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A Cancellation Theorem for Projective Modules
in the Metastable Range

Richard G. Swan (Chicago)

If A4 is an affine ring of dimension d and P, Q are finitely generated
projective A-modules which are stably isomorphic, i.e, P® A’~Q P A°
for some s< oo, then P~ Q provided rk P=d+ 1. This follows from the
cancellation theorem of Bass [1, Ch.IV, Cor.3.5]. The object of this
paper is to show that the bound d+1 can be reduced under certain
additional hypotheses. Throughout the paper (except for §5) all rings
will be commutative with unit. The notation A=B[x,,...,x,] will
always be understood to mean that A is a polynomial ring over B in the
indeterminates x,, ..., x,. The only exception is that the notation A[a~"']
will, as usual, denote the localization of 4 with respect to the powers of a.
The term “variety” will always mean a geometrically integral scheme
of finite type. Here is the main result.

Theorem 1. Let V=Spec A be a smooth affine variety of dimension d
over an infinite field k. Suppose that A=B[x,,...,x,]. Let P and Q be
finitely generated projective A-modules which are stably isomorphic.

Then P~Q provided rk P§d+1—§.

As an immediate consequence of this we get

Corollary 2. Let A, B, d, e be as in Theorem 1. Let P be a finitely gene-
rated projective A-module with tk P=d+1 —%. Then P~ A ®gzP, where

P, is a finitely generated projective B-module.

To see this we observe that K,(B)—— K,(A) since A4, and hence B,
is regular [4, Cor.17.5.2] [1, Ch.XII, Th.2.2] [1, Ch.XII, Th.3.1].
Therefore, if P,=B®, P then P and A ®;P, are stably isomorphic and
Theorem 1 applies.

In particular, if B=k, we obtain the following result which was
announced by Suslin [14].

Corollary 3 (Suslin). If k is an infinite field, all projective k[x,, ..., x,]-

modules of rank = 121+ 1 are free.
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I have not seen any details of Suslin’s proof. The argument used here
is based on one due to Roitman [ 10] who proved Corollary 3 for rank = n.
The results obtained here are obtained by replacing Roitman’s algebraic
general position argument by a Bertini type theorem. This theorem also
gives an immediate proof of the theorem of Kleinman used in [9].

Recently, Vaserstein und Suslin have announced further results on
Serre’s problem obtained by making use of symplectic methods [14].
This suggested applying the methods of the present paper to obtain a
cancellation theorem for symplectic modules similar to Theorem I.
As a consequence we get the following: If k is an infinite field with char
k<2, then all projective k[x;, ..., x,]-modules are free for n<4. This is a
special case of results of Vaser$tein and Suslin. I do not know how to
extend the methods used here to cover all cases considered in [14]. In
particular I do not know how to extend the methods of this paper to
finite fields.

Profound thanks are due to H. Bass and M. P.Murthy for their contributions to this
paper. The first stages of this work were done in collaboration with Murthy, following a
talk by Bass on Roitman’s work. In particular, two key ideas of this paper, the use of Ber-
tini’s theorem and the idea of using general linear combinations of the coordinates as coeffi-
cients, are both entirely due to Murthy. My original intention was to include him as joint
author of this paper and it was only after considerable protest on his part that I was dissuaded
from doing so. The final form of the paper is largely due to Bass’ suggestions. After I showed
him the proof of Theorem 1.3 in the free case and the deduction of Suslin’s theorem, he
remarked that the same argument gives Theorem 1 in the stably free case and that one would
need something like Theorem 1.3 to prove Theorem 1 in general. He also pointed out a
variant of Roitman’s argument which led to Theorem 3.2. Thanks are also due to Bass,

Murthy, and Serre for information concerning the results of Vaserstein and Suslin and further
thanks are due to Bass for showing me a detailed exposition of VaserStein’s work.

1. The Bertini Theorems

Although Bertini’s theorem is one of the best known results in alge-
braic geometry, I was unable to find a statement of it in exactly the form
needed here. Therefore I will begin by giving the required form of this
theorem. The version dealing with sections by linear subspaces will
suffice. Let 2 be a property of linear subspaces of the n-dimensional
affine space A" over a field k. Let C<k”, N =(n+1) (n—r), be the set of all
(Ajo pp), i=1,...,n—r, j=1,...,n such that the equations Zlijxj+ui:0
define an r-dimensional subspace of A” with the property 2. As usual we
say that a general r-dimensional linear subspace has the property 2 if C
contains a non-empty Zariski open set of kM.

Theorem 1.1 (Bertini). Let V be a locally closed subvariety of A"=
Spec k[x,, ..., x,] of dimension d. Then for a general linear subspace L
of A" of dimension r,

(1) LNV is geometrically reduced of dimension d—r everywhere or
is empty.
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(2) L~V is g variety if dim LNV +0.
(3) LAV is smooth if V is.

If dimLn¥V =0, (1) means that L V=Spec(K, x---x K,) where
the K; are finite separable extensions of k. The notation L~V means
Lx .V.In other words, if V'=Spec 4, then L V=Spec 4/ 1;;x

Proof. Let s, ijo b be indeterminates and let
X =Spec A[s;;, t1/Q six;+t)

and S=Speck[s;.t,]. If s is a closed point of S given by s;;+4;€k,
r— ek, then the fiber of X — S at s is obviously L~ V. By [4,9.2.6,
9.9.5], the set C’ of points s of § where the fibre X_ satisfies any of the
conditions of Theorem 1.1, is constructible. It follows that the set Cc k¥
of all (4;;, ) such that L0V satisfies the required conditions is also
constructible because the set of closed points of S is k¥ with the Zariski
topology. Using this observation, we can first reduce to the case where L
isa hyperplane. Let H be given by Y A,; x;+u, =0and Lby ) 4;;x;+u,;=0
for i=2. By induction we can assume that L~V satisfies the required
conditions for general A, y;, i=2. For any fixed value of these 1, u, we
will then know that LAV =H n L n Vsatisfies the conditions for general
1+ M4y - Now apply the following elementary lemma.

Lemma 1.2. Let C<kP*? be any set. Let f: C— ki be the projection
on the last g factors. Let D be the set of xe k3 such that f~*(x) is dense in k”.
If D is dense in k%, then C is dense in k?*9. Therefore if C is constructible,
it will contain a dense open set of k?*4.

Proof. Let C be the closure of C. If xeD then f~T(x)=k" x x but
/~Y(x)= C. Therefore k? x D= C. But k?x D is dense in kP*4. This is
obvious if k is finite. If k is infinite, we must show that if fek[x,, ..., x,,
Vis---» Y] 18 zero on k¥ x D then f=0. Write /=) g;(y) m; where the m;
are monomials in the x,. If beD, then f(a, b)=0 for all aek?. Therefore
all g;(b)=0. Since D is dense in k%, all g;(y)=0. The last statement is clear
if k is finite. If k is infinite write C =|{ ] E; where E, is Jocally closed. Then
C= kpra={) E,. Since k is infinite, k‘”’" is 1rreduc1b {since fg=0 on
kP+ % implies that fg=0 as a polynomial) so some E,=kP*4 and E, is the
required open set.

We can now assume that L is a hyperplane. To prove Theorem 1.1,
it will suffice to prove that the set C" above contains a dense open set U of
S since then U kY < C will be a dense open set of k™. Since C' is con-
structible, it will suffice to show that the generic point of S lies in C.
This reduces Theorem 1.1 to the case of a generic hyperplane section. If ¥
is closed, this case is treated in detail in [6, Ch. VIIL, §6]. If V' 1s only
locally closed, apply the results of {6, Ch. VIII, §6] to its closure V. This

ij j )
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isstilla varietyand L V=L~ V—(V—V)isanopen set of LAV so(1)and
(2) for V obviously follow from (1) and (2) of V. For (3) note that ¥ need
not be smooth but [6, Ch. VIII, § 6, Prop. 13] hows that L meets the
nonsingular set of ¥ in a smooth subscheme so (3) follows.

If @ is an A-module and xeQ, the ideal 0g(x) of A consists of all &(x)
for heHom ({Q, 4) [1,Ch. 1V, § 1]. Thus x is unimodular if and only if
0p(x)=4.

Theorem 1.3. Let V=Specd be a smooth affine variety over an
infinite field k. Let Q be a finitely generated projective A-module of rank r.
Let (q,a)e Q ® A be a unimodular element. Then there is a yeQ such that
I=04(q+ay) has the following properties.

(1) The subscheme U =Spec A/l of V is smooth over k and dim U =
dim V—r unless U=0.

(2) Ifdim U =0 then U is a variety.

Note that @ has constant rank since V is connected [13, Th. 7.8].
If V is not connected, we can, of course, apply Theorem 1.3 to each
component of V.

I will actually prove a stronger form of this.

Theorem 1.4. In the situation of Theorem 1.3, there is a finite set S< Q,
depending only on Q and A, such that if T={t,, ..., 1.} is any finite subset
of Q containing S, then for general A, in k, the element y=A t, +---+ 2,1,
has the properties required in Theorem 1.3.

As usual, “for general 1; in k” means “for all (4,,...,4,) in a non-
empty Zariski open set U of k™”. Of course, U will depend on g, 4, and T.

We begin by exhibiting the set S. Let x,,..., x,€4 be a finite set of
clements such that the map £: V—>A" maps V isomorphically onto a
locally closed subvariety of A" We can find a finite covering of V by
special affine open sets,i.e. ¥ ={ ) ¥, with V;=Spec A[a; ']and} Aaq;= 4,
such that each Q;=A[a; '] ®,Q is free. Since V is compact, it is enough
to do this locally. If p is a prime ideal of 4, Q, is free so we can find a free
A-module F with f: F— @ inducing F,~Q,_. Since ker f, ck f are finitely
generated they are annihilated by some a¢p. Therefore A[a™'1®,0~
Ala~']®,F isfree. Let e;,, ..., e;,€Q map into a base for Q,. We choose
$S to consist of the elements ¢;; and all x,e;;, 1<k<n.

With this choice of S, we can immediately reduce to the case where
is free. If Q is free on ¢y, ..., e, we can choose S to consist of the ¢, and the
x, ¢;. Now, the image of T in Q; will contain such a set. Note that the x;
still give a locally closed embedding of V;. This is the reason why we did
not insist on a closed embedding. If Theorem 1.4, with our choice of S,
holds when Q is free, the subscheme U, of V; defined by o, (g+ay)=
Ala; ' 04(q+ay) will satisfy the conditions of Theorem 1.3 for general
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4;. Since these conditions are local and there are only a finite number of
V., it is clear that Theorem 1.4 will hold for Q.

We must now prove Theorem 1.4 for the case where Q is free with
base e,,...,e, and S is the set of all ¢; and x,e;. Let T={r,,...,1,}.
Let g= q1e1+ -+q,e, and t;=> t,.e;,. Then y= Zi e; and g+ay=

gt ll]

Z(q1+a/1, t;)e;s0 I=0,(q+ay)istheideal generatedby theqﬁ-aZﬁl
Qur first aim is to eliminate the elements in T—S§.

Let u; be indeterminates, X =Spec A[u,]/( quLaZul t;), and §=
Spec k[u] If A=(4,) is a closed point of S, the fiber X, is Spec 4/I. As in
the proof of Theorem 1.1 we see that the set C of Aek™ such that y=3" 4t
satisfies the conclusion of Theorem 1.3, is constructible. Therefore, by
Lemma 1.2, it will suffice to show thatif 1,,,, ..., 4, are given for some
fixed p then y satisfies the conclusion of Theorem 1.3 for general 4, ..., 4,.
We choose p and the numbering of the ¢; so that S={r;,...,t,} and
T—S={ty, 1, rtm)-

Lety'=At;+-+4,t,and y'=4, t, +--+4.t, Thengq+ay=
(g+ay’Y+ay.Now (g+ay”, a)is unimodular so it follows that g+a y’" +
ay’ has the required properties for general 4,,...,4,.

Now suppose T=S where Q is free on e, ..., e, and S is the set of ¢;
e;and x;e;. Let g=g, ¢, +--- +g,e,. Let ¢: V—IP"*" have homogeneous
coordinates (qy, ..., q,, @, X, 4, ..., x,a). This is well defined since (¢, ...,
q,,a) is unimodular so some entry is non-zero at each point of V. Let W
be the closed subset of I defined by a=0. Then ¢ maps V— W isomorphi-
cally onto a locally closed subset of P"*+". In fact, on V~ W, ¢ is given by
(gra ', ...,q,a ' 1,x,, ..., x,) so @(V—W) lies in an affine subspace of
IP"*" and embeds V~ W as the graph of the map (g,a™',...,q,a™"):
V—W-A" Now o(Wc{a,,...,q,,0,...,00=IP""'cIP". Let L be a
general linear subspace of IPY of dimension n. Then IP"~'nL=0. By
Bertini’s Theorem 1.1, L @ (V— W) will satisfy the conditions imposed
on U in Theorem 1.3 and hence so will U'=¢ '(¢p(V)nL). Let
the homogeneous coordinates in IP"*" be (u,,...,u,,2,,...,2,) and
suppose L is given by equations  p,u;+Y v,z,=0,i=1,...,r, or, in
matrix form pu+vz=0. For general u,v we have det u40 so L is de-
fined by u+pu~'vz=0. Let A=p~"v. Then U’ is clearly defined by the

equations g;+4;,a+) 4;ax;=0. But these are just the coordinates of

1
q+ay where y=) A;t; with S={t,,....t,} and the A’s are suitably re-
indexed so U’'=U for this choice of A. Let 6:GL, (k) x k""+1
GL,(k)yx k""+1) by O(u, v)=(u, ' v). We know that U’ satiesfies the
conclusion of Theorem 1.3 if (i, v) lies in some non-empty open set O of
GL,(kyx k®+1_Therefore the set of (u, A) such that U has the required
properties contains an open set §(0). If we fix a p such that (u x K"+~
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6(0)=0, the A with (u, )e6(0) form a non-empty open set with the
required property.

By using a stepwise procedure as in Roitman’s paper, one can prove
a bit more. A strictly lower triangular matrix will mean one with 1’s on the
diagonal and 0’s above the diagonal.

Theorem 1.5, Let V=_Spec A be a smooth affine variety over an infinite
field k. Let f=(f,,....f,,1) be a unimodular row over A. Then there is a
strictly lower triangular matrix T over A such that f T=(g,, ..., g, ) has
the following properties.

(1) Foreach i, the subscheme U, of Vdefined by the ideal Ag, +---+ Ag;
is smooth over k and dim U,=dim V—i unless U;={.

(2) If dim U; %0, U, is a variety.

Proof. Let x, ..., x, be as above and let ¢: V—IP" have homogeneous
coordinates f,,...,f,,; and all x;f; with 2<j<r+1. Let WcV be
defined by f, =---=f,  , =0. Again ¢ maps V— W isomorphically onto a
locally closed subset of IPY since we can recover the x; by taking ratios of
coordinates of @(x). Also @(W) is the point (1,0,...,0). Let H be a
general hyperplane of IPY. Then ¢ (W)~ H=( and by Bertini’s theorem
@(V—W)nH has the properties required of U,. If H is defined by
h=Y A fi+) A;x.f;=0 we can set g, =i 'h since 1, +0 in general.
Now repeat the same argument on U, and the unimodular row
f21Uy, .. r,,|U; to get g, (still defined on V). Continuing in this way
wegetg,, .., g.andsetg, ,=f .

Remark. Using Lemma 1.2 it is easy to see that we can take T'to be a
strictly lower triangular matrix whose subdiagonal entries are general
linear combinations of 1, x,, ..., x,,. In fact, let T have this form. Let X,
be the linear space of coefficients of 1, x, ..., x, occurring in the first
column of T, X, that for the second column, etc. Let C;c X x ---x X;
be the set of coefficients such that for the corresponding T, U, ..., [
have the required properties. As before, C; is constructible. The proof of
Theorem 1.5 shows that C, contains a non-empty open set O,. Suppose
0;< C, is a non-empty open set. Apply Lemma 1.2to C;,,n 0, x X,,, in
0;x X;, {- The proof of Theorem 1.5 shows that C, , contains a non-
empty open set.

[ will conclude this section by showing that Theorem 1.3 can be used
to replace the theorem of Kleiman used in [9].

Corollary 1.6. Let V=Spec 4 be a connected smooth affine scheme
of dimension d over an infinite field k. Let P be a finitely generated projective
A-module of rank r. Then there is a map f: P— A such that if 1 = f(P) then
U =Spec A/l is a smooth subscheme of V of dimension d—r unless U =4.
Furthermore, we can assume that U is geometrically integral if V is and
dim U >0.
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This is exactly the consequence of Kleiman’s theorem used in [9].
To prove it, apply Theorem 13 to (0,1)eQ@® A where @=P*=
Hom,, (P, 4). We get yeQ such that o,(y)=1I has the required properties.
Now yeQ = P*so y: P— A and the definition of o,(y) shows that I = y(P)
since P~ Q*,

Remark. We can get more information using Theorem 1.5 if we know
that P@® A~ A"+ which is the case in the application in [9]. In this case
we have 0P — A1 L 450 where f(x)=Y fix; and (f;, ....f., ) is
unimodular. By Theorem 1.5 we can make a change of base in A™*?
getting 0—>P—>A""'—£54—0 where g=(g;,...,g,,,) satisfies the
conclusions of Theorem 1.5. Let p: P— A4 be projection on the last
factor of A™*'. Since P={xeA™*') g,x,=0} we see that imp=
{x,,1€Alg,,1x,,,€l} where I=Ag +---+ Ag,. Clearly I<im p. Con-
versely, let xeim p. Since g,...,g,,, is unimodular, I+ 4g, ,=A.
Write 1=i+ag,,, with iel. Then x=ix+ag,,,xel soim p=1I and we
recover the conclusion of Corollary 1.6. The advantage of this approach
is that we also get quite a bit of information about the kernel of p. It is

clear that ker pz{xeA’[zr:g,. ;=0}. Now, if r<d, the irreducibility of
the U, shows that (g,, ...,lg,) is an A-sequence and hence its associated
Koszul complex E is exact, i.e.

0—E,—-E |- —>E,—»E —-E,—A4/I-0 "
is exact. Now Eq=4, E;=A" and E, —E, is given by (x;,....,x,)—

Y g:x;. Therefore ker p~ker [E, — E,] and we have an exact sequence
1

0—-E,—E, ,——E,—»P-254-54/1-0. (2)
In particular, if r=2 then ker pa~E,~ A. It is well known that if [ is
generated by an A-sequence then Ext'(4/I, A)=0 for i4r and

Ext’(A4/1, A)y= A/1

generated by the Yoneda class of (1). Since (2} is also a projective resolution
of A/I, its Yoneda class also generates Ext"(A/l, A). We deduce easily
that the class of the extension 0 — ker p— P — I —0 generates Ext* (I,ker p)
since it corresponds to the class of (2) under the isomorphism
Ext! (I, ker p)~Ext"(4/I, A)~ A/l derived from (2). However, I do not
know of any applications beyond the one in [9].

2. The General Projection Theorem

The following theorem is very well known but I was unable to find any
reference for it in the form needed here. Murthy pointed out the paper of
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Lluis [15] which treats the projective case. Lluis’ argument can easily be
modified to cover the case needed here. I will give a direct argument here.
It is based on the same ideas as [15].

Theorem 2.1. Let V be a smooth closed subscheme of A" over an in-
finite field k with dim V=d. Let p: A¥ — A" be a general projection with
r=2d+1. Then p maps V isomorphically onto a closed subscheme of A".

Proof. Let 4 be the diagonal of V x Vand let ¢: V x V—A4 - AN - {0}
by ¢(x, y)=x—y.Letn: AY— {0} ->IP"~! be the canonical map and let X
be the closure of ne{V x V—4). Then dim X £24d. Let I¥ "1 cPV-!
be the image of kerp in IPY-*. For general p, I’ """ 'n X =¢ since
N—r—1+42d<N-—1. This means that if x, yeV, x=+y then p(x)=+p(y)
since x — y¢ L. Now let T(V) be the tangent bundle of V. If V is defined
by the equations f;=0, then T(V)c A" x AV is the set of (x, y) satisfying

£;(x)=0 and Z%yl:o. Since V is smooth, the fiber T (V) of pr,:

T(V)—V has dimension d. Define ¢:T(V)—V x0—-AYN—{0} by
Y(x,»)=y. Let Y be the closure of ny(T(V)—V x0) in PV~ Since
dim T(V)=2d, the above argument shows that I¥~"~! ~ Y=0 for general
pand so p(y)+0for (x, y)e T(V). In other words, themap T,(V)— T, (A"
is injective.

To see that p(V) is closed in general, we use the following well known
result.

Lemma 2.2. Let V be a closed subscheme of AN over an infinite field k
with dim V=d. Let p: A¥ A" be a general projection with r>d. Then
W=p(V) is a closed subscheme of A" and V is finite over W.

This follows immediately from the proof of the normalization lemma
in {11, Ch. I, § 3, n°4]. Since the proof is so short 1 will repeat it here. Let
p(x)=y where y,=) a;;x;. Extend p to a projection p’ of IPY on IP" by
sending (xg, X, ..., Xy) to (X4, ¥y, ..., ¥,). The center of this projection
will be [¥ "' < IPY~" = {x, =0} where Lis as above. Let V be the closure
of Vin IPY. Then dim VIPY~! <d so L V= for general p. Therefore p’
is defined everywhere on V so p’(V) is complete and hence closed in IP".
It follows that W=p(V)=p'(V)nA" is closed in A". To see that V— W
is finite, observe as in [ 117] thatif I is the ideal defining V,then(l, Xgs Za,. %))
defines ¢f and hence contains all monomials of degree =g say. Now set
xo=1. If M is the set of all monomials of degree <q in k[x,, ..., x,], it
follows that k[ x,, ..., x, /I "k[x,, ..., x,] is generated as a k[y,, ..., y,]-
module by the image of M. Therefore V is finite over W.

To complete the proof of Theorem 2.1, it will be convenient to have k
algebraically closed. Suppose that the theorem is true in this case.
Let V=SpecA. The theorem says that for general c;;, the map 0:
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k[yy,...,y,]— A sending y; to ) ¢;;x; is onto. Let k' be the algebraic
closure of k. By our assumption we can find a polynomial G(c;;) over k'
so that k' ® 6 is onto for G(c;;)#0. By taking the product of the conjugates
of G raised to a suitable power we can assume that G has coefficients in k.
But if ¥’ ®8 is onto so is §. Thus the theorem for k follows from the

theorem for k'

We can now assume that k is algebraically closed. Since p|V is
injective and p maps each component of V to a closed set (for general p),
it will suffice to consider the case where V is irreducible. Since k is alge-
braically closed, we can identify T, (V) with the Zariski tangent space
Hom, (m,/m}, k) where m_ is the maximal ideal of Oy .. In fact, suppose
x=0 and let V" be defined by f;=0. Let f;=1;+h; where [, consists of the
terms of degree 1 in f;. Then Y (0f;/0x,), - o yi=1;(y) so Ty (V) is defined by
L(y)=0. But m, /m2=(kx, + -+ kx,)/Y kl|(x). Since p: T(V)— T, (A"
is injective, this implies that m,, , /Mz, =My, /M  is onto and
hence so i My ,,/M% o — My /mi .. Now let V=SpecA and
W=Spec B where Bc A is the image of k[y,,...,y,]>A. Let m be a
maximal ideal of B. Since p: V—Wis 1 —1 and onto, there is a unique
maximal ideal n of B with n>m. If n corresponds to xe Vthen O, .= A,
and m/m2~n/n? and similarly for B. Therefore m/m?—n/n? is onto.
This shows that n = Am +n? and it follows that n = A m since it is sufficient
to check this locally. In A,,, it follows from Nakayama’s lemma, while at
other maximal ideals of 4 it is trivial because such ideals do not contain m.
Now let M= A/B as a B-module and tensor B— A4 —M —0 with B/m
getting B/mB— A/mA— M/mM 0. We have just seen that mA=n.
Since kisalgebraically closed, B/m =k = A/mand it follows that M/m M =0.
Since M is a finitely generated B-module, Nakayama’s lemma shows that
M, =0. Since this holds for all m, M =0and A=B.

Remark If Vis not smooth, we can use the same argument to obtain the
affine analogue of Lluis’ theorem [15]. The map ¢/: T(V)—V x 0—IP¥-!
above clearly factors through the associated projective bundle IPT(V).
Therefore dim Y <dimIPT(V)=dim T(V)—1 and the argument works
provided r2max (2d + 1, dim T(V)). As in [15] observethat the part of
T(V) lying over the non-singular part of ¥ has dimension 2d while the
rest has dimension < z+dim V,<z+d—1 where V is the singular set of V/
and z is the maximum dimension of the Zariski tangent spaces of V. This
gives the condition r=>max (2d+1,z+d~—1)asin [15]. For thecase d=1
this is the best possible result. For example, let V=Spec A where
A=k[x", x"*, .. Jck[x]. If m is the maximal ideal at x=0, then
dim m/m?=2n. If V can be embedded in A", then A=k[x,,...,x,]/I.
Since every maximal ideal of k[x, ..., x,] has r generators the same will
be true for A and so r22n=z+d—1.
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We now apply Theorem 2.1 to obtain the following technical result
which will be needed n § 3.

Lemma 2.3. Let V=Spec A be an affine scheme of finite type over an
infinite field k such that V=V, x A® where A° is an affine e-space, i.e.,
A=B[x,, ..., x,] where Vy=SpecB. Let W=Spec A/ be a closed sub-
scheme of V which is smooth over k. Then

(1) If dim Wg%- 1, there is a subring C of A with B C, A= C[X]
such that A=C+1.
) If dim W§§, then A=k[x,, ..., x,]+1.

Proof. Suppose VocA” so V=V, xA°<A"*® Since W is smooth
and 2 dim W+1<e—1 (in case (1)}, a general projection of A"+ on A°~*
will map W isomorphically onto a closed subscheme W' of A® by Theo-
rem 2.1. Now any sufficiently general projection : A"xA°¢— A~ ! will
map A° onto A°~" and therefore will factor as A" x A® -5 A¢ 2> Ac~!
where p is the projection on the last e—1 factors and u: A°~A°. Let
6: A" x A= A" x A° by 6(y, x)=(y, A(y)+ p(x)). Then ¢ =p6 where p is
again the projection on the last e—1 factors. Clearly V=1V, x A° is stable
under 6. Replacing V by its image under 6 (which amounts to changing
the choice of isomorphism V& ¥V, x A) we can assume that p itself maps
W isomorphically onto W'. Now

p: V=Spec B[x,, ..., x,] > A°=Speck[x,, ..., x,]
corresponds to the inclusion
k{xy,..or x,J—=Blxy, ..y X.]-
Under this map,
W=Spec B[x,, ..., x,]/JI —> W'=Speck[x,, ..., x,]/J

say, SO

klxy, ..., x,1/J —> B[x,, ..., x, /1.
If we let C=B[x,, ..., x,] it follows immediately that 4= C+ 1. Clearly
B< Cand A=C[x,].

In case 2, we apply the same argument to a general projection
A" A° getting k[x,, ..., x,]/J —— A/L

3. The Metastable Range
If P 1s a finitely generated projective A-module, we will write “rk P> s>
to mean rk P, > s for all prime ideals p of A. The projective stable range
of 4 is defined as follows.

Definition 3.1. We say psrA=<s if for every finitely generated pro-
jective A-module Q with rkQ>s and every unimodular element
(g, 2)EQ @ A, there is a ye @ such that g+ ayeQ is unimodular.
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The usual stable range sr(4) s defined in the same way but with Q
assumed to be free [1, Ch. V, Def. 3.17. Clearly sr(4)< psr(A). | do not
know any example where the strict inequality holds although there is no
obvious reason why these two ranges should be equal.

If A is noetherian and dimm—Spec A=d, a special case of Bass’
stable range theorem {1, Ch.IV, Th.3.1] asserts that psr(4)<d+1.
Applying the definition of psr to (a, g)=(1,0) gives Serre’s theorem: If
rk Q= psrAthen Q=A@ Q. An argument using transvections [ [, Ch. IV,
Th. 3.4] gives Bass’s cancellation theorem: If tkQ=psr4 and A®Q~
A@P then Q= P.

In order to extend the cancellation theorem to lower ranks in certain
cases, we will define a projective metastable range. This definition was
suggested by the work of Roitman [10]. For technical reasons, it is
necessary to consider pairs of rings B< A.

Definition 3.2. If Bc A, we say pmsr(A4, B)<s if for every finitely
generated projective A-module Q with rkQ>s and every unimodular
element (¢, a)e Q@ A we can find yeQ and a subring C of 4 such that
BcCcA4,A=C[x],and C+oylg+ay)=A.

We will write pmsr(A) in case B=1im[Z — A]. Note that pmsr{4)<
pmsr{A, B).

This definition 1s of course vacuous unless A does have the form
A=C[x] with Bc C. If this is so, we clearly have pmsr(A4, B)<psr(A).
The following theorem shows that this can be considerably improved in
certain cases.

Theorem 3.3. Let Spec A be a smooth affine scheme of dimension d
over an infinite field k such that A=B{x,, ..., x,] with e>0. Then

pmsr(A,B)§d+1—%.

Proof. We can assume Spec A4 is connected. Let Q be a finitely generated
projective A-module with rkQ =r and let (a, 9)e A®Q be unimodular.
Choose yeQ so that I =0,(q+ay) has the properties specified in Theo-

rem 1.3. Then dim Spec A/I=d —vr. If d—ré%— 1, Lemma 2.3 gives us
the required C.

Before stating the main cancellation theorem, I will give a special
case which will show clearly the connection with the methods of Roit-
man [10] and with Theorem 5 of Vaserstein and Suslin [14]. The argu-
ment is taken directly from [10].

Theorem 34. If pmsr(A)<r then E, (A} is transitive on the uni-

modular rows (a,, ..., a,, ) over A.

Proof. Let g=(a,, ...,a)eQ=A4" and a=a, . By Definition 3.2 we
can find y=(y,,...,y,)eQ and CcA so that 4=C[x] and A=

3 Inventiones math, Vol. 27
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C +0y(g+ay). By elementary transformations, change (ay, ...,q,,,) to

(byy.-nb,)=lay+a,, 1y, a,+a, . y,.a,, ). Then vy(q+ay)=) Ab,.
r r 1

Since A=C+) Ab, we can write x—b,,, =c+ Y d;b,. By elementary
1 1

transformations we can replace b,,; by b, ;+> d;b;=x—c=z say.
1

Now A= C[x]=C[z]. Let b;=c,+ze, for i<r. By elementary transfor-

mations change (b,, ..., b,, z) to (¢, -.., c,, z). Taking this modulo z we see

that (¢,, ..., ¢,) i1s unimodular. Therefore, by more elementary transfor-

mations we can take (¢, ..., c,, z) to {c,, ..., ¢,, 1) and then to (0, ..., 0, 1).
We now come to the cancellation theorem.

Theorem 3.5. Let B be a subring of 4. Let P and Q be finitely generated
projective A-modules such that Q has the form A®yzQ, where Q, is a
finitely generated projective B-module. If P and Q are stably isomorphic
and tk P=pmsr(A, B), then P~Q.

Proof. We have P @ A°~Q @ A° for some s. By induction on s, it will
suffice to treat the case s=1. Let o: P@ A~ Q @ A and let (0, 1)=(g, a).
Apply Definition 3.2 to (g, a) getting yeQ, C= A4 with A= C[x], Bc C,
A=C+oy(g+ay). Let Yy:QDAxQ®A by Y& n)=(+ny,n. By
replacing ¢ by Y ¢, we can assume A= C+o,y(q). Write a~x=c+1i,
with ce C, ieny(g). By the definition of oy, there is some h: Q — A with
hig)=i. Let p: Q@ A=Q @ A by p(&, n)=(& n—h(&)). Then pp(0, 1)=
(g,a—i)=(q, z) where z=a—i=x+cso that 4=C[z] Let Q, = C®pQ,.
We use here the assumption that B C. Then 0=4®.0,=0,[z]=
0, ®z0. Let g=q, +zq with q,€Q,, ¢'€Q. By composing pe with the
transvection (&, y)—(£—-nq',n) we can assume that g=gq,. Reducing
modulo z shows that g, is unimodular in Q; and hence in Q. Therefore,
by two more transvections we can change (g, z) to (g, 1) and then to (0, 1).
This gives an isomorphism P@® A~Q @ A which is the identity on A.
Factoring out A4 gives P> Q.

As usual we say Bc A is a retract of 4 if there is a ring homo-
morphism p: A — B which is the identity on B. This is certainly true if 4
is a polynomial ring over B.

Corollary 3.6. Let B be a retract of A. Let P and Q be finitely generated
projective A-modules withtk P2 pmsr(A, B). If
[P1=[Q]eim [K((B)— Ko (A)],
then Px=Q.

Proof. Let Qo =B®,Q using the retraction p: A— B. Then [Q,]eK ,(B)
is the image of [Q]e K, (4) under p. Since K,(B)— K,(A) is a mono-
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morphism split by p we see that [Q]=[4 ®50,]- By Theorem 3.5 we
have Px A®pQ, and Q= A ®gz(,.

Corollary 3.7. Let B be regular and A=B[x,,...,x_]. Let P and Q be
finitely generated projective A-modules withtk P=pmsr{A, B). If P and Q
are stably isomorphic then P Q.

We need only apply Corollary 3.6 since K,BxK,A by regularity
(1, Ch. XII, Th.3.1]. Theorem 1 follows immediately from Corollary 3.7
and Theorem 3.3.

In case e= 1, the hypothesis of Theorem 1 reads rk P >d+1 so in fact
tk P=d+1 and Theorem1 follows from Bass’ cancellation theorem
in this case. Bass has pointed out that a variant of Roitman’s argument
will permit us to reduce this bound by 1 if & is algebraically closed.

Theorem 3.8. Let Spec A be a smooth affine variety of dimension d
over an algebraically closed field k such that A=B[x]. Let P and Q be
finitely generated projective A-modules with tk Pzd. If P and Q are
stably isomorphic then P=Q.

Proof. As in the arguments given above we can reduce to the case
where P=A®zPyand ¢: P® A~ Q@ A. Let ¢(0, 1)=(g, a). By applying
Theorem 1.3 and using a transvection we can assume that I=o4(q) is
such that Spec 4/ is smooth of dimension =0. By Lemma 2.3(2) we
can write A= C[z] where Bc C and k[z]+I=A. Let a=f+i with
fek{z] and iel. Let h: Q— A with h(g)=i and define p: QO AP DA
by p(&,m)=(&n—h(&). Then po: PO A=QDA sends (0, 1) to (g, f).
Since k is algebraically closed, f splits into linear factors. In the case
considered by Bass, P was free and old result of Buchsbaum implies that
Q is free. In the present case, the required generalization of Buchsbaum’s
Lemma is given in Theorem 5.7 below.

4. The Symplectic Case

Since the results of [2] are set in a much more general context, I will
begin with a brief account of the results needed here. We consider
finitely generated projective A-modules with an alternating bilinear
form ¢ , . If P and Q are two such modules write P LQ for P @ Q with
the form ((p,q), (p', ¢)>=<p, P> +<q,q>. 1 will use the symbol =~ to
denote an isomorphism preserving the bilinear form.

Lemma 4.1. Let P be a finitely generated projective A-module with an
alternating form {,>. Then there is a bilinear form b on P such that
(x, y>=b(x, y)=b(y, x).

Proof. Let P®Q=F be free and finitely generated. Give Q the
trivial form (x, y» =0 and consider F as P 1L Q. If we can find a bilinear
form b on F with {x, y> =b(x, y)—b(y, x), then b|P x P will do. Choose

3%
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a base for F and let {x, y>=) xa;y; Then a;;= —a; and a;;=0. Let
b;=aj; for i>j and b;;=0 for i<j. Then b(x, y)=3.x;b;y; has the re-
quired properties.

Definition4.2. A symplectic A-module is a finitely generated pro-
jective A-module P with an alternating form < , > which is non-degener-
ate i.e, P—=5P* by x—<{x, ).

If P is symplectic and b is any bilinear form on P then b(x, -)e P* and
so has the form {vx,+) for some vxeP. Therefore, b(x, y)=<vx, y)
where v: P—P is linear.

Corollary 4.3. If P is symplectic, there is an endomorphism v: P—P
such that {x,y>=<{vx,y>—<{vy, x).

If Q is a finitely generated projective A-module, the hyperbolic
module H(Q) is defined to be Q* ®Q with the form {(f, x),(g, y)) =
f(y)—g(x). Thisis clearly symplectic. Obviously H(Q @ Q') = H(Q) L H(Q").
We will write H=H(A4) and H*=H(A"=H1---1H. Thus His A® A
with {(q, b),(c,d))=ad—bc.

If Q has a non-degenerate bilinear form { , > we can use it to identify
Q with Q*. Therefore, in this case H(Q) can be identified with Q@ Q
with the form {{q, b), (c, d)) =(a.d)—{c, b).

Lemma 4.4. Let P be a symplectic A-module. Let P be P with the form
x, yYp=—<x, y>. Then H(P)=P LP.

Proof. By the previous remark, identify H(P) with P@P. Let i: P—
P@®Pbyi(x)=(vx,x). Letu=1-—vandletj: P—P®Pby j(x)=(—pux, x).
An elementary calculation shows that i®j: P@ P— H(P) gives the
required isomorphism. Note that {ux, y)>={x,vy). For more details
see [2, Ch.1, Prop.3.7].

Corollary 4.5. If P is a symplectic A-module, there is a symplectic
A-module Q such that P1Q=~H"

Proof. Let P’ be a finitely generated A-module such that P@ P'~ A"
Then H(P) L H(P')~ H(A")= H". But P L P>~ H(P) by Lemma 4.4.

An alternative proof of this result may perhaps be of interest. By
looking at P L P L H(P') we can reduce to the case where P is free. As in
the proof of Lemma 4.1 we can choose a base and represent { , > by an
n by n matrix M =(a,;). Let N =(b;;) as in the proof of Lemma 4.1 so that
M=N —N' Define

I 0 I M 0
X:(N N')’ Jz(—zo)’ and T:(o —M)

where all entries are n by n matrices, I =identity. Then T represents
P 1P, J represents H" and an easy calculation gives X'JX =T. Since T
is invertible so is X and we get P L P~ H".
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As usual, define KSp,(A4) to be the abelian group with generators [ P]
for all symplectic A-modules P, with relations [P1=[P']+[P"] if
P=P' L P" 1If 4 Bisaringhomomorphism, define KSp,(4)-> KSp,(B)
by sending [P] to [B® ,P] with the induced bilinear form. This makes
KSp, a functor in A.

Corollary 4.6. Every element of KSp,(A) has the form [P]—n[H] for
some neZ. Also [P]=[Q] in KSpy(A) if and only if PL H"=Q L H" for
some m.

Proof. The usual arguments used for K,(4) [{, Ch. VII, Prop. 1.3]
show that every element has the form [P]—[S] and that [P]=[Q] if and
only if P1S>~Q 1S By Corollary 4.5 we can write S1 T = H" for some
T and the result follows immediately.

As usual, we say that P and Q are stably isomorphicif PLS=~Q 1S
for some symplectic S. By the preceding argument this is equivalent to
PLH'=Q1 H" for some n.

Here is the symplectic analogue of Theorem 3.5.

Theorem 4.7. Let B be a subring of A. Let P and Q be symplectic A-
modules such that Q= A ®,Q, where Q, is a symplectic B-module. If P
and Q are stably isomorphic and rk Pz pmsr(A, B)— | then P=Q.

Proof. As in the proof of Theorem 3.5 it will suffice to treat the case
where P 1 H~Q | H. The only new feature here is that we must use only
transvections preserving the symplectic structure. If M is any symplectic
module, Bass [2, Ch. I, §5.1] has defined symplectic transvections to be
automorphisms of M of the form o, , ,(xX)=x+ <, x>v+ (v, xDu+
oalu, xyu where u,ve M with {u,v>=0 and ae4. We will apply such
transvections to Q L H=0 @ A @ A.

The only ones we will need are those with u=(0,1,0), v=(y,0,0)
and those with u=(0, 0, —1) and v={(y, 0, 0). These have the form

(g, b, a)—(g+ay, b+<y,q>+xa,a), (n
(g, b, )—>(g+by,b,a+{y,¢>+ab) (2)

where we have written —a for « in (2). For convenience, I will arrange the
notation to agree with (1) or (2) in each case. Thus «, y, etc. will constantly
change their meanings throughout the following argument.

let 9: PLH=POAQA=QLH=0DADA. As in the proof of
Theorem 3.5 we will compose @ with symplectic transvections of 0 L H
to make O|H the identity. Let 6(0,0,1)=(q,b,a). By Definition 3.2
applied to (Q @ 4)@® A we can find ye @, ae 4, and B C< A such that
that 4= C[x] and

A= C+0Q@A(q+ay,b+cxa):C+0Q(q+ay)+A(b+oca).
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Now <y, q>=<¥»,q+ayyeoy(q+ay)so
oo(g+ay)+A(b+<y, ¢ +aa)=oy(q+ay)+ A(b+aa).

Therefore, if o, is the transvection defined by (1) and we replace 6 by 7, 0,
we can assume that 4=C+o0,(q)+Ab. Now write a—x=c+i+uab
where ce C, ieny(q), ae 4 (not the same « as above). Since { , ) is non-
degenerate, 0,(q)=<Q, q) so we can find yeQ with i={y, g). Let 5, be
the transvection given by (2). Then 6,(g, b, a)=(q', b, x +¢). By setting
z=x+c and replacing 8 by ¢, 0, we can assume that 0(0,0, 1)=(q, b, 2).
Let 0, =C®5Q; 50 0=A®:Q;=0,@zQ. Let g=q, —zy with g,€0,
y€Q. Let ¢4 be the transvection given by (1) with « to be determined.
Then o;(q, b, 2)=(q,,b" +az, z) where b'=b—(y,q)>. Write b’'=b,+ Bz
with boe C, le A. Seta= —ff so b’ + az=b,,. By replacing 6 by g, 6 we can
assume that 6(0, 0, 1)=(q, b, z) with g Q,, be C. Since this is unimodular,
reducing mod z shows that (g, b) is unimodular in ¢, ® C and hence in
O®A. Write 1 —z=f+ab where fieoy(q), and let f=(y, g> as above.
Let o, be given by (2). Then a,(q, b, z)=(q, b, 1). Replace 8 by 6,0 so
that 0(0, 0, 1)=(q, b, 1). Let o5 be given by (1) with y=—g, «= —b and
replace 8 by g,6. We now have 8(0, 0, 1)=(0, 0, 1). Let 8(0, 1,0)=(q, b, a).
Since {(0,1,0),(0,0,1)>=1 we have {(g,b,a),(0,0,1)>=h=1. Let o
be given by (2) with y== —g, a= —qa and replace 6 by o, 8. Then 0 fixes
0,0,1) and (0,1,0) so §(H)=H. Now, in PLH we have P=H'=
{xeP LH|[{x,b)>=0 for all xeH}. Similarly 0=H"* in QL H. Since
#{(H)=H it follows that §: P=H*~H'=Q.
As in § 3, we can immediately deduce the following corollaries.

Corollary 4.8. Let B be a retract of A. Let P and Q be symplectic A-
modules withtk P =z pmsr(A,B)— 1.If{P]1=[Q]eim[KSp,(B)— KSp,(4)],
then P~ Q.

Corollary 4.9. Let B be regular and A=B[x,,...,x,). Let P and Q
be symplectic A-modules with tk P Z pmsr(A, B)— 1. If P and Q are stably
isomorphic and if ;€ B, then P~ Q.

If 1€B and B is regular, a theorem of Karoubi [5, Ch.I, Th.1.1]
shows that KSp, (B)~ KSp,(4). 1 do not know if this is true when 1 ¢ B.

We can use these results to improve the bound in Theorem 1 in certain
cases.

Corollary 4.10. Let B be aretract of A. Let P and Q be finitely generated
projective A-modules with tk P=pmsr(A, B)—1 such that P and Q are
stably isomorphic. If P and Q admit symplectic structures, K (A)~ K ,(B),
and KSp,(A)— K, (A) is injective, then P~ Q.

If we assume that KSp,(B)~ KSp,(A4), it will suffice to assume that
KSpo(B)— K (B) is injective. As Bass has remarked, this is so if all
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projective B-modules are free. In fact, all we really need is that every
projective B-module of positive even rank has a summand isomorphic to
A. In this case, if P is symplectic, we can find a unimodular aeP. This
means {q, P> =B so we can find {a, b)=1. Now H=Ba+ Bb is hyper-
bolic and P=H L H* so we can repeat the argument on H*', finally
getting P=H" (cf. [7, Ch. I, Cor. 3.5]).

As Bass has also remarked, any finitely generated projective module
P of rank2 will have a symplectic structure if Pic A=0 since then
A?P =~ A. All these conditions are certainly satisfied if k is a field. We
deduce that if k is an infinite field with char k4-2, then all projective
k[x,, ..., x,]-modules are free for n<4. This result was obtained by
Vaserstein and Suslin [14, Th. 1] without the hypothesis that k is finite.
If k is infinite with char k=2 and n<4, the above arguments show that
all projective A=k[x,,..., x,]-modules will be free if and only if
KSpo(A) — K (A)=1Z is injective.

Remark. It is rather tempting to conjecture that the map KSp,(4)—
K, (A4) is always injective on the grounds that a stable invariant has no
right to detect stably free modules which are not free. However, this not
the case. It is easy to find counterexamples in topological K-theory. Since
the group Sp(n) is a maximal compact subgroup of Sp,,(C) the appro-

priate map to look at is KSp°(X)— KU®(X). For X = S° this is Z/2Z —0

so all complex vector bundles are stably free but IfS‘po (5%)%0. In the
real case, the maximal compact subgroup of Sp,,(R) is U(n) and the

appropriate map is KU%(X)—KO0°(X). For X =S his is Z—Z2Z
while for X =S¢ it is Z—0. The example over S° can easily be made
algebraic. Consider S2"~! as the unit sphere of C" with its usual hermitian
form. Define the “complex tangent bundle” of $2"~! to be

n={(x, )eS*" I x €1 LCx}.

Clearly ® O¢x O where Og is the trivial line bundle. Since Z(x, y)
is the usual real inner product we see also that 7 @ O is the usual real
tangent bundle to $?"~! It is very easy to verify that the associated
principal bundle of 7 is the canonical fibration U{n—1)— U(n)—S2m~1
so by [3, Prop. 17.1]  is non-trivial for n=3. Now if n=3, 5 is a rank 2
bundle over S° so A%x is a complex line bundle. This is trivial since
14(U(1))=0 so  has a symplectic structure over €, unique up to a unit
of C¢(S®). Let Bem, (Sp,(T))=n,(Sp(1)) be its canonical class. Clearly
B¢0 otherwise  would be trivial as a symplectic bundle and hence as a
complex bundle. But 7, (Sp(1))—=->7,(Sp) so x is stably non-trivial as a
symplectic bundle. To get the required algebraic example, let A=
Clx,, ..., %, /(3 4+-- +x%,— 1) be the ring associated with §>"~* [12].
Let zy=x,+ix,, 2y=X3+1Xq, o0y Zy=Xy,_y TiX;, Let P be the pro-
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jective A-module defined by the unimodular row (z,...,z,). Then
is clearly the bundle associated with P. For n=3, rk P=2 and 4?Pa A
because K,(4)=Z [13, p.123] and so Pic A=0. Therefore P has a
symplectic structure inducing the one considered for 5. Since 5 is not

stably trivial as a symplectic bundle, neither is P. Therefore IETS‘pO(A)¢O
while K, (4)=0 (as usual, the tilde indicates the kernel of the rank map).

There s also an analogue of 7 in the quaternionic case. Take 4"~ < IH"
with the inner product (a, b)=Y a;b; and let

n={(x,NeS* ! x H"|(t, Hx)=0}.

The associated principal bundle is Sp(n—1)— Sp(n)—S*"~! so 5 is
non-trivial for nz=2. For n=2 it is clearly non-trivial as a complex
bundle since 74(Sp(1))xrs (U(2)). However # is stably trivial. In fact
7 ® Oy= O

5. An Elementary Cancellation Theorem

In this Section I will prove the cancellation theorem used in proving
Theorem 3.8. The results of this section are elementary and do not require
commutativity or finite generation. We begin by recalling an argument
used in connection with the fundamental theorem of K-theory.

Lemma 5.1. Let R be a subring of A. Let P and Q be projective A-
modules and let 2: Q— P, f: P— Q be monomorphisms. If A, P/a P, and
Q/BaQ are projective over R, then so are P/aQ and Q/B P.

Proof. Clearly P and Q are projective over R since A is and P and @ are
direct summands of free A-modules. Since 0 > @ —2> P — P/aQ —0 we
have pdg P/aQ <1 (pd = projective dimension) and similarly pd, Q/fP < 1.
Now a: Q= aQ induces Q/fP ~aQ/a B P. Since 0>aQ/affP—PlaffP—
P/eQ—0 we have pd; Q/BP =0 and similarly pd, P/aQ =0.

The following corollary applies in particular to A=R[x].

Corollary 5.2. Let R be a subring of A and let ac A be a central non-
zero-divisor. Let P and Q be projective A-modules with aP<QcP. If A
and A/a A are projective over R then so is P/Q.

This follows immediately from Lemma 5.1 with a(x}=x, f{x})=ax.
Note P/afP=P/aP and @/BaQ=0/aQ are projective over 4/aA4 and
hence over R.

It is also worth noting that if P is finitely generated over 4 and A/a A is
finitely generated over R, then P/Q is also finitely generated over R as a
quotient of P/aP.

As an application we can give an elementary proof of a result proved
in {8, Th. 1.3] using K-theory.
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Theorem 5.3. Let P and Q be finitely generated projective modules
over A=R[x]. Suppose that fP <Q <P where f is a monic polynomial
with coefficients in the center of R. Then P and Q are stably isomorphic.

Proof. By Corollary 5.2, M = P/Q is finitely generated and projective
over R. By [1, Ch.XIL §1] we have the characterisitic sequence
0—-M[x]—>M[x]—>M—0 where M[x]=R[x]®zM. Since 0 >0 —
P— M —0, Schanuel’s Lemma [ 1, Ch. I, 6.3] shows that

PEM[x]=0®MI[x].

In case f=x we can do much better. It would be interesting to know
whether the hypothesis that F is extended can be omitted.

Theorem 5.4. Let F and P be projective R[x]-modules such that F
is extended, i.e, F=R[x]®@gF,. [f xFcP<F,then PxF.

Proof. As R-modules, F=F,®xF and P=P,@&xF where P,=
PnF, (cf [9,§1]). By Corollary 5.2, F,/P,=F/P is projective over R
so Fo=P,®Q, for some Q, Now F=P,[x]®Q,[x] and P=
Py®xPy[x]®xQ[x]=P, [x]®xQ[x]. Thus FxP since Q,[x]x
xQ[x].

The following is a slight generalization of a well-known elementary
lemma.

Lemma 5.5. (The X-Lemma.) If

0 0
AN
\ i
A\ ’
¥ ¥
A C
[ P
i NK (
f X iz
P i
¥+ \x N
D B
,'4// ‘\\
\L" «
0 0

commutes and the two sequences are exact, then kerfakerg and
ckrf~ckrg.

Proof. The snake lemma on

0——4

-]

0——»D——>D——>0——0

' |

gives 0 —ker f— C — B ckr f—0.
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We next give a generalization of an old result of Buchsbaum.

Lemma 5.6. Let 2 be any class of A-modules. Let S be the set of central
non-zero divisors of A with the following property:1If0—>Q —P-— A/s A—0
with seS and Pe P, then Q= P. Then S is closed under multiplication.

Proof. If s,teS then 0> A/sA——A/stA— Aft4A—0. Let 4 be
the class of 4-modules such that if0—Q— P — M —0 with Pe?, Me . #
then P~ Q. All A/sA with seS lie in .# so it will suffice to show that .#
is closed under extensions. Let 0-M' —->M —>M"—0 with M', M"e.#.
Let 0—>Q—>P—f>M—>O with Pe 2. 1f Q'=f~*(M"), then 0—> Q' —»P —
M'—>0so P~Q' Using thisin0—-Q—-Q —-M —-0weget0>Q—->P—
M —0soQ=~P.

Buchsbaum considered the case where 2 is the class of finitely
generated free modules and formulated his result in terms of unimodular
rows. If s is a central non-zero divisor and 0—>Q—>A"LA/SA —0
where f is represented by the matrix (f;, ..., f,) then (f,....f,,s)is a
unimodular row and

0= {(x,, . X% ;=0 mod 5} {(xy, o0 X, VI L3, Sy +y5=0}.

Note y is determined by x, ..., x, since s is a non-zero-divisor. Therefore
S is the set of central non-zero-divisors such that every unimodular row
with some element in § defines a free module. The fact that this § is closed
under muitiplication was also discovered independently by Towber.

We can now prove the cancellation theorem.

Theorem 5.7. Let F and P be projective A= R{[x]-modules such that F
is extended. Suppose A®F~A®DP and the composition A-ADF=
A®@P— A is given by a—af. If f=u(x—a,) ... (x—a,) where u is a unit
of A and the a; are central elements of R, then P~ F.

Proof. By composing the given isomorphism with A@Px AP P by
(a, p)—(au~!, p), we can assume that u= 1. By Lemma 5.5 on

A P
A@FzA@P\
A F

we get 0> P —F— A/fA—0. By Lemma 5.6, it will suffice to do the case
f=x—a;. Let z=x—a;. Then A=R[z] and zF<PcF so PxF by
Theorem 5.4.
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