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Let F=(V, E) be an arbitrary undirected graph, finite or infinite, V the vertex set 
of F, E the edge set, and let G be an arbitrary subgroup of aut(F). For each x e V  
we denote by F(x) the set of vertices adjacent to x, by G(x) the stabilizer of x in 
G and, for each ieN,  by Gi(x ) the subgroup {asG(x)l aeG(y)  for all y e V  with 
O(x,y)<i} where O(x,y) denotes the distance between x and y. An s-path (for 
seN)  is an (s+ 1)-tuple (x 0 . . . . .  x~) of vertices such that xi~F(x i_ 1) if 1 < i N s  and 
xi+xi_ 2 if 2=<i<s. Let 

G(x o . . . . .  x~) = G(xo)C~... c~G(xs) 

and 

Gi(xo, ..., Xs) = Gi(xo)C~... c~Gi(x~) 

for each s-path (Xo,. . . ,  x~) and each ieN.  If H is a group acting on a set X, a an 
element of H, we denote by H x the permutation group induced by H on X and 
by a x the permutation of X induced by a. 

We prove the following theorem: 

Theorem 1. Let  n e N ,  n > 2. Let  F=(V,,E) be an undirected connected graph with 
I_r(x)l__> 3 for  every x ~ V  and let G be a subgroup of  aut(F) such that for each n- 
path (x o .. . .  , x,) 

(i) Gl(Xl , . . . ,  x ,_  1) acts transitively on F ( x , ) -  {x ,_  1} and 
(ii) Gl(xo,xl)c~G(xo ... .  , x , )=  1. 

Then n = 2, 3, 4, 6 or 8. I f  G v is transitive, then n ~ 8. 

Suppose that F=(V,E) is a thick generalized n-gon, in other words, a 
bipartite graph of girth 2n and diameter n with [F(x)l > 3 for every xe  V, and that 
G=aut(F) .  It is easily verified that Gl(Xo,Xl)c~G(xo . . . . .  x, )=  1 holds for every n- 
path (x o .... ,xn) (Theorem2 below, a special case of [5, (4.1.1)]). By definition, 
condition (i) of Theorem 1 holds if and only if F is Moufang. Thus Theorem 1 
implies Th6orame 1 of [6]. Our proof of Theorem 1, however, is much shorter 
and simpler than the proof of Thbor6me 1 begun in [6]. For  related results, see 
[3] and [7]. 
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Moufang n-gons actually exist for n = 2, 3, 4, 6 and 8 (see, for instance, [4]). 
The covering construction described in [1, Chapter 19], when applied to these 
generalized n-gons, yields examples of graphs fulfilling the hypotheses of Theo- 
rem i which are not generalized n-gons. There are also examples which are not 
bipartite, for instance, a vertex-primitive trivalent graph fulfilling the hypotheses 
of Theorem 1 with n = 3 and G ~ PSL(2,p)  where p is an arbitrary prime = _+ 1 
(mod16) (see [8]), a vertex-primitive trivalent graph with n = 4  and 
G~-aut(SL(3,3)) (see [8]) and a vertex-primitive 5-valent graph with n = 3  and 
G~-J3 (see [2]). 

We begin the proof of Theorem 1. Suppose that F and G fulfill the hy- 
potheses (but not that G v is transitive) and that n>3 .  Let x e V  be arbitrary. 
Choose two ( n - D - p a t h s  (x 0 . . . .  ,x,_1) and (Yo, ..., Y , -  a) with X o = Y o = X  and 
xl 4= Yl. By condition (i), ( G l ( x  1 . . . .  , xn-  1), GI(Yl ,  "- ' ,  Y,- 1)) acts transitively (in 
fact 2-transitively) on F(x) since [F(x)l>3. Thus G(x) r(x~ is transitive for every 
xeV. For each { x , y } e E ,  (G(x), G(y)) thus acts transitively on E since F is 
connected. Hence G acts transitively on E. 

L e m m a  1. Let  (x o . . . . .  x ,_1)  and (Yo . . . . .  Y , -a)  be two (n -1) -pa ths  with Xo=y o 
and x l = Y  1. Then G l ( x l , . . . , x , _  0 and Gl(y  1 . . . .  ,Y , -1 )  induce the same per- 
mutation group on F(xo). 

Proof  By condition (i) there exists an element aeGl(Xo) mapping (Xo, . . . ,x ,_1) 
to (Y o , . . . , Y , -O .  [] 

For each 1-path (x,y) we denote by H(x,y) the permutation group 
G l ( x l , . . . ,  x ,_  l) r~x) where (x 1 . . . .  , x,_ 1) is any (n -2 ) -pa th  with x I = y  and x2=~ x. 
Lemma 1 implies that H(x, y) is well defined. 

L e m m a  2. For each edge {x, y} and each w 6 F ( x ) -  {y}, Gl(X, y)r~w) = H(w, x). 

Proof  Ga(x,y)r~W)>H(w,x) by definition. Let (x o . . . .  ,x ,+ 0 be an arbitrary (n 
+ l ) -pa th  with Xo=W, x l = x  and x2=y .  Let a~Gl(X ,y  ) be arbitrary. By con- 
dition (i) there exists an element b~G~(w,x ,y )  such that a b - ~ G ( x  o . . . . .  x,) and 
then an element c~Gt ( x  1 . . . .  , x , _  0 such that a b - l c - l ~ G ( x o , . . . , x , + t ) .  Thus 
a b -  1 c -  16Gt(x,  y )nG(xo  . . . .  , x ,+ 1) so that a b -  1 c -  1 = 1 by condition (ii). Hence 
a r ~ ) = c  r~w). But cr(~)~H(w,x) by definition. [] 

Let (Xo . . . . .  x~) be an arbitrary t-path, t >  1. We define U(xo . . . . .  xO to be 
{ a ~ G l ( x l  . . . . .  x t_l ) lar~x~ and a r ~ ) ~ H ( x t , x t _ l ) }  if t > 2  and 
{a ~ G(xo, xl)]a r~~ ~ H(xo, xl) and a r l ~  ~ H(x~,  Xo)} if t = 1. Lemma 2 implies 
that U(xo . . . . .  xO = G1 (xl . . . . .  x~_ 1) if t > 3. 

L e m m a  3. Let  (x o . . . . .  x ,+ l) be an arbitrary (n+ 1)-path. For every t with 2<_t<n, 
U ( x ,  . . . . .  x3= <U(xo, . . . ,  x,), U ( x l  . . . . .  x.+ 0). 

Proof  ( U ( x o  . . . . .  x,), U(x l  . . . . .  x , + l ) ) < U ( x t  . . . . .  x,) by definition. Let 
a e U (x 1 . . . . .  xt) be arbitrary. By definition there exists an element be U(Xx . . . . .  x ,  + 1) 
such that a b -  X e G l  (xl). We have a b -  l ~Gx (xl . . . . .  x ,_ O. If t>3 ,  G1(xx . . . . .  x ,_ 1) 
= U (Xo . . . . .  xt) as observed above. Suppose that t = 2. Since a r{~) ~ H (x2, x 1) and 
beGa(x2),  there exists an element ceG~(xo ,  xO such that ab -1 c - l e G l ( x l , x 2 ) .  
By Lemma 2, ( a b - l c - 1 ) r ( ~ ~  But ( a b - l c - 1 ) r { ~ ~  r(x~ 

Thus a b - 1 6 U ( x o ,  Xa,X2). [] 
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The main idea behind the proof  of the next lemma is borrowed from the proofs 
of Lemmas  6 and 7 of [6]. 

Lemma 4. For each {x, y} ~E, the center Z U ( x ,  y) o f  U(x,  y) is nontrivial. 

Proof  For  each i with 1 < i N n -  1 and each n-path (x 0 . . . . .  x,) we set U i (Xo . . . . .  x.) 
= { a e U ( x o  . . . . .  x , ) la~U(x 'o  . . . .  , x',) for each n-path (x~ . . . .  , x',) such that x ' j=xj  
whenever i < j  < n -  1 }. If (Xo . . . . .  x,) and (x; ,  ..., x'.) are n-paths with xj = xj for 

t t i < j < n - 1  but  X~_l+X'~_ ~, then (x o . . . . .  xi ,xi_ 1 . . . .  ,Xo) is a 2i-path and 
Ui(x o . . . . .  x . )<U(xo , . . . , x i , x ' i _  1 . . . . .  x~); by condit ion (ii), Ui(x o . . . . .  x , ) = l  if 
2 i > n + l .  On the other hand, Ul(x o . . . . .  x . ) = U ( x o  . . . . .  x,) for each n-path 
(Xo . . . .  , x,). Thus we may choose m < n -  1 minimal such that there exists an n-path 
(Yo . . . . .  y,) with U (Yo . . . . .  y.) 4: U~ (Yo . . . . .  y,). Extend (Yo . . . . .  y,) to a (n + m)-path 
(Yo . . . . .  Y,, Y,+ 1 . . . . .  y,+,.) and let 

A = [U(y  o . . . . .  y,), U(y . . . . . .  Y,+m)] 

= ( a b a  - t  b - l l a E U ( y o  . . . . .  y,), b ~ U ( y  . . . . .  ,Y.+m))" 

Since U (yo . . . . .  y.) :# U,.(y o . . . . .  y.), there exists an n-path (y; . . . . .  y',) with y j=  y3 
whenever m < j < n - 1  such that U(yo . . . . .  y , )$U(y 'o  . . . . .  y',). By condit ion (i) 
there exists an element b s U ( y  . . . . . .  y,,+,) such that b(y ' , ,_ l )=y , ,_ l .  Hence 
U,,_ 1 (Yo . . . .  , Y,) < U (b (y~) . . . . .  b (y'.)), i.e., b -  1 U,._ 1 (Yo,--., Y.) b < U(y'o . . . . .  y',). By 
the choice of m, Urn_ t(Yo . . . . .  y,) = U(yo . . . . .  y,). It follows that  

b -  1 U (Yo . . . . .  y.) b :t = U (Yo . . . . .  Y,); 

in particular, A .  1. Since U(yo . . . . .  Y,) < G1 (Y,,) and U (y . . . . . .  y, +,,) < G (Ym), 
A =< Gx (y,.)- Analogously,  A < GI(Y,) and thus A < GI(y . . . . . .  Y,) = U(ym_I . . . . .  Y,+ t). 
Since U(yo . . . . .  y , )= U,,_x(Yo . . . . .  y.), we have U(yo . . . . .  y . )<  U(c(yo) . . . .  , c(y,)) 
for each element c e U ( y m _ I  . . . . .  Y,+0 and so [U(yo . . . . .  y,), U(y,,_a . . . . .  Y.+0]  
< U (Yo . . . . .  Y, + 1) = 1. Since U (y, + . . . . . .  y,,) = Urn_ 1 (Y. + . . . . . .  y,,) (by the choice 

, < of m), [U(ym_I , . . . ,Y ,+O,  U(ym . . . .  , } .+m)]=U(Y, ._ I  . . . . .  y ,+m)= l .  Thus I + A  
< Z U ( y , , _ l  . . . . .  y.+O. 

We may thus choose t > 1 minimal such that there exists a t-path (x o . . . . .  xt) 
with Z U ( x  o . . . . .  x , ) + l .  If  t = l  then Z U ( x , y ) : # l  for every edge {x,y} since G E 
is transitive. Thus we may suppose that t > 2. Extend (Xo . . . . .  xt) to an (n + 1)-path 
(x o . . . . .  x , ,x t+ 1 . . . . .  x,+a) and choose s > t  maximal such that  there exists a 
nontrivial element, say a, in Z U ( x o  . . . . .  x,)c~ U(xo . . . . .  xs). (By condit ion (ii), s < n.) 
Since U (xl . . . . .  x.+ 1) < G(x l ,  ... , x,_ O, U (xl . . . . .  x,+ t) normalizes U (xo . . . . .  x,). 
Hence U(xa . . . . .  x ,+l)  normalizes ZU(xo  . . . . .  x,) and so [U(x l  . . . . .  x ,+l),  a l <  
Z U  (xo . . . . .  xt). But [U(x l ,  ..., x,+ O, a] < U(x,  . . . .  , xs+ l) since U(x l  . . . . .  x,+ 1) < 
Gl(xs) and aeG(x, ) .  By the choice of s, [U(x  1 . . . .  , x , + t ) , a ] = l .  By L e m m a  3, 
a e Z  U (xl . . . . .  xt). This contradicts the choice of t. [ ]  

L e m m a  5. Let  k = ( n - 2 ) / 2  if n is even and k = ( n - 1 ) / 2  if n is odd. Then Gk(x,y)+ 1 
for every edge {x, y}. 

Proof  We show first that  Z U (x, y) < Gt (x, y). If this were not so, there would exist, 
say, a vertex z e F ( y ) - { x }  and an element a E Z U ( x , y )  such that  aCG(z). By 
L e m m a  2, G1 (y, z)< U(x, y). Hence G~ (y, z)="G1 (y, z )=  G1 (y, a (z)) (where "GI(y, z) 
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denotes a G1 (y, z)a-1) ,  i.e. Gl(z, y )< G1 (a(z)). This contradicts condit ion (i) since 
n >  3. It follows that Z U ( x ,  y)<= GI(X , y). 

We conclude the proof  of Lemma 5 by showing that in fact Z U ( x ,  y) < Gk(X, y). 
Let (Xo . . . . .  x,) be an arbi t rary n-path with {Xo, xl} ={x ,  y}. It suffices to show 
that Z U (x, y) < G (Xo . . . . .  Xk + 1). Since 1 :# Z U (x, y) < G1 (x, y), by condit ion (ii) 
there exist indices s with 2<s<-n such that ZU(x ,y)$:G(xs) .  Choose  s minimal 
and let a be an element of Z U ( x , y )  not  in G(xs). By the choice of s, a~G(x~ 1). 
Since U(xo . . . . .  x , )<  U(x,  y), U(xo . . . . .  x , )=aU(xo  . . . . .  x , ) =  U(a(xo) . . . . .  a(x,)). 
Thus l ~ : U ( x o  . . . . .  x,)<=U(x,, x , _ l  . . . .  , x s _ l ,  a(x~), a(x~+O . . . . .  a(x,)). Since 
a (x~) ~: x~, (x,, x ,_  1 . . . . .  x~_ 1, a (x~), a (x~ + 1) . . . . .  a (x,)) is a 2 (n - (s - 1))-path. By 
condit ion (ii), 2 ( n -  ( s -  1))< n, i.e. s -  1 > k + 1. [ ]  

N o w  let (Xo . . . . .  x 3 k + 1) be an arbitrary (3 k + 1)-path and let B = [Z U(x k_ 1, Xk), 
ZU(X2k,  X2k+ 1)]. By Lemma 5, B <  [Gk(Xk_ 1, Xk), Gk(X2k, X2k+ 1)]" But clearly 
[ Gk (Xk_ l, Xk), Gk (X 2 k, X 2 k + 1)] < U (Xo . . . . .  x 3 k) ; for instance, if 2 k < i < 3 k - 1 and 
x ~ F(x,) then 8(x 2 k, a -  1 (x)) = ~ (a-  1 (x2 k), a -  1 (x)) < k for every a ~ Gk (Xk_ 1, Xk) and 
thus ba -  l(x) = a -  l(x), i.e. a b a -  l b -  l ( x ) = a b a -  l(x) =x ,  for every bEGk(X2k, X2k+ 1)" 
Suppose that B:~ 1. By condit ion (ii), 3k<n .  If  n is even, then 3 ( n -  2)/2 <n, i.e. 
n=<6. I f n  is odd, then 3 ( n - 1 ) / 2  <n, i.e. n < 3 .  Thus we may suppose that B = I .  

Suppose that  Z U (Xk_ 1, Xk) < G (x 2 k + 1)" Since U (Xk_ 1, Xk) acts transitively on 
the set of all (k + 2)-paths (Yk- 1 . . . . .  Y2k+ 1) with Yk- 1 = Xk_ 1 and Yk = Xk, we have 
ZU(Xk_I,Xk)<Gk+I(Xk).  Suppose that ZU(xk_l,Xk)~:G(X2k_~l ). Let a be an 
arbitrary element of Z U  (Xk_ 1, Xk) not in G(X2k+ 1). Since B =  1, Z U  (X2k, X2k+ 1) = 
aZU(X2k, X2k+ 1) ~ U(a(X2k) . . . . .  a(X2k+ 1))' Since U(X2k, X2k+ 1) acts transitively 
on the set of all (k+2)-paths (Y2k-1 ..... Y3k+0 such that Y2k-1 =X2k+l and Y2k=X2k, 
we have Z U (x 2 k, X2 k + 1) < Gk + 1 (X2 k)" Thus one way or the other we conclude that  
there exists a vertex x such that Gk+ l(X) + 1. This implies that n is even since other- 
wise 2 (k + 1) = n + 1 and so Gk + 1 (x) = 1 for every vertex x by condit ion (ii). 

If F is bipartite, its vertex set V is the union of two sets V1 and V2, the two 
equivalence classes of  the equivalence relation {(x, y)[~(x, y) is even}~_Vx V. 
Since G E is transitive, either G v is transitive or F is bipartite and G acts transitively 
on both VI and V2. Choose  an arbi t rary (3k+4) -pa th  (x0 . . . . .  X3k+4) such that  
Gk+I(Xk)+ 1. Suppose first that  G v is transitive or that n = 2  (mod 4), i.e. that  k is 
even. Since (2 k + 2 ) - k  is then also even, Xk and Xzk + 2 lie in the same G-orbit;  thus 
Gk+I(X2R+2)#: 1. Let C =  [Gk+x(Xk), Gk+l(X2k+2)]. Clearly C <  U(x l  . . . . .  X3k+I). 
If C + 1 then 3 k < n by condit ion (ii) and hence n < 6. Thus we may  suppose that  
C = 1. Since Gk + 1 (Xk) < G 1 (x o . . . . .  x 2 k) and G 1 (x o, x 1) ~ G (Xo . . . . .  x 2 k + 2) = 1, we 
have Gk+I(Xk)~=G(X2k+Z); let a be an element of Gk+I(Xk) not  in G(X2k+2). But 
then, since C = 1, 

G/~+ l(X2k+2)~ U(X3k+ 3 . . . . .  X2k+ 1, a(X2k+ 2), a(X2k+3) . . . .  , a(x3k+3)). 

Since (X3k+3 . . . . .  X2k+l,a(Xzk+2), a(X2k+3) . . . . .  a(X3k+3)) is a path of length 
2 ( ( 3 k + 3 ) - ( 2 k + l ) ) = n + l ,  Gk+I(X2k+2)=I. This contradicts  our  earlier ob- 
servation that  Gk+ I(X2k+ 2)4: 1. 

Thus we may  assume that n---0 (mod 4), i.e. that  k is odd (and that G v is in- 
transitive). This time we consider O = [Gk+ 1 (Xk), Gk + 1 (X2 k + 3)]" Since (2 k + 3 ) -  k 
is even, x k and X2k + 3 lie in the same G-orbit;  thus Gk+ ~(Xzk + 3)+ 1. Since D < 
U(x a . . . . .  X3k), condit ion (ii) implies that  3 k - 3  <n ,  i.e. n <  12, /f D4: 1. Suppose 



The Nonexistence of Certain Moufang Polygons 265 

that D =  1. Letting a again denote an element of Gk+l(Xk) n o t  in G(X2k+2), we 
have Gk+I(X2k+3) N U(Xak+4 . . . . .  X2k+X, a(X2k+2) . . . . .  a(X3k+,d) where 

(X3k+ 4. . . . . .  X2k+l,  a(X2k+2) . . . . .  a(X3k+4)) 

is a path of length 2 ( ( 3 k + 4 ) - ( 2 k + l ) ) = n + 4  and so Gk+l(X2k+3)=l. This 
contradicts our observation that Gk + 1 (x2 k + 3) 4: 1. 

To conclude the proof of Theorem 1, we need only eliminate the case n = 12. 
Lemma 6. Suppose n= 12 (so that k=5). Let (Xo . . . . .  X12 ) be an arbitrary 12-path 
such that G6(x2)4:l. Let a be an arbitrary nontrivial element in G6(x2) (so that 
aq~G(x9)). Then: 

(i) For each f 6  U(x8 . . . . .  xl 3) mapping (a(xg), a(xlo)) to (XT, x6) and for each 
beG6(xx 0), [a, b] = fabEG6(x6). 

(ii) For each c~G6(x6) there exists an element b~G6(Xlo) such that [a, b] =c. 

Proof  Let b and f be as in part (i). Clearly I t ,  b] e U (Xo . . . . .  xl 2)- Since f a  (x 1 o) = x6, 
J'"b~G6(x6). Since b and f lie in G1 (xt2), [a, b] and I"b induce the same permu- 
tation on F(x12). Thus lab. [a, b ] - t ~  U (xo . . . . .  x t 2)c~ G~(x 12)= 1. To prove part 
(ii), simply set b = ( f a )  1 c(fa) .  [] 

Suppose n = 12. Let (Xo . . . . .  x20) be an arbitrary 20-path such that G6(x2)4:1. 
Let a be a nontrivial element in G6(x2), b a nontrivial element of G6(xlo ) and 
f e U ( x  8 . . . . .  x17 ) an element mapping (a(x9) , a(Xlo)) to (x7,x6)  (which exists by 
condition (i)). Let c = [b, a]. By part (i) of Lemma 6, c = It(b-1). We have I f  b]s  
[U(x8 . . . . .  x17), G6(xlo)] =< U(x4 . . . . .  xtT)= 1 and so 

[c, f ]  = [[b, a], f ]  = [b, a] f a  b a-1 b -  i f  - t = [b, a] .  ~'"b. b -  1 = b-  1. 

By part (ii) of Lemma 6, we can choose an element deG6(x  ~ 4) such that [c, d] = b- 1 
Since [ f , b ] = l ,  [c, d f - t ] = [ c , d ] [ c , f ] - l = ( b - 1 ) ( b - 1 ) - l = l .  Thus cea6(x6)  
c~dJ-'G6(x6). But G6(x6)c~ dr 'G6(x6)=l  unless d f  l~G(xv,x6) .  Since c4:1, 
we conclude that (d- l (xv) ,d-  1(x6) ) = ( f -  l(xT),f-  l(X6))=(a(x9) , a(Xlo)). 

Now choose an arbitrary element ee  U(xl  . . . . .  x~3). We have [d, e]e[G6(x~4), 
U(xl . . . . .  xl  3)] =< U (x7 . . . . .  xl  8). Since (da(xg), da(x 10)) =(x7, x6) and eea t(x9, x~0), 
a"eeGl(x6,xv).  Since [a,e]~[G6(x2), U(x 1 . . . . .  x13)]<=G6(x2)c~Gl(x8)= 1, a"e 
= ae. Since e~ G1 (x6, x0,  [d, e] = # -  e-1 e G1 (x6, xT). Thus [d, e] e U(x5 . . . . .  xl 8) = 1. 
Hence dEG6(x14)cseG6(xt4). But G6(x14)~eG6(x14)=l  unless eeG(x14). It 
follows that e ~ U ( x l ,  . . . ,  x13)c~G(x14)=l for all eEU(Xl  . . . . .  x~3). This contra- 
dicts condition (i) since IF(x13 ) -  {x12}[ > 1. 

The proof of Theorem 1 is now complete. []  

As mentioned in the introduction, we need the following result in order to 
conclude that Theorem 1 implies Th60r6me 1 of [6]. The result is just a special 
case of [5, (4.1.1)], but we include a short proof (also due to J. Tits) for the con- 
venience of the reader. 

Theorem 2. Let  F be a thick generalized n-gon and G=aut(F) .  Then GI(xo,x1) 
c~G(xo, . . . , x , )=  1 for each n-path (x o . . . . .  x,). 

Proof  Let (Uo . . . . .  u,) be an arbitrary n-path. For  every neighbor v of u, there is an 
( n -  2)-path (Vo . . . .  , v,_2) with Vo=V and 1)n_2EF(Uo). Since the girth of F is 2n, it 
follows that Gl (uo)c~ G(uo . . . . .  u,) < Gl(u,). 
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N o w  let (W, Xo . . . . .  x,) be an arbi t rary  ( n + l ) - p a t h .  To  prove  T h e o r e m 2 ,  it 
suffices, since F is connected,  to show that  G l ( x o , x l ) n G ( x  o . . . . .  x , )<Gj (w ,  Xo) 
~ G ( w , x  o . . . . .  x ._  O. There  exists a 2n-path (x 0 . . . . .  x . , x ,+  1 . . . . .  x2,  ) extending 
(x 0 . . . . .  x,) with x2,_ 1 = w  and Xz.=Xo;  let H = G ( x o ,  . . . , x2 .  ). We have Gl(xo ,x  0 
~ G ( x o , " ' ,  Xn) ~ G(xzn- 1, Xo . . . .  , x,) < H. As observed in the previous paragraph,  
Gl(Uo)C~G(uo . . . .  , u , )<Gl(u . )  for every n-path (u 0 . . . . .  u,). It follows that  
Gl(xo)c~G(xo . . . . .  x , ) < G l ( x . )  and thus G l ( x o , x O n G ( x  o . . . .  , x , ) < G l ( x  0 
c ~ G ( x l , . . . , x , , y ) < G l ( y  ) for every y e F ( x , ) - { x ,  1}. Choose  such a vertex 
y 4= x .  + 1 (using the hypothesis  that  F is thick). Then G I(Y)n G(y, x . ,  x .  + 1 . . . . .  x z , -  ~) 
<Gl(x2 . -1 ) .  T h u s  GI(Xo,Xl )C~G(x  o . . . . .  x n ) ~ G I ( y ) ~ H < = G I ( X 2 n -  1)- [ ]  
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