y and i are defined by the commutativity of the diagram 

Hl(F,/at|  i (#t| ~ _} (K2F)t 

Hi( E,/at| ~ i~~ (~t| ~ -~ (K2E)z ' 

where )'e and i~ are as described above (/arc E). On the right we are using the 
notation X z for the kernel of l: X--} X. This diagram does define maps y and i, 
and i is an isomorphism, because the outside vertical arrows give isomorphisms 

Hi(F,#z| ~ , Hl (E,# t |  a and (K2F)t ~ , (K2E)~. 

Indeed 1 is prime to the degree [E:F] ,  and hence the following lemma implies 
that those maps have kernel and cokernel equal to 0. 

(3.4) Lemma. Let L/F be a Galois extension of finite degree n with group G. 
Then the kernel and cokernel of the functorial maps 

K2F f , (K2F)  G and HI(F,M) Y , Hi(L,M) ~ 

(for any integer i and any topological G-module M )  are killed by n. 

This lemma is an immediate consequence of the existence of a transfer map 
in the opposite direction to f satisfying the identities 

t r ( f ( x ) ) = n x  and f ( t r (y ) )=  ~ s y .  
s~G 

The cohomological transfer is discussed in w 2; for the Kz-transfer see for example 
[17-], w 14. 

The left hand square in diagram (3.3) is commutative. To prove this we can 
and do assume/az C F since, by Lemma (3.4), the map H2(F, Z t (2) )~  H 2 (E, Zt(2)) 
is injective. Let z~/a t and aeF' .  Let ( and ~ denote inverse images of z and a in 
l im F~'. Then h(y(z| is the cohomology class of the cocycle d(ud~t. On the 
ot~--her hand, l( is an element of Zt(1 ) mapping to z under the natural map Z t (1 )~  Pl. 
Consequently 6(i(z| is the class of the cocycle 1-1d( l (udc t )=d(ud~ ,  so 
6 i (z | ~) = hi) (z | ~) as claimed. 

The middle square of (3.3) is obviously commutative, and h 1 is defined so that 
the right square is commutative. It is easy to check that h x is the map which 
carries the class of {a, b} (mod IKzF  ) into d t a u d  x b, where the connecting homo- 
morphism d t is as in the definition of the map i above. 

In stating the next theorem we will use the following notation concerning an 
abelian group A. 

A t . d i  v = the maximal/-divisible subgroup of  A. 

At ,= the  group of elements a~A such t h a t / " a = 0 .  

A {l} = ~)At .= / -pr imary  part of A. 
n = l  
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(3.5) Theorem. (a) The kernel of the map h in diagram (3.3) contains (K2F)l_div, 
and h maps (KEF)z onto H2(F, Zt(2)) I. 

(b) Suppose the map h 1 in diagram (3.3) is injective. Then the kernel of h is 
(KEF)l.div araTl the cokernel of h is l-torsion free. 

Corollary. I f  h 1 is injective then K2F{1 } is the direct sum of its maximal divisible 
subgroup, which is killed by h, and a subgroup which is mapped isomorphically by h 
onto H2(F, Zt(2)) {l}. 

Part (a) of the theorem results from Proposition (2.1) and easy diagram chasing 
with (3.3), using the surjectivity of i and Im TC(KEF)l. Part (b) results on further 
chasing of (3.3), again using the surjectivity of i. 

To derive the corollary from the theorem, note that since Coker h is/-torsion 
free, the image of h contains H2(F, Zt(2)){l}. Let A be the inverse image of that 
group under h. Then h induces an isomorphism A/Al_di v ~~ H2(F, ZI(2)){I}. 
Since an extension of an /-primary torsion group by an/-divisible group splits, 
Al .d i  v is a direct summand of A, and from that the corollary follows immediately. 

w 4. Criteria for the Injectivity of h 1 

For which fields F is the map h 1 = h f  in diagram (3.3) injective? I know of no 
field for which h 1 has been shown to be non-injective, so it is possible that the 
answer is "for all fields". In this section we reduce the question to one on cyclic 
algebras and give criteria which will enable us to prove injectivity for arithmetic 
fields. 

(4.1) Lemma. Let E=F(/h). I f  h~ is injective (resp. bijective) then h~ is injective 
( resp. bijective ). 

Let A = Gal (E/F). The diagram 

K2F/lK2 F --, (K2E/IK2E) ~ 

HI(GF,/h @/~l) ' HI(Ge, P1| 

is obviously commutative. The horizontal arrows can be proved bijective by 
using the transfer maps in the opposite direction, as in the proof of Lemma (3.4), 
and Lemma (4.1) follows immediately. 

For the rest of this section we suppose p~cF. Then there are canonical 
isomorphisms 

HZ(GF, i.h@l.h)~l.tl@H2(Gv,/~l)~/al| Brz F, 

where BrtF denotes the group of elements of order dividing l in the Brauer group 
Br F ~ H 2 (G v, F,'). Viewing h 1 as a map into Pz | Br~ F, we can describe it in terms 
of "cyclic algebras". Let z be a primitive l-th root of 1 in F. For a, beF" let 
(a, b) denote the element of Br~F represented by the central simple "cyclic" 
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algebra Az(a, b) over F defined by 

A~(a,b)=F[~,fl]; at=a, i f=b ,  fl~=z~fl. 

Then (with the appropriate sign convention) we have 

(4.2) hi({a,b})=z|  

This follows for example from a cohomology computation carried out by Serre 
in [21, Ch. XIV, w 12]; see also Weil [26, Ch. IX, w167 3, 4, 5], and Milnor [17, w 15]. 
Our notation A,(a, b) is that of Milnor. 

(4.3) Proposition. For a, beF" the following statements are equivalent: 
(i) {a, b}e lK2F,  

(ii) h,({a,b})=O, (ii)' (a,b)=0, 
(iii) b is a norm from the extension F(al/l). 

It is trivial that (i) implies (ii). The equivalence of (ii) and (ii)' follows from (4.2). 
The equivalence of (ii)' and (iii) is well known (see Milnor (loc. cit.) Theorem 15.7 
or Serre (loc. cit.) Proposition 4 (iii)). To prove (iii) ~ (i), let tr (resp. N) denote 
the K2-transfer (resp. the field-theoretic norm) from F(a TM) to F. Suppose 
f leF(a 1/1) and Nfl=b.  Then 

{a, b} = {a, Nil} =t r  {a, fl} = I tr{a 1/l, fl}el K2F 

as was to be shown. 

Let t (resp. u) be the homomorphism of F' |  onto K2F/IK2F (resp. into 
BrlF ) induced by the bilinear function {a,b} mod lK2F (resp. (a, b)). Clearly 
Ker t is generated by the elements of the form a|  with a + b =  1, and those of 
the form al |  b = l(a | b). Hence Ker t is a subgroup of F ' |  F" which is generated 
by the decomposable elements in it. (By a decomposable element of a tensor 
product we mean one of the form a |  b.) By Proposition (4.3), the decomposable 
elements of Ker t are the same as the decomposable elements of Ker u. Since h~ 
carries {a, b} (mod 1K2) to z | (a, b), the kernel of h I is isomorphic to Ker u/Ker t. 
Hence: 

(4.4) Theorem. I f  I~I~F the kernel of the map h 1 in diagram (3.3) is isomorphic 
to Ker u/(Ker u)', where u: F ' |  F "-~, BrIF is the map given by the cyclic algebra 
symbol (a, b), and where (Ker u)' is the subgroup of Ker u generated by the de- 
composable elements of Ker u. In particular, h 1 is injective if and only if Ker u is 
generated by its decomposable elements. 

Corollary. I f  the cyclic algebra symbol ( , )  satisfies the following two conditions, 
then h 1 is injective: 

(i) Given a ,b ,c ,d~F" such that (a,b)=(c,d), there exist elements x, y6F" 
such that 

(a, b) = (x, b) = (x, y) = (c, y) = (c, d). 

(ii) Given a I, a 2, b l, b2eF" there exist elements c 1, c 2 and d in F" such that 
(al, b l )=(c l ,  d) and (a2, b2)=(c2, d). 
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Indeed suppose these condit ions are satisfied. By (i), if (a, b)=(c,  d) then 

is in (Keru) ' ,  because (a, b) = (x, b) implies that the decomposable  element 

(a/x)| is in Ker u, hence in (Ker u)', and similarly for x |  ( b ) ,  etc. Hence, 

given (i) and (ii), any sum (a 1 |174 of two decomposable  elements in 
F'QF" is congruent  m o d ( K e r  u)' to one decomposable  element (c lc2| ). By 

induction on n it follows that any element x =  s (a~Qb 3 in F'| is congruent  
i=1 

mod(Keru) '  to a decomposable  element x 0. If x ~ K e r u ,  then x o e K e r u  and, 
being decomposable,  is in (Ker u)'. Hence Ker u = ( K e r  u)' as was to be shown. 

Remarks. 1) condit ion (ii) just means that any two /-cyclic algebras over F 
have a common cyclic splitting field F(d~/t), because the algebras over F which 
are split by F(d 1/~) are, as is well known, exactly those in the class (c, d) for some 
c~F'. 

2) Condit ion (i) could obviously be replaced by (i,): Given a, b, c, deF" there 
exist xi, y~F' ,  1 < i < n, such that 

(a, b) = (xl ,  b) = (x 1 , Yx) = (x2, Yl) = (x2, Y2) . . . . .  (x,,  y,) = (c, y,) = (c, d). 

3) For  l =  2, condit ion (i) is always satisfied, even with y = d. Indeed, let D be 
the quaternion algebra over F whose class is (a, b)=(c ,  d). Let D O be the three- 
dimensional subspace of D consisting of the elements with trace 0. This space D O 
carries a non-degenerate  symmetric  bilinear form (~, 13)=�89 (~fl+fl~)~F. To say 
that the class of D is (a, b) jus t  means that there are elements ~, fl~D ~ such that 

_1_/3 (i.e., (~, fl) = 0) and such that ~2 = a and/3 2 = b. Let ~ and/3 be such elements, 
and let 7 and 3 be such that 7 3_ 6 and 7 2 = c, 6 2 = d. Since D O is three-dimensional  
there exists r  in D O such that 4 / / 3  and 3 / 6 .  Put  x = ~  2. Then the class of D 
is (a, b) = (x, b) = (x, d) = (c, d). 

4) In [11], Elman and Lam establish, in case l=2 ,  some remarkable  results 
on the injectivity of our  h / (their gF). For example,  they show that h 1 is injective 
if every element of KzF/2Kz F is a sum of  five generators {a i, bi}. The case l = 2  
seems somewhat  exceptional. Milnor  [16] has shown that in that case K2F/2 K2F 
g~2/ i3  where I r is the augmentat ion ideal of the Witt ring of quadrat ic  forms IF~a t  F , 

over F. 

(4.5) Proposition. I f  BrtF is cyclic, then the conditions (i) and (ii) of the corollary 
to Theorem (4.4) are satisfied, and h 1 is injective. 

For  condit ion (ii) this is obvious. For  condit ion (i) there is no problem if 
BrzF=0 ,  so we may suppose BrtF~Z/1Z and view ( , )  as a bilinear form on the 
vector space F'/(F') t over Z/IZ. We are given (a, b)=(c,  d)~BrlF and must  find 
x,y~F" such that (a,b)=(x,b)=(x,y)=(c,y)=(c,d). Call(a,b)=~=(c,d). 
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If ~ = 0  we can take x = y =  1. Suppose e * 0 .  Then the forms x ~  (x, b) and 
x ~ (x, d) are non-zero. If these forms are either linearly independent of each 
other or equal, then we can take y =d, and find an x such that (x, b)=~ and 
(x, y )=  (x, d)= e. Suppose now that those two non-zero linear forms are dependent 
but unequal. Then 1 . 2  (in harmony with Remark 3) above), so the bilinear 
form ( , )  is alternating (any e in F" is either an l-th power or is the norm of e TM 

from the extension F(el/t); hence (e, e)=0). The forms x~--~ (x, c) and x~--,(x,d) 
are independent of each other because (c, d) :t: 0. Take y = c d. Then (c, y) = (c, d) = e, 
and the linear forms x ~ (x, b) and x ~ (x, y)= (x, c d) are linearly independent, 
so we can solve (x, b) = e = (x, y) as required. 

Examples of fields F with BrtF cyclic are locally compact non-discrete fields. 
Thus h a is injective for these. But it is well known to be surjective as well, hence 
it is bijective. By Lemma (4.1) the same is true if we drop the assumption #~cF.  
Therefore 

Corollary. The map h a of diagram (3.3) is bijective for any locally compact non- 
discrete field F. 

Remark. This corollary also follows from results of Moore; see [18] or Milnor 
[17], appendix. 

w 5. The Main Theorem for Global Fields 

In this section we suppose F is a global field, i.e., an A-field in the sense of [26]. 
For  each place v o f F  we let F~ denote the completion o f F  at v. For ~ B r F  let ~v 
denote the image of ~ in Br Fv. 

(5.1) Theorem. For a global field F the map h 1 in diagram (3.3) is bijective. 

By Lemma (4.1) we may assume F contains a primitive l-th root of unity z, 
and we can then view h a as a mapping to BrzF as in w 4. The surjectivity of h 1 
is well known; it follows from the fact that any element ~eBr~F has a cyclic 
splitting field of degree I. In fact more is t r u e - f o r  any finite set of elements 
~ieBrlF, l<i<__n, there is a common splitting field F(dl/l). (One has only to 
choose d so that F~(d 1/~) splits (~)v for all i and all places v of F, and for this it 
suffices to arrange that d is not an l-th power in F~ for each of the (finite) set of 
places v such that (~i)~* 0 for some i.) Then each ~i is of the form (ci, d). In particular, 
condition (ii) of the corollary to Theorem (4.4) is satisfied. To show h a injective 
by that corollary and thereby complete the proof of Theorem (5.1) we will now 
show condition (i) is satisfied. We are given (a, b)=(c,d)eBrlF and must find 
x, y ~ F such that (a, b) = (x, b) = (x, y) = (c, y) = (c, d). Let ~ = (a, b) = (c, d), and let S 
be the set of places v of F where ~% 4: 0. For each v e S, choose, by Proposition (4.5), 
elements x~, yveFo such that (a, b)o=(x~, b)~=(xv, y,) ,=(c,  y,)~=(c, d)v. From the 
last of these equalities, yJd is a norm from Fv(c ~/~) to F~; say yJd=N~t~, with 
tvsF,(c~/t). Choose teF(c  l/t) such that t/t, is a local l-th power at v for yeS. Put 
y = d N t ,  where N denotes norm from F(c ~/l) to F. Then (c, y)=(c,  d), and (c, y)o= 
(c,y~)v for yeS. We must now find x in F" such that (x ,b )=e  and (x ,y )=e .  By 
the construction of y, these two equations have a local solution xv at the places 
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v ~ S; and for v q~S they have the trivial solution x v = 1. Thus our proof of Theorem 
(5.1) is finished by the following more-or-less well-known lemma, a proof of 
which we include for the convenience of the reader. A different proof in a special 
case can be found in Serre [23], Chapter I I I ,w 2, Theorem 4; I was first made 
aware of the result through an early mimeographed version of that book. 

(5.2) Lemma. Let a t . . . . .  ~, be a finite family of elements of BrlE Let al , ... , a, ~ F'. 
I f  there exists for each place v o f f  an element xveF ~ such that (al, xv)=(ei) ~ for 
each i, then there exists an element x6F" such that (ai, x )=e  i for each i. 

For each place v, let Av denote the subspace of F~/F~ "t generated by the images 
a~, ~ of the a~. The existence of x~ satisfying (al, xv)= (~), implies the existence of 
a character Z~ of A t, such that z~(a~, ~) = inv~(~3v for each i, where invv: Br F~ ~ Q/Z 
is the "invariant"  map. Let Z~ be such a character; we have 1 , = 0  for almost 
all v, so that Z=~Z~ is a character of the product A = I - [ A  ~. Now view A as a 

v v 

compact subgroup of j / j t ,  where J is the idele group of F. The interrelationships 
of global and local class field theory and Kummer theory are expressed by the 
facts that J/J~ is its own Pontrjagin dual with respect to the pairing ({, t / )=  

inv~(~,, t/v)~, and that F'/F "~ is a discrete subgroup of J / f  which is its own 
V 

exact orthogonal with respect to that pairing. Hence, by duality, to find xeF" 
such that (ai, x)= ~i for each i, is the same as to find a character ~ of j / j t  which 
is trivial on F'/F "~ and whose restriction to Av is Z~ for each v, i.e., whose restric- 
tion to A is Z- Such a character ~ exists if and only if X is trivial on A c~(F'/F't). 
Now by construction we have x(ai)=0 for each i (because ~ inv~(ei)v = 0). Thus 

U 

the crux of the matter is to show that Ac~(F'/F "~) is spanned by the a i. Let asF" 
be such that a~EA~ for each v. Then in the field F( .... al/t . . . .  ), a is an l-th power 
locally everywhere, and hence is an l-th power globally. By Kummer theory it 
follows that a is dependent on the a~ mod (F') ~. This completes the proof of the 
lemma. 

Let S be a finite non-empty set of place of F including the archimedean ones. 
Let 0 s denote the ring of S-integers in F, i.e., the ring of all a e F such that v(a)~ 0 
for each place yeS. For  each non-archimedean place v of F let k(v) denote the 
residue field of v, and let d~: KzF  ~ k(v)" be the homomorphism given by the 
" tame symbol" at v (cf. e.g. [17], p. 98). The maps d~ for yeS taken together give 
the map d s in the following exact sequence 

(5.3) O--~ KzOs--~ K2 F dS Hk(v ) ._ .O ,  
yeS 

where denotes direct sum. The map d s is surjective by a theorem of Moore [18] 
(see also [17], and [8]). Bass [1] showed that Ker d s is the image of g 2 0 s ,  
enabling Garland [12] to prove the finiteness of Ker d s in the number field case. 
In the function field case Ker d s was shown finite of order prime to p = char F 
by Bass-Tate [3]. Quillen [19] obtained (5.3) as a part of an infinite exact 
sequence of "localization" which showed (because Kz(k(v))=O ) that K 2 0  s is 
isomorphic to Ker d s. In what follows we don't  make any use of Quillen's theorem 
other than to interpret results about Ker d s as results about K E O s ,  the reader 
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who is unfamiliar with it can for the purposes of the present discussion interpret 
K 2 0  s as a notation for Ker d s. 

What is essential for us is the finiteness of Ker d s. It shows that K2F is an 
extension (5.3) of a sum of finite cyclic groups by a finite group. Hence K2F is 
a torsion group with no non-zero divisible subgroup. Putting this fact together 
with Theorem (5.1) and Theorem (3.5) (or its corollary) we find 

(5.4) Theorem. For a global field F the map h of Theorem (3.1) induces an iso- 
morphism from the l-primary part of K2F onto the torsion subgroup of HE(F, Zl(2)). 

Since KEF is the sum of its /-primary parts for/=#char F this theorem gives 
a cohomological description of KzF. 

w Applications 

Throughout  this section F is a global field. 

(6.1) Theorem. The top row of diagram (3.3) is exact, i.e., the image of the map 7 
in diagram (3.3) is (KEF)I. In particular, if F contains a primitive l-th root of unity z, 
then every element of order l in KEF is of the form {z, a} for some a~F'. 

This follows immediately from the injectivity of h, the surjectivity of i, and 
the exactness of the bottom row of the commutative diagram (3.3). 

(6.2) Theorem. Let S be a finite non-empty set of places of F containing the 
archimedean ones and the ones above l in the number field case. Let S c denote the 
set of complex places of F. Suppose I~ t c F. Then there is a natural exact sequence 

O_, #~| K2Os/lK20s h~,( LI #z)O --~0, 
yeS- Sc 

where (LI #l)o denotes the subgroup of the direct sum consisting of the elements 
z=(zv) such that ~, Zv=0 (writing #t additively). The map h s is that induced by the 
l-th power norm residue symbols ]'or v ~ S - S  c. 

For vq~S the group k(v)" is finite cyclic and we have canonical isomorphisms 
k(v)'/(k(v)') I • ' (k(v)')l ~ ~/h, the first given by raising to the (q-1) / l  power, 
q = Ik(v)t, and the second by choosing the root of unity in F representing a residue 
class of order l. Thus from (5.3) we derive an exact sequence which is the top 
row in the following commutative diagram 

(K2F)I .aS ' [ j  #l 
~ l yeS 

I~z| ~ Ilz| 

' K2Os/IK20s ~ K2F/IK2F- -~  LI th 

hi I pr 

#, | Br I F ~ ( LI pt)o 
veSt 

, 0  

In the left hand square, I s = L[ z denotes the group of fractional ideals of 0 s. 
yeS 

The square commutes because, for z e p  z and aeF,  we have by definition of the 
tame symbol (dST(z | a)) v = d v {z, a} = z v~"). Since 7 is surjective (Theorem (5.1)), 
the cokernel of d s is the same as that of the arrow below it. In view of the exact 
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sequence F' -~  l s ~  Pic Os-~ 0, this cokernel is ~t| PicOs. On the other hand, 
using the isomorphism h a (Theorem (5.1)) and the theory of the Brauer group 
to replace KzF/ lK2F  by ( LI ~tz)0, as indicated on the right of the above diagram, 

vCSv 
we see that the map of K20  s into K2F/1K2F gets replaced by the map h s given 
by the l-th power norm residue symbols, and that its image is the kernel of the 
projection map pr in our diagram. The theorem follows, by the exactness of the 
horizontal row. 

(6.3) Theorem. Let r 2 be the number of complex places of F. Let e = l  if 
H~ pl| i.e., if [F(~t/): F ] < 2 ,  and let ~=0 otherwise. Then the kernel of 
the map 7 in diagram (3.3) is an elementary abelian group of order I r2+`. In particular, 
if F contains a primitive l-th root of unity z, and if A is the group of elements aeF" 
such that {z,a}=0, then (A: (F')l)=l r2+l. 

Suppose first that # t c F .  Let S be a finite set of primes as in Theorem (6.2), 
and large enough so that Pic Os=O (Pic 0 s of order prime to 1 would suffice). 
Extending the diagram used in proving Theorem (6.2) to the left we obtain an 
exact commutative diagram 

0 , (K2Os)  l ' ( K z F ) I - - - - - ~  ]_[Pl ,0 
~ ~ s  

ys ] ~i 

i I 
0 , ~l|174174 ,0  

which shows that Ker 7 = Ker yS, and that 7 s is surjective because 7 is (Theorem (6.1)). 
Hence there is an exact sequence 

(*) O--~ Ker 7--~ #l| 

The theorem for F containing #~ follows readily, for by the S-unit theorem pz| s 
has order l s, where s is the number of places in S, and on the other hand (K2Os) t 
has the same order as K2Os/IK20 s which is l . . . .  -t  by Theorem (6.2). However, 
to be able to treat later the case p~r  we must refine that argument, working 
with a Grothendieck group rather than just with group orders, to be able to 
make a Galois descent. 

Suppose G is a group of automorphisms of F and suppose we have chosen 
an S which is stable under G. Then our diagrams are diagrams of G-modules 
and G-homomorphisms. Let 9)1G denote the category of finite G-modules and for 
Meg)IG, let [M] denote the corresponding element in the Grothendieck group 
of ~G- 

(6.4) Lemma. In the Grothendieck group of 9)l a we have 

(a) [~,| = [~,| + [(H/~,)0], 
YES 

(b) [(KzOs)~]=[{ H /~,)o], 
ve S - Sc 

(c) [Ke r  7] = [ # , |  + [ H #,] ,  
v~Se 

where the subscript 0 has the same notational significance as in Theorem (6.2). 
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Let Y denote the quotient of O s by its torsion subgroup #(F). Since Y is Z-free 
we have [#t| = [/zz| + [#z| Y]. Clearly/~l|  By the non- 
vanishing of the regulator, the map ~/---,(log II~/Ilv)v~s maps Y to a lattice in 
LI R spanning the hyperplane (LI R)0. Hence YQR is isomorphic as G-module to 
yes  v~S 

(LI R)o. Since a linear representation of G on a finite vector space over a field of 
v~S 

characteristic zero is determined by its character, it follows that the isomorphism 
holds true if we replace the real field R by the rational field Q. Hence Y contains 
a G-submodule X of finite index isomorphic to (LIz)0 . Since Y/X ,~ lY / lX  it 

v~S 

follows that [ Y/IY] = (X/lX]. Tensoring with #, we conclude [#,| Y] = [(I_[/~1)0] 
v~S 

and (a) follows. To prove (b) we note that [(KaOs)t]=[KaOs/lK2Os] because 
K 2 0  s is finite, and then use Theorem (6.2), recalling that we have chosen S large 
enough so that/~z| P,.'c Os=O. Formula (c) follows from the exact sequence (.) 
on subtracting (b) from (a), and this concludes the proof of the lemma. 

The theorem follows easily from (c). Dropping now the assumption /~tc F, 
we apply the preceding to the field F' =F(p~) with G = G a l  (F'/F). Since G is of 
order prime to l, the functor M~--~M a is exact on the category of G-modules 
of /-power order. Hence Ker yF=(Ker 7r,) G. We have (#z|176176 #z| 
Hence, by part (c) of the lemma, we will be done if w e  show that ( LI/~t) a = El/~,, 

veS~ v~Sc 

where S c (resp. S'c) denotes the set of complex places of F (resp. of F'). If l=  2 we 
have G=(1) and F = F '  and there is nothing to prove. If l~:2, then we have 
LI/~1 ~ ( LI (Fv)')z, where So~ is the set of all archimedean primes of F, and the 

vESt v~Soo 

claim follows for example from the fact that F | 1 7 4  6, or that the ideles 
of F are the ideles of F' fixed by G. This concludes the proof of Theorem (6.3). 

(6.5) Theorem. We have 

H 1 (F, Z,(2)) ~ Z~ 2 x (Z/lmZ), 

where m is the largest integer ~ 0  such that F(12tm ) is contained in a composite of 
quadratic extensions ofF.  

Let X = H 1 (F, Zt(2)) for short. The quotient X/ lX  is isomorphic to the kernel 
of the map fi in diagram (3.3), and since h is injective Ker 6 is isomorphic to Ker 7. 
By the Theorem (6.3) X / I X  is finite, of order l '2 § with e = 0 or 1. By the corollary 
to Proposition (2.1), X is a finitely generated Zcmodule. To conclude the proof 
we must show that the torsion part of X is 0 if e=0, i.e., if H~174 and 
is cyclic of order/m otherwise. But this is clear because, by Proposition (2.3), the 
torsion subgroup of X is the isomorphic image of H~ (QJZz)(2)). 

Corollary. H 1 (F, Qt(2)) is a vector space of dimension r 2 over Ql and the divisible 
part of  H 1 (F, (QI/Zt)(2)) is isomorphic to (QJZt) "2. 

Indeed that divisible part is a torsion group, and by Proposition (2.3), is the 
image of H 1 (F, Q~(2)) by a map whose kernel is X/Xto~ ~ Z'l ~. 

Let (Q/Z)(m) denote the direct sum, over all primes /4:char F, of the G F- 
modules (QJZ/)(m). 
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(6.6) Theorem. There exists a unique homomorphism g = gr such that the following 
diagram is commutative for each prime l ~: char F. 

H'(F,(Q/Z)(2)) * , K2F 

H 1 (F, (Q,/Zz)(2)) a , H 2(F, Z/(2)) .  

The homomorphism g is surjective. Its kernel is the divisible part of H 1 (F, (Q/Z)(2)) 
and is isomorphic to ((Q/Z)(0)) r2. In particular, g is an isomorphism if F is a function 
field or a totally real number field. 

By Proposi t ion (2.3), for each l, the image of 6 is the torsion part  of the H 2, 
which is isomorphic  to the / -p r imary  part  of K2F by h, and the kernel of 6 is the 
divisible part  of H t (F, (QJZ~)(2)), which is isomorphic to (QJZ~) r2 by the corollary 
above. The theorem now follows because for discrete coefficient modules  the 
functor H~(F, ) commutes  with direct sums (cf. e.g. [22], p. I-9). 

Corollary. Let L be a (possibly infinite) algebraic extension of a global field. 
There exists a unique homomorphism g such that the following diagram is commutative 
for each global subfield F of L, where the vertical arrows are the functorial maps 

H'  (F, (Q/Z) (2)) g~ , K2F 

HI (C, (Q/Z) (2)) ~ ,K2L. 

The map g is surjective and its kernel is the union, over all global subfields F of L, 
of the images in Hi(L, (Q/Z)(2)) of the divisible parts of Hi(F, (Q/Z)(2)). In parti- 
cular, g is an isomorphism if L is a function field or a totally real number field. 

This follows immediately because both functors F~--~K2F and F~-~H 1 (F, (Q/Z)(2)) 
commute  with direct limits. 

Remark. It was Lich tenbaum who first conjectured the existence of the map g. 
It would be interesting to have a direct definition of it. When L contains the group 
# of all roots  of unity then g is easily described. We have then 

H 1 (F, (Q/Z) (2)) =-~mlim H 1 (F,/~m| = lim (/~,, | H t (F, #m)) 

= lim (#, , |  = /~ |  

and with that identification the map g takes z |  to {z, a}. Using this after ad- 
joining the algebraic closure of the constant  field, it is easy to get the description 
of K2F for a global function field F which is given in [2], w 8. 
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