

The Nonexistence of Certain Moufang Polygons

Richard Weiss

II. Mathematisches Institut, Freie Universitat Berlin, K6nigin-Luise-Str. 24-26, D-1000 Berlin 33

Let $\Gamma = (V, E)$ be an arbitrary undirected graph, finite or infinite, V the vertex set of Γ , E the edge set, and let G be an arbitrary subgroup of aut(Γ). For each $x \in V$ we denote by $F(x)$ the set of vertices adjacent to x, by $G(x)$ the stabilizer of x in G and, for each $i \in \mathbb{N}$, by $G_i(x)$ the subgroup $\{a \in G(x) | a \in G(y) \}$ for all $y \in V$ with $\partial(x, y) \leq i$ } where $\partial(x, y)$ denotes the distance between x and y. An s-path (for $s \in \mathbb{N}$) is an $(s+1)$ -tuple $(x_0, ..., x_s)$ of vertices such that $x_i \in \Gamma(x_{i-1})$ if $1 \le i \le s$ and $x_i + x_{i-2}$ if $2 \leq i \leq s$. Let

$$
G(x_0, \ldots, x_s) = G(x_0) \cap \ldots \cap G(x_s)
$$

and

$$
G_i(x_0, \ldots, x_s) = G_i(x_0) \cap \ldots \cap G_i(x_s)
$$

for each s-path $(x_0, ..., x_s)$ and each $i \in \mathbb{N}$. If H is a group acting on a set X, a an element of H , we denote by H^X the permutation group induced by H on X and by a^X the permutation of X induced by a.

We prove the following theorem:

Theorem 1. Let $n \in \mathbb{N}$, $n \geq 2$. Let $\Gamma = (V, E)$ be an undirected connected graph with $|F(x)| \geq 3$ *for every* $x \in V$ *and let G be a subgroup of aut(F) such that for each npath* $(x_0, ..., x_n)$

- (i) $G_1(x_1, ..., x_{n-1})$ acts transitively on $\Gamma(x_n) \{x_{n-1}\}\$ and
- (ii) $G_1(x_0, x_1) \cap G(x_0, ..., x_n) = 1.$

Then n = 2, 3, 4, 6 *or* 8. If G^V is transitive, then $n \neq 8$.

Suppose that $\Gamma = (V, E)$ is a thick generalized *n*-gon, in other words, a bipartite graph of girth 2n and diameter n with $|F(x)| \ge 3$ for every $x \in V$, and that $G = \text{aut}(\Gamma)$. It is easily verified that $G_1(x_0, x_1) \cap G(x_0, ..., x_n) = 1$ holds for every *n*path $(x_0, ..., x_n)$ (Theorem 2 below, a special case of [5, (4.1.1)]). By definition, condition (i) of Theorem 1 holds if and only if Γ is Moufang. Thus Theorem 1 implies Théorème 1 of [6]. Our proof of Theorem 1, however, is much shorter and simpler than the proof of Théorème 1 begun in [6]. For related results, see [3] and [7].

Moufang *n*-gons actually exist for $n = 2, 3, 4, 6$ and 8 (see, for instance, [4]). The covering construction described in [1, Chapter 19], when applied to these generalized n-gons, yields examples of graphs fulfilling the hypotheses of Theorem i which are not generalized n-gons. There are also examples which are not bipartite, for instance, a vertex-primitive trivalent graph fulfilling the hypotheses of Theorem 1 with $n = 3$ and $G \cong PSL(2, p)$ where p is an arbitrary prime $\equiv \pm 1$ (mod 16) (see [8]), a vertex-primitive trivalent graph with $n=4$ and $G \cong \text{aut}(SL(3,3))$ (see [8]) and a vertex-primitive 5-valent graph with $n=3$ and $G \cong J_3$ (see [2]).

We begin the proof of Theorem 1. Suppose that Γ and G fulfill the hypotheses (but not that G^V is transitive) and that $n \geq 3$. Let $x \in V$ be arbitrary. Choose two $(n-1)$ -paths $(x_0, ..., x_{n-1})$ and $(y_0, ..., y_{n-1})$ with $x_0 = y_0 = x$ and $x_1 \neq y_1$. By condition (i), $\langle G_1(x_1, ..., x_{n-1}), G_1(y_1, ..., y_{n-1}) \rangle$ acts transitively (in fact 2-transitively) on $\Gamma(x)$ since $|\Gamma(x)| \geq 3$. Thus $G(x)^{\Gamma(x)}$ is transitive for every $x \in V$. For each $\{x, y\} \in E$, $\langle G(x), G(y) \rangle$ thus acts transitively on E since Γ is connected. Hence G acts transitively on E.

Lemma 1. *Let* $(x_0, ..., x_{n-1})$ *and* $(y_0, ..., y_{n-1})$ *be two* $(n-1)$ -paths with $x_0 = y_0$ and $x_1 = y_1$. Then $G_1(x_1, ..., x_{n-1})$ and $G_1(y_1, ..., y_{n-1})$ induce the same per*mutation group on* $\Gamma(x_0)$ *.*

Proof. By condition (i) there exists an element $a \in G_1(x_0)$ mapping $(x_0, ..., x_{n-1})$ to $(y_0, ..., y_{n-1})$. \square

For each 1-path (x, y) we denote by $H(x, y)$ the permutation group $G_1(x_1, ..., x_{n-1})^{F(x)}$ where $(x_1, ..., x_{n-1})$ is any $(n-2)$ -path with $x_1 = y$ and $x_2 \neq x$. Lemma 1 implies that $H(x, y)$ is well defined.

Lemma 2. *For each edge* $\{x, y\}$ *and each* $w \in \Gamma(x) - \{y\}$, $G_1(x, y)^{\Gamma(w)} = H(w, x)$.

Proof. $G_1(x, y)^{r(w)} \ge H(w, x)$ by definition. Let $(x_0, ..., x_{n+1})$ be an arbitrary (*n* +1)-path with $x_0 = w$, $x_1 = x$ and $x_2 = y$. Let $a \in G_1(x, y)$ be arbitrary. By condition (i) there exists an element $b \in G_1(w, x, y)$ such that $ab^{-1} \in G(x_0, ..., x_n)$ and then an element $c \in G_1(x_1, ..., x_{n-1})$ such that $ab^{-1}c^{-1} \in G(x_0, ..., x_{n+1})$. Thus $a b^{-1} c^{-1} \in G_1(x, y) \cap G(x_0, ..., x_{n+1})$ so that $a b^{-1} c^{-1} = 1$ by condition (ii). Hence $a^{F(w)} = c^{F(w)}$. But $c^{F(w)} \in H(w, x)$ by definition.

Let $(x_0, ..., x_t)$ be an arbitrary *t*-path, $t \ge 1$. We define $U(x_0, ..., x_t)$ to be ${a \in G_1(x_1, ..., x_{t-1})} a^{t(x_0)} \in H(x_0, x_1)$ and $a^{t(x_t)} \in H(x_t, x_{t-1})$ if $t \ge 2$ and ${a \in G(x_0, x_1)} a^{t(x_0)} \in H(x_0, x_1)$ and $a^{t(x_1)} \in H(x_1, x_0)$ if $t = 1$. Lemma 2 implies that $U(x_0, ..., x_t) = G_1(x_1, ..., x_{t-1})$ if $t \ge 3$.

Lemma 3. Let (x_0, \ldots, x_{n+1}) be an arbitrary $(n+1)$ -path. For every t with $2 \le t \le n$, $U(x_1, ..., x_i) = \langle U(x_0, ..., x_i), U(x_1, ..., x_{n+1}) \rangle.$

Proof. $\langle U(x_0, ..., x_i), U(x_1, ..., x_{n+1}) \rangle \leq U(x_1, ..., x_i)$ by definition. Let $a \in U(x_1, ..., x_n)$ be arbitrary. By definition there exists an element $b \in U(x_1, ..., x_{n+1})$ such that $a b^{-1} \in G_1(x_1)$. We have $a b^{-1} \in G_1(x_1, ..., x_{t-1})$. If $t \ge 3$, $G_1(x_1, ..., x_{t-1})$ $= U(x_0, ..., x_t)$ as observed above. Suppose that $t = 2$. Since $a^{\overline{F}(x_2)} \in H(x_2, x_1)$ and $b \in G_1(x_2)$, there exists an element $c \in G_1(x_0, x_1)$ such that $ab^{-1} c^{-1} \in G_1(x_1, x_2)$. By Lemma 2, $(ab^{-1}c^{-1})^{\Gamma(x_0)} \in H(x_0, x_1)$. But $(ab^{-1}c^{-1})^{\Gamma(x_0)} = (ab^{-1})^{\Gamma(x_0)}$. Thus $ab^{-1} \in U(x_0, x_1, x_2)$. \square

The main idea behind the proof of the next lemma is borrowed from the proofs of Lemmas 6 and 7 of [6].

Lemma 4. For each $\{x, y\} \in E$, the center $ZU(x, y)$ of $U(x, y)$ is nontrivial.

Proof. For each i with $1 \le i \le n-1$ and each n-path $(x_0, ..., x_n)$ we set $U_i(x_0, ..., x_n)$ $= {a \in U(x_0, ..., x_n) | a \in U(x'_0, ..., x'_n)}$ for each *n*-path $(x'_0, ..., x'_n)$ such that $x'_j = x_j$ whenever $i \leq j \leq n-1$. If $(x_0, ..., x_n)$ and $(x'_0, ..., x'_n)$ are *n*-paths with $x_j = x'_j$ for $i \le j \le n-1$ but $x_{i-1} + x'_{i-1}$, then $(x_0, ..., x_i, x'_{i-1}, ..., x'_0)$ is a 2*i*-path and $U_i(x_0,...,x_n) \le U(x_0,...,x_i,x'_{i-1},...,x'_0);$ by condition (ii), $U_i(x_0,...,x_n) = 1$ if $2i \geq n+1$. On the other hand, $U_1(x_0, \ldots, x_n) = U(x_0, \ldots, x_n)$ for each *n*-path (x_0, \ldots, x_n) . Thus we may choose $m \leq n-1$ minimal such that there exists an *n*-path $(y_0, ..., y_n)$ with $U(y_0, ..., y_n)$ + $U_m(y_0, ..., y_n)$. Extend $(y_0, ..., y_n)$ to a $(n+m)$ -path $(y_0, ..., y_n, y_{n+1}, ..., y_{n+m})$ and let

$$
A = [U(y_0, ..., y_n), U(y_m, ..., y_{n+m})]
$$

= $\langle ab a^{-1} b^{-1} | a \in U(y_0, ..., y_n), b \in U(y_m, ..., y_{n+m}) \rangle$.

Since $U(y_0, \ldots, y_n)$ + $U_m(y_0, \ldots, y_n)$, there exists an *n*-path (y'_0, \ldots, y'_n) with $y'_i = y_i$ whenever $m \leq j \leq n-1$ such that $U(y_0, \ldots, y_n) \leq U(y'_0, \ldots, y'_n)$. By condition (i) there exists an element $b \in U(y_m, \ldots, y_{m+n})$ such that $b(y'_{m-1})=y_{m-1}$. Hence $U_{m-1} (y_0, \ldots, y_n) \leq U (b (y'_0), \ldots, b (y'_n))$, i.e., $b^{-1} U_{m-1} (y_0, \ldots, y_n) b \leq U (y'_0, \ldots, y'_n)$. By the choice of m, $U_{m-1}(y_0, ..., y_n) = U(y_0, ..., y_n)$. It follows that

$$
b^{-1} U(y_0, ..., y_n) b + U(y_0, ..., y_n);
$$

in particular, $A+1$. Since $U(y_0, \ldots, y_n) \leq G_1(y_m)$ and $U(y_m, \ldots, y_{n+m}) \leq G(y_m)$, $A \leq G_1(y_m)$. Analogously, $A \leq G_1(y_n)$ and thus $A \leq G_1(y_m, ..., y_n) = U(y_{m-1}, ..., y_{n+1})$. Since $U(y_0, ..., y_n) = U_{m-1}(y_0, ..., y_n)$, we have $U(y_0, ..., y_n) \le U(c(y_0), ..., c(y_n))$ for each element $c \in U(y_{m-1},..., y_{n+1})$ and so $[U(y_0,..., y_n], U(y_{m-1},..., y_{n+1})]$ $\leq U(y_0, \ldots, y_{n+1}) = 1$. Since $U(y_{n+m}, \ldots, y_m) = U_{m-1}(y_{n+m}, \ldots, y_m)$ (by the choice of *m*), $[U(y_{m-1},...,y_{n+1}), U(y_m,...,y_{n+m})] \leq U(y_{m-1},...,y_{n+m}) = 1$. Thus $1+A$ $\leq ZU(y_{m-1},..., y_{n+1}).$

We may thus choose $t \ge 1$ minimal such that there exists a *t*-path $(x_0, ..., x_t)$ with $ZU(x_0, ..., x_t)$ \neq 1. If $t=1$ then $ZU(x, y)$ \neq 1 for every edge $\{x, y\}$ since G^E is transitive. Thus we may suppose that $t \ge 2$. Extend $(x_0, ..., x_t)$ to an $(n+1)$ -path $(x_0, \ldots, x_t, x_{t+1}, \ldots, x_{n+1})$ and choose $s \geq t$ maximal such that there exists a nontrivial element, say a, in $ZU(x_0, ..., x_i) \cap U(x_0, ..., x_s)$. (By condition (ii), $s \leq n$.) Since $U(x_1, ..., x_{n+1}) \le G(x_1, ..., x_{t-1})$, $U(x_1, ..., x_{n+1})$ normalizes $U(x_0, ..., x_t)$. Hence $U(x_1, ..., x_{n+1})$ normalizes $ZU(x_0, ..., x_t)$ and so $[U(x_1, ..., x_{n+1}), a] \leq$ $ZU(x_0, ..., x_t)$. But $[U(x_1, ..., x_{n+1}), a] \leq U(x_t, ..., x_{s+1})$ since $U(x_1, ..., x_{n+1}) \leq$ $G_1(x_s)$ and $a \in G(x_s)$. By the choice of *s*, $[U(x_1, \ldots, x_{n+1}), a] = 1$. By Lemma 3, $a \in ZU(x_1, \ldots, x_t)$. This contradicts the choice of t. \square

Lemma 5. Let $k = (n-2)/2$ if n is even and $k = (n-1)/2$ if n is odd. Then $G_k(x, y) \neq 1$ *for every edge {x, y}.*

Proof. We show first that $ZU(x, y) \leq G_1(x, y)$. If this were not so, there would exist, say, a vertex $z \in \Gamma(y) - \{x\}$ and an element $a \in ZU(x, y)$ such that $a \notin G(z)$. By Lemma 2, $G_1(y, z) \le U(x, y)$. Hence $G_1(y, z) = {}^aG_1(y, z) = G_1(y, a(z))$ (where ${}^aG_1(y, z)$)

denotes $a G_1(y, z) a^{-1}$, i.e. $G_1(z, y) \leq G_1(a(z))$. This contradicts condition (i) since $n \geq 3$. It follows that $ZU(x, y) \leq G_1(x, y)$.

We conclude the proof of Lemma 5 by showing that in fact $ZU(x, y) \leq G_k(x, y)$. Let $(x_0, ..., x_n)$ be an arbitrary *n*-path with $\{x_0, x_1\} = \{x, y\}$. It suffices to show that $ZU(x, y) \leq G(x_0, ..., x_{k+1})$. Since $1 + ZU(x, y) \leq G_1(x, y)$, by condition (ii) there exist indices s with $2 \leq s \leq n$ such that $ZU(x, y) \leq G(x_s)$. Choose s minimal and let *a* be an element of $ZU(x, y)$ not in $G(x_s)$. By the choice of *s*, $a \in G(x_{s-1})$. Since $U(x_0, ..., x_n) \le U(x, y)$, $U(x_0, ..., x_n) = {^a}U(x_0, ..., x_n) = U(a(x_0), ..., a(x_n))$. Thus $1+U(x_0, ..., x_n) \le U(x_n, x_{n-1}, ..., x_{s-1}, a(x_s), a(x_{s+1}), ..., a(x_n)).$ Since $a(x_s)$ + x_s, $(x_n, x_{n-1}, ..., x_{s-1}, a(x_s), a(x_{s+1}), ..., a(x_n)$ is a $2(n-(s-1))$ -path. By condition (ii), $2(n - (s - 1)) \le n$, i.e. $s - 1 \ge k + 1$.

Now let $(x_0, ..., x_{3k+1})$ be an arbitrary $(3k+1)$ -path and let $B = [ZU(x_{k-1}, x_k)]$ *ZU*(x_{2k} , x_{2k+1})]. By Lemma 5, $B \leq [G_k(x_{k-1}, x_k), G_k(x_{2k}, x_{2k+1})]$. But clearly $[G_k(x_{k-1}, x_k), G_k(x_{2k}, x_{2k+1})] \le U(x_0, ..., x_{3k})$; for instance, if $2k \le i \le 3k-1$ and $x \in \Gamma(x_i)$ then $\partial(x_{2k}, a^{-1}(x)) = \partial(a^{-1}(x_{2k}), a^{-1}(x)) \le k$ for every $a \in G_k(x_{k-1}, x_k)$ and thus $ba^{-1}(x) = a^{-1}(x)$, i.e. $aba^{-1}b^{-1}(x) = aba^{-1}(x) = x$, for every $b \in G_k(x_{2k}, x_{2k+1})$. Suppose that $B+1$. By condition (ii), $3k \leq n$. If *n* is even, then $3(n-2)/2 \leq n$, i.e. $n \leq 6$. If *n* is odd, then $3(n-1)/2 \leq n$, i.e. $n \leq 3$. Thus we may suppose that $B=1$.

Suppose that $ZU(x_{k-1}, x_k) \leq G(x_{2k+1})$. Since $U(x_{k-1}, x_k)$ acts transitively on the set of all $(k+2)$ -paths $(y_{k-1},..., y_{2k+1})$ with $y_{k-1} = x_{k-1}$ and $y_k = x_k$, we have $ZU(x_{k-1},x_k) \leq G_{k+1}(x_k)$. Suppose that $ZU(x_{k-1},x_k) \leq G(x_{2k+1})$. Let a be an arbitrary element of $ZU(x_{k-1}, x_k)$ not in $G(x_{2k+1})$. Since $B=1$, $ZU(x_{2k}, x_{2k+1})=$ ${}^aZU(x_{2k}, x_{2k+1}) \le U(a(x_{2k}), ..., a(x_{2k+1}))$. Since $U(x_{2k}, x_{2k+1})$ acts transitively on the set of all $(k+2)$ -paths $(y_{2k-1},...,y_{3k+1})$ such that $y_{2k-1} = x_{2k+1}$ and $y_{2k} = x_{2k}$, we have $ZU(x_{2k}, x_{2k+1}) \leq G_{k+1}(x_{2k})$. Thus one way or the other we conclude that there exists a vertex x such that $G_{k+1}(x)$ + 1. This implies that n is even since otherwise $2(k+1) = n+1$ and so $G_{k+1}(x) = 1$ for every vertex x by condition (ii).

If Γ is bipartite, its vertex set V is the union of two sets V_1 and V_2 , the two equivalence classes of the equivalence relation $\{(x, y) | \partial(x, y)$ is even $\} \subseteq V \times V$. Since G^E is transitive, either G^V is transitive or Γ is bipartite and G acts transitively on both V_1 and V_2 . Choose an arbitrary $(3k+4)$ -path $(x_0, ..., x_{3k+4})$ such that $G_{k+1}(x_k)$ \neq 1. Suppose first that G^V is transitive or that $n \equiv 2 \pmod{4}$, i.e. that k is even. Since $(2k+2)-k$ is then also even, x_k and x_{2k+2} lie in the same G-orbit; thus $G_{k+1}(x_{2k+2})$ \neq 1. Let $C = [G_{k+1}(x_k), G_{k+1}(x_{2k+2})]$. Clearly $C \le U(x_1, ..., x_{3k+1})$. If $C+1$ then $3k \leq n$ by condition (ii) and hence $n \leq 6$. Thus we may suppose that $C = 1$. Since $G_{k+1}(x_k) \leq G_1(x_0, ..., x_{2k})$ and $G_1(x_0, x_1) \cap G(x_0, ..., x_{2k+2}) = 1$, we have $G_{k+1}(x_k) \not\leq G(x_{2k+2})$; let a be an element of $G_{k+1}(x_k)$ not in $G(x_{2k+2})$. But then, since $C = 1$,

$$
G_{k+1}(x_{2k+2}) \le U(x_{3k+3},...,x_{2k+1},a(x_{2k+2}),a(x_{2k+3}),...,a(x_{3k+3})).
$$

Since $(x_{3k+3},...,x_{2k+1},a(x_{2k+2}), a(x_{2k+3}),...,a(x_{3k+3}))$ is a path of length $2((3k+3)-(2k+1))=n+1$, $G_{k+1}(x_{2k+2})=1$. This contradicts our earlier observation that $G_{k+1}(x_{2k+2})$ + 1.

Thus we may assume that $n \equiv 0 \pmod{4}$, i.e. that k is odd (and that G^V is intransitive). This time we consider $D = [G_{k+1}(x_k), G_{k+1}(x_{2k+3})]$. Since $(2k+3)-k$ is even, x_k and x_{2k+3} lie in the same G-orbit; thus $G_{k+1}(x_{2k+3})+1$. Since $D \leq$ $U(x_3, ..., x_{3k})$, condition (ii) implies that $3k-3 \leq n$, i.e. $n \leq 12$, if $D+1$. Suppose

that $D=1$. Letting a again denote an element of $G_{k+1}(x_k)$ not in $G(x_{2k+2})$, we have $G_{k+1}(x_{2k+3}) \le U(x_{3k+4}, ..., x_{2k+1}, a(x_{2k+2}), ..., a(x_{3k+4}))$ where

$$
(x_{3k+4},...,x_{2k+1},a(x_{2k+2}),...,a(x_{3k+4}))
$$

is a path of length $2((3k+4)-(2k+1))=n+4$ and so $G_{k+1}(x_{2k+3})=1$. This contradicts our observation that $G_{k+1}(x_{2k+3})$ \neq 1.

To conclude the proof of Theorem 1, we need only eliminate the case $n = 12$. **Lemma 6.** Suppose $n=12$ (so that $k=5$). Let (x_0, \ldots, x_{12}) be an arbitrary 12-path *such that* $G_6(x_2)$ \neq 1. Let a be an arbitrary nontrivial element in $G_6(x_2)$ (so that $a \notin G(x_9)$. Then:

(i) *For each f* $\in U(x_8, ..., x_{13})$ *mapping* $(a(x_9), a(x_{10}))$ to (x_7, x_6) *and for each* $b \in G_6(x_{10}), [a, b] = f^a b \in G_6(x_6).$

(ii) *For each c* $\in G_6(x_6)$ *there exists an element b* $\in G_6(x_{10})$ *such that* $[a, b] = c$.

Proof. Let b and f be as in part (i). Clearly $[a, b] \in U(x_0, ..., x_{12})$. Since $fa(x_{10}) = x_6$, $f^{q}b \in G_6(x_6)$. Since b and f lie in $G_1(x_{12})$, [a, b] and $f^{q}b$ induce the same permutation on $\Gamma(x_{12})$. Thus $\int^{a} b \cdot [a, b]^{-1} \in U(x_0, ..., x_{12}) \cap G_1(x_{12}) = 1$. To prove part (ii), simply set $b = (fa)^{-1} c(fa)$. \Box

Suppose $n = 12$. Let (x_0, \ldots, x_{20}) be an arbitrary 20-path such that $G_6(x_2) \neq 1$. Let a be a nontrivial element in $G_6(x_2)$, b a nontrivial element of $G_6(x_{10})$ and $f \in U(x_8, ..., x_{17})$ an element mapping $(a(x_9), a(x_{10}))$ to (x_7, x_6) (which exists by condition (i)). Let $c = [b, a]$. By part (i) of Lemma 6, $c = f^a(b^{-1})$. We have $[f, b] \in$ $[U(x_8, ..., x_{17}), G_6(x_{10})] \le U(x_4, ..., x_{17}) = 1$ and so

$$
[c, f] = [[b, a], f] = [b, a] f a b a^{-1} b^{-1} f^{-1} = [b, a] \cdot f^{a} b \cdot b^{-1} = b^{-1}.
$$

By part (ii) of Lemma 6, we can choose an element $d \in G_6(x_{14})$ such that $[c, d] = b^{-1}$. Since $[f, b] = 1$, $[c, df^{-1}] = [c, d] [c, f]^{-1} = (b^{-1})(b^{-1})^{-1} = 1$. Thus $c \in G_6(x_6)$ C^{a_1} ^o $G_6(x_6)$. But $G_6(x_6)C^{a_1}$ ^o $G_6(x_6)=1$ unless $df^{-1} \in G(x_7, x_6)$. Since $c\neq 1$, we conclude that $(d^{-1}(x_7), d^{-1}(x_6)) = (f^{-1}(x_7), f^{-1}(x_6)) = (a(x_9), a(x_{10})).$

Now choose an arbitrary element $e \in U(x_1, ..., x_{13})$. We have $[d, e] \in [G_6(x_{14}),$ $U(x_1, ..., x_{13}) \le U(x_7, ..., x_{18})$. Since $(da(x_9), da(x_{10})) = (x_7, x_6)$ and $e \in G_1(x_9, x_{10})$, $a^{\text{da}}e \in G_1(x_6, x_7)$. Since $[a, e] \in [G_6(x_2), U(x_1, ..., x_{13})] \leq G_6(x_2) \cap G_1(x_8) = 1$, $a^{\text{da}}e$ $=$ ^{*a*}e. Since $e \in G_1(x_6, x_7)$, $[d, e] =$ ^{*a*} $e \cdot e^{-1} \in G_1(x_6, x_7)$. Thus $[d, e] \in U(x_5, ..., x_{18}) = 1$. Hence $d \in G_6(x_{14}) \cap {}^e G_6(x_{14})$. But $G_6(x_{14}) \cap {}^e G_6(x_{14}) = 1$ unless $e \in G(x_{14})$. It follows that $e \in U(x_1, ..., x_{13}) \cap G(x_{14}) = 1$ for all $e \in U(x_1, ..., x_{13})$. This contradicts condition (i) since $|\Gamma(x_{13}) - \{x_{12}\}| > 1$.

The proof of Theorem 1 is now complete. \Box

As mentioned in the introduction, we need the following result in order to conclude that Theorem 1 implies Théorème 1 of $[6]$. The result is just a special case of $[5, (4.1.1)]$, but we include a short proof (also due to J. Tits) for the convenience of the reader.

Theorem 2. Let Γ be a thick generalized n-gon and $G = aut(\Gamma)$. Then $G_1(x_0, x_1)$ $\cap G(x_0, ..., x_n) = 1$ *for each n-path* $(x_0, ..., x_n)$.

Proof. Let (u_0, \ldots, u_n) be an arbitrary *n*-path. For every neighbor v of u_n there is an $(n-2)$ -path $(v_0, ..., v_{n-2})$ with $v_0 = v$ and $v_{n-2} \in \Gamma(u_0)$. Since the girth of Γ is 2*n*, it follows that $G_1(u_0) \cap G(u_0, ..., u_n) \leq G_1(u_n)$.

Now let $(w, x_0, ..., x_n)$ be an arbitrary $(n+1)$ -path. To prove Theorem 2, it suffices, since *F* is connected, to show that $G_1(x_0, x_1) \cap G(x_0, ..., x_n) \leq G_1(w, x_0)$ $\cap G(w, x_0, ..., x_{n-1})$. There exists a 2*n*-path $(x_0, ..., x_n, x_{n+1}, ..., x_{2n})$ extending $(x_0, ..., x_n)$ with $x_{2n-1} = w$ and $x_{2n} = x_0$; let $H = G(x_0, ..., x_{2n})$. We have $G_1(x_0, x_1)$ $\cap G(x_0,...,x_n) \leq G(x_{2n-1}, x_0,...,x_n) \leq H$. As observed in the previous paragraph, $G_1(u_0) \cap G(u_0, \ldots, u_n) \leq G_1(u_n)$ for every *n*-path (u_0, \ldots, u_n) . It follows that $G_1(x_0) \cap G(x_0, ..., x_n) \leq G_1(x_n)$ and thus $G_1(x_0, x_1) \cap G(x_0, ..., x_n) \leq G_1(x_1)$ $\cap G(x_1,...,x_n,y) \leq G_1(y)$ for every $y \in \Gamma(x_n) - \{x_{n-1}\}\.$ Choose such a vertex $y \neq x_{n+1}$ (using the hypothesis that F is thick). Then $G_1(y) \cap G(y, x_n, x_{n+1}, \ldots, x_{2n-1})$ $\leq G_1(x_{2n-1})$. Thus $G_1(x_0, x_1) \cap G(x_0, ..., x_n) \leq G_1(y) \cap H \leq G_1(x_{2n-1})$. \Box

References

- 1. Biggs, N.: Algebraic graph theory. Cambridge: Cambridge University Press 1974
- 2. Dempwolff, U.: On primitive permutation groups whose stabilizer of a point induces $L_2(q)$ on a suborbit. Ill. J. Math. 20, 48-64 (1976) and 21, 427 (1977)
- 3. Feit, W., Higman, G.: The nonexistence of certain generalized polygons. J. Algebra 1, 114 131 (1964)
- 4. Tits, J.: Classification of buildings of spherical type and Moufang polygons: a survey. In: Atti Coll. Intern. Teorie Combinatorie, Accad. Naz. dei Lincei, Roma, 1973, 229-246 (1976)
- 5. Tits, J.: Buildings of spherical type and finite BN-pairs. Lecture Notes in Math. 386. Berlin-Heidelberg-New York: Springer 1974
- 6. Tits, J.: Non-existence de certains polygones généralisés, I. Inventiones math. 36, 275-284 (1976)
- 7. Weiss, R.: Groups with a (B, N) -pair and locally transitive graphs. Nagoya J. Math. 74 (to appear)
- 8. Wong, W.J.: Determination of a class of primitive permutation groups. Math. Zeitsch. 99, 235-246 (1967)

Received December 6, 1978/Revised January 2, 1979