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A Cancellation Theorem for Projective Modules 
in the Metastable Range 

Richard G. Swan (Chicago) 

If A is an affine ring of dimension d and P, Q are finitely generated 
projective A-modules which are stably isomorphic, i.e., P �9 A S ~ Q |  A s 
for some s<oo,  then P ~ Q  provided rk P > d +  1. This follows from the 
cancellation theorem of Bass [1, Ch. IV, Cor. 3.53. The object of this 
paper is to show that the bound d+  1 can be reduced under certain 
additional hypotheses. Throughout the paper (except for w 5) all rings 
will be commutative with unit. The notation A = B [ x  I . . . . .  xe] will 
always be understood to mean that A is a polynomial ring over B in the 
indeterminates x I . . . . .  x e. The only exception is that the notation A [a-1]  
will, as usual, denote the localization of A with respect to the powers of a. 
The term "variety" will always mean a geometrically integral scheme 
of finite type. Here is the main result. 

Theorem 1. Let V= Spec A be a smooth affine variety of dimension d 
over an infinite field k. Suppose that A = B ix I . . . . .  xe]. Let P and Q be 
finitely generated projective A-modules which are stably isomorphic. 

e 
Then P ~ Q  provided rk P> d+ 1 - ~ -  

As an immediate consequence of this we get 

Corollary 2. Let A, B, d, e be as in Theorem 1. Let P be a finitely gene- 
e 

rated projective A-module with rk P >=d + 1 - ~ .  Then P ~ A | where 

Po is a finitely generated projective B-module. 

To see this we observe that Ko(B) ~ ~ Ko(A ) since A, and hence B, 
is regular [4, Cor. 17.5.2] [1, Ch. XII, Th. 2.2] [t,  Ch. XII, Th. 3.1]. 
Therefore, if Po = B |  then P and A | are stably isomorphic and 
Theorem 1 applies. 

In particular, if B=k ,  we obtain the following result which was 
announced by Suslin [14]. 

Corollary 3 (Suslin). I f  k is an infinite field, all projective k ix  I . . . . .  x,]- 
11 

modules of rank > - f +  1 are free. 
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I have not seen any details of Suslin's proof. The argument used here 
is based on one due to Roitman [-10] who proved Corollary 3 for rank > n. 
The results obtained here are obtained by replacing Roitman's  algebraic 
general position argument by a Bertini type theorem. This theorem also 
gives an immediate proof of the theorem of Kleinman used in [91. 

Recently, Vasergtein und Suslin have announced further results on 
Serre's problem obtained by making use of symplectic methods [14]. 
This suggested applying the methods of the present paper to obtain a 
cancellation theorem for symplectic modules similar to Theorem I. 
As a consequence we get the following: If k is an infinite field with char 
k=t=2, then all projective k [ x  1 . . . . .  x,]-modules are free for n<4 .  This is a 
special case of results of Vasergtein and Suslin. I do not know how to 
extend the methods used here to cover all cases considered in E14]. In 
particular I do not know how to extend the methods of this paper to 
finite fields. 

Profound thanks are due to H. Bass and M. P. Murthy for their contributions to this 
paper. The first stages of this work were done in collaboration with Murthy, following a 
talk by Bass on Roitman's work. In particular, two key ideas of this paper, the use of Ber- 
tini's theorem and the idea of using general linear combinations of the coordinates as coeffi- 
cients, are both entirely due to Murthy. My original intention was to include him as joint 
author of this paper and it was only after considerable protest on his part that I was dissuaded 
from doing so. The final form of the paper is largely due to Bass' suggestions. After I showed 
him the proof of Theorem 1.3 in the free case and the deduction of Suslin's theorem, he 
remarked that the same argument gives Theorem 1 in the stably free case and that one would 
need something like Theorem 1.3 to prove Theorem 1 in general. He also pointed out a 
variant of Roitman's argument which led to Theorem 3.2. Thanks are also due to Bass, 
Murthy, and Serre for information concerning the results of Vaser~tein and Sustin and further 
thanks are due to Bass for showing me a detailed exposition of Vaser~tein's work. 

1. The Bertini Theorems 

Although Bertini's theorem is one of the best known results in alge- 
braic geometry, I was unable to find a statement of it in exactly the form 
needed here. Therefore I will begin by giving the required form of this 
theorem. The version dealing with sections by linear subspaces will 
suffice. Let ~ '  be a property of linear subspaces of the n-dimensional 
affine space A" over a field k. Let C ~ k N, N = (n + 1) (n - r), be the set of all 
(2ij, Pi), i= 1 . . . . .  n--r, j =  1 . . . . .  n such that the equations ~ ~ijXj-[-/.L i =0 
define an r-dimensional subspace of A" with the property ~ .  As usual we 
say that a general r-dimensional linear subspace has the property ~ if C 
contains a non-empty Zariski open set of k s. 

Theorem 1.1 (Bertini). Let V be a locally closed subvariety o f  A n= 
Spec k [ x  1 . . . . .  xn] o f  dimension d. Then for  a general linear subspace L 

of  A "  o f  dimension r, 
(1) Lc~ V is geometrically reduced of  dimension d - r  everywhere or 

is empty. 
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(2) L c~ V is a variety if dim L ~ V :4= 0. 

(3) L c~ V is smooth if  V is. 

If d i m L ~ V = O ,  (1) means  that  L c ~ V = S p e c ( K  1 x - . . x K r )  where 
the K~ are finite separable  extensions of k. The  nota t ion  Lea V means 
L x , V. In other  words, if V = S p e c  A, then Lc~ V = S p e c  A / ( ~  ),ijXi+l~i). 

Proof. Let so., ti be indeterminates  and let 

X = Spec A [sir, t l] /(~ s 0 x j  + ti) 

and S = S p e c k [ s ~ j ,  tu]. If s is a closed point  of S given by so~--*2ijek, 
t~--~#i~k , then the fiber of X - - , S  at s is obviously Lc~ V. By [4,9.2.6, 
9.9.5], the set C" of points  s of S where the fibre X s satisfies any of the 
condit ions of T h e o r e m  1.1, is constructible.  It follows that the set C c  k N 

of all (2ij, gt~) such that Lc~ V satisfies the required conditions is also 
constructible because the set of d o s e d  points of S is k N with the Zariski  
topology.  Using this observat ion,  we can first reduce to the case where L 
is a hyperplane.  Let  H be given by ~ 2~ x~ + / ~  = 0 and I2 by ~ 2ijxj + ~ = 0 
for i >  2. By induction we can assume that  /2 c~ V satisfies the required 
condit ions for general  2ij, &, i__> 2. For  any fixed value of these 2,/~, we 
will then know that  Lc~ V =  H c~ 12 c~ Vsatisfies the condit ions for general 
)-t~, g , .  N o w  apply  the following elementary lemma. 

L e m m a  1.2. Let  C c k  p+q be any set. Let f:  C - + k  q be the projection 
on the last qJactors. Let D be the set o f  x~Id  such that f - t ( x )  is dense in k v. 
I f  D is dense in k q, then C is dense in k p+q. Therefore if C is constructible, 
it will contain a dense open set o f  k p+q. 

Proof  Let C be the closure of C. If x ~ D  then f ~ ( x ) = k P x x  but 
f ~ ) c C .  Therefore  k P x D c C .  But kP•  is dense in k p+q. This is 
obvious  if k is finite. If k is infinite, we must show that i f fEk[x~  . . . . .  xp, 
Yl . . . .  , yq] is zero on k p x D then f = 0 .  W r i t e r =  ~ gi(y)m i where the m i 
are monomia l s  in the xi. If beD,  then f (a ,  b ) = 0  for all a e k  p. Therefore 
all g~(b)=0. Since D is dense in k q, all g~(y)=0. The  last s ta tement  is clear 
if k is finite. If k is infinite write C = U E~ where E~ is locally closed. Then 
C = k ~ + q =  ~ Ei. Since k is infinite, k p+q is irreducible (since f g = 0  on 
k ~+~ implies that  f g = 0  as a polynomial)  so some E~=k  P+~ and Ei is the 
required open set. 

We can now assume that  L is a hyperplane.  To  prove  Theorem 1.1, 
it will suffice to prove  that  the set C' above contains a dense open set U of 
S since then U c~ k ~ ~ C will be a dense open set of k ~. Since C' is con- 
structible, it will suffice to show that  the generic point  of  S lies in C'. 
This reduces T h e o r e m  1.1 to the case of  a generic hyperplane  section. If V 
is closed, this case is treated in detail in [6, Ch. VIII ,  w 6]. If V is only 
locally closed, apply  the results of  [6, Ch. VIII ,  w to its closure V. This 
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i 

is still a variety and L c~ V= L c~ V -  ( V -  V) is an open set ofL c~ V so (1) and 
(2) for V obviously follow from (1) and (2) of V.. For 13) note that V need 
not be smooth but [6, Ch. VIII, w 6, Prop. 13] hows that L meets the 
nonsingular set of V in a smooth subscheme so (3) follows. 

If Q is an A-module and x~Q, the ideal o~2(x) of A consists of all h(x) 
for heHomA(Q, A) [1, Ch. IV, w t]. Thus x is unimoduiar if and only if 
% ( x ) = A .  

Theorem 1.3. Let V=SpecA be a smooth affine variety over an 
infinite field k. Let Q be a finitely generated projective A-module of rank r. 
Let (q, a)eQ O A be a unimodular element. 7hen there is a yeQ such that 
I = oq(q + ay) has the following properties. 

(1) The subscheme U=Spec  A/I  of V is smooth over k and dim U =  
dim V - r  unless U=~. 

(2) I f  dim U #O then U is a variety. 

Note that Q has constant rank since V is connected [13, Th. 7.8]. 
If V is not connected, we can, of course, apply Theorem 1.3 to each 
component of V. 

I will actually prove a stronger form of this. 

Theorem 1.4. In the situation of Theorem 1.3, there is a finite set S c  Q, 
depending only on Q and A, such that if T= {t 1 . . . . .  t~} is any finite subset 
of Q containing S, then for general 2j in k, the element Y=)I  tl + "'" +2m t,. 
has the properties required in Theorem 1.3. 

As usual, "for  general 2 i in k"  means "for all (21 . . . . .  2,,) in a non- 
empty Zariski open set U ofk"".  Of course, U will depend on q, a, and T. 

We begin by exhibiting the set S. Let x~ . . . .  , xn~A be a finite set of 
elements such that the map ~' V- ,A"  maps V isomorphically onto a 
Iocally closed subvariety of A". We can find a finite covering of V by 
special affine open sets, i.e. V = [9 V~ with V/= Spec A [a i- ~] and ~ Aa i = A, 
such that each Qi = A [a71] | Q is free. Since V is compact, it is enough 
to do this locally. If J0 is a prime ideal of A, Q~ is free so we can find a free 
A-module F with f :  F--*Q inducing Fp~,Qv. Since kerf, c k f  are finitely 
generated they are annihilated by some a Cp. Therefore A [a-~]  | Q ~ 
A[a -1] |  is free. Let % ,  ..., e~,eO_ map into a base for Q,. We choose 
S to consist of the elements eq and all Xke~S, 1 <_k<--n. 

With this choice of S, we can immediately reduce to the case where (2 
is free. If Q is free on e~ . . . . .  e, we can choose S to consist of the e~ and the 
x k e~. Now, the image of T in Q~ will contain such a set. Note that the x~ 
still give a locally closed embedding of V~. This is the reason why we did 
not insist on a closed embedding. If Theorem 1.4, with our choice of S, 
holds when Q is free, the subscheme U/ of Vii defined by oQ,(q+ay)= 
A [a i l ]  oQ(q+ a y) will satisfy the conditions of Theorem 1.3 for general 
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2j. Since these condit ions are local and there are only a finite number  of 
Vii, it is clear that  Theo rem 1.4 will hold for Q. 

We must  now prove T h e o r e m  1.4 for the case where Q is free with 
base e~ . . . .  , e  r and  S is the set of all e i and Xke i. Let T = { t  1 . . . . .  t,,}. 
Let q = q l  e i + ' " + q , e ~  and t ~ = ~ t ~ e j .  Then  y = ~ 2 ~ t i j e  j and q + a y =  

z,J 

(qj + a 2~ t~j) ej so I = o Q(q + a y) is the ideal generated by the qj + a ~ 2~ tij. 
Our  first aim is to el iminate the elements in T -  S. 

Let  u i be indeterminates,  X = Spec A [ui]/(qj + a ~ ui t~i), and S = 
Spec k[ui].  If 2 =(21) is a closed point  of S, the fiber X~ is Spec A/I .  As in 
the p roof  of T h e o r e m  1.1 we see that  the set C o f 2 e k  m such that  y = ~ 2 ~ t ~  
satisfies the conclusion of Theorem 1.3, is constructible. Therefore, by 
L e m m a  1.2, it will suffice to show that  if 2p+~ . . . . .  2,, are given for some 
fixed p then y satisfies the conclusion of Theo rem 1.3 for general 2~, . . . ,  2p. 
We choose p and the number ing  of the t~ so that  S =  {t~ . . . . .  tp} and 
T - S =  {tp+i, . . . ,  tin}. 

Let y ' = 2 1 t  1 + ... + 2vtp and y"=~,p+ttp+l  + ... +~,mtm. Then q + a y =  
(q + a y") + a y'. Now (q + a y", a) is un imodular  so it follows that q + a y" + 
ay'  has the required propert ies  for general 21 . . . . .  2p. 

N o w  suppose T =  S where Q is free on e~ . . . . .  e, and S is the set of e~ 
ej and x~ej. Let q = q t  el + "'" +qre~ �9 Let ~0: V---, IP "+" have homogeneous  
coordinates  (ql . . . . .  q~, a, x a a . . . . .  x ,  a). This is well defined since (ql . . . . .  
q~, a) is un imodu la r  so some entry is non-zero at each point of V. Let W 
be the closed subset of Vdefined by a = 0. Then q0 maps  V -  Wisomorph i -  
cally onto  a locally closed subset o f f  "+~. In fact, on V -  W, rp is given by 
(q la  -1 . . . . .  q ,a  -1,  1, x 1 . . . . .  x,) so q ~ ( V - W )  lies in an affine subspace of 
IP "+~ and embeds  V - W  as the graph of the m a p  (q ta  -~ . . . . .  q~a-~): 
V - W - - - , A ' .  N o w  ~0(W)c {(a t . . . . .  a , ,0 ,  . . . , 0 ) = l P ' - l c l P  N. Let L be a 
general linear subspace of IP u of dimension n. Then  I P ' - t ~ L = ~ .  By 
Bertini 's T h e o r e m  1.1, L ~  q~ ( V -  W) will satisfy the condit ions imposed 
on U in T h e o r e m  1.3 and hence so will U'=-qo-~(q)(V)c~L). Let 
the homogeneous  coordinates  in IP "+" be (u 1 . . . . .  u , , z  o . . . . .  z,) and 
suppose L is given by equat ions ~ k h j u j + ~  V~kZk=O, i= 1 . . . .  , r, or, in 
matr ix  form I~ u + v z = 0. For  general Ft, v we have det g 4:0 so L is de- 
fined by u +  # -~  v z=O.  Let 2 = g  -1 v. Then U' is clearly defined by the 

rl 

equat ions q~+2~oa+~ .  2~jaxj--0.  But these are just the coordinates  of  
1 

q + a y  where y = ~ 2 ~ t ~  with S = { q  . . . . .  tin} and the 2's are suitably re- 
indexed so U ' = U  for this choice of 2. Let 0: GL,(k)xk~("+~)= ~ 
G L , ( k ) x k  "("+x) by 0( t~ ,v)=(# ,#  ~v). We know that  U' satiesfies the 
conclusion of Theo rem 1.3 if (t~, v) lies in some non-empty  open set O of 
GL~(k) x k ,l"+~). Therefore  the set of (/z, 2) such that  U has the required 
propert ies  contains  an open set 0 (O). If we fix a ~ such that  (/~ x k ~" + ~))n 
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0(O)=0, the 2 with (/t,,~)e0(O) form a non-empty open set with the 
required property. 

By using a stepwise procedure as in Roitman's  paper, one can prove 
a bit more. A strictly lower triangular matrix will mean one with l 's on the 
diagonal and 0's above the diagonal. 

Theorem 1.5. Let V=Spec  A be a smooth affine variety over an infinite 
field k. Let f = ( f  1 . . . . .  f , + 0  be a unimodular row over A. Then there is a 
strictly lower triangular matrix T over A such that f T = ( g  I . . . . .  gr+l) has 
the following properties. 

(i) For each i, the subscheme U~ of V defined by the ideal Agl +""  + A gi 
is smooth over k and dim U/= dim V - i  unless U i = ~. 

(2) I f  dim U i + 0, /2/is a variety. 

Proof Let xt . . . . .  x,  be as above and let q~: V ~ I P  N have homogeneous 
coordinates f t  . . . . .  fr+~ and all xlfj with 2<j__<r+l.  Let W c V  be 
defined by f2 . . . . .  s = 0. Again r maps V -  W isomorphically onto a 
locally closed subset of lP ~ since we can recover the xi by taking ratios of 
coordinates of cp(x). Also (p(W) is the point (1,0, ...,0). Let H be a 
general hyperplane of IP n. Then r  H = ~  and by Bertini's theorem 
~ o ( V - W ) c ~ H  has the properties required of U s. If H is defined by 
h=22ifi-t-E,~ijxifj=O we can set g~=)~[~h since ,~1=1=0 in general. 
Now repeat the same argument on U t and the unimodular row 
f21U 1 . . . . .  r,+l] U 1 to get g2 (still defined on V). Continuing in this way 
we get ga . . . . .  gr and set gr+~ = s  

Remark. Using Lemma 1.2 it is easy to see that we can take T to be a 
strictly lower triangular matrix whose subdiagonal entries are general 
linear combinations of I, x 1 . . . . .  x,. In fact, let T have this form. Let X 1 
be the linear space of coefficients of 1, x, .. . ,  x ,  occurring in the first 
column of T, X 2 that for the second column, etc. Let C i c  X 1 x ... • X i 
be the set of coefficients such that for the corresponding T, U1 . . . .  , U~ 
have the required properties. As before, C i is constructible. The proof of 
Theorem 1.5 shows that C~ contains a non-empty open set 01. Suppose 
Oic  C i is a non-empty open set. Apply Lemma 1.2 to C~+x ra O~ x Xi+ t in 
0 i x Xi+ 1. The proof  of Theorem 1.5 shows that Ci+ 1 contains a non- 
empty open set. 

I will conclude this section by showing that Theorem 1.3 can be used 
to replace the theorem of Kleiman used in [9]. 

Corollary 1.6. Let V= Spec A be a connected smooth affine scheme 
of dimension d over an infinite field k. Let P be a finitely generated projective 
A-module of rankr. Then there is a map f:  P--* A such that if I = f ( P )  then 
U = S p e c  A/I  is a smooth subscheme of V of dimension d - r  unless U=~.  
Furthermore, we can assume that U is geometrically integral if V is and 
dim U > 0 .  
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This is exactly the consequence of Kleiman's theorem used in [9]. 
To prove it, apply Theorem l.3 to ( 0 , 1 ) c Q |  where Q = P * =  
Horn A (P, A). We get ye  Q such that oQ(y)= 1 has the required properties. 
Now y~ Q = P* so y : P - - ~  A and the definition of oQ (y) shows that 1 = y(P) 
since P ~ Q*. 

R e m a r k .  We can get more information using Theorem 1.5 if we know 
that P | A ~ A r+ 1 which is the case in the application in [9]. In this case 

we have 0-+P---~A "+l Y ~A-~0 where f ( x ) = s  i and (fl  . . . . .  f r+ l )  is 
unimodular. By Theorem 1.5 we can make a change of base in A r+t 

getting 0-*P---~A r+l g ,A---~0 where g = ( g l  . . . .  ,g r+0  satisfies the 
conclusions of Theorem 1.5. Let p : P - - - ~ A  be projection on the last 
factor of W +t. Since P = { x ~ A r + ~ I ~ g i x i = O  } we see that i m p =  
{ x r + l e A I g r + ~ X , + x e I  } where I = A g  i + - - - + A g , .  Clearly I c i m  p. Con- 
versely, let x ~ i m p .  Since gi . . . . .  gr+l is unimodular, I + A g , + I = A .  

Write 1 = i + a g , +  1 with i ~ I .  Then x = i x + a g r + t x E I  so i m p = / a n d  we 
recover the conclusion of Corollary 1.6. The advantage of this approach 
is that we also get quite a bit of information about the kernel of p. It is 

r 

clear that ker p =  { x ~ A r [ ~ g i x i = O } .  Now, if r <d, the irreducibility of 
1 

the U~ shows that (g~ . . . . .  g~) is an A-sequence and hence its associated 
Koszul complex E is exact, i.e. 

O - *  E r --,  E ~_ 1 --~ - . . ---, E z --* E 1 - *  E o ---~ A / I ---, O (1) 

is exact. Now E o = A ,  E I = A  ~ and E i - - , E  o is given by (x 1 . . . . .  x,,)~--* 
r 

g, xi. Therefore ker p ~  ker [E i --*Eo] and we have an exact sequence 
1 

O ---~ E ~ --~ E ,_  I - *  . . . ---~ E 2 ---~ P P , A --* A / I --~ O . (2) 

In particular, if r = 2  then k e r p ~ E , ~ A .  It is well known that if I is 
generated by an A-sequence then E x t ' ( A l l ,  A)=0  for i4=r and 

Ext"  ( A / I ,  A ) ~  A / I  

generated by the Yoneda class of(l). Since (2) is also a projective resolution 
of A / I ,  its Yoneda class also generates E x t ' ( A / l ,  A).  We deduce easily 
that the class of the extension 0--* ker p--, P--~ I ~ 0 generates Ext ~ (I, ker p) 
since it corresponds to the class of (2) under the isomorphism 
E x t l ( I ,  k e r p ) ~ E x t r ( A / I ,  A ) ~ A / I  derived from (2). However, I do not 
know of any applications beyond the one in [9]. 

2. The General Projection Theorem 

The following theorem is very well known but I was unable to find any 
reference for it in the form needed here. Murthy pointed out the paper of 
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Lluis [15] which treats the projective case. Lluis' argument can easily be 
modified to cover the case needed here. I will give a direct argument here. 
It is based on the same ideas as [15]. 

Theorem 2.1. Let V be a smooth closed subscheme of A N over an in- 
finite field k with dim V=d. Let p: ~N__~r be a general projection with 
r >= 2 d + 1. Then p maps V isomorphically onto a closed subseheme of A' .  

Proof. Let d be the diagonal of V x Vand let ~0: V x V - A  - . A  N -  {0} 
by q~(x, y ) = x - y .  Let n: A N -  {0} - . I P  N-1 be the canonical map and let X 
be the closure of nq~(V• V - A ) .  Then dim XN2d .  Let L N - ' - l c l P  N-1 
be the image of ke rp  in ~ - 1  For general p, LN- ' - Ic~X=f t  since 
N -  r - 1  + 2d < N - 1 .  This means that if x, y e V, x =#y then p(x)#  p(y) 
since x - y ~ L .  Now let T(V) be the tangent bundle of V. If V is defined 
by the equations f ) =  0, then T ( V ) c A  N x A N is the set of (x, y) satisfying 

f~(x)=0 and ~ x / Y i = 0 .  Since V is smooth, the fiber Tx(V ) of pr 1" 

T ( V ) - . V  has dimension d. Define ~ b : T ( V ) - V x O - . A N - { O }  by 
O(x,y)=y. Let Y be the closure of n O ( T ( V ) - V x O )  in IP N-I. Since 
dim T(V) = 2 d, the above argument shows that L N- *- 1 c~ Y= g for general 
p and so p (y) # 0 for (x, y) ~ T(V). In other words, the map Tx(V) -* Tpcx)(A') 
is injective. 

To see that p(V) is closed in general, we use the following well known 
result. 

Lemma 2.2. Let V be a closed subscheme of A N over an infinite field k 
with dim V=d. Let p: AN - . A "  be a general projection with r>d. Then 
W= p(V) is a closed subscheme of A" and V is finite over W. 

This follows immediately from the proof of the normalization lemma 
in [11, Ch. I, w 3, n~ Since the proof is  so short I will repeat it here. Let 
p(x)=y where y ~ = ~  aijx j. Extend p to a projection p' of IP N on IP" by 
sending (x 0, x 1 . . . . .  XN) to (X o, Yl . . . . .  y~). The center of this projection 
will be L N- "- 1 c IP N- t = {x ~ = 0} where L is as above. Let V be the closure 
of V in IP N. Then dim Vc~ ~ N -  1 < d so L c~ V= ~ for general p. Therefore p' 
is defined everywhere on V so p'(V) is complete and hence closed in IP'. 
It follows that W = p ( V } = p ' ( V ) n A "  is closed in A' .  To see that V-* W 
is finite, observe as in [11] that i f / i s  the ideal defining V,, then (I, x 0 , ~aoxj )  
defines 9' and hence contains all monomials  of degree __>q say. Now set 
Xo= 1. If M is the set of all monomials  of degree < q  in k[xt ,  ..., x J ,  it 
follows that k Ix1 . . . . .  x,] / l  c~ k [xl ,  ..., x J  is generated as a k [Yl, --., Y,]- 
module by the image of M. Therefore V is finite over W. 

To complete the proof of Theorem 2.1, it will be convenient to have k 
algebraically closed. Suppose that the theorem is true in this case. 
Let V=SpecA.  The theorem says that for general c o, the map 0: 
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k [Yl . . . . .  y,] ~ A sending Yi to ~ c i j x j  is onto. Let k' be the algebraic 
closure of  k. By our  assumption we can find a polynomial  G(c~j) over k' 
so that k' | O is onto for G(cij ) :# 0. By taking the product  of  the conjugates 
of G raised to a suitable power we can assume that G has coefficients in k. 
But if k ' |  0 is on to  so is 0. Thus the theorem for k follows from the 
theorem for k'. 

We can now assume that  k is algebraically closed. Since p] V is 
injective and p maps  each component  of V to a closed set (for general p), 
it will suffice to consider the case where V is irreducible. Since k is alge- 
braically closed, we can identify T~(V) with the Zariski tangent space 
Hom~(mJm~,  k) where m~ is the maximal ideal of Ov, x. In fact, suppose 
x = 0  and let V be defined by f j = 0 .  Let f j =  l j+ hi where lj consists of the 
terms of degree 1 in fj .  Then ~ (~?fj/Ox~)~ = 0 Y~ = li (Y) so To (V) is defined by 
lj (y) = 0. But m~/m 2 = (k x 1 + . - .  + k x , ) / ~  klj(x). Since p" T~( V) --* Tp~)(A') 
. . . .  2 2 Is mjectlve, this implies that mA~p~x)/mA~p(~,)~mv,Jmv, ~ is onto  and 
hence so is z 2 mw, p~,,)/mw, p(~) Now let and my, Jmv, : , .  V =  Spec A 
W = S p e c B  where B c A  is the image of k [ y  1 . . . . .  y~]--~A. Let m be a 
maximal ideal of B. Since p: V---,Wis 1 -  1 and onto, there is a unique 
maximal ideal n of  B with n ~ m .  I fn  corresponds to xe  Vthen O v , x = A ,  
and m / m ~ n / n  2 and similarly for B. Therefore m / m 2 - ~ n / n  2 is onto. 
This shows that n = A m + n 2 and it follows that n = A m since it is sufficient 
to check this locally. In A, ,  it follows from Nakayama ' s  lemma, while at 
other maximal ideals of A it is trivial because such ideals do not contain m. 
Now let M = A / B  as a B-module and tensor B - - , A ~ M - ~ O  with B/m 
getting B / m B - - * A / m A - - , M / m M - - , O .  We have just seen that m A = n .  
Since kis algebraically closed, B / m  = k = A /n and it follows that M /m M = O. 
Since M is a finitely generated B-module, Nakayama ' s  lemma shows that 
M,, = 0. Since this holds for all m, M = 0 and A = B. 

Remark. If Vis not  smooth,  we can use the same argument  to obtain the 
affine analogue of  Lluis' theorem [ 15]. The map ~ : T(V) - V x 0 ---, IP N- 1 
above clearly factors through the associated projective bundle IPT(V).  
Therefore dim Y<__dim I P T ( V ) = d i m  T ( V ) -  1 and the argument  works 
provided r > m a x  (2d+ 1, dim T(V)). As in [15] observethat  the part  of 
T(V) lying over the non-singular  part of V has dimension 2d while the 
rest has dimension < z + dim V s < z + d - 1 where V~ is the singular set of V 
and z is the max imum dimension of the Zariski tangent spaces of V. This 
gives the condit ion r > m a x  ( 2 d +  1, z + d -  1) as in [15]. For  the case d =  1 
this is the best possible result. For  example, let V = S p e c A  where 
A = k E x " , x  ~+~ . . . .  ] ~ k [ x l .  If m is the maximal ideal at x = 0 ,  then 
dim m / m 2 = 2 n .  If V can be embedded in A r, then A = k [ x  1 . . . . .  xr]/l.  
Since every maximal  ideal of  k [x 1 . . . . .  xr] has r generators the same will 
be true for A and so r > 2 n = z + d -  1. 
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We now apply Theorem 2.1 to obtain the following technical result 
which will be needed in w 3. 

L e m m a  2.3. Let  V =  Spec A be an affine scheme of  f ini te  type over an 
infinite f ie ld k such that V =  V o x A e where A e is an affine e-space, i.e., 
A = B [ x  1 . . . . .  x~] where V0=SpecB.  Let  W = S p e c A / l  be a closed sub- 
scheme o f  V which is smooth over k. Then 

e 
(1) I f  dim W__< ~ - -  1, there is a subring C o f  A with B c C, A = C [X]  

such that A = C + I. 

(2) I f  dim W<_ e ,  then A = k [ x  1 ... x e ] + I .  
- 2 ' ' 

Proo f  Suppose V o c A "  so V= V o •  "+~. Since W is smooth  
and 2 dim W +  1 < e -  1 (in case (l)), a general projection o f A  "+e on A e-  t 
will map  W isomorphically on to  a closed subscheme W' o f A  e by Theo- 
rem 2.1. N o w  any sufficiently general projection ~" A " x  A e - - -A e- ~ will 
m a p A ~ o n t o A ~ - i  and therefore will factor a s A ,  x A e  ~,,>Ae v , A e - t  
where p is the projection on the last e - 1  factors and /~: A ~ A  ~. Let 
0: A ~ x A ~ A  ~ x A  ~ by O(y, x)=(y ,  2(y)+~(x)) .  Then O=pO where p is 
again the projection on the last e -  1 factors. Clearly V= V 0 x Ae is stable 
under 0. Replacing V by its image under 0 (which amounts  to changing 
the choice of  isomorphism Vm V 0 x A ~) we can assume that p itself maps  
W isomorphical ly on to  W'. N o w  

p" V = Spec B [x 1 . . . . .  Xe] ---r ~k e = Speck  [x 2 . . . . .  Xe] 

corresponds to the inclusion 

k IX2,  . . . ,  Xe] ---)" B ]-x I . . . . .  Xe].  
Under  this map,  

W =  Spec B [x  I . . . . .  x~]/I  ~ , W' = Speck  [x  2 . . . . .  Xe]/J 

say, SO 
k [x  2 . . . . .  x~]/J ~ , B [ x  i . . . . .  Xe]/I. 

If we let C = B [x 2, . . . ,  xe] it follows immediately that A = C + I. Clearly 
B c C and A = C [x I ]. 

In case 2, we apply the same argument  to a general projection 
A"+e--~A e getting k[x~,  . . . ,  x~]/d ~ , A/I .  

3. The Metastable Range 
I f P  is a finitely generated projective A-module,  we will write " rk  P > s"  

to mean rkP~ >=s for all prime ideals p of  A. The projective stable range 
of A is defined as follows. 

Definition3.1. We say psrA<=s if for every finitely generated pro-  
jective A-module  Q with rkQ>=s and every unimodular  element 
(q, a ) e Q @ A ,  there is a y e Q  such that q + a y E Q  is unimodutar .  
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The usual stable range sr(A) is defined in the same way but with Q 
assumed to be free [1, Ch. V, Def. 3.1]. Clearly sr(A)<psr(A).  I do not 
know any example where the strict inequality holds although there is no 
obvious reason why these two ranges should be equal. 

If A is noetherian and d i m m - S p e c A = d ,  a special case of Bass' 
stable range theorem [1, Ch. IV, Th. 3.11 asserts that psr(A)<=d+l. 
Applying the definition of psr to (a, q)=(1,0) gives Serre's theorem: If 
rk Q > p s r A then Q = A | Q'. An argument using transvections [ 1, Ch. IV, 
Th. 3.4] gives Bass's cancellation theorem: If rk Q > ps r A and A | Q 
A |  Q ~ P .  

In order to extend the cancellation theorem to lower ranks in certain 
cases, we will define a projective metastable range. This definition was 
suggested by the work of Roitman [10]. For technical reasons, it is 
necessary to consider pairs of rings B c A. 

Definition3.2. If B o A ,  we say pmsr (A ,B )<s  if for every finitely 
generated projective A-module Q with rkQ>s  and every unimodular 
element (q ,a )eQ|  we can find yeQ and a subring C of A such that 
B c  C c A ,  A = C [ x ] ,  and C+oQ(q+ay)=A.  

We will write p msr(A) in case B = i m  [2~-+ A]. Note that p m s r(A)< 
pmsr(A,  B). 

This definition is of course vacuous unless A does have the form 
A = C[x]  with B c  C. If this is so, we clearly have pmsr(A,  B)<psr(A).  
The following theorem shows that this can be considerably improved in 
certain cases. 

Theorem 3.3. Let Spec A be a smooth affine scheme of dimension d 
over an infinite field k such that A = B [ x  1 . . . . .  Xe] with e>0 .  Then 

e 
pmsr(A,  B)<=d+ 1 - - -  

2 

Proof We can assume Spec A is connected. Let Q be a finitely generated 
projective A-module with r k Q = r  and let (a, q )~A|  be unimodular. 
Choose ye  Q so that I = oQ(q + a y) has the properties specified in Theo- 

e 
rein 1.3. Then d i m S p e c A / l = d - r .  If d - r < ~ - - l ,  Lemma 2.3 gives us 
the required C. 

Before stating the main cancellation theorem, I will give a special 
case which will show clearly the connection with the methods of Roit- 
man [10] and with Theorem 5 of Vasergtein and Suslin [14]. The argu- 
ment is taken directly from [10]. 

Theorem 3.4. I f  pmsr(A)<=r then Er+I(A ) is transitive on the uni- 
modular rows (a 1 . . . . .  at+I) over A. 

Proof Let q=(a I . . . . .  a , )~Q=A r and a=ar+ 1. By Definition3.2 we 
can find Y=(Yl . . . . .  yr)~Q and C c A  so that A = C [ x ]  and A =  
3 lnvcntlones math, Vol. 27 
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C + oQ(q + ay). By elementary transformations,  change (a 1 ....  , ar+ ~) to  

(bj . . . . .  b ,+ t )= (a l  +ar+a Ya .... ,a,+a,+a yr,a,+t). Then oe(q+ay)=Xj~ Ab i. 
�9 �9 a 

Since A = C + ~ A b ~  we can write x -b �9  i. By elementary 
a 1 

t ransformations we can replace b,+ 1 by b , + a + ~ ' d i b i = x - c = z  say. 
t 

Now A = C[x] = C[z]. Let bi=ci+ze ~ for i<=r. By elementary transfor- 
mations change (b~ . . . . .  b�9 z) to (q . . . . .  c,, z). Taking  this modulo  z we see 
that (c~ . . . . .  cr) is unimodular .  Therefore, by more  elementary transfor- 
mations we can take (c a . . . . .  c�9 z) to (ca, ..., % 1) and then to (0 . . . . .  0, 1). 

We now come to the cancellation theorem. 

Theorem 3.5. Let B be a subring of A. Let P and Q be finitely generated 
projective A-modules such that Q has the form A | o where Qo is a 
finitely generated projective B-module. I f  P and Q are stably isomorphic 
and rk P >= pmsr(A, B), then P ~Q. 

Proof We have P | A 5 ~ Q | A 5 for some s. By induction on s, it will 
suffice to treat the case s = 1. Let cp: P | A ~ Q | A and let cp (0, l ) = (q, a). 
Apply  Definition 3.2 to (q,a) getting yeQ, C ~ A  with A =  C[x], B c  C, 
A=C+oQ(q+ay) .  Let t ~ : Q O A ~ Q O A  by ~(~,q)=(~+rly, q). By 
replacing ~ by ~ 0 ,  we can assume A=C+oQ(q). Write a - x = c + i ,  
with ce C, ieoQ(q). By the definition of  aQ, there is some h: Q-+A with 
h(q)=i. Let p: Q | 1 7 4  by p(~,r / )=(~,r / -h(~)) .  Then pep(0, 1)= 
(q, a - i) -- (q, z) where z = a -  i = x + e so that  A = C [z]. Let Qa = C | 
We use here the assumpt ion that B c C .  Then Q=A| 
QI | z Q. Let q = ql + z q' with q~ e Q1, q' E Q. By composing pcp with the 
transvection (~,q)~--~(~-qq',tl) we can assume that q=qa- Reducing 
modulo  z shows that  q~ is un imodular  in Qa and hence in Q.Therefore, 
by two more  transvections we can change (q, z) to (q, 1) and then to (0, 1). 
This gives an isomorphism P if3 A,,~ Q | A which is the identity on A. 
Factor ing  out A gives P~Q.  

As usual we say B c A  is a retract of  A if there is a ring homo-  
morphism p:  A--~B which is the identity on B. This is certainly true if A 
is a polynomial  ring over B. 

Corol lary 3.6. Let B be a retract of A. Let P and Q be finitely generated 
projective A-modules with rk P >pm s r(A, B). I f  

[P ]  = [Q]  e im [K 0 (B)---, K o (a ) ] ,  

then P ~ Q. 

Proof Let Q0 = B| using the retraction p: A-,B.  Then [Qo]EKo(B) 
is the image of  [Q]eKo(A ) under  p. Since Ko(B)--,Ko(A ) is a mono-  
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morphism split by p we see that [Q] = [A | By Theorem 3.5 we 
have P ~ A  | and Q ~ A  | 

Corollary 3.7. Let B be regular and A =B[x  1 . . . . .  x~]. Let P and Q be 
finitely generated projective A-modules with rk P >pm sr(A, B). l f  P and Q 
are stably isomorphic then P ,~ Q. 

We need only apply Corollary3.6 since K o B ~ K o A  by regularity 
[1, Ch. XII, Th. 3.1]. Theorem 1 follows immediately from Corollary 3.7 
and Theorem 3.3. 

In case e = 1, the hypothesis of Theorem 1 reads rk P > d + �89 so in fact 
rk P > d + l  and Theoreml  follows from Bass' cancellation theorem 
in this case. Bass has pointed out that a variant of Roitman's argument 
will permit us to reduce this bound by 1 ifk is algebraically closed. 

Theorem 3.8. Let Spec A be a smooth affine variety of dimension d 
over an algebraically closed field k such that A = B [x]. Let P and Q be 
finitely generated projective A-modules with rkP>d.  If  P and Q are 
stably isomorphic then P,~Q. 

Proof. As in the arguments given above we can reduce to the case 
where P =  A | and q~: P | 1 7 4  Let cp(0, 1)=(q, a). By applying 
Theorem 1.3 and using a transvection we can assume that t=oQ(q) is 
such that SpecA/l  is smooth of dimension _-<0. By Lemma2.3(2) we 
can write A=C[z]  where B c C  and k[z]+I=A.  Let a = f + i  with 
f ek[z]  and iEI. Let h: Q---~A with h(q)=i and define p: Q O A ~ Q O A  
by p(~,r t)=(~,q-h(~)) .  Then p~0: P | 1 7 4  sends (0, 1) to (q,f). 
Since k is algebraically closed, f splits into linear factors. In the case 
considered by Bass, P was free and old result of Buchsbaum implies that 
Q is free. In the present case, the required generalization of Buchsbaum's 
Lemma is given in Theorem 5.7 below. 

4. The Symplectic Case 

Since the results of [2] are set in a much more general context, I will 
begin with a brief account of the results needed here. We consider 
finitely generated projective A-modules with an alternating bilinear 
form < , >. I f P  and Q are two such modules write PA_Q for P@Q with 
the form ((p, q), (p', q')) = <p, p') + (q, q'>. I will use the symbol ~ to 
denote an isomorphism preserving the bilinear form. 

Lemma 4.1. Let P be a finitely generated projective A-module with an 
alternating form <, >. Then there is a bilinear form b on P such that 
(x, y> =b(x,  y) -b(y ,  x). 

Proof Let P O Q = F  be free and finitely generated. Give Q the 
trivial form <x, y> =0  and consider F as P i Q. If we can find a bilinear 
form b on F with <x, y ) =  b(x, y ) - b ( y ,  x), then b[P • P will do. Choose 
3* 
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a base for F and let (x ,y)=~x~a~jyi .  Then a~ j= -a j i  and ai,=O. Let 
blj=aij for i>j and b~j=0 for i<=j. Then b(x, y )=~x ib i j y  ~ has the re- 
quired properties. 

Definition 4.2. A symplectic A-module is a finitely generated pro- 
jective A-module P with an alternating form ( , ) which is non-degener- 
ate i.e., P ~ ,P* by x~--*(x,'). 

If P is symplectic and b is any bilinear form on P then b(x,.)eP* and 
so has the form ( v x , . )  for some vxeP .  Therefore, b(x ,y)=(vx ,  y) 
where v: P---,P is linear. 

Corollary 4.3. I f  P is symplectic, there is an endomorphism v: P--+P 
such that (x, y)  = (vx, y ) -  (vy, x) .  

If Q is a finitely generated projective A-module, the hyperbolic 
module H(Q) is defined to be Q* O Q with the form ((jr,, x), (g, y ) ) =  
f(y) - g(x). This is clearly symplectic. Obviously H(Q | Q') = H (Q) 3- H(Q'). 
We will write H=H(A)  and H " = H ( A " ) = H • 1 7 7  Thus H is A |  
with ((a, b), (c, d)) = a d -  be. 

IfQ has a non-degenerate bilinear form ( , ) we can use it to identify 
Q with Q*. Therefore, in this case H(Q) can be identified with Q|  
with the form ((a, b), (c, d)) =(a, d) - (c, b). 

Lemma 4.4. Let P be a symplectic A-module. Let P be P with the jorm 
(x, y)~ = - (x, y). Then H(P) ~- P r P. 

Proof By the previous remark, identify H(P) with P | P. Let i: P--, 
P | P by i(x) = (v x, x). Let # = 1 - v and let j:  15__, p O P byj(x) = ( - px, x). 
An elementary calculation shows that i |  P@/5---~H(P) gives the 
required isomorphism. Note that Qux, y ) = { x ,  vy). For more details 
see 1-2, Ch. I, Prop. 3.7]. 

Corollary 4.5. I f  P is a symplectic A-module, there is a symplectic 
A-module Q such that P • Q~- H". 

Proof Let P' be a finitely generated A-module such that P | P ' ~  A". 
Then H(P) 3_ H(P')_~ H(A") = H". But P 3_ P ~ H(P) by Lemma 4.4. 

An alternative proof of this result may perhaps be of interest. By 
looking at P L P •  we can reduce to the case where P is free. As in 
the proof of Lemma 4.1 we can choose a base and represent ~ , ) by an 

by n matrix M =(alj). Let N=(bi: ) as in the proof of Lemma 4.1 so that 
M = N - N t. Define 

X = ( ;  N/t), J = ( O  I ~), and T = (  M L )  

where all entries are n by n matrices, I=ident i ty .  Then T represents 
PLP,  J represents H" and an easy calculation gives X t J X =  T. Since T 
is invertible so is X and we get P L P ~ H " .  
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As usual, define KSpo(A ) to be the abelian group with generators [P]  
for all symplectic A-modules P, with relations [ P ] = [ P ' ] + [ P " ]  if 
P ~ P ' L  P". If A -* B is a ring homomorphism,  define KSpo (A) --~ KSpo(B) 
by sending [P] to [B | with the induced bilinear form. This makes 
KSpo a functor in A, 

Corollary 4.6. Every dement of KSPo(A ) has the form [ P ] -  n [HI  .for 
some nET/. Also [ P ] = [ Q ]  in KSPo(A ) if and only if P L Hm ~ Q L I4~ jbr 
s o m e  m .  

Proof. The usual arguments used for Ko(A) [1, Ch. VII, Prop. 1.3] 
show that every element has the form [P] - IS] and that [P] = [Q] if and 
only if PLS_~QZS, By Corollary4.5 we can write SLT~-H" for some 
T and the result follows immediately. 

As usual, we say that P and Q are stably isomorphic if P • S ~ Q • S 
for some symplectic S. By the preceding argument this is equivalent to 
P• for some n. 

Here is the symplectic analogue of Theorem 3.5. 

Theorem 4.7, Let B be a subring of A. Let P and Q be symplectic A- 
modules such that Q= A | where Qo is a symplectic B-module. U P  
and Q are stably isomorphic and rk P> pmsr(A, B) -  l then P~_ Q. 

Proof. As in the proof  of Theorem 3.5 it will suffice to treat the case 
where P • H-~ Q_I_ H. The only new feature here is that we must use only 
transvections preserving the symplectic structure. If M is any symplectic 
module, Bass [2, Ch. I, w 5.1] has  defined symplectic transvections to be 
automorphisms of M of the form ~ . . . . .  ( x ) = x + ( u , x ) v + ( v , x ) u +  
a (u , x )u  where u, v e M  with ( u , v ) = 0  and aeA. We will apply such 
transvections to Q • H = Q Q A | A. 

The only ones we will need are those with u=(0,  1,0), v=(y,O,O) 
and those with u =(0, 0, - 1) and  v= (y, 0, 0), These have the form 

(q, b, a)-~(q + ay, b+ (y, q) +~a, a), (1) 

(q,b, a)~(q+by,  b ,a+(y ,q)+ab)  (2) 

where we have written - ~  for e in (2). For  convenience, I will arrange the 
notation to agree with (1) or (2) in each case. Thus e, y, etc. will constantly 
change their meanings throughout the following argument. 

Let 0: P L H = P O A @ A ' ~ Q 2 - H = Q |  As in the proof of 
Theorem 3.5 we will compose 0 with symplectic transvections of Q 2_H 
to make OIH the identity. Let O(O, 0,1)=(q, b, a). By Definition3.2 
applied to (Q ~ A) | A we can find ye Q, ~e A, and B c C c A such that 
that A = C Ix] and 

A = C  +oe.a(q+ay,  b+c~a)=C +oQ(q+ay)+ A(b+o~a). 
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N o w  <y, q>=<y, q+ay>et~Q(q+ay) so 

oQ(q + a y) + A (b + <y, q> + aa)=oQ(q + a y)+ A(b + aa). 

Therefore,  i f a  x is the t ransvect ion defined by (1) and we replace 0 by a a 0, 
we can assume that  A=C+oq(q)+Ab.  N o w  write a - x = c + i + a b  
where ce C, ieoQ(q), a~A (not the same a as above). Since < , > is non- 
degenerate,  oQ(q) = <Q, q> so we can find y e Q  with i =  <y, q>. Let a 2 be 
the t ransvect ion given by (2). Then  a2(q, b, a )=(q ' ,  b, x +c).  By setting 
z = x + c  and replacing 0 by a20, we can assume that  0(0, 0, 1)=(q ,b ,  z). 
Let QI=C| so Q=AQcQI=QI•zQ.  Let q = q l - z y  with qleQ, 
yeQ. Let a 3 be the t ransvect ion given by (1) with a to be determined.  
Then a 3 (q, b, z) = (ql, b' + a z, z) where b' = b - <y, q>. Write b' = b o + fl z 
with b o �9 C, fl �9 A, Set a ~ - /~  so b' + a z = b o. By replacing 0 by a 30 we can 
assume that  0(0, 0, 1) = (q, b, z) with qeQi , be C. Since this is unimodular ,  
reducing m o d  z shows that  (q, b) is un imodu la r  in Q1 Q C and hence in 
Q �9 A. Write  1 -  z = fl + a b where fleoQ(q), and let fl = <y, q> as above.  
Let ~4 be given by (2). Then  a4(q,b , z)=(q',b', 1). Replace 0 by a,~O so 
that  0(0, 0, 1 )=(q ,b ,  1). Let  a s be  given by (1) with y =  - q ,  a =  - b  and 
replace 0 by a s 0. We now have 0 (0, 0, 1)= (0, 0, 1). Let  0(0, 1, 0 ) =  (q, b, a). 
Since <(0, 1,0),(0,0,  1 ) ) = 1  we have <(q, b, a), (O, O, 1 ) > = b = l .  Let 0" 6 
be given by (2) with y ~  - q ,  a =  - a  and replace 0 by a 6 0. Then 0 fixes 
(0,0, 1) and (0,1,0)  so O(H)=H. Now, in P_I_H we have P = H I =  
{xeP_i_HI<x,b>=O for all xeH}. Similarly Q=H • in Q I H .  Since 
O(H)=H it follows that  0: P=H'L_~HI=Q. 

As in w 3, we can immediate ly  deduce the following corollaries. 

Corol lary 4.8. Let B be a retract of A. Let P and Q be symplectic A- 
modules with rk P >pm sr(A, B ) -  1. If[P] = [Q] e im  [KSPo(B )---, KSPo (A)], 
then P ~ Q. 

Corol lary 4.9. Let B be regular and A =B[x l , . . . ,  x~]. Let P and Q 
be symplectic A-modules with rkP > pmsr(A, B ) -  1. I f  P and Q are stably 
isomorphic and if �89 then P~Q.  

If �89 and B is regular, a theorem of Ka roub i  [5, Ch. I, Th. 1.1] 
shows tha t  KSPo (B)~ K Spo (A). I do not  know if this is t rue when �89162 B. 

We can use these results to improve  the bound  in Theo rem 1 in certain 
cases .  

Corol lary 4.10. Let B be a retract of A. Let P and Q be finitely generated 
projective A-modules with rkP>=pmsr(A,B)-1 such that P and Q are 
stably isomorphic. I f  P and Q admit symplectic structures, Ko(A ) ~ K0(B), 
and KSPo(A)--, Ko(A ) is injective, then P ~Q. 

If we assume that  KSpo(B),~KSPo(A), it will suffice to assume that  
KSpo(B)-*Ko(B ) is injective. As Bass has remarked,  this is so if all 
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projective B-modules are free. In fact, all we really need is that every 
projective B-module of positive even rank has a summand isomorphic to 
A. In this case, if P is syrnplectic, we can find a unimodular aeP, This 
means (a, P ) = B  so we can find (a, b ) =  1. Now H=-Ba+Bb is hyper- 
bolic and P = H L H  • so we can repeat the argument on H l, finally 
getting P~-H ~ (cf. [-7, Ch. I, Cot. 3.5]). 

As Bass has also remarked, any finitely generated projective module 
P of r ank2  will have a symplectic structure if Pic A = 0  since then 
A2p,,~ A. All these conditions are certainly satisfied if k is a field. We 
deduce that if k is an infinite field with char k +  2, then all projective 
k[x  I . . . . .  x J -modules  are free for n<4 .  This result was obtained by 
Vasergtein and Suslin [14, Th. 1] without the hypothesis that k is finite. 
If k is infinite with char k = 2  and n<4 ,  the above arguments show that 
all projective A=k[x~ . . . . .  x,]-modules will be free if and only if 
KSpo (A) --+ K o (A) = Z is injective. 

Remark. It is rather tempting to conjecture that the map KSpo(A)-+ 
Ko(A ) is always injective on the grounds that a stable invariant has no 
right to detect stably free modules which are not free. However, this not 
the case. It is easy to find counterexamples in topological K-theory. Since 
the group Sp(n) is a maximal compact subgroup of Sp2,(C) the appro- 

priate map to look at is K~p ~ (X)-+ K U  ~ (X). For  X = S s this is Z/27/ -+0 

so all complex vector bundles /ire stably free but K'-Sp~ In the 
real case, the maximal compact subgroup of Sp2,(IR) is U(n) and the 

appropriate map is KU~176  For X = S  2, his is 7/--+7//27/ 
while for X = S  6 it is 7/-+0. The example over S 5 can easily be made 
algebraic. Consider S 20-1 as the unit sphere of C" with its usual hermitian 
form. Define the "complex tangent bundle" of S z"-I to be 

r/= {(x, t)~S z~- ~ • ~"tt • C x}. 

Clearly ~ /@Or162 where O c is the trivial line bundle. Since ~(x,  y) 
is the usual real inner product we see also that r / |  O R is the usual real 
tangent bundle to S 2"-a. It is very easy to verify that the associated 
principaI bundle of r/is the canonical fibration U(n - 1)-+ U(n)--+ S 2"- 
so by [3, Prop. 17.1] r/is non-trivial for n>3 .  Now if n=3 ,  q is a rank 2 
bundle over S s so AZrl is a complex line bundle. This is trivial since 
n4(U(1))=0 so ~/has a symplectic structure over IE, unique up to a unit 
of Ce(S' ). Let fl~n 4 (Sp2({~))= n4(Sp(1) ) be its canonical class. Clearly 
fie0 otherwise r /would be triviaI as a symplectic bundle and hence as a 
complex bundle. But n4(Sp(1)) "~ + rt4(Sp) so ~/is stably non-trivial as a 
symplectic bundle. To get the required algebraic example, let A =  
~2 [x 1 . . . . .  x 2.]/(x 2 + . . -  + x2z , -  1) be the ring associated with S 2"- i [12]. 
Let za=.x l+ ix2 ,  zz=x3+ix , , ,  ..., Zn=Xzn_14-ixzn. Let P be the pro- 
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jective A-module defined by the unimodular row (z~ . . . . .  z,). Then q 
is clearly the bundle associated with P. For n=3 ,  rk P = 2  and A 2 P ~ A  
because K0(A)=7Z [13, p. 123] and so P i c A = 0 .  Therefore P has a 
symplectic structure inducing the one considered for r/. Since r/ is not 

stably trivial as a symplectic bundle, neither is P. Therefore KSpo(A ) 4:13 
while /s  (as usual, the tilde indicates the kernel of the rank map). 

There is also an analogue oft/in the quaternionic case. Take S '~"- ~ c lH ~ 
with the inner product (a, b) = ~ aid i and let 

t/={(x, t )e  S '~" ~ • lHx)=O}. 

The associated principal bundle is Sp(n-1)- -*Sp(n)-+S 4"-1 so r/ is 
non-trivial for n>2 .  For  n=2  it is clearly non-trivial as a complex 
bundle since rc6(Sp(1))~z%(U(2) ). However r/ is stably trivial. In fact 
. | oh=  

5. An Elementary Cancellation Theorem 

In this Section I will prove the cancellation theorem used in proving 
Theorem 3.8. The results of this section are elementary and do not require 
commutativity or finite generation. We begin by recalling an argument 
used in connection with the fundamental theorem of K-theory. 

Lemma 5.1. Let R be a subring of A. Let P and Q be projective A- 
modules and let ~ : Q-*P,  ti : P---~Q be monomorphisms. I f  A, P/c~ ti P, and 
Q/ti~Q are projective over R, then so are P/~Q and Q/tiP. 

Proof Clearly P and Q are projective over R since A is and P and Q are 
direct summands of free A-modules. Since 0 ~ Q ~ , P ---, P/~Q ~ 0 we 
have pd R P/aQ < 1 (pd - projective dimension) and similarly pd R Q/tiP < 1. 
Now c~: Q ~ t Q  induces Q/tiP,~aQ/aflP. Since O-*~Q/c~tiP--~P/~tiP-+ 
P/e Q --,0 we have pd R Q/tiP = 0 and similarly pd R P/aQ = O. 

The following corollary applies in particular to A = R [x]. 

Corollary 5.2. Let R be a subring of  A and let a~A be a central non- 
zero-divisor. Let P and Q be projective A-modules with a P ~ Q c P. I f  A 
and A/aA are projective over R then so is P/Q. 

This follows immediately from Lemma5.1 with a(x)=x,  t i (x)=ax.  
Note P / a f l P = P / a P  and Q/f laQ=Q/aQ are projective over A/aA and 
hence over R. 

It is also worth noting that i fP is finitely generated over A and A/aA is 
finitely generated over R, then P/Q is also finitely generated over R as a 
quotient of P/aP. 

As an application we can give an elementary proof  of a result proved 
in [8, Th. 1.3] using K-theory. 
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Theorem 5.3. Let P and Q be finitely generated projective modules 
over A = R ix]. Suppose that f P  c Q c P where f is a monic polynomial 
with coefficients in the center of R. Then P and Q~ are stably isomorphic. 

Proof By Corollary 5.2, M = P/Q is finitely generated and projective 
over R. By [1, Ch. XII, w l]  we have the characterisitic sequence 
0-+ M ix] --~ M ix] -~ M --+0 where M ix] = R ix]  | M. Since 0-+ Q --~ 
P--*M-*O, Schanuel's Lemma [1, Ch. I, 6.3] shows that 

P | m ix] ~ Q | m ix] .  

In case f =  x we can do much better. It would be interesting to know 
whether the hypothesis that F is extended can be omitted. 

Theorem 5.4. Let F and P be projective R [x]-modules such that F 
is extended, i.e., F = R ix]  | l f  x F = P = F, then P,~ F. 

Proof As R-modules, F = F o |  and P = P o |  where Po = 
P e l f  o (cf. [9,w By Corollary 5.2, Fo/Po=F/P is projective over R 
so Fo=Po|  for some Qo. Now F = P o [ x ] |  ~ and P =  
P o | 1 7 4  F~.P since Qo[x ]~  
xQo[x] .  

The following is a slight generalization of a well-known elementary 
lemma. 

Lemma 5.5. (The X-Lemma.) / f  

0 0 
\\, 

A C 

s X !g 
~/ - \  i 

D B 

/ h, / 

0 0 

commutes and the two sequences are exact, 
c k r f ~  ckr g. 

Proof The snake lemma on 

0 , A - - - - - * X - - - - ~ B  

! [ 
0 ---+D , D , 0 

gives 0 -*he r  f - .  C~+B- - , ck r j ' - -~O .  

then k e r f ~ k e r  g and 

. ~ 0  

,0 
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We next give a generalization of an old result of  Buchsbaum. 

L e m m a  5.6. Let ~ be any class of A-modules. Let S be the set of central 
non-zero divisors of A with the follow ing property: I f  0 ~ Q --+ P--* A/s A -* 0 
with s E S and P ~ ~ ,  then Q ~ P. Then S is closed under multiplication. 

Proof If s, t eS  then O---*A/sA t A/stA--,A/tA---,O. Let ~ '  be 
the class of A-modules such that  if 0---, Q ---,P --~ M ---,0 with P e ~ ' ,  MeJ /g  
then P ~ Q .  All A/sA with s e S  lie in ~ so it will suffice to show that Me' 
is closed under  extensions. Let O--~M'---~M---,M"--,O with M', M"eM//. 

Let O--+Q--, P s , M---*O with P e ~ .  If Q'= f -~(M') ,  then O---~Q'---, P---~ 
M"---~0 so P.~Q'. Using this in O---,Q---,Q'--*M'--+O we get O---~Q---,P---, 
M'--*0 so Q ~ P .  

Buchsbaum considered the case where N is the class of finitely 
generated free modules  and formulated his result in terms of unimodular  

rows. ff s is a central non-zero  divisor and O---,Q--,A" x A / s A g O  
where f is represented by the matrix (fl . . . . .  f , )  then (fl . . . . .  f , ,  s) is a 
un imodula r  row and 

Q = {(xl . . . . .  x,)l Y~ x, f~ - 0  m od  s} ~ ((x t . . . . .  x , ,  y) l ~ x ,  f~ + y s = 0}. 

Note  y is determined by x a . . . . .  x,  since s is a non-zero-divisor.  Therefore 
S is the set of central non-zero-divisors  such that every unimodular  row 
with some element in S defines a free module.  The fact that  this S is closed 
under  multiplication was also discovered independently by Towber.  

We can now prove the cancellation theorem. 

Theorem 5.7. Let F and P be projective A = R [x]-modules such that F 
is extended. Suppose A O F,~ A O P and the composition A - *  A O F ~ 
A O P--~ A is given by a~-*af I f  f = u ( x - a ~ )  ... ( x - a , )  where u is a unit 
of A and the a i are central elements of R, then P ~ F. 

Proof By compos ing  the given isomorphism with A q ) P  ~ A | P by 
(a, p)--, (a u -  1, p), we can assume that u = 1. By Lemma 5.5 on 

A P 

\ / 
A O F , ~ A O P  

/ \ 
A F 

we get O---*P--~F---~A/fA--*O. By Lemma 5.6, it will suffice to do the case 
f = x - a  r Let z = x - a  i. Then A = R [ z ]  and z F c P c F  so P,~F by 

Theorem 5.4. 
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