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Introduction 

Let G be a connected reductive algebraic group over the finite field k~-IFq, and 
let g be its Lie algebra. Assume, for simplicity, that there is a "Killing form" B 
on g, i.e. a G-invariant non-degenerate symmetric bilinear form which is defined 
over k. Denote by F the Frobenius morphism. Let ~9 be a nontrivial character of 
the additive group of k, with values in a field of characteristic 0. In this paper we 
study trigonometric sums of the form 

S6(A,A')= ~ O(B(A,X)), 
X ~ O ( A ' )  F 

where A and A' are in the finite Lie algebra g~ of fixed points of F and O(A') is 
the G-orbit of A' under adjoint action. We are interested, in particular, in the 
case that A is nilpotent and A' strongly regular (i.e. its centralizer in G is a maximal 
torus). The corresponding trigonometric sums were introduced in [25] and it 
was shown there that if G = GL, they are very closely related to the Green poly- 
nomials of GL,, which govern the character theory of GL,(k). In fact, if G = GL, 
or if G is semisimple and if the characteristic p of k is sufficiently good, there is a 
G-equivariant bijection of the unipotent set of G onto the nilpotent set of g, which 
commutes with F [24]. This bijection allows one to pass from nilpotents of gF to 
unipotents of G r. The SG(A, A') then lead to functions on the unipotent set of G r 
which are likely to be related to values of certain irreducible characters of G F on 
the unipotent set. 

Using the results of this paper, D.A.Kazhdan [15] has proved that such a 
relation does indeed exist, and that the SG(A, A') are related to the irreducible 
characters of the finite group G r which are constructed by Deligne and Lusztig 
in [10], ifp and q are sufficiently large. 

The results of this paper give, as a complement to those of [10], formulas for 
the values of the irreducible characters of [10] on the unipotents of G r (if p and q 
are large). 

We shall now give a brief review of the contents of the paper. The first section 
contains some results (essentially well-known) about the description of tri- 
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gonometric sums like SG(A, A') via l-adic cohomology. We also compute, as 
an example and for later use, the SG(A, A') for G =  GL 2. No. 2 deals with alge- 
braic questions. Since a "Killing form" does not always exist, we have preferred 
to avoid an identification of 9 with its dual vector space g' via such a form, working 
instead directly with g'. We then require a number of results about ~', in particular 
about the existence of strongly regular elements in 8' and (g,)F. These are established 
in no. 2. 

In no. 3 we take up the trigonometric sums SG(A, A') in the setting of the 
previous paragraph. We take A'~(g') r strongly regular and A~g F arbitrary. 
The main result 3.15 of this section is a reduction theorem (proved by cohomologi- 
cal methods). Let A = A~ + A, be the Jordan decomposition of A and H the con- 
nected centralizer of A~. Then 3.15 reduces the determination of SG(A, A') to that 
of the Sn(A,,, A'). This result is similar to [10, Th. 4.2]. 

No. 4 deals with the S~ A') for nilpotent A. The centralizer T of A' is a 
maximal torus of G which is defined over k. Let W be the Weyl group of T. If B 
is a Borel subgroup of G containing T there is we W such that FB=w. B. Let 
~A be the variety of Borel subgroups of G whose Lie algebra contains A. The main 
result 4.4 of no. 4 is that there exists a graded representation r* of W on the/-adic 
cohomology of ~a  with constant coefficients, such that SG(A, A') is given (up to a 
constant) by the alternating sum of the traces of the F*r~(w) on the cohomology 
groups H i ( ~ ) .  It follows, in particular, that SG(A, A') depends only on the cen- 
tralizer T of A'. 

Using the last fact, we define in no. 5 Green functions QT, G, which are func- 
tions on the nilpotent set of gF indexed by (Gr-conjugacy classes of) maximal 
tori of G defined over k. Under some restrictions on p and q, we prove that they 
satisfy orthogonality relations (see 5.6). By Kazhdan's results these Green functions 
can be connected with the Green functions of [10, no. 4]. 

As a consequence of the results of no. 4 and no. 5 we obtain in no. 6 a realiza- 
tion of the irreducible representations of the Weyl group W of G. To do this we 
study the behaviour of the QT,~ for large q. The results are as follows. Assume p 
sufficiently large. Fix a nilpotent A~g, let Z~(A) be its centralizer and C(A) the 
quotient of Z~(A) by its identity component. We have e(A) = dim ~A = 1(dim ZG(A )- 
rank G). 

There is a representation s of C(A) in H2etA~(~a): it is the permutation re- 
presentation defined by the action of C(A) on the irreducible components of ~a  
of dimension e(A). The results of no. 5 give a representation of W in Hzeta)(~a) , 
which turns out to commute with s. We prove that C(A) x W acts irreducibly in 
the non-zero isotypic subspaces of s and if A runs through a set of representatives 
of the nilpotent G-orbits in g, then each irreducible representation of Wis obtained 
in a unique manner (see 6.10). A reduction argument then gives a similar state- 
ment in characteristic 0 (6.14). It would be interesting to have a more direct 
proof of such results over C. 

In the last section we discuss a number of examples and special cases. 

It will be clear from the preceding that / -adic  cohomology provides the key 
to the nontrivial results of this paper. I am greatly indebted to P. Deligne, who 
showed me (in a letter of November, 1973) how to use this key, by determining 
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the Sa(A, A') for A and A' strongly regular. The method used in no. 3 and no. 4 is 
due to Deligne. It is a pleasure to thank him for his help and interest. 

Part of the work of this paper was done during visits to the Institut des Hautes 
Etudes Scientifiques in 1973 and 1975. I want to thank the I.H.E.S. for its hospitality. 

Some Notations. If S is a finite set, then ISI denotes its cardinal number. If G is 
a group then ZG( ) and NG( ) denote centralizers and normalizers. 

Algebraic varieties and algebraic groups are taken in the sense of [3]. An 
algebraic variety V over the field k is identified with its set V(k) of f~-rational 
points, k an algebraic closure of k. If k is finite, and F the corresponding Frobenius 
morphism of V then the finite set of fixed points of F on V(i.e. the set of k-rational 
points V(k)) is written V F. 

The Lie algebra of an algebraic group G .. . .  is written with the corresponding 
gothic letter 9, --- 

A graded module @M i is written M* (since these usually come from coho- 
mology, we use superscripts); similarly for graded sheaves. A homomorphism 
of graded objects is denoted f*  = (fl). However, F* always denotes a cohomology 
homomorphism defined by a Frobenius morphism. 

1. Trigonometric Sums 

1.1. Let k be a finite field with q elements, of characteristic p. Denote by k an 
algebraic closure of k and by F the Frobenius automorphism x~-~x q of k. 

Let 14= p be a prime number. Denote by E an algebraic extension of the field 
~ of l-adic numbers, which contains the p-th roots of unity. We fix a nontrivial 
character ~: k --~ E* of the additive group of k. 

1.2. Let A" be n-dimensional affine space over k. Let V be a k-subvariety of 
A n and P a polynomial function on A n, defined over k. Denote by Ye the sub- 
variety of A t x V formed by the (x, v) with x q -  x = P(v). 

If a6k, the k-rational points of Ye+, are the (x, v) with x6k,  v6 V ~ (the fixed 
point set of F in V) and P(v)= - a .  The additive group k acts on Yp, the action 
being given by 

z(a) (x, v) = (x + a, v), 

for aek. Fix aek and let bek  be such that bq-b=a .  Then f :  (x, v)~--,(x + b, v) 
defines an isomorphism (over k) of Ye onto Yp+, and we have 

F.  f = f .  z(a). F. (1) 

1.3. We have 

~b(P(v))=q-' Z ~b(-a) [ ypr+.[ 
t )EV F ~/Ek 

and by a result of Grothendieck [11] the number of k-rational points [ Y~+.[ is 
given by 

[ Y~+~[ = ~ ( -  I) i Tr (F*, H~(Yp+~, E)), 
i>=o 
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where F* is the homomorphism induced by F in the /-adic cohomology with 
proper support and values in the constant sheaf E. It follows from (1) that (z(a)* 
denoting the induced homomorphism) 

Tr (F*, H~ ( Ye + a, E)) = Tr (F* T (a) i, H~ ( Y,, E)), 
whence 

Y" ~b(P(v))= q-1 ~ (_ 1)i ~ ~O(- a) Tr (F* r(a)', H~(Y,, E)). (2) 
v ~  V r" i >= O a e k  

Let H~(Ye, E)~ be the subspace of H~(Ye, E) formed by the elements x such that 

~(a)  i x = ~ ( a )  x ,  

for all ask. It is an F*-stable subspace. Then (2) can be rewritten as 

~. ~b(P(v))= ~ ( -  1)' Tr (F*, H~(Yp, E)~,), (3) 
v ~ V  F i >= O 

The cohomological interpretation of trigonometric sums given by (3) is equiv- 
alent to the one given in [9, no. 8]. Let rt: Y,-~ V be the projection. The direct 
image sheaf nrE decomposes into a direct sum of locally constant sheaves ~ on 
V, ~b running through Horn(k, E*) and we have 

H~(Yp, E)~,~ H~(V, Sa~). 

The cohomology groups on the right-hand side are the ones used in [loc.cit.]. 
1.4. In this paper we are interested in the trigonometric sums figuring in (3) 

in a particular situation. 
Let G be a connected reductive linear algebraic group over k. Let g be the 

Lie algebra of G and g' its vector space dual. Both 9 and 9' are viewed as affine 
spaces defined over k. Let ( , )  denote the canonical pairing of 9 and 9'. 

Denote by Ad and Ad' the adjoint representations of G in g and its con- 
tragredient, respectively. Both are defined over k. If A is an element of 9 or 9' we 
denote by O (A) its G-orbit (for Ad or Ad'). 

Fix elements A~9 F and A'~(g') F. The particular situation of the paper is 
that where A"=g ' ,  V=O(A') and P(X')=(A,X') .  In that situation we denote 
the Yp of 1.2 by YA, A' or Y~A'. In this case the trigonometric sum of(3) is 

Y~ r X')). 
X '  ~ O ( A ' ) F  

We denote it by S(A, A') or S~(A, A'). 

1.5. Example. If G = GL 2 these sums can easily be computed. Then g = 912 , the 
Lie algebra of all 2 x 2-matrices and 9' can be identified with 9 via the pairing 
(X,X')~--,Tr(XX'). Let A'~(9') F be a noncentral semisimple element. Its cen- 
tralizer is a maximal k-torus T in G. Let t be its Lie algebra and r ( =  1, 2) its 
k-rank. 

1.6. Lemma. (i) If  A is a noncentral semisimple element of ge then 

S(A, A ' )=(-  1)'q ~ ~k ((B, A')), 
B 

the sum being taken over the elements of t r which are GF-conjugate to A; 
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(ii) If  A 4=0 is nilpotent then 

S(A, A')=(- 1)'q. 

There are a, ~ e k such that 

o+__{(: 
If A = ( ~  bd)then 

S(A, A')= F. 
eEk 

where n e is the number of solutions in k 4 of 

x t - y z = ~  

x+t=a  
ax+cy+bz+dt=e 

These numbers can easily be computed, and the statement of 1.6 emerges. 
If p + 2  a similar result is true for SL 2, as follows from the fact that then gl 2 

is the direct sum of ~ 12 and its center. 

2. Strongly Regular Elements in the Dual of a Lie Algebra 

2.1. The notations are as in 1.4. However, in most of this section k may be any 
field. Let T be a maximal torus of G (not necessarily defined over k). Let q~ be 
the root system of (G, T). For  each ~eq~ there is a 1-parameter subgroup U~c G, 
let X, eg be a nonzero tangent vector in its Lie algebra. 

W= W(T)=N6(T)/T denotes the corresponding Weyl group. If we IV, then 
nweN~(T ) denotes a representative. 

We denote by t' the subspace of g' orthogonal to all X, (ae~).  From the 
decomposition 

g=t+ Zi, x= 

it is clear that t' can be viewed as the dual of t. We call t' a toral subspace of 9'. 
Two such subspaces are conjugate by an element of Ad'(G). An element of 9' is 
semisimple if it lies in a toral subspace. (It should be remarked at this point that 
there is a Jordan decomposition theory for g', due to Kac and Weisfeiler [14]. 
We shall not need it here.) 

If X ' e  g', its centralizer ZG (X') in G is 

Z~ (X') = {x e GlAd'  (x) X' = X'} 

and its connected centralizer is the identity component of that group. A semi- 
simple element of g' is regular if its connected centralizer is a maximal torus and 
strongly regular if its centralizer is a maximal torus. As we shall make use of 
strongly regular elements in the sequel, a discussion of their properties is needed. 
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2.2. First some formulas. For  0t~q~ let x, be an isomorphism of the additive 
group onto U,. Its differential dx, is a nonzero linear map of/r into g and we 
assume that dx,(1)=X,. We also assume the x, to be such that for t4:0 

w~(t) = x~(t)x_~(- t-X)x~(t) 

normalizes T. Put H~=[X~,X~].  Define elements X'ing' by 

(t,x',)=0, 
and define H'~t '  by (H, H'~)=da(H), if H~t.  Then (Ha, H'~)=2. 

We have the following formulas for the action of G on g': 

Ad'x~(t)A' = A ' - t ( n ~ ,  A')X'~ (A'~t'), 

Ad' x~(t)X'_~= X'_~+tH'~-t2 X'~, (1) 

Ad'x~(t)Xp = X ~ +  Zcitixfl+i~ (fl:J5--00, 
i>=l 

where the c i of the last formula are in the prime field. These formulas are straight- 
forward consequences of well-known ones for the adjoint representation. We 
find from (1) 

Ad'ws(t)A'=A'-(H~,  A')H' s. 

Also, T acts trivially on t'. If w~W, A'~t' write w. A'=Ad(nw)A'. Then the last 
formula reads 

s=. A' = A ' - ( H , ,  A')H',, (2) 

where s ~  Wis the reflection defined by a. 

2.3. Lemma. Let A' ~t'. Then Z~(A') is generated by T, the U, with (Ha, A') =0,  
and the nw with w. A'=A'. 

Fix a Borel subgroup B ~  T. It defines a set of positive roots (b +, and the U s 
with a > 0  generate the unipotent radical U of B. If we W, let Uwc U be the sub- 
group generated by the U s with a>0 ,  wa<O. 

Now let g~G, Ad'(g)A'=A'.  By Bruhat's lemma we can write g=b-lnw u, 
with b~B, u~ Uw. So 

Ad' (nw u n w 1) (w. A') = Ad' (b) A'. 

The left-hand side is of the form w. A' + y '  u ,X  s and the right-hand side is of 
0t<0 

the form A'+ ~, v,X~, as follows from (1). Consequently, we have w.A '=  
a>0 

Ad' (u) A' = Ad' (b) A'. Since T lies in Z G (A'), we have that B c~ Z~ (A') is generated 
by the Us which it contains. The assertion now readily follows. 

2.4. Lemma. A'6t '  is strongly regular if and only if no element w#: l of W 
fixes A'. 

This is a consequence of 2.3, using (2). 

2.5. Proposition. (i) I f  p 4:2 then g' contains strongly regular elements; 
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(ii) (p=2, G quasi-simple). I f  g' does not contain strongly regular elements 
then G is either of type B l (1>_2), Cl, D2z , E7, E8, F4, G2 (i.e. one of the types 
whose Weyl group contains - 1 )  or G is isomorphic to S0(4l+2)  for some l> 1. 

If g' does not contain strongly regular elements then by 2.4 some w:t: 1 acts 
trivially on g'. We now use the following lemma. For part (i) of it see e.g. [22, 
p. 210] and part (ii) is a direct consequence of (i). 

2.6. Lemma. Let F be a finite group of linear transformations of a real vector 
space V, fixing a lattice L. Let 1 be a prime number and let ~ be the transformation 
of L/l L induced by ? ~ F. 

(i) I f  T+ 1, ~= 1, then 1=2 and the order of 7 is a power of 2; 
(ii) If  the kernel A of the reduction map ~F-~ is nontrivial it is a normal 

2-subgroup A of F. The isotypic subspaces of V for d are permuted by the elements 
ofF.  

The character group X of T is a Iv-module and there is a Iv-equivariant 
isomorphism ~b: X | ~ , t', with 

(A, c~(~| x)) = xd2t(A). 

So the action of W on t' is obtained by extension of the base field from the action 
of Won  X/pX.  We can then apply 2.6, with F = W ,  V = X |  L = X |  l=p 
and 2.5 (i) follows from 2.6 (i). It remaining to prove 2.5 (ii). 

So let p=2,  G quasi-simple. If --1E IV then no strongly regular elements 
exist in t'. Let - 1 ~  PC and assume that (in the previous situation) the group A 
is nontrivial. Now G is of one of the types A~, ])21+1, g6" A Weyl group of type 
Az (i.e. ~Z§ does not contain a nontrivial normal 2-subgroup if l>  l, and neither 
does the Weyl group of type E 6 (which is an extension of 7Z/2 7Z by a simple group 
of order 25920, see e.g. [5, p. 229]). A Weyl group of type D2/+l is a semi-direct 
product ~2l+1 "(7~/27~) 2/. We then must have d c(Z/27Z) 21. Using 2.6 (ii) it 
follows that we have equality. The assertion for this type can now be checked 
by looking at the 3 possible actions of IV on X. 

2.7. Lemma. Let f :  G-* G 1 be a separable morphism, whose kernel is central. 
I f  A' eg' 1 is strongly regular then so is (df)' A' ~g'. 

(dr)' is the dual of df: g -* gl. Since f is separable, df is surjective and (dr)' 
injective. Let f T =  T 1. We identify the Weyl group of T 1 in G 1 with IV. We may 
assume A'~t~. Then w. (df) 'A'=(df) 'A'  implies w. A'=A' ,  by the injectivity of 
d]". This proves the assertion. 

Let tJ be the adjoint group of G. It is characterized by the following properties: 
d is a semisimple adjoint group, there is a surjective morphism n: G -* G whose 
scheme-theoretic kernel is central and which defines an isomorphism of the 
unipotent radical of any Borel subgroup onto its image. 

2.8. Lemma. There is a strongly regular element A'e~' such that (dn)'A' is 
also strongly regular if and only if either p is odd and �9 has no components of type 
A2, in case p=3;  or if p = 2  and G has only irreducible components of type A I 
(l :t: 1, 3) and E 6 . 
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Passing to the quotient of G by its connected center and using 2.7, we may 
assume that G is semisimple. It suffices to deal with the case that G is moreover 
simply connected, and then we may also assume G to be quasi-simple. 

The character group of T is isomorphic to the weight lattice P of the root 
system 4. Let Q c P be the root lattice. Putting n T =  T we have t '~_P| t' 
-~Q| and (dn)' is defined by the injection Q ~  P. It follows that an A' as 
required does not exist if and only if there is we W-{ 1 }  such that the image I 
of Q| in P|  is fixed elementwise by w. First let ~ be of type A t. By [5, p. 251] 
we have that p|162 (f~ being imbedded diagonally) and that I is the 
image of the subspace of ic z+l formed by the vectors with coordinate sum 0. 
The w e W  fixing all of I then correspond to the a e ~ t +  1 such that 

Xa(1)  - - X  1 = . . .  = X a ( l + l )  - -  X l +  1 , 

for all x iek with x l + . . . + x t + ~ = 0 .  If a has an orbit of length 1 and 1>i  this 
implies a = 1. The same is true if a has an orbit of length > 2 and l > 2 or if l > 3. 
It follows that we can have ~ 4:1 in only 3 cases: p = 2 and l = 1, 3 or p = 3 and 
I= 2. This proves the assertion for type A t. By 2.7 we need only discuss the cases 
where n is not separable. If p is odd, there remains only the c a s e  E 6 (p  = 3). The 
elements of W fixing I form a normal subgroup. If it is nontrivial, it is either W 
itself or has index 2 (by what we recalled in the proof of 2.6), so it contains all 
products of an even number of reflections of W. Since, as is easily seen, there 
is a product of 2 reflections of W which does not fix all of I, the assertion of 2.8 
follows for odd p. 

If p = 2, it follows from 2.5 (ii) that the required A' can only exist if G is of 
type A~ (l :# 1, 3) o r  E 6 . By what we saw above, A' does indeed exist in these cases. 
This concludes the proof. 

We now assume again that k-IF~ is finite. 

2.9. Lemma. Assume that T is defined over k. 
(i) I f  t' contains strongly regular elements and q >[WI then (t') F contains strongly 

regular elements; 
(ii) Let n: G--+ (1 be the morphism onto the adjoint group, and let n T =  T. I f  

t' contains an strongly regular element whose image in t' is strongly regular and 
q=>21WI then (~,)e contains such elements. 

By 2.4 the strongly regular elements of t' are those lying outside ( IWI-1)  
linear subspaces of t'. The number of non strongly regular elements of (t') r is 
thus ~-~(]Wl-1)q dimT-1. If q>lWI  this is less than I(t')rl, which proves (i). The 
proof of (ii) is similar. 

From the preceding results one deduces conditions for the existence of 
strongly regular elements in (g,)F. For  example, such elements exist if p 4:2 and 
q > l W I  (by 2.5 (i) and 2.9 (i)). 

Finally, some odds and ends about strongly regular elements. Let T be 
F-stable, let A'~(t') F be strongly regular. Denote by O~(A') (Oa~(A')) the orbit 
of A' under G (resp. GF). Let ~b (g) = Ad'(g) A'. 

2.10. Lemma. (i) ~b induces a k-isomorphism of algebraic varieties G/T ~ 
OG(A'); 

(ii) O~(A') r = O~(A') .  
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~b is an orbit map for the action of T by right translations [3, p. 174]. By 
[loc.cit., 6.7, p. 180] it suffices for the proof of (i) to show that Kerdq~ct .  This 
follows by using that 

(dqb)X~ = - <n~, A'> X'~, 

which is a consequence of (1). Since T is connected we have (G/T)F=GF/T F, 
which implies (ii). 

2.11. Lemma. Let p=2.  Assume that G has semisimple rank 1 and that g' 
contains strongly regular elements. Then there is a separable k-homomorphism of 
G onto GL2, whose kernel is central. 

The adjoint group (~ of G is k-isomorphic to PSL z. It follows that there is an 
F-stable maximal torus T of G whose image in (~ is k-split. Let X = X ( T )  be the 
character group of T, let ___~X be the roots of T. Let w~G r be a representative 
of the nontrivial element of the Weyl group of T. Then w acts on X and inter- 
changes ~ and - ~ ,  moreover ( w - 1 ) X  c Zc~. Since t' contains strongly regular 
elements, w does not act trivially on X / 2 X  (see 2.4), whence ( w - 1 ) X  r 2X and 
~r The sublattice 7 / ~ + K e r ( w - 1 )  of X cannot be X itself, otherwise G was 
isomorphic to the product of PSL 2 and a torus, and ~' could not contain strongly 
regular elements. It follows that the derived group G' of G is k-isomorphic to 
SL2. Let C be the connected center of G and put T ' =  TriG', this is a maximal 
torus of G'. The product morphism G' • C---, G leads to an injection i of X into 
X(T')  • X(C), which is bijective on i-1(0, X(C)). 

There is ~ X ( T ' )  such that ia~ {2o9} • X(C). Put x=i-~(2~o, 0), then w. x - x  

The Frobenius automorphism F~Gal(k/k) acts on all character groups 
and i commutes with F. It follows that F x =  x. Now x and wx define a sublattice 
)(1 of X of rank 2, which is stable for w and F, and contains a. The quotient G~ of G 
by the central k-torus ofG orthogonal to X 1 is a product ofSL 2 and a 1-dimensional 
central torus. G1 cannot be a direct product, because fl' contains strongly regular 
elements. Hence GI ~-GL 2, and the assertion follows. 

In the last result of this section the assumption that k is finite is unnecessary. 

2.12. Lemma. Let A'Et' be strongly regular. Assume that P is a parabolic 
subgroup of G such that A' is orthogonal to the Lie algebra of the unipotent radical 
of P. Then T c P. 

Fix a Borel subgroup B ~ T. There exist a parabolic subgroup Q ~ B and g ~ G 
such that P = ad (g) Q. Let V be the unipotent radical of Q then (t~, Ad (g-l) A') = 0. 
By Bruhat's lemma we can write g-1 =bnwu, where b~B and with u in the sub- 
group Uw of B generated by the U~ with ~ > 0, w a < 0. We then have (o, Ad (nwu) A ' )  
- 0 .  By (1) 

Ad (u) A' = A' + )-" ~,X',, (3) 
~t>O 

w ~ < 0  

with ~ k .  It follows that for each ~ such that r  in (3) we have X _ w ~ o .  By 
familiar properties of the parabolic subsystems of q~ we conclude that for such 
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we have U~=Q. Now write u=  I-I u, with u,~U~. The order of the a occuring 
~ > 0  

w ~ < 0  

in this product is taken to be compatible with decreasing height. It then follows 
by induction on the height of ~, using the strong regularity of A', that for all 
such that u ,4 : l  we have U~,=Q. Consequently, P=ad(g)Q=ad(n~l )Q and 
T ~ P .  

3. The Trigonometric Sums Sa(A, A'): A Reduction Theorem 
3.1. We assume the situation of 1.4. Let T be an F-stable maximal torus of G. 
We use the notations of 2.1. Let t~ be the set of strongly regular elements of t'. 
Assume that t~ 4: ~b (by 2.5 (i) this is so, for example, if p 4: 2). t~ is an irreducible 
k-subvariety of t', stable for the action of the Weyl group W on t'. 

Fix an element A~g F. Let ~ G , r = ~  be the k-subvariety of A 1 x G/Txt'o 
consisting of the (x, gT, A') such that 

x q - x  = (A, Ad' (g) A'). 

The projection it: Y / ~ t ~  is a morphism of k-varieties. By 2.10 (i) the fibre rc-lA ' 
is isomorphic to the variety Y~ a' of 1.4, if A'~ (9,)F. So we have put these varieties, 
with A fixed, in an algebraic family. 

W acts on ~ by 

w. (x, gT, A')= (X, gn,~ ~ T, w. A'), 

and rc commutes with the actions of W on Yr and t'. Also, Facts on W and we have. 
on r 

F.  w = F w .  F. (1) 

Finally, k acts on ~ ,  as in 1.2, and if we let it act trivially on t' then n commutes 
with k. 

3.2. Let ~G be the variety of Borel subgroups of G. It is a projective k-variety 
of dimension d = d(G), where 141 = 2d. Denote by ~ a  G the subvariety of ~G formed 
by the Borel subgroups whose Lie algebra contains A. 

Let A = A ~ + A ,  be the Jordan decomposition of A, then As, A,~g v. Denote 
by H=Z~(As) ~ the connected centralizer of A s. This is a reductive subgroup 
of G, containing a maximal torus of G. 

Fix a Borel subgroup B = T. 

3.3. Proposition. (i) l f  B l ~  then B x n H  is a Borel subgroup of H, whose 
Lie algebra is the intersection b 1 n b; 

(ii) Any B 1 ~ ,  is of the form ad (g) B with z(B0 =(Ad g)- 1Aset;  

(iii) z is a surjective map of ~ onto the set of conjugates of A s in t, its fibers 
are the irreducible components of ~ ; 

(iv) H acts transitively on each irreducible component Z of NGA. The map 
B 1 ~-~B 1 c~ H defines an isomorphism of ~ c~ Z onto ~ ,  ; 

(v) The connected components of ~ are the intersections of ~ with the irre- 
ducible components of ~ . 
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This is similar to [10, Prop. 4.4], where analogous questions are treated for 
semisimple elements of G. The proof of (i) uses an argument like that used in the 
proof of 2.3. The proof of (ii), (iii) and the first part of (iv) is along the lines of that of 
[loc. cit.] and may be omitted. Let Z = ad(H)B1 be an irreducible component 
of NG Then M ~ n Z  consists of the ad(h)B~ with AeAd(h)(bxnb), and the As" 
second point of (iv) follows from (i). 

Finally, (v) follows from the fact that ~ n  is connected [24, p. 379]. An 
3.4 We shall now establish some cohomological results about the varieties 

~r T and Y~A'. We first work over k, and forget for the moment the action of F. 
Let fB the morphism ~ T--,MG X t o with 

fn(x, gT, A') = (ad (g) B, A'). 

If we let k act trivially on ~G x t o then fB commutes with k. Hence k acts on the 
higher direct image sheaves 5~i= R~fB,~ E, where E stands for the constant l-adic 
sheaf defined by the field E of 1.1. IfO is as in 1.1, let ~%~ be the 0-part of S#. Let 
U be the unipotent radical of B, generated by the Us with ~ > 0 (for the order on q0 
defined by B). 

3.5. Lemma. (i) 6Pi=0 /f i+2d;  

(ii) ~-~0 2d is supported by Ma ~ x tO; 

(iii) In a point ~ r 1 6 2  x t o the stalk (~9~ is E. 

Let ~=(ad(g)B,A' )E~Gxt 'o .  The stalk (6ei)~ in the geometric point ~ is 
given by 

(~99')r = H$(fB -t ~, E) 

(see [19, exp. XVII, Prop. 5.2.8] for the corresponding result in 6tale cohomology). 
Now fB-~  consists of the (x, guT, A') with ue U and 

x q - x =  (A,  Ad' (gu) A'). 

Let the X'~ (e e 4) be as in 2.2. By formula (1) of no. 2, 

u ~--, (Ad' (u) - 1) A' 

defines a morphism of U to the subspace b • of g' orthogonal to b, which is spanned 
by the X'~ with e > 0. Since A' is strongly regular, the morphism is bijective. Since 
Ad' (U) A' is closed, by a theorem of Kostant-Rosenlicht (for a proof see [2, p. 474- 
475]), we must have 

Ad' (U) A' = A ' + b  • 

If ~ r  i.e. Ad(g)- lA~b,  it follows that JBC-lr'~Ad~,-- , and that the action 
of an element of k on fB-lr corresponds to a translation in some coordinate. 
Observe that translations act trivially on the cohomology of A d (by [10, 6.4], for 
example). If C e ~  x t o then f ~ l ~ _ A d x  k, where k acts by translations in the 
second factor. 3.5 now follows by using that H~(A ~, E)=0 if i+2d  and H~d(A d, E) 
= E  (consequences of facts which are hidden in the depths of [19]). 
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3.6. Fix a set V = G such that the Ad (v)-I As (v s V) are the distinct conjugates 
of A S in t. By 3.3 the irreducible components of ~ are the varieties 

Z v = ad (Hv) B x t'o. 

If v s V  there is a unique closed subgroup UB, o of U, normalized by T, such that 

B = ( B n a d  (v)- lH) �9 Us, , 

Then UB, ~ is generated by the U~ with ~>0,  U~r (v)-~H, whence dim Us, v= 
d -  d', where d' = d(H). 

We have Asl), ad(v) T ~ H .  Let 

~J~ = {(x, had (v) T, Ad' (v) A' )sA 1 x H/ad(v) T x Ad' (v) t~[ 

x ~ - x = ( A ,  Ad' (h v) A')}. 

If ad(v) T is F-stable then ~v is isomorphic to an open subvariety of ~an, ad(v)r. 
Let ~B, ~ be the morphism 

.%x u~,v--, ~/~, ~ 

with 

~B, v(( x, h ad (v) T, Ad' (v) A'), u) = (x, h v u T, A'). 

The restriction of ~B,v to ~ X {1} is independent of B. 

3.7. Lemma. ~B,v is an isomorphism of ~ x UB, v onto fB - 1 Z  v. 

f i  ~ Z~ is the set of(x, hvuT, A') with hsH,  us  Un, v and 

x ~ - x = (Ad (v-1 h- l )  A, Ad' (u) A'). 

By formulas (1) of no. 2, Ad' ( u ) A ' - A '  is a linear combination of the X~ with a > 0, 
U, = ad (v)- 1H. Since Ad (v- 1 h - 1) A lies in the Lie algebra of ad (v)- 1 H, which is 
spanned by t and the X, with U,=ad(v)-lI-I ,  it follows that we may drop the 
Ad' (u) in the last formula. This implies the assertion. 

It follows from 3.7 that there is an isomorphism 

~B: LI (~162 x UB, , , ) -~fB-"~, ,  (2) 
v 6 V  

deduced from the ~B, ~" 
Let n~ : gv--~ t{) be projection on the last factor, followed by Ad'  (v)- i. 

3.8. Proposition. ~B determines an isomorphism 

c~n : (R*n!E)~,-~ (~(R*~%,!E)~, ( - 2 d + 2 d ' ) .  
o6V 

(the integer in brackets denoting a dimension shift). 
If a is the projection of ~G x t~ on its second factor we have n = afB. Apply the 

Leray spectral sequence for a composite morphism [11]. It follows from 3.5 
, t that the support of R fB, ~E lies in ~ ,  x t o=  U zv. Let i be the inclusion 

vEV 
--1 G G fn hA, ~ ~], r ,  then h i =  rc'~ n, where n' is the morphism of the left-hand side 

of (2) deduced from the nv. It also follows by using 3.5 that there is a restriction 
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isomorphism (R*n!E)q,~_(R*(ni)~E)~. Since UB. v is an affine space of dimension 
d - d ' ,  we have 

(R*n!E)~-% (~ (R*nv.!E)q,(- 2d + 2d'). 
v ~ V  

Putting all this together we obtain 3.8. 
3.9. The isomorphism of 3.8 depends on the choice of the Borel group B = T. 

If B' is another one, then ~b B, ~bff 1 is an automorphism, and it follows from the 
definitions that it comes from automorphisms r/o(B, B') of the summands 
(R'r to, ~E)~,(-2d + 2d'). We shall prove, in fact, that ~/v(B, B') is a multiplication 
(by + 1). Before doing so, we establish a result about the trigonometric sums 
SG(A, A'). So we have to bring in the ground field k and the Frobenius morphism F. 
First observe that we may assume V chosen such that FV= V. In fact, F permutes 
the elements of V up to a factor in H. It follows from Lang's theorem, applied to H, 
that these factors may be taken to be 1. 

3.10. Corollary. Assume that all rl~(B, B') are scalar multiplications. Let A'~(t') v 
be strongly regular. Then 

SG(A, A') = qa-a' ~, rl~(B, FB) Sn(A, Ad' (v) A'). 
v ~ V  F 

In this formula, we have identified (as we may) Ad'(v)t' with the toral subspace 
of b' defined by the maximal torus ad (v) T of H (see 2.1). 

The stalk of (R*~E)~, in A' is H*(Y~a,, E)~. The isomorphism ~ of 3.8 leads 
to a stalk isomorphism 

H*c(Y~a, , E ) , ~  (~ H*(Ys Aa,<OA,, E ) ( - 2 d +  2d'). 
v ~ V  

Using the fact that 

F q~,v=cbrs, F~F 

it follows that the action of F* on the left-hand side of this formula corresponds 
to the endomorphism of the right-hand side which is, on the v-component 

rio(B, FB) qa-d' F* 

(the q-power coming from the fact that F* acts as multiplication by this power 
on H 2d- zd'(Aa-a', E)). The Corollary then follows by using what was established 
in 1.3. 

3.11. We now discuss the q~(B, B'). Let B=B o, BI . . . . .  Bt=B' be a "minimal 
gallery", i.e. the Bi are Borel subgroups containing T such that Bi and B~+ 1 are 
adjacent (=  their intersection has codimension 1 in each of them) and such that l 
is minimal. If B' = w. B = ad (nw) B, then l = l(w), the length of w with respect to 
the set of generators defined by B. Put 

~(B,  B ' ) = ( -  1)/. 
3.12. Lemma. rlo(B, B') is multiplication by e~(B, 1~) eu(H nad(v) B, H chad(v) B'). 

From the definitions we see that 

qv(B, B") = fly(B, B') qv(B', B"), 
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from which it follows that it suffices to prove the assertion in the case that B and B' 
are adjacent. Then B' =s~. B, where s~ is a reflection in a simple root aE4~. Now 
B = ( B n B ' ) .  U~, B ' = ( B n B ' ) .  U ~. Moreover, H n a d ( v ) B  and H n a d ( v ) B '  are 
Borel subgroups of H which are either equal or adjacent. The second case prevails 
if and only if UB, v = Us, v. Now if this equality holds, the isomorphisms ~bff 1 
and q~l  coincide on the v-component, whence t/o(B, B')= 1. This proves the 
lemma in that case. 

Now assume that Us. v ~ Us, ~. We then have to prove tl~(B, B')= - 1 .  Let P 
be the parabolic subgroup generated by B and B'. Its unipotent radical is U n s~. U, 
let P = L (U n s~. U) be the Levi decomposition with L ~ T. There is a factorization 
of rr 

G / P  • t'o - ,  t'o 

where p(x, gT, A')=(gP,  A'), and there are similar factorizations of the n,, with 
morphisms p~ : ~ - ,  G/P • t~. We have a result like 3.8 for p and p~ and it suffices 
to prove the analogue of the lemma in that situation. It also suffices to prove 
this for the stalk homomorphisms. So we may work in a fiber of p and those of 
interest are the fibers of the (hvP, A') with heH. Now 

p - l ( h v P  ' A , )~  yL •  
~ , A  "~ 

where A and A -v are the elements of I and 1' defined by Ad(v -1 h-~)A and A'. The 
semisimple rank of L is 1. If p = 2, it follows from 2.11 that y_L_ is isomorphic A , A '  

to a similar variety with L replaced by GL 2. If p + 2 this is also true (and easy 
to see). It follows that the assertion of the lemma will hold if it holds for G = GL 2 . 
We thus have reduced the proof to the case G = GL2, and A regular semisimple. 
Taking for T a non-split maximal k-torus of GL 2 we see, by comparing 1.6 (i) 
and 3.10 that we shall indeed have t/~(B, B')= - 1 for two opposite Borel subgroups 
of G = GL2, if we know that t/v(B, B') is a scalar multiplication. 

In this case, the group H is a maximal torus. Let or: M-~t~ be the Galois 
covering oft~ defined by the equation x q - x =  (Ad(v) -1 A, A'), then (R*n~, !E)o = 
(R*a~E)o (=5 : ,  say). 

The sheaf ~ ' 5 :  is constant, and hence the endomorphism of a*5:  defined by 
t/~(B, B') is constant. Since the stalks are E, it follows that t/~(B, B') is indeed a 
scalar multiplication. This finishes the proof. 

As before, let T be a maximal F-stable torus of G and B a Borel subgroup 
containing T. Assume that FB-- w. B. Let r(G) be the k-rank of G. The next result 
gives a description of e6(B, FB). 

3.13. Lemma. co(B, F B ) = ( -  1) r(~ 

Let X be the character group of T and V= X |  so �9 ~ V. There is a linear 
transformation e of V, inducing a permuation of �9 such that FU,= Uw~ ~. Then 

keeps positive roots positive (the order being that defined by B) and hence 
induces a permutation of the corresponding basis S of ~. Let V~ be the fixed point 
space of the linear transformation u of V. Then we have r(G) = dim V~, r(T) = dim V~ 
(all this can be extracted from the results in [4, part E, Ch. II]). 3.13 now follows 
from the following result, which is purely a result about root  systems, and in 
which cr may be any linear transformation with the above properties. 
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3.14. Lemma.  det (w a) = ( - 1)dim V - -  dim Vw r 

(a) w =  1. Let ne(no) be the number  of orbits  of even (odd) length of a in S. 
Since the ~ e S  form a basis of V, we have that  det (a) is the sign of the pe rmuta t ion  
of S defined by (~, which equals ( - 1 )  "~ On the other  hand,  d im V,=ne+n o and 
( - 1 ) d i m V = (  - 1) "~ The assert ion follows f rom these observations.  

(b) w a has an eigenvalue 1. Let ( , )  be a Euclidian metric  on V which is W- 
and a-invariant ,  a has a eigenvector with eigenvalue 1 which is regular (i.e. not 
o r thogona l  to any root), e.g. ~ a and it then follows f rom [26, 6.2 and 6.4] that  

~ t > O  

there is w'~W with w'. Vw,~ V,. Replacing wt7 by w'(wa)(w') -1 we get the situa- 
t ion that  Vw~ c V~. If Vw, contains a regular element,  then Vw~ = V,, w = 1 and we 
are in case (a). Otherwise,  there is a root  o r thogona l  to Vw,. Let 4)' be the set of  
these roots,  it is a closed subsystem, w lies in the Weyl subgroup  defined by 4)' 
[29, p. 10-11]. a stabilizes 4)' and a[ 4)' has the same proper t ies  as a. The assert ion 
now follows by an induction on 14)1. 

(c) w a  has no eigenvalue 1. If c~4) there is x e V  with ( w a - 1 ) x = ~ .  Then 
(x, x)=(wcrx, wax)=(x+~,  x+ct), whence 2(x, ct)= -(ct ,  ct). It follows that  s, wax  
= x. By case (b) 

det (w o) = - det (s~ w or) = ( - 1) dlm V -dim V . . . .  + 1. 

Since d im V~.~, = 1 = d im Vw~ + 1, the assert ion follows. 
We now come  to the main  result of  this section. 

3.15. Theorem. Let A'~(t') v be strongly regular. Then 

S~(A, A') 

=(--1)'(6)-~(n)qa(O)-'l(H)lHVl-1 ~ Sn(A,,,Ad'(g) A')~((A~,Ad'(g)A')). 
gEG F 

ad(g) T ~ H  

This follows f rom 3.10, 3.12 and 3.13, taking into account  that  

SH(A, Ad' (g) A ' )=  Sn(A,, Ad'  (g)/1') @((As, Ad'(g)  A')).  

3.16. In the par t icular  case that  A is a regular  semisimple element of gr  we 
have tha t  H is also a maximal  torus. 3.15 then shows that  SG(A,A')=O if H is 
not  GV-conjugate to T and 

S~(A, A ' ) = ( -  1) r(m-*(T) qn(a) ~ ~,((A, B')) ,  
B '  

i fH  = T. The s u m m a t i o n  is over  the distinct GV-conjugates of A' in t. Such a formula  
was first p roved  by Deligne (unpublished). It is the analogue  for finite Lie algebras 
of Chevalley's  type, of  a formula  of H a r i s h - C h a n d r a  for the Lie a lgebra  of a 
com pac t  Lie group  [13, Th. 2, p. 104]. 

4. The Trigonometric Sums Sa(A, A'): A Nilpotent 

3.15 reduces the de terminat ion  of SG(A, A') to the case that  A is nilpotent,  to be 
discussed now. The nota t ions  are as before, and  A is nilpotent.  We begin with a 
further discussion of the sheaf 5 ,  2d of 3.5. 
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4.1. Lemma. The restriction of 6e2d to ~ x t'o is the constant sheaf E. 

Put Z=fB- l (~x t 'o ) .  By the base change theorem for cohomology with 
proper support (see [19, exp. XVII, Th. 2.5.6] for the 6tale cohomology version), 
applied to the cartesian diagram 

Z r- ~AG, T 

fillZ 1 fll I 

it suffices to prove that the sheaf (R2a(fBIZ)~E)~, is the constant sheaf E. Now 
from the proof of 3.5 we see that Z is the set of (x, g T, A ' ) e ~  r with Ad (g)-I A e b 
and 

x q - x = (Ad (g)- 1 A, A'>. 

Since Ad (g) -~ A is a nilpotent element of b the right-hand side is 0. Consequently 

Z ~ _ k x p - l ~ x t ' o  

where p(gT)=ad(g)B, k acts by translations on the first factor, and fsIZ is 
projection on the last two factors, followed by (p, id). 

Applying the base change theorem to 

p-i~a~ x t ;  ,G/T 

we see that it suffices to prove that R2ap~E is a constant sheaf on ~ .  Now p is 
a locally trivial fibration for the Zariski topology (if O is a '~ big cell" in ~G then 
p-lO..~O• Ad and the big cells cover ~ ) ,  so R2dp:E is at any rate a locally constant 
/-adic sheaf. Since ~G is connected and simply connected [17, p. 285] it follows 
that we must have a constant sheaf [11, p. 06]. That it is the constant sheaf E 
follows from 3.5 (iii). 

Let a be the projection ~ x  t~ ~ t~, so ~=afn. Let (R*rqE)o be the ~O-part 
of the direct image R*n~E (this is defined because of what was said in the last 
line of 3.1). 

4.2. Proposition. (i) (R*rqE) o is a constant sheaf of finite-dimensional vector 
spaces over E. The action of W on ~J~, r (see 3.1) defines a representation p~-2a of 
W in (Ri~!E~; 

(ii) The factorization rc = afB defines an isomorphism of constant sheaves 

�9 *: (R* ~,E)~ =, H * ( ~ ,  E) ( -  2d), 

and we have 
* __ * * --i 
~w.S-~BP ( w )  . 
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A , T  

~ x  t;. 
we obtain 

There is a Leray spectral sequence 

R i a! (Sej) ~ (R* n! E)o 

[11, p. 05]. By 3.5 the spectral sequence collapses, leading to an isomorphism 

(R*n,e)q,--~ R* a,(St~za) ( -  2d) (1) 

Let J-  be the sheaf on ~o  supported by ~ whose restriction to ~ is the constant 
sheaf E. There is a cartesian diagram 

t;  , Spec (k) 

and 4.1 implies that 5~2a=n*.Y-. By the base change theorem it follows that 
R*a~Se~2e is a constant sheaf on t~. This is the first assertion of (i). Since n is W- 
equivariant the last assertion of (i) is also clear. 

The fiber of the sheaf R * a ! ~  2e in A' is H*(a-lA ', E)= H * ( ~ ,  E). The re- 
maining assertion of (i) follows from the finite-dimensionality of the cohomology 
of the projective variety ~A a. 

The isomorphism ~* is the one coming from (1). The last assertion of (ii) 
follows from the formula 

fwB" W = (id, w). fB. 

We now let the ground field k come into play. Since n is defined over k, the Fro- 
benius morphism F defines an endomorphism (written, as usually, F*) of the 
constant sheaf (R* n! E)q,. 

Let w e W  be such that FB=w.  B. 

4.3. Lemma. With the notations of 4.2 we have 

qaF*a~=a~F*p'(w). 

From the diagram 

F ) ~Tg~AG T 

, ~ a  x t;  

P(RZefFB,! E)~ = R2e(fn,! PE),, (2) 

where P denotes the inverse image morphism defined by F. There is a corn- 
mutative diagram 

(g*n:e)~ - , g*~ , (g2%B, ,e )~ t -2d)  - , H*(~ L e ) t - 2 d )  

(R*n!E)q, v , R* 2e a,(R fn,,Pe)q,(-2d) , H * ( ~ , E ) ( - 2 d )  
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where the composite of the horizontal arrows in the first (second) line is avB(aB).* * 
The middle vertical arrow is induced by the sheaf morphism F, using (2). The 
FE in the second line is responsible for the vertical homomorphism qd F*. We 
find that 

qd ~ .  ~i = a~ F*, 
~t ~W" B 

whence 4.3, by 4.2 (ii). 

4.4. Theorem. Let A6g v be nilpotent and A'~(t') v strongly regular. Assume that 
B ~  T is a Borel subgroup such that F B = w .  B. There exists a representation r~ 
of W in H* (~$~, E) such that 

S~(A, A')= qd ~ (_ 1)' Tr (F* r~(w) -1, H'(Ma a, E)). (3) 
i>__0 

By formula (3) of no. 1 we have 

SG(A, A')= Z ( -  1)' Tr (F*, H~(Y~A, , E),). 
i > 0  

Now H~(YOA, A ,, E), is the stalk in A' of the constant sheaf (RinsE)c,. Identifying 
H~(Y~ a', E), with H~-2d(~A~, E) via the isomorphism u~ of 4.2 and putting 

i i i i - 1  
r B ( W  ) = O~Bp ( W ) ( t Z B )  , 

the assertion follows from 4.3. 

4.5. Corollary. If  A~g r is nilpotent and A', A" are two strongly regular elements 
in (t') F then S~(A, A')=S~(A, A"). 

4.6. Independence of Choices. In the definition of SG(A, A') there enters the 
character ~ which was fixed in 1.1. Let us write for the moment S,(A, A') to indicate 
the dependence on ~k. If ~h' is another nontrivial character of k with values in E, 
there is a~k* such that ~b'(x)= ~(ax). It follows from the definitions that 

S,, (A, A') = S, (A, a A'). 

If A is nilpotent and A' strongly regular then 4.5 implies that this is also equal to 
S,(A, A'). So, in these circumstances, SG(A, A') is independent of the choice of ~b. 

It is clear from the definitions that the equivalence class of the representation 
rff of 4.4 is independent of the choice of the Borel subgroup B. Also, the right- 
hand side of (3) must be independent of B. In fact, let B 1 =w~. B be another 
Borel subgroup containing T. By 4.2 (ii) we have 

r/~, (w) = r* (wl) -1 r* (w)r* (wl). 

If B is replaced by Ba the element w of 4.4 gets replaced by (Fwx)ww~ ~ and the 
independence of B of the right-hand side of (3) can then also be checked by using 
that 

p* (Fw)= (F*)-' p* (w)F*, 

which is a consequence of formula (1) of no. 3. 
We now discuss some more results about the representation r~. First, it is 

readily seen that its class is independent of the choice of ft. Next we establish 
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independence of k. In the definition of rff the field k comes in, because k enters 
into the definition of ~ T. Write ~k to indicate this dependence. 

Let a be the projection of ~k on G/T x t~). Then ~k is, via a, a Galois covering 
of G/T x t~), with group k. The character (p of k defines an l-adic sheaf ~ on 
G/T x t~ [9, p. 303]. Ifp is the projection of G/T x to onto to, then 

(R* u~ E),  = R* p, ~ .  (4) 

Let k' be a finite extension of k, of degree n. Denote by a', ... the previous objects 
for Y/k', .... If z is the morphism ~k' --~ ~k with 

z (x, g T, A') = (x q" -' + . . .  + x q + x, g T, A') 

then a ' = a t  and it follows that 

.~ =,~'r 0, (5) 

where Tr ~ is defined by 

Tr qJ(x) = ~0(x q" '+...+xq+x) (x~k') 

(4) and (5) yield an isomorphism 

(R* x! E)g, -~ (R* n ( E ) T  r q,, 

and it is easily checked that it commutes with W. This implies that p*, and also 
r*, is independent of k, up to equivalence. In other words: we have established 
that the representation of W on the cohomology of ~A G has geometric significance. 

It would be interesting to have such representations in characteristic 0. The 
method used above involves Artin-Schreier extensions and can thus be said to 
depend on the fact that the affine line is not simply connected in nonzero 
characteristics. It would also be interesting to establish independence of r* of the 
characteristic p, if p is large enough. Such a result makes sense: if p is large than 
the classification of nilpotent classes of 9 is independent of p [4, p. 247], and the 
~a  ~ are obtained by reduction modulo p from similar objects in characteristic 0 
(see 6.13). 

5. Green Functions 

5.1. Let T be an F-stable maximal torus of G such that (t') v contains a strongly 
regular element A'. We then define the Green function QT=QT, G on the set of 
nilpotents of gv by 

Qr, G(A) = ( - 1) r(G)- r(r) q-d(a)St(A, A'). 

By 4.5 this is independent of the choice of A'. The independence of S6(A, A') of 
the character r (see 4.6) implies that QT, ~(A) is a rational number. It is clear that 

QT, G( Ad (g) A) = QT, G(A), 

if g~ G F. 
We shall establish in this section a number of properties of the Green functions. 

We denote by ~ the set of nilpotent elements of 9. 
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5.2. Remarks. (a) Qr can already be defined if t' contains strongly regular 
elements, namely by using formula (3) of no. 4. However, for the proofs of the 
results of this no. we need stronger assumptions. 

(b) If there exists a Gr-equivariant bijection of the unipotent set of G r onto 
the nilpotent set of gf (which is the case, for example if G = GL n or if G is semisimple 
and simply connected, and p is good, see [24]), then we can transfer the Green 
function to a function on the unipotent set of G ~. 

It was shown by Kazhdan in [15], using the results of this paper, that if p 
and q are sufficiently large, one thus recovers the Green functions of [10, w 4]. 
4.4 can then be interpreted as a description of values of the Green function QT, G(u) 
of [10] in terms of the geometry of the variety ~ of Borel subgroups containing u. 
That the Qr, ~(u) can be related to the trigonometric sums SG(A, A') is in ac- 
cordance with a conjecture made in [25, p. 152]. 

First a simple lemma. Let f :  G --. G 1 be a surjective k-morphism whose kernel 
is central. Put f T= T 1. 

5.3. Lemma. We have Qr, G=QT,,a, o df in the following cases: 

(a) f is separable and (t') F contains a strongly regular element, 

(b) f is the morphism onto the adjoint group and (t') F contains a strongly regular 
element A' such that (df)' A' is also strongly regular. 

The proof is trivial, taking into account 2.7 for case (a). The condition of case (b) 
is satisfied if we are in the situation of 2.8 and q is sufficiently large. 

5.4. Let T be as in 5.1. Assume that T is contained in an F-stable proper 
parabolic subgroup P. Let L be the (F-stable) Levi subgroup of P containing T 
and U the unipotent radical of P. Denote the projection P -~ L by re. We identify, 
as we may, the toral subspace t' with the corresponding subspace of the dual I' of 
the Lie algebra of L. In these circumstances QT, ~ and QT, L are defined. 

5.5. Proposition. 

Qr, G(A)=IPe[ -1 ~ Qr, L(r~ md (g) A) �9 
g~G F 

Ad (g) A,e:p 

Let A'E (t') F be strongly regular. Then 

S~(A, A')= ITF1-1 ~ ~,((A, md ' (g)h ' ) )=  ITe1-1 IUF1-1 ~, 0((A, md'(gu) A')). 
gEG F g~G F 

ueU F 

Now Ad'(U)A'=A'+p • (see the proof of 3.5 for a similar fact). Hence the last 
sum equals 

~k((A, Ad'(g)(A' + X')))=IUrI ~ $((A, Ad'(g) A')) 
yEG F gEG F 

X'e(pL) F Ad (g)-  t A~p 

=[UFI IPF[ -~ ~ ~b((Ad(g)A, Ad'(y)A')). 
gEG F, y~pF 

The assertion now easily follows. Ad(g)A~p 
If T and T 1 are two maximal tori of G, put 

NG(T, T1) = {g~ G[ ad(g) T=  T,}. 
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5.6. Theorem (orthogonality relations of Green functions). Assume that p 4:2 
or that G is k-isomorphic to GL,,, and that q is sufficiently large. Let T and T 1 be 
two F-stable maximal tori of G. Then 

[GF[ - '  ~ Qr, G(X)QT,,o(X)=ITF] ~IT([-I[LNo(T, T1)P[. 
X e W ~  

We prove this by induction on the semisimple rank s(G) of G. If s(G)=O then G 
is a torus and the statement is trivial. Suppose now the theorem to bc truc for 
all G 1 with s(G~)< s(G). By 2.8 and 5.3 we may assume that G is either semisimple 
and adjoint or that G~-GL~ (notice that the set of rational nilpotents of g is not 
affected by passing to the adjoint group). In fact, if p-- 3 and if the root system 
contains an irreducible component of type A 2 then 2.8 does not apply, and an 
extra argument is needed. Arguing as in the beginning of the proof of 2.8, we 
reduce to the case  G = S L  3 (and p=3). Then g ~ g l  3 and it is easily seen that the 
orthogonality properties for G can be obtained from those for GL a. Since the 
case G = GL,, can be disposed of without assumptions on the characteristic (see 
below), this exceptional case does not cause trouble. Assume now that G is 
adjoint semisimple. Then the center of fl consists of 0 only. Let A', A'~ be strongly 
regular elements in (t') F, (t'~) f. By the orthogonality relations for the group 
characters of the finite group 9 ~ we have (the bar having the obvious meaning) 

SG(X, A') SG(X, A'I) = r gVl I GVl I Trl-1UA' A~, (1) 
X~g F 

where ea, ai=l if A' and A~ are GV-conjugate, and 0 otherwise. On the other 
hand, this sum equals 

~, Sa(X+ Y,A')So(X+ Y,A',). 
X~gF y~gF 

X semisimple Y nilpotent 
IX, Y] = 0 

Let H x be the connected centralizer of XE g. If X is semisimple and [X, Y] = 0, 
then Y lies in the Lie algebra Dx of H x (see [3, p. 225]). Using 3.15 and the 
induction assumption, the last sum can be transformed into (up to a factor 
q 2 a ( 6 ) ( _ _  l ) r t T ) + r ( T , ) )  

QT,~(X)QT~,G(X)--IGVl ITS[ -I [LFr - 1  [N~(T, T~)F[ 
x~w~ 

+IT I-11TI I - '  E lU; l Y 
XEg F g, gl ~G F 

X semisimple Xead(g)! n ad(gl) t l  

~((X, Ad'(g) A')) ~((X, Ad'(g~) A'~))[NH~(ad(g ) T, ad(gl) T~)r]. 

The double sum equals 

E ~ ~b((Ad(g) X, A')) ~((Ad(ng) X, A',)) 
X~O F geG F 

X semisimple Ad(g )Xe t  F 
n~NG(T,  TI) F 

=lGrl ~ ~((X,A'))g'((Ad(n)X,h'~))=lGFlltvle~,A~ 
Xct  F 

neNG(T ,  TO F 

= i G~I i ~FI q -  2~r Ai" 
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Comparison with (1) gives the result, for this case. If G~-GL,, the center of g 
is nonzero. However, in this case it is easily seen that t' contains strongly regular 
elements orthogonal to the center of g. A similar argument then gives the assertion. 

5.7. Proposition. Under the assumption of 5.6 we have 

QT.G(X)=ITrl-alGFI. 
XeW~ 

The method of proof is the same as that of 5.6. We now start with 

s " ( x ,  A') = o, 
XeX~ 

if A'E (t') v is strongly regular. Using 3.15 and induction we have, if G is semisimple 
and adjoint, 

- Z QT,~(X)+IT~I-'IGFI=IT~I-1 Z Z ~k((Ad(g)X,a'))  
XE~'~ X~g F geG F 

X semisimple Adtg)Xet F 

=ITeI-~IGFI ~ ~((X,A'))=O. 
X~t F 

whence the assertion. If G ~-GL, the argument is as in the proof of 5.6. 
If T is a maximal torus, let W(T) denote its Weyl group. We denote by 
summation over the Gr-conjugacy classes of F-stable maximal tori T. For 

(T) 
the notion of a good prime, to be used in 5.8 see [4, p. 178, 185]. 

5.8. Proposition. Assumptions of 5.6, assume moreover that p is good. Then 

X I W(T)F] - '  QT,~= 1 
(T~ 

If p is good the number of nilpotent elements of ge equals qZd~G) [24, p. 387] 
(where this is stated for semisimple and simply connected groups, the general 
result then easily follows). Using 5.6 and 5.7 we find that 

Z ( ~  I W(Y)r[ -1Qr,~(X) - 1) 2 =qZd~a)_ Z [GFIITrI-'IW(T)VI-k 
X~W~ (T) (T) 

The last sum equals the number of F-stable maximal tori of G, and this number 
also equals q2d~), by a theorem of Steinberg [29, p. 96]. Hence the double sum 
is 0, which implies 5.8. 

Remark. 5.6, 5.7 and 5.8 are counterparts of results proved in [10] for the Green 
functions of the group G v, viz. Th. 6.9 and formulas (7.10.4), (7.13.1). 

5.9. For later use we give a description of the QT, G(A) for fixed A and variable T, 
which follows from 4.4. Fix an F-stable maximal torus T, let W(T)be its Weyl 
group. Let T 1 be another such torus. If T1 = ad(a)T then n= a -~ Fa normalizes 
T, let wlE W(T) be its image in the Weyl group, ad(a) defines an isomorphism 
W(T) ~ ,  W(T1). 

There is an isomorphism ~: ~ T ~ r T,, with 

q~(x, g T, A')=(x, ga -1 T 1 , Ad' (a) A'). 
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If B is a Borel subgroup of G containing T, then B 1 =ad(a )B is one containing 
T~ and, fn being as in 3.4, we have fB=fBcb. Moreover FB 1 =ad(a)(w t w)- B I . 
The next proposition then follows from 4.4. 

5.10. Proposition. 

Qri, a(A) = ( -  1) r(G)- v(r') E (-- 1)i Tr ( F* rB(wl w ~-1! , .sl-li[o~G~o'~A, E)). 
i>__O 

Finally, another property of the Green functions. Let P be an F-stable parabolic 
subgroup of G, with unipotent radical U. Put N(T, P)={ge  G lad (g )TcP } .  

5.11. Proposition. Assume that (t')v#:~b. Then 

~, QT, G(X)=( - 1)~(G)--rIT)q--dtG)I UFIITFI-~ IN(T, P)Vl. 
X e l l  F 

In particular, this sum is 0 if T is not GF-conjugate to a maximal torus of P, 

5.11 follows in a straightforward manner from the definition of Q T, a, using 2.12. 

6. A Realization of the Irreducible Representations of Weyl Groups 

The realization of the title will be derived from the results of no. 4 and the ortho- 
gonality relations of 5.6. We begin with some preliminaries. 

6.1. Let ~=Y/~  T be as in 3.1, with A nilpotent. We use the notation of that 
section. The centralizer Z=ZG(A ) of A in G operates on ~ as follows 

z. (x, g T, A')=(x, zg T, A'). 

Z then also operates on all fibers Y~A" The action of Z on o2/ commutes with 
that of W. It follows that Z operates on the sheaf (R*n~E)o of 4.2 (i) and that 
the representation of Z thus obtained commutes with the representation of W 
of 4.2. Since the identity component Z ~ of Z acts trivially on the stalks H* (Y~ a', E)0 
of (R*n~E)q, (by [10, 6.4]), it follows that Z ~ acts trivially on (R*~E)o. So the 
representation of Z comes in fact from a representation of the finite group 
C(A)=Z/Z  ~ 

If we let Z act on ~ • t~ via the obvious action on M, the morphism fn of 
3.4 commutes with Z. Via the isomorphism ~* of 4.2 (ii) we then obtain a represen- 
tation s~ of C(A) in H * ( ~ ,  E), commuting with r*. 

6.2. Next some remarks involving the "fusion" in g of nilpotent GV-orbits of 
gv. If M is an algebraic group over k, recall that the 1-cohomology set H 1 (k, M) 
is M modulo the equivalence relation: m~m'  if there exists n~M with 
m'=(Fn)mn -1. Let A1Eg v be such that AI =Ad(x )A ,  with x~G. Then 
z = ( F x ) - l x e Z .  The image h(A1) of z in Hi(k, C(A)) depends only on the 
GV-conjugacy class of A 1, and h defines a bijection of the set of GF-conjugacy 
classes of elements of gv which are G-conjugate to A, onto H~(k, C(A)). We have 

IZ~(A~)~I =~[z ~ 
where, putting c = z Zo, a is the number of c'E C (A) with F c'= c c'c-~. In particular, 
if F acts trivially on C(A), we have a =  IZc(A)(C)I. All this is readily derived from 
the results of [4, part E, Ch. I]. 
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Let ~b: ~ a  6---, ~ be the isomorphism B' ~-+ad(x)B'. Then F .  ~b=~b. z - I  �9 F. 
If we identify ~ ,  with ~ via q~, then the endomorphism F* of H * ( ~ , ,  E) 
corresponds to the endomorphism F* s~(c) of H*(~a  G, E). With the notations of 
4.4, we then have the following. 

6.3. Lemma. (i) $6(A1, A')=q a ~. ( -  1)'Tr(F* s~(c)4(w) -1, H ' ( ~ ,  E)); 
i__>o 

(ii) Qr,~(A)=Qr,~(A1) if s*(c) acts trivially on H * ( ~ ,  E). 
(i) follows from 4.4 and the preceding remarks, and (ii) is a direct consequence. 

(ii) explains why the Green functions Qr, G do not separate the nilpotent Gr-orbits 
of 9F. 

6.4. We now recall some facts about maximal tori, also contained in [loc.cit.]. 
Let Tbe as before. It is known that there is a bijection of the set of GF-conjugacy 
classes of maximal F-stable tori of G onto H 1 (k, W). Moreover, if T~ is an F-stable 
torus in the class defined by wleWthen [ W(T1)F[ =0~[ T~I, where ~ is the number 
of elements w'e W with F w'= w 1 w' w i- 1. In particular, if T is k-split, then F acts 
trivially on W and H 1 (k, W) is the set of conjugacy classes of W. Then the above 

equals [Zw(%) [. 
To obtain the asymptotic result 6.6 about QT. G, we need the following lemma. 

Let X be a k-variety of dimension e. Assume, for simplicity, that its irreducible 
components of dimension e are defined over k, and let m be the number of them. 

6.5. Lemma. (i) HEe(X,E),,~E m, and F* acts on H2e(X,E) as multiplication 
by qe; 

(ii) All complex conjugates of the eigenvalues of F* on H:(X,E) with i<2e 
have absolute value < qe-�89 

It should be borne in mind that H:(X, E)=0 unless 0_< i_< 2e. 
Let S be the set of singular point of X, then dim S < e. There is an exact 

sequence 

�9 . . -~  H~(X, E ) - ,  U~(S, E)-~ U~ +1 ( X - S ,  E)=+ ..., 

from which we find, since H~ (S, E) = 0 for i > 2 e - 2, that H:  ~ (X, E) -~ H:  ~ (X - S, E); 
the isomorphism being compatible with F*. Now (i) follows from the results 
stated in [9, p. 281]. 

(ii) is a direct consequence of the (profound) results of Deligne stated in [20, 
Th. 2]. Perhaps there is a simpler proof of (ii). 

Now let A and A 1 be as in 6.2. Put e(A) = dim ~ and assume that all irreducible 
components of ~ of dimension e(A) are defined over k. We use the notations 
of 6.2 and 6.3 and write r a = r  2~(A), SA=S~ ,(A). The following result is then a 
consequence of 6.3 and 6.5. 

6.6. Lemma. 

QT, G (A0 = ( -  1) "<G) -'~r) qe(a) Tr (s a (c) r a (w)- x, H z e(a) (~a, E)) + 0 (qe(A)- �89 

There is an inequality for the dimension e(A) which we shall need. For  the 
moment, k may be any algebraically closed field. A is a nilpotent element of the 
Lie algebra g of the reductive i -group G. 
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6.7. Proposition. (i) 2 e (A)-< dim Z G (A) - rank G. 
(ii) Equality holds in (i) if either p =0  or p is sufficiently large. 

The analogue of (i) for unipotent elements of G is proved in [30, p. 1333. For  
nilpotents of g the proof is similar. It also follows as in [loc.cit.] that equality 
will hold in (i) if (T, W,B and U being as in no. 2) there is w ~ W  such that the 
orbit OG(A ) intersects u ~ w .  u in a dense subset. It was pointed out to me by 
Steinberg that the results of Bala and Carter in [13 imply (ii). In fact, it is proved 
in [loc.cit.] that if p is either 0 or large enough, there exists a reductive subgroup 
H of G containing T and a parabolic subgroup Q of H such that O~(A) intersects 
the Lie algebra o of the unipotent radical of Q in a dense subset. We may assume 
that Q contains the Borel subgroup Bf~H of H and we then have to prove that 
there is w ~ W with D = u ~ w. u. 

Let �9 be the root system of (G, T) and ~x that of (H, T), so ~x c ~. Let S x 
be the basis of ~ defined by B ~ H .  Let S 2 c S  ~ span the root system ~2 of the 
Levi subgroup L of Q which contains T. Let w0, wl, o, w2, o be the elements of 
maximal lengths of the Weyl groups of ~, ~1, ~2 (for the orders defined by 
B, Bf~H, Bf~L, respectively). Then w=w2.oWl,oW o is as required. 

6.8. Remarks. (i) may also be proved by using the following consequence 
of 5.6 

(Q T, ~ (A)) 2 ----< [Z6 (A)F[ ] Tv[ - 1 [ W( T)F[, 

taking T to be k-split, using 6.5 and 6.6 and letting q tend to ~ .  This requires 
some restrictions on p, in particular we must have p > 0. The case p = 0 can the 
be derived by a reduction argument. 

(i), or rather its counterpart for unipotents of G, was apparently conjectured 
by Grothendieck in 1969. The author gave a proof using an elementary argument 
of the same nature as the one indicated in the previous paragraph (presented at 
the Oberwolfach meeting on algebraic groups in 1971). But Steinberg's proof, 
given in [30], is a better one. 

6.9. We return to the case of a finite field k. We assume, for simplicity, that 
either G is quasi-simple not of type A t and p is good, or G~-GL~+x. Then the 
number of nilpotent G-orbits in 9 is finite [4, p. 185]. We take k so large that (a) 
all such orbits are represented by elements A e gF which are such that the irreducible 
components of ZG(A ) and ~ are defined over k; 

(b) the Green functions Qr, G are defined for all F-stable maximal tori Tof  G, 
and the orthogonality relations of 5.6 hold; 

(c) G contains a maximal F-stable torus which is k-split. 
Fix a nilpotent Ae9  F with the properties of (a). Let C(A) be as in 6.1. The 

representation s A of C(A) (see 6.6) is the permutation representation defined by 
the action of C(A) on the set of irreducible components of ~ of maximal dimen- 
sion e(A). 

If F is a finite group, denote by F^the set of its irreducible E-valued characters. 
If c ~ C ( A ) ,  let VA, 4, be the ~b-isotypic subspace of H 2e{A) (~AG, E). Since the re- 
presentation r A of W commutes with all SA(C), the rA(W ) stabilize all VA, , .  

For each ~b ~ C(A) ̂  such that VA, 4, 4:0 let XA, * be the character of W such that 
~b | is the character of the representation of C(A) x W in VA,,. If k is replaced 
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by an extension then )~A, + does not change. So we may define VA, 4, and )~A,, for 
all nilpotent Ae  g. 

Let 2; be the set of (A, ~b), where Aeg  is nilpotent, dpeC(A), with VA,++O and 
2 e ( A ) = d i m Z ~ ( A ) - r a n k ( G ) .  Then G acts on 2J on the left, and (A, 4~)~-+)G,+ 
defines a map ~ of G\S to characters of W. 

We can now state the main result of this section. 

6.10 Theorem. ~ is a bijection of G\2; onto W ̂ . 

In particular, each irreducible character of W is of the form Za, +, where the 
conjugacy class of A and, for fixed A, the character ~b e C(A) A are uniquely deter- 
mined. Fix a maximal k-split F-stable torus T of G. Then F acts trivially on its 
Weyl group W, and if B ~ T is a Borel subgroup then FB = B. So the element w 
of 4.4 equals 1. Let T~ and T 2 be two F-stable maximal tori of G, defined by the 
conjugacy classes of the elements wle W (according to 6.4). Then 6.6 combined 
with 5.10 gives an asymptotic expression for large q for the QT,,~(A) ( i= 1, 2). 
Inserting these in the orthogonality relation of 5.6 for the tori T~ and T2, and using 
what was said in 6.2, we obtain the following formula 

~,IZG(A)rI-, q2e(A) Z ZA(SA(c) r A(wl)-1) ZA(SA( c -  1) r A(W2) ) 
ceCIA) 

= r /  . . . . .  IT~F1-1 tZw(wOI + O(q . . . .  k(G)- �89 (1) 

The notations are as follows: 
S' denotes summation over a set of representatives in gF of the nilpotent 

orbits of g, with the properties (a) of 6.9, Za( ) = T r (  , H2e(A)(N~, E)), rl . . . .  2= 1 
if w I and w 2 are conjugate in W and 0 otherwise. 

We have also used that we may in the right-hand side of the formula of 6.6, 
replace c by c-~ and w by w-1 (because the Qr, ~ take rational values, see 5.1). 

Since the trace of SA(C ) ra(W) in VA, + equals ~b(c) )~A, +(W) (or 0, if Va, + = 0), we 
have 

Z TA(SA(C) rA(W1)--I)'CA(SA(r rA(W2)) 
ceC(A) 

= Y~ ~,(~) 4~(c-') zA,,,(w? ~) xA,~2 (w9 
dpl ,~2 ~C(A)- 

VA, d)I * O, VA, dp2 :4= O 

=[C(A)I ~ XA, o(W;'))~A,+(W2), 
(oeC(A)" 
VA,~*O 

by the orthogonality relations of the group characters of C(A). Inserting this 
in (1), using 6.7 (i) and the well-known fact that if M is a connected k-group we 
have IMVL=qdimM+O(qdimM-*), we find by letting q tend to oo from (1) 

~"( Z z~,,(wr')z~,,(wg)=~w,,~2Zw(w,), 
~EC(A)" 
VA,~*O 

where Z" denotes summation over the G-orbits of nilpotents Aeg with 2e(A)= 
dim Z a ( G ) - r a n k  G. By the orthogonality relation for the group characters 
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of W, the right-hand side equals 

x(w;') z(w2). 
x~W" 

The assertion of 6.10 is now a consequence of the linear independence of the group 
characters )~E W A. 

If c eC(A) let n(A, c) denote the number of irreducible components of ~a  G 
of highest dimension e(A) which are fixed by c. The following corollary is an 
immediate consequence of 6.10. The meaning of 17' is the same as above. 

6.11. Corollary. 2;"IC(A)} -1 ~ n(A,c)Z=[W]. 
c~C(A) 

6.12. Remarks. (a) 6.10 and 6.11 are, of course, true if G is any reductive group 
and p is good. [24, Th. 3.2] then implies similar results for the unipotents of G. 

(b) It can be shown by an elementary argument that 6.11 is true as soon as 
the number of nilpotent G-orbits in g is finite. A similar result holds for the uni- 
potents G. 

(c) Another proof of the analogue for unipotents of 6.11, along the lines of 
[-30], was given by M. Cross (unpublished) and by R. Steinberg [,31]. 

6.13. We shall now deduce from 6.10 a characteristic 0 result. Let Go be a group 
scheme over 2g such that for each field k the scheme G k obtained by base extension 
is a split semisimple algebraic group over k. We shall use a Dedekind ring R 
contained in a finite extension of I1~, with properties to be stated presently. We 
put S = Spec R and G = G o • S. The fibre of G in s ~ S is a split semisimple group Gs 
over a finite field if s is a closed point or over an algebraic number field, if s is the 
generic point ~. We denote by gs the Lie algebra of Gs. The required properties 
of R are as follows: there is a finite set ~ of sections S ---, Lie (G) such that the 
values A t (A ~ d )  in the generic point represent the nilpotent orbits of g,, moreover 
all irreducible components of the centralizer ZG~(A~) and those of the varieties 
~AG~ are defined over the field k(~) (A ~d) .  

It follows from [-4, p. 247] that there is a nonempty open set U c S such that 
for all s~ U the A, (A 6zr represent the nilpotent orbits of g,. If A6zr let Z~(A) 
be its centralizer in G, this is an S-groupscheme. Its fibre in ssS is the centralizer 
ZG,(A,). There is a subgroup scheme ZG(A) ~ whose fiber is s is the identity compo- 
nent of Z~,(A,) [,18, exp_VIB, Th. 3.10]. By a theorem of Raynaud [,16, p. 82], 
there exists a quotient C(A)=ZG(A)/ZG(A) ~ it is a finite group scheme over S. 
Its fiber in the generic point ~ is, by our choice of S, a trivial finite group scheme 
over k(~). Hence we may assume, by shrinking U, that the restriction of C(A) to 
U is a trivial group scheme, i.e. a product C(A)x U, where C(A) is a constant 
group scheme over S. We identify for each s~U the quotient Z~,(A~)/Z~(A~) ~ 
with C(A). 

For each A e d  there is a projective S-scheme Na r such that its fiber sr S is the 
variety ~G~A~ . . . .  Fix A and let C1, , C t be the irreducible components of ~ ] .  By 
[,12, Prop. 15.5.9] we may assume (after shrinking) that the number of components 
Of~aGj is also t, for se U. We may also assume that dim (C~)~ =d im C~ and that the 
(C~)~ are the components of ~G~ (se U). Now let ceC(A) and let i,j be such that As 
c(C~)~ = (C~)r Then c(C~)~ = (Cj)s on an open subset of S. 

It follows that the action of the centralizers ZG~(A~) on the irreducible compo- 
nents of the ~AGj is "constant"  on a non-empty open subset of S. 
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We can now formulate a result which is valid for p = 0 (and for large p). Since 
we have not defined in characteristic 0 Weyl group representations on the H* (~ff, E), 
the statement is somewhat less precise than that of 6.10. The notations are as in 6.9. 

6.14. Proposition. (p=0 or p large). I f  VA,~,~O then dA, o=~b(1) -1 dim VA,4, is 
the degree of an irreducible representation of W. I f  A runs through a set of representa- 
tions of the nilpotent G-orbits in g, then each such degree occurs exactly once as 
a dA,r 

This follows from the discussion of 6.13, using 6.7 (ii) and 6.10. 

6.t5. Corollary. (p=0 or p large). The number of nilpotent G-orbits in G is at 
most equal to the number of conjugacy classes of W. 

6.16. Corollary. (p=0 or p large). I f  C(A) acts trivially on ~ then the number 
of irreducible components of ~ of maximal dimension equals the degree of an 
irreducible representation of W. 

7. Examples 

In this section we first discuss the representations r~ of 4.4 in a few particular 
cases. Then we shall give some details about the Green functions of particular 
groups. 

7.1. We use the notations of no. 4. We consider the case that A=O. The 
variety ~6  is isomorphic to k • G/T • t~, where k acts by translations in the O,T 
first factor. The sheaf (R* n~E), of 4.2 is now the constant sheaf H* (G/T, E). The 
Weyl group Wacts on G/T by 

w.g T=gnw 1 T 

and it follows that the representation pi- 2d of 4.2 (i) is the representation of W 
in H~(G/T, E) defined by this action. 

Let 9~ be the variety of Borel subgroups of G. The ct~ of 4.2 (ii) is now an 
isomorphism 

H*(G/T, E)~-+ H*(~,  E) ( -2d) .  (1) 

Assume, for simplicity, that G is k-split and semi-simple and that T is a k-split 
maximal torus. Then the Borel subgroup B ~ Tis defined over k, and (1) commutes 
with the Frobenius endomorphisms. One knows that ~ is the union of open 
Schubert cells X w (weW), each of which is a locally closed subvariety, k-iso- 
morphic to affine space of dimension l(w) (where l is the length function on W 
defined by B). It follows readily by looking at the filtration of ~ defined by the 
closures of the Xw (which are unions of Xw, ) that H2i(~, E)"~E "', where ni is the 
number of elements of W of length i, the other cohomology groups being 0. 
Moreover, F* acts on H2i(~, E) as multiplication by qk From (1) we deduce 
similar results for H*(G/T,E). Let Fw be the twisted Frobenius morphism on 
G/T and T, respectively, defined by Fw(gT)=gn~XT and Fwt=n~ltnw . By 
Grothendieck's formula for the number of rational points of a k-variety [11] 
we have 

I(G/T)r~[= ~ ( -  1) i Tr (F* pi(w) -1, H[(G/T, E)). 
i>_O 
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On the other hand, we have (G/T)Fw~-GF/Te~, and ITew[=det(q-w) (see [4, 
p. 188]). Also, if d 1 . . . . .  d~ are the degrees of the Weyl group W, the order of G F 
equals 

iavl =qa(qdl_ 1) ... (q"'-- 1). 

Writing r*(w)=e~p(w)(~*) -~ (SO that in the situation of 4.4 we have r*=r*) 
the preceding results and (1) imply 

~I (qd,_ 1) de t (q_w)- i  = ~ qi Tr (ri(w)-i Hi(~, E)). (2) 
i = 1  i>O  

The Weyl group W acts in a vector space V over ~, let S be the algebra of E-valued 
polynomial functions on V. Let I be the ideal of S generated by the nonconstant 
homogeneous W-invariants of S. Then S/I is a graded vectorspace on which 
W operates, W-isomorphic to the group algebra E[W] (see [5, p. 107]). If ;( is 
an irreducible E-valued character of W, let (Pj(Z))~ <=~<xm be the set of degrees 
(with multiplicities) of S/I in which Z occurs. Putting 

Z(1) 

fz(T) = ~ r pJ(z), 
j = 3  

we have 

r 

I W1-1 ~ Z(w-a)det(1-wT) -1 =fz(T) l - [  (1-Ta')  -1 
w ~ W  i = l  

[-26, p. 165], which implies, using the orthogonality relations for characters of W,, 

FI (@-  1) de t (g -w)  -~=  ~ Z(w)qafx(q-1) �9 
i = 1  ZeW" 

Let e be the sign character of W. Then the right-hand side equals (see [loc.cit.]). 
zO)  

Z j = l  

Comparing with (2) and using that Z(w)=z(w-~) for all characters Z of W (a 
consequence of [loc.cit., Th. 8.5]) we obtain the following result. 

7.2. Proposition. There exists a graded isomorphism H*(~G,E)---~ S/I, such 
that r* corresponds to the natural action of Won S/I, multiplied by ~. 

This is related to familiar results in characteristic 0. 
Let us remark, finally, that Q T, G ( 0 ) = (  - 1)r(a}--r(T)q--dl GV[/I TF[ (notations of 

no. 5). 
7.3. We next consider the case that the nilpotent A of no. 4 is contained in 

the Lie algebra of only one Borel subgroup. If B is this group and if the notations 
are as in 2.3, an A of the form ~ c~X~ with c~ :t:0 for all simple e has this property 

~ > 0  
(see [23, p. 137]). In good characteristics such elements are precisely the regular 
ones, whose centralizer has dimension equal to rank G [loc.cit., p. 138]. In bad 
characteristics this is not known. 
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Now Ma a is reduced to a point. So, in the situation of 4.4, the representation 
*__~0 r~ - Jn  is a 1-dimensional representation of W. 

7.4. Lemma. In this case, ~ is the sign representation of W. 

The proof of this is rather similar to that of 3.12, so we shall be brief. 
As in the proof of 3.12, we have to compare ~b B and ~b B, for two adjacent Borel 

subgroups B, B' containing T. Using the proper parabolic subgroup P containing 
B and B' one reduces to the rank 1 case. Then the result follows from 1.6 (ii) 
(using also 2.11, if necessary). 

7.5. Proposition. I f  A is contained in only one Boret subgroup then QT.G (A)= t. 

This follows from 7.4, using also 3.13. Of course, it must be assumed that (t') F 
(or at least t', see 5.2 (a)) contains strongly regular elements. 

The corresponding result for the Green functions of [10] is proved in [loc.cit., 
9.16]. In that case the corresponding unipotent elements are indeed the regular 
ones, by a result of Steinberg [28, p. 59]. 

7.6. GL,. Let G=GL,. Then the QT, G are defined in all characteristics, as 
soon as q is sufficiently large (since, as one readily sees, t' always contains strongly 
regular elements). In fact, the Qr, a can be defined for any q. First, if the F-stable 
maximal torus Tis minisotropic (i.e. if its image in SL, is anisotropic) then one 
checks that (t') F always contains strongly regular elements, so then QT, a is defined. 
From the classification of F-stable maximal tori of GL,, ([4, p. 126]) it follows 
that a non-minisotropic F-stable maximal torus T is contained in a proper 
F-stable parabolic subgroup P. Let P be minimal with this property and let L 
be the Levi subgroup of P containing T. Then L is F-stable and is a product of 
GL,,'s. Moreover, Tis minisotropic in L. We can then define QT, a by the formula 
of 5.5, defining Qr, L in the obvious way. One can prove that the orthogonality 
relations of 5.6 remain valid. 

7.7 If G = GL,, the centralizer of any element of G is connected [4, p. 233]. 
So all groups C(A) of no. 6 are reduced to 1. The varieties ~a  G have been studied 
for G=GL. by N. Spaltenstein (see [21]). It follows from his results that the 
odd-dimensional cohomology of ~a  vanishes, and that the eigenvalues of F* 
on HZi(~a, E) all are qi. Also, dim g~a6=�89 (dim Z6(A)-n)  in all characteristics. 
Let Tbe  a split maximal F-stable torus of GL,,, let T w be an F-stable torus defined 
by twisting T with w ~ W. The results just quoted and 5.10 then imply the following 
theorem, for G =  GL,. 

7.8. Theorem. There is a polynomial ~a i (w ,A)T  i such that Qrw,G(A)= 
i>=O 

~, ai(w , A)q i. The function w ~-~ ai(w, A) is a group character of W= ~,,. 
i>O 

Using what was said in 7.6, it follows that this is true for all q. A priori, the 
ai(w, A) might depend on p, but from Green's results about these polynomials 
one knows that this is not so [4, p. 140]. 

The leading coefficient of the polynomial of 7.8 gives an irreducible character 
of ~ , ,  and we obtain thus a parametrization of the irreducible characters of ~ ,  
by the nilpotent orbits of gI,, as follows from 6.10. 

We next shall discuss the Green functions for groups of type B 2 and G 2. The 
general results to be discussed first will be useful for these special cases. 
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7.9. Let G be quasi-simple and k-split. Let now T be a split maximal F-stable 
torus of G and B = T a Borel subgroup. B defines an ordening of the root system 
4~ of (G, T), let 4~ § be the set of positive roots. We use the notations of 2.1. Assume 
that all X, lie in gv. 

If we W, let U~ be the subgroup of the unipotent radical U of B generated by 
the U, with e > 0, w- ~ c~ < 0. By Bruhat's lemma, the variety of Borel subgroups 

is the disjoint union of the open Schubert cells Xw=ad(U~n~)B .  
q~ contains a unique highest root 2. If there are different root lengths, there is 

also a highest short root #. Then /~+2  (i.e. 2 is long); the dual #~ is the highest 
root of the dual root system 4~ ". 

7.10. Lemma. / f  ~,fle~ + and p+ct, /t+//eq~ then p+~+flCq~, #+n~r 
for  n > 2. 

It suffices to prove this for the case that q~ is the smallest closed subsystem 
containing /~, a, ft. This reduces the proof to the case where ~ has rank <3.  
The assertion is then easily checked directly. 

7.11. Proposition./f~eqb then B G is a anion of  the locally closed k-subvarieties X~ 

X w n ~ ( w e  W), each of  which is k-isomorphic to an affine space. 

We may take ~ = 2  or ~=p.  If X, eAd(g)b,  we may take g = u - l n w ,  with 
u s  U w. Then Ad(u)X,e w-u. Since (Ad (u) - 1 )  X, is a linear combination of the 
Xp with fl 4= e, we must have w-1.  ~ > 0. Using standard formulas for the action 
of the groups Ua on X, and 7.10, it follows that the above u are exactly those in 
the subgroup of U~ generately by the Ua with A d ( U a ) X , = X ~ .  This implies the 
assertion. 

H2it~  G E~ 7.12. Corollary. Hi(jiG x , E ) = 0  !f i  is odd. The eigenvalues q/'F* on ~ x, ,  , 
are qi. 

This follows by looking at the filtration of ~xG defined by the closures of the 
subvarieties X w C ~ , ,  using 7.11. 

7.13. Corollary. ~x~ is the union of  the Schubert cells X w, where w - 1 .  2>0.  

This follows from the proof of 7.11. 
7.14, There is a amusing application of 7.13 and 6.7 (ii). It follows from 7.13 

that dim~xG~= max l(w), where l is the length function on Wdefined by B. Let 
w ' 2 > O  

q~'cq~ be the closed subsystem formed by the roots orthogonal to 2, for a 
W-invariant Euclidean metric, and let W' be its Weyl group. It is then easy 
to see that the stabilizer in G of the line kX~ in .q is the parabolic subgroup 
B W ' B  of G. It follows that, r denoting the rank of G, we have 

dim ZG(X  ) =�89 +�89 + r -  1. 

If p is sufficiently large it follows form 6.7 (ii) that 

2 max l(w)=�89 +�89 1. 
w ' A > 0  
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Let D be the distinguished set of coset representatives of W/W' formed by the 
d e W  with l(dw')=l(d)+l(w'),  if w'E W' (see [5, p. 37]). It then follows that 

2 max  l(d)=�89189 1. (3) 
d ' 2 > 0  

d~D 

Assume that all roots of �9 have the same length. Then by a result of Carter 
[6] we have, h denoting the Coxeter number of �9 and ht the height function on ~, 

l ( d ) = h -  1 - h t ( d .  2), 

if d - 2 > 0 .  Hence max l ( d ) = h - 2 ,  and (3) implies that 
d - ) ~ > 0  

d~D 

Iq, I -  I q~'l = 4 h -  6, 

which is a known result, proved in [5, p. 170]. 
7.15. PSp 4. We now discuss the Green functions of a simple group of type B 2 

(p q= 2). We take G = PSp 4. We use the notations of 7.9. Now q~ § = {e, fl, e + fl, 2c~ + fl}, 
the long positive roots being fl, e+2fl .  It follows from the results of [4, part E, 
Ch. IV, w that there are 4 nilpotent classes in g. We shall represent them by 
elements Xi, with dim Mx~=i. We have 3 classes represented by X4=0, 
Xo =X~+Xtl  (the regular class), X 2 =Xe~+a (see 7.13). The remaining class is the 
subregular one, represented by X 1 = X~+a. 

A discussion of subregular unipotents of G is given in [30, 3.10], and for 
nilpotents of g the discussion is similar. One can also find the results for g from 

those for G by using the Cayley map x ~ - * ( x - 1 ) ( x + l )  -~. The result is that 
Mx ~, is a union of 3 projective lines, which are defined over k (this last point 
following from 7.11). It follows from the results of [4, part E] that Za(XI) is 
connected unless i=  1 and that C(X1) has order 2. Using 6.11 it follows that 
dim Vxl ' ~ = 2 if ~b = 1 and = 1 if ~b 4= 1 (notations of 6.9). 

There are 5 nilpotent GV-orbits in gv, represented by X o, Xa, X2, X 4 and 
an element X~ which is G-conjugate to X~ (see 6.2). Denoting the centralizers 
by Z,,  Z'~, we have JZFI =q2, iZVp =2q3(q_  1), IZ'~VJ =2q3(q + 1), IZ2Vl =q4(q2 _ 1), 
IZ~l = IGrl = q4(q2_ 1)(q4_ 1). 

The Weyl group W has 5 conjugacy classes, represented by 1, s~, sa, s~sr 
- l=(s~sa)  2 (where sr is the reflection defined by 7e~). W has one irreducible 
character Z of degree 2, that of the standard representation, and 4 irreducible 
characters of degree 1, among which the sign character e. 

T being a k-split maximal torus, let T w be the F-stable maximal torus obtained 
by twisting T with w~W. Let Qw=Qr~,G. One easily sees that the Lie algebras 
of the Tw contain F-stable strongly regular elements if q > 3, so the Q~ are defined 
for q>3.  

By 7.4 we have Q,(Xo)= 1, moreover 

Q~ (X4) = ~(w)(q 2 - 1)(q 4 - 1)/(q 2 - Z(w)q + ~(w)), 

see the remark after 7.2. 
It follows from 6.3 and 6.10 that 

Qw(XO=()~(w)+z(w))q+ 1, Q~(X'O=()~(w)-z(w))q+ 1, 
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where 7 is a character of degree 1, different from 1, e, and that (using also 7.13) 

Qw(X2)=eT(w)q2 + 2(w)q+ 1, 

where 2 is a character of W. It remains to determine ~ and 2. 
Let ~ be the subspace of g spanned by X,, X,+~, X,+2p. It is the Lie algebra 

of the unipotent radical of an F-stable parabolic subgroup P. One verifies that 
x,X,+x~+pX~+p+x,+2~X,+2~o F is GV-conjugate to Xx if x , + 0  or x ,+o +0  
and to X 2 if x~=x ,+p=0 ,  x,+2o+0.  Making use of the fact that T~, is not 
GV-conjugate to a maximal torus of P, it follows from 5.11 that 

(q3 _ q) Qsx(X1 ) + (q _ 1) Q~,(X2) + Q~,(X4) = 0, 

and looking at coefficients of q4 one sees that 7(s~) = 1, whence 7(s~) = - 1. 
To determine 2 we use 5.7. A straightforward computation then gives that 

2=X. 
To sum up, we have the following determination of the Green functions of 

PSp4 (for p + 2 and q > 3): 

Qw(Xo)= 1, Qw(XO=(Z(W)+ Z(w))q + 1, Qw(X'l)=(x(w)-z(w))q + 1, 
Qw(X2) = eT(w) q2 + x(w) q + 1, Qw(x4) = e(w)(q 2 _ 1)(q4_ 1)/(q2 _ x(w) q + e(w)), 

where X is the character of the standard representation of W, e its sign character 
and 7 the character of degree 1 with 7(s,) = 1, z (s~) = - 1. 

The reader can ascertain that the polynomials we have found are the ones 
occuring in the 5 x 5-matrix found by Mrs. B. Srinivasan when determining the 
irreducible characters of Sp4(k) [27, p. 506]. 

7.16. G 2. In type G 2 (p+2,  3) one can determine the Green functions in a 
similar way. We briefly indicate how this can be done, leaving the details to the 
reader. The notations are as before. 

We have now ~b + = {~,/3, ~+/~, 2~+fl ,  3ct+ fl, 3 ct + 2/~}, the long positive roots 
being fl, 2c~+fl, 3e+2f l .  There are 5 nilpotent classes in g, represented by 
Xo=X~+X~,  X 1 =X,+X2~+~, X2=Xz~+o, Xa=X3,+zp ,  X6=0,  see e.g. [32]. 
We have again dim~xa =i ;  for i = 0 , 6  this is easy, for i=2,  3 the computation 
of7.11 can be used, and then X 1 must be the subregular element, whence dim,NxGl = 1 
(see [30]). Moreover ZG(Xi) is connected unless i=  1, and C(X1) ~ - 6 3 (this can 
be deduced, for example, from the results of [7] and [24]). Using the information 
on the structure of Nxai contained in [30] it follows that dim Vxl , ,  = 2 if q~ = 1 
and =1 if ~b is the character of degree 2 of ~a ,  whereas dim Vx,.o=0 for the 
remaining character of ~3.  

There are 7 nilpotent GF-orbits in gF, represented by the Xi and two extra 
elements X~, X' 1' which are G-conjugate to X 1 . We have IzFI=q 2, I Z f l = 6 q  4, 
I(Z'0Vl=3q 4, I(Z~')Vl=Zq 4, IZ~l=q4(q2-1), [Z~[=q6(q2-1), IZF61=IGFI = 
q6(q2_ 1)(q6_ 1) (see [7]). 

The Weyl group W has 6 conjugacy classes, represented by 1, s,, sa, s, sa, 
(s~s#) 2, - - l = ( s ~ s # )  3. Let  Z be the character of the standard representation of W 
and ~ the sign character. Now W has 4 characters of degree 1 and 2 irreducible 
characters of degree 2, viz. ;( and ~ .  
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Let T w and Qw be as before. In this case, Qw is defined for q > 5. We have  
Q~(Xo)= 1 and 

Qw(X6) = e(w)(q2 _ 1)(q6 _ 1)/(q2 _ Z(w) q + e(w)). 

By 6.3 and 6.10 there are irreducible characters  ~ and 20 of degrees 1 and  2, with 

Qw(X1) = (2o(W) + 2 z(w)) q + 1 

Qw(X'O = ().o(W) - r(w)) q + 1 

Qw(X'l') = ).0(w) q + 1. 

Moreove r  we see f rom 7.13 that  ~ a  x3 can have only one irreducible c o m p o n e n t  
of highest dimension.  Consequently,  we have, by 6.3 and 6.10 

Qw(Xz) = 20 r (w) q2 + 21 (w) q + 1 

Qw(X3)  =~;'c(w)q 3 -t- 3~2 (w) q 2 + 3~3 (w)q  n t- 1, 

where the 2i are characters  of W. It  remains  to de te rmine  ~ and the 21. 
Let  v be  the subspace o f g  spanned by  X~, X ,+a ,  Xz,+p , X3,+p , X3,+2 a. It  is 

the Lie algebra of  the unipotent  radical of  a parabol ic  k-subgroup P. We have  
that x~Xa~--~-Xa+pXa+.~ nt- X2a+.6X2ot+.o-.~- x3a+lIX3~+fl-t- x3a+ zflX 3a+ 2 ~  F is G F- 
conjugate  to  X 1 if x ,  x3,+2 a is a nonzero  square of  k, to X 1 if x ,  x3,+2 a is a non- 
square, to X 2 if x,:t :0,  x 3 , + 2 p = 0 ;  x , = 0 ,  x , + a + 0 ;  x , = x , + a = 0 ,  Xz,+a:#0 and  
to X 3 or X 6 in the other cases. Using 5.11 with T =  T~, we find, as in 7.15, tha t  
~(s,) = 1, ~(sp)= - 1. 

To  determine the 21 we again use 5.7. The computa t ion  is s t ra ightforward 
and will be  omitted.  The final result is as follows (t9 :I: 2, 3, q > 5): 

Qw(Xo) = 1, Q~(X1) = (z(w) + 2z(w)) q + 1, Qw(X'O = (z(w) - z(w)) q + 1, 

Qw(X'l' ) = z(w) q + 1, Qw(X2) =)~ z(w) q2 + ()~(w) + z(w)) q + 1, 

Qw(X3) = ~ r ( w )  q3 q_ X't'(w) q2 + Z(w) q + 1, 

Qw(X6)= e(w) (q2 _ 1)(q6 _ l)/(q2 - Z  (w) q + e(w)), 

the nota t ions  being as in the similar formulas  for type B z . These polynomials  are  
the ones occuring in the charac te r  tables of  Chang  and Ree 1-8] (the po lynomia l s  
in quest ion are found in the top par t  of  the  tables on pp. 409 and  410). 

Note added in proof The Weyl group representations in H * ( ~ ,  E) of 4.4 can be described in 
another way, which also makes sense in characteristic 0. This makes it possible to extend 6.10 to 
characteristic 0 and to deal with the questions raised in the last paragraph of no. 4. Details will appear 
elsewhere. 
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