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Let I'=(V, E) be an arbitrary undirected graph, finite or infinite, V the vertex set
of I', E the edge set, and let G be an arbitrary subgroup of aut(I'). For each xeV
we denote by I'(x) the set of vertices adjacent to x, by G(x) the stabilizer of x in
G and, for each ielN, by G,(x) the subgroup {aeG(x)| aecG(y) for all yeV with
d(x,y)<i} where é{x,y) denotes the distance between x and y. An s-path (for
selN) is an (s+ 1)-tuple (x,, ..., x,) of vertices such that x;el'(x;_,) if 1 £i<s and
X.#X;_, if 2<i<s. Let

G(xg, ..., X)) =G(xg)N...NG(x)
and
Gixg,..., X)) =Gxx)N...0G(x,)

for each s-path (x,,...,x,) and each ieN. If H is a group acting on a set X, g an
element of H, we denote by H* the permutation group induced by H on X and
by a* the permutation of X induced by a.

We prove the following theorem:

Theorem 1. Let nelN, n22. Let I'=(V, E) be an undirected connected graph with
IF{x)| =3 for every xeV and let G be a subgroup of aut(I') such that for each n-
path (xg,...,x,)

() G,(x,,...,x,_,) acts transitively on I'(x,})—{x,_,} and

(i) G (xq,x)NG(xg,...,x,)=1.
Then n=2,3, 4, 6 or 8. If G is transitive, then n+38.

Suppose that I'=(V,E) is a thick generalized n-gon, in other words, a
bipartite graph of girth 2»n and diameter n with [I'(x)| = 3 for every xeV, and that
G =aut(l'). It is easily verified that G,(x,, x,)nG(xg,...,x,)=1 holds for every n-
path (x,,...,x,) (Theorem2 below, a special case of [5, (4.1.1)]). By definition,
condition (i) of Theorem | holds if and only if I" is Moufang. Thus Theorem 1
implies Théoréme 1 of [6]. Our proof of Theorem 1, however, is much shorter
and simpler than the proof of Théoréme 1 begun in [6]. For related results, see
[3] and [7].
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Moufang n-gons actually exist for n=2, 3, 4, 6 and 8 (see, for instance, [4]).
The covering construction described in [1, Chapter 19], when applied to these
generalized n-gons, yields examples of graphs fulfilling the hypotheses of Theo-
rem 1 which are not generalized n-gons. There are also examples which are not
bipartite, for instance, a vertex-primitive trivalent graph fulfilling the hypotheses
of Theorem 1 with n=3 and G=PSL(2,p) where p is an arbitrary prime = +1
(mod 16) (see [8]), a vertex-primitive trivalent graph with n=4 and
G~ aut(SL(3, 3)) (see [8]) and a vertex-primitive 5-valent graph with n=3 and
GJ, (see [2]).

We begin the proof of Theorem 1. Suppose that I' and G fulfill the hy-
potheses (but not that GY is transitive) and that n=3. Let xeV be arbitrary.
Choose two (n—1)-paths (x,,...,x,_;) and (yg,...,¥,_,) With x,=y,=x and
X4 y,. By condition (i), {G(x{,...,X,_1), G((¥y,.-..¥,_1)> acts transitively (in
fact 2-transitively) on I'(x) since |I'(x)| = 3. Thus G(x)* is transitive for every
xeV. For each {x,y}eE, {G(x), G(y)> thus acts transitively on E since I is
connected. Hence G acts transitively on E.

Lemma 1. Let (xq,...,%,_,) and (yg,...,y,_1) be two (n—1)-paths with x,=y,
and x,=y,. Then Gy(x,....x,_,) and G,(y,,...,¥, ;) induce the same per-
mutation group on I'(x,).

Proof. By condition (i) there exists an element aeG,(x,) mapping (xg,...,X,_;)
to (yg, -5 ¥a_y) O

For each l-path (x,y) we denote by H(x,y) the permutation group
Gi(xy,..rx,_ )" where (x,,...,x,_,) is any (n—2)-path with x, =y and x,# x.
Lemma 1 implies that H{x,y) is well defined.

Lemma 2. For each edge {x,y} and each weI(x)—{y}, G (x,y)"™ = H(w, x).

Proof. G(x,y)"™ = H(w,x) by definition. Let (x,,...,x,, ;) be an arbitrary (n
+1)-path with x,=w, x,=x and x,=y. Let aeG,(x,y) be arbitrary. By con-
dition (i) there exists an element beG ((w,x, y) such that ab~'eG(x,,...,x,) and
then an element ceG(x,,...,x,_;) such that ab='c 'eG(x,,...,x,, ;). Thus
ab=tc¢'eG (x,»)NG(xg, ..., X, ,) s0 that ab~'¢~!=1 by condition (ii). Hence
a"™ =™ But ("™ eH(w,x) by definition. []

Let (xg,...,X,) be an arbitrary r-path, t=1. We define U(x,,...,Xx,) to be
{aeGy(xy,....,x,_la" e H(xy,x,) and o'*eH(x,x,_,)} if t=2 and
{ae G(xq, x,)la"™™ e H(x,, x;) and a"*" e H(x,,x,)} if t=1. Lemma 2 implies
that U(xg, ..., x)=G(xy,...,x, () if t=3.

Lemma 3. Let (x,, ..., X, ,) be an arbitrary (n+ 1)-path. For every t with 2<t=<n,
Uxy,....x)=CU{xq, ... x), Ulxy, ..o, Xp 1))

Proof. (U(xg,...,%), Ulxy,..o, %, 10 SU(xy,...,x) by definition. Let
aeU(xy, ..., x,) be arbitrary. By definition there exists an element beU(x,,...,X, 1)
such that ab~'eG,(x,). We have ab='e G (x;,...,x,_,). 1123, G{(xy, ..., %,_{)
=U(xg, ..., X,) as observed above. Suppose that t=2. Since a’ *?eH(x,, x,) and
be G, (x,), there exists an element ce G,(x,, x;) such that ab~! ¢ 1eG,{x,, x,).
By Lemma 2, (ab~'c Y ™JeH(x,,x;). But (ab=!c 1) *o=(gp- 1)),
Thus ab~'eU(xq,x,,%,). O
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The main idea behind the proof of the next lemma is borrowed from the proofs
of Lemmas 6 and 7 of [6].

Lemma 4. For each {x, y}€E, the center ZU(x, y) of U(x, y) is nontrivial.

Proof. For each i with 1<i<n—1 and each n-path (xg, ..., x,) we set U, (xq,...,X,)
={aeU(x,q, ..., x,)|aeU(x, ..., x;) for each n-path (xj, ..., x;) such that x;=x;
whenever igj<n—1}. If (xo,...,x,) and (xp, ..., x;) are n-paths with x;=x’ for
igjg€n—1 but x,_,=+x;_,, then (xq,...,X;,X;_{,...,Xg) iS a 2i-path and
Ulxg,....x) S U(Xg, ..., X1, Xj_ 1, ..., Xg); by condition (ii), Ufx,,....,x,)=1 if
2izn+1. On the other hand, U(x,,...,x,)=U(x,,...,x,) for each n-path
(x5 -.-» x,). Thus we may choose m < n— 1 minimal such that there exists an n-path
(Vos - V) With U (¥g, ... ¥ £ U, (yo, ..., ). Extend (yg, ..., y,) to a (n+m)-path
(yO’ ceos Yus yn+1’ "’9yn+m) and let

AZ[U(yO> ""yn)’ U(ym’ "'9yn+m)]
={aba b acU g, -’ ¥u) DEU Ws s Vpam) -

Since U(yo, ..., ¥ F Un(Vo, ..., V), there exists an n-path (yp, ..., y,) with y;=y;
whenever m<j<n-—1 such that U(y,,...,y)EUQG,...,¥,). By condition (i)
there exists an element beU(y,,..., Y, such that b(y,_,)=y,_.. Hence
Um~1()’0> ayn)é U(b(yb)’ ’b(y;n))’ les bﬁl Um~1(y0>>yn)b§ U(yi)’ ’y;) By
the choice of m, U,,_{(¥o, .-, Yo =U g, ..., ¥, It follows that

b‘l U(y07-"7yn)b:‘:U(y07 ’yn)a

in particular, A4 1. Since U(yg,....,y)=Gi(y) and Uy, oo, Vua ) S G (V).
A<G,(y,) Analogously, ASG,(y,) and thus AL G1(Vp- ., ¥) = UVpets s Vur 1)
Since U(yO’ »yn)z Um—l(.VOv '“’yn)’ we have U(yOs IR ] yn):<—_ U(C(yo)’ ey C(_Vn))
for each element ceU(y,,_1,.... Y1) and s0 [U(o. -5 ¥ UWm_1s o5 Yus1)]
SUWos - Vap)=1 Since U, ypms s Ym)=Upn_1Wnims ---» ¥) (by the choice
of m), [U(ymﬁlﬂ treo yn+ 1)’ U(yma cero yn+m)]§ U(ym-lv R yn+m): 1. Thus I#A
éZU(ym—l’“'ayru-l)'

We may thus choose t =1 minimal such that there exists a t-path (xg, ..., x,)
with ZU(xq,...,x,)% 1. If t=1 then ZU(x, y)#1 for every edge {x,y} since G*
is transitive. Thus we may suppose that t =2. Extend (x,, ..., x,) to an (n+ 1)-path
(X s Xy Xy 153Xy, 1) and choose szt maximal such that there exists a
nontrivial element, say a,in ZU (xg, ..., )N U(xg, ..., X). (By condition (ii), s = n.)
Since U(xy, ... Xy, )2 G(Xq, .5 X, 1), Ulxy, ..., X, 1) normalizes U(xy, ..., Xx,).
Hence U(x,,...,X,,;) normalizes ZU(xq,...,x;) and so [U(xy,...,%,, ), a]S
ZU(xg,....x,). But [U(xy, ..., %, 1), alSU(x,, ..., x5, () since U(xy, ..., x,, ;)<
G,(x) and aeG(x,). By the choice of s, [U(xy,...,x,, ), a]=1. By Lemma 3,
acZU(x,, ..., x,). This contradicts the choice of t. []

Lemma 5. Let k=(n—2)/2 if n is even and k=(n—1)/2 if n is odd. Then G,(x, y)* 1
for every edge {x, y}.

Proof. We show first that ZU (x, y) £ G,(x, y). If this were not so, there would exist,
say, a vertex zel'(y)—{x} and an element acZU(x,y) such that a¢G(z). By
Lemma 2, G,(y, z) S U(x, y). Hence G(y, 2)="G1(y, 2)=G(y, a(z)) (where °G,(y, z)
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denotes aG,(y, z)a" '), ie. G,(z, )< G,(a(z)). This contradicts condition (i) since
n=3. It follows that ZU (x, y) £ G, (x, ).

We conclude the proof of Lemma 5 by showing that in fact ZU (x, y) £ G,(x, y).
Let (xq, ..., x,) be an arbitrary n-path with {x,, x,}={x, y}. It suffices to show
that ZU (x, y)=G(Xq, ..., X, 1) Since 1+ZU(x, y)<Gy{x,y), by condition (i)
there exist indices s with 2<s=<n such that ZU(x, y) £ G(x,). Choose s minimal
and let a be an element of ZU (x, y) not in G(x,). By the choice of s, ae G(x,_;).
Since U(xg,...,x)SU ), Ulxg,...,x,)="U(xg, ..., x,)=Ula{xy), ..., a(x,)).
Thus 1%+U(xg,...., X )SU(X,, Xy 1,0 Xy, alXy), alxg, ), ..., alx,). Since
a(xg)F=Xg, (Xps Xp_15 -5 Xg_1,a(xg), alXg, 1), ...,a(x,) is a 2(n—(s—1))-path. By
condition (ii), 2(n—(s— 1)) En, le. s—12k+1. O

Now let (xg, ..., X3, 1) be an arbitrary 3k + 1)-path and let B=[ZU(x,_;, x}),
ZU (X34, X25,1)). By Lemma 5, BE[G,(x; 1, %s), Gylx2p, X34, 1)) But clearly
[Ge(xk_ 15X Gi(X2ps X25, 111 S U, ..., X33); for instance, if 2k<i<3k~1 and
xel(x,) thend(x,,, a~ 1 (x))=0a(a " (x,4), a~* (x)) <k for every ae G, (x, _,, x,) and
thus ha='(x)=a"'(x), i.e. aba='b~(x)=aba™ }(x)=x, for every beG {x,;,X 5. ).
Suppose that B=1. By condition (ii), 3k <n. If n is even, then 3(n—2)/2<n, ie.
n<6. If n is odd, then 3(n—1)/2<n, i.e. n<3. Thus we may suppose that B=1.

Suppose that ZU (x,_ 1, %) S G(x4;, 1) Since U(x;,_ 1, x;) acts transitively on
the set of all (k+2)-paths (y,_1, ..., Y2, 1) With ¥, =x,_, and y, =x,, we have
ZU (x4 _1, %) S Gy 1(x,). Suppose that ZU(x,_,x)£G(xy,, 1) Let a be an
arbitrary element of ZU (x, _y, x;) not in G(x5, ). Since B=1, ZU(x3;, X3, 1)=
CZU(Xgp, Xap, S Ua(xap), ... s a(Xpp, 1)) Since Ul(xyy, Xpp, 1) acts transitively
on the set of all (k+2)-paths (y,,_1,....Vax.q) such that y,, =x,,,, and y,,=x,,,
we have ZU (x5, X35, 1) = G, 1(X3,). Thus one way or the other we conclude that
there exists a vertex x such that G, , ,(x)== 1. This implies that n is even since other-
wise 2(k+1)=n+1 and so G, , (x)=1 for every vertex x by condition (ii).

If I is bipartite, its vertex set V' is the union of two sets V; and V,, the two
equivalence classes of the equivalence relation {(x, y)|é(x,y) is even} <V x V.
Since G® is transitive, either GV is transitive or I' is bipartite and G acts transitively
on both ¥, and V,. Choose an arbitrary (3k+4)-path (x,, ..., X3, 4) such that
Gy, 1(x) % 1. Suppose first that G” is transitive or that n=2 (mod 4), i.e. that k is
even. Since (2k+2)—k is then also even, x, and x,, , , lie in the same G-orbit; thus
Gk+ 1(x2k+ 2) * 1. Let C= [Gk+ l(xk)’ Gk+ 1(x2k+ 2)] Cleaﬂy C é U(Xl > ees X3k y 1)~
If C#1 then 3k<n by condition (ii) and hence n< 6. Thus we may suppose that
C=1. Since Gy, 1(x)=G(xg, ..., %3) and Gy(xg,x1)NG(xg, ..., X2, 2)=1, we
have G, 1(x) £ G (X3, -); let a be an element of G, ,(x,) not in G(x,,_,). But
then, since C=1,

Gk+1(x2k+2)§ U(X3k+3, s X241 a(x2k+2),a(x2k+3)’ s (X354 3))

Since (X34,35 s X2k 15 X2y 2) A(Xz2443), ... a(X3,,3)) is a path of length
2(3k+3)-Rk+1)=n+1, G, (xy,,2)=1. This contradicts our earlier ob-
servation that G, (x5, 2)# 1.

Thus we may assume that n=0 (mod 4), i.e. that k is odd (and that G is in-
transitive). This time we consider D=[G,, 1(x;), Gy, 1 (X24,3)]. Since (2k+3)—k
is even, x, and x,,, 5 lie in the same G-orbit; thus G, (x,,,.5)#1. Since D=
U(x;, ..., %3,), condition (ii) implies that 3k—3<n, i.e. n<12, if D+ 1. Suppose
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that D=1. Letting a again denote an element of G, (x;) not in G(x,,,,), we
have Gk+1(xzk+3)§ UX3xrq5 s X1, @(Xgp 4 2)s ...,a(x3k+4)) where

(X3k445 > X264 15 A(X2p42)s-ens a{X3444)

is a path of length 2((3k+4)—Q2k+1))=n+4 and so G, ;(x,;,3)=1. This
contradicts our observation that G, (x,,,3)% 1.

To conclude the proof of Theorem 1, we need only eliminate the case n=12.
Lemma 6. Suppose n=12 (so that k=5). Let (xq, ..., X;,) be an arbitrary 12-path
such that Gg(x,)=*1. Let a be an arbitrary nontrivial element in Gg(x,) (so that
a¢ G(xg)). Then:

(i) For each feU(xg, ..., x, 1) mapping (a{xs), a(xo)) to (x4, x¢) and for each
beGg(x,o), [a,b]1=""beG(x,).

(i) For each ceGg(xg) there exists an element be Gg(x1,) such that {a, b]=c.

Proof. Let b and f be as in part (i). Clearly [a, ble U{x,, ..., X1,). Since fa(x,0) = X,
J%he G (xg). Since b and f lie in G,(x,,), [a, b] and Y°b induce the same permu-
tation on I'(x;,). Thus 7%b-[a,b]~'eU(x,, ..., X1;)n G{(x;,)=1. To prove part
(i1), simply set b=(fa)" ' c(fa). [

Suppose n=12. Let (x,, ..., X,p) be an arbitrary 20-path such that G¢(x,)=*1.
Let a be a nontrivial element in G4(x,), b a nontrivial element of G.(x,,) and
feU(xg,...,x,) an element mapping (a(x,), a(x;q)) to (x;,%,) (Which exists by
condition (i)). Let ¢=[b, d]. By part (i) of Lemma 6, c=/%b~!). We have [/,b]e
fU(Xg, .o X17) Go(x10)1Z2 U (x4, ..., x37)=1 and so

[c.f1=[[b,al, f1=[b,al faba ' b~'f~"=[ba]l- /b -b~'=b"".

By part (ii) of Lemma 6, we can choose an element de G 4(x, ,) such that [¢,d]=b"1,
Since [f,b]=1, [c,df 'I=[c,d]lc.f17"'=(b"")b Y '=1. Thus ceGy(xy)
N7 G (xg). But Gy(xg)n® 'Gy(xg)=1 unless df'eG(x,,x). Since c#1,
we conclude that (@1 (x,),d"(xg) =(f = '(x,), /= (xe)) =(alxo), ax o).

Now choose an arbitrary element ec U (x4, ..., X;3). We have [d, e]e[Gg(x;4),
Ulxy, ..., x3)] 2 U(x4, ..., Xq4). Since (da(x,), da(x, o)) =(x;. x¢) and eeG (x4, X ),
“0eG,(xg,X;). Since [a,e]e[G4(x,), U(xy....x;3)]SGelx,) NG (xg)=1, e
=4e, Since eeG,(xq, X4), [d, e]="e - e '€ G, (x6, x;). Thus [d,e]le U(xs, ..., x;5)=1.
Hence deGg(x;4)nGe(x;q). But Gg(x14)nGe(xi4)=1 unless ecG(x;4). It
follows that ee U (x,, ..., x13)n G(x14)=1 for all eeU(xy, ..., x;3). This contra-
dicts condition (i) since | I'(x,3)— {x,}|> L.

The proof of Theorem 1 is now complete. [

As mentioned in the introduction, we need the following result in order to
conclude that Theorem 1 implies Théoréme 1 of [6]. The result is just a special
case of [5, {(4.1.1)], but we include a short proof (also due to J. Tits) for the con-
venience of the reader.

Theorem 2. Let I' be a thick generalized n-gon and G=aut(I'). Then G,(x,,x,)
NGlxg, ..., x,)=1 for each n-path (x,, ..., x,).

Proof. Let (uy, ..., u,) be an arbitrary n-path. For every neighbor v of u,, there is an
{n—2)-path (v, ..., v,_,) with vo=v and v, _,eI'(uy). Since the girth of I' is 2n, it
follows that G, (ug) G(ug, ..., u,) < G {u,).
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Now let (w,xq,...,X,) be an arbitrary (n+1}-path. To prove Theorem 2, it
suffices, since I' is connected, to show that G (x,,x,)NG(xg,...,X,) S G (W, X,)
NG(w, xg, ..., %, _4). There exists a 2n-path (x,,...,x,, X, (,...,X,,) extending
(xgs....x,) with x,, ,=wand x,,=x,; let H=G(x,, ..., x,,). We have G,(x,,X,)
NG(xg, ..., X, )SG(X,, 1,%g,...,X,)=H. As observed in the previous paragraph,
G (ug)nGlug, ..., u)=G(u,) for every n-path (uy,...,u,). It follows that
Gi(x)nGlxg,....x)=G(x,) and thus G (xq,x,)NG(xg,....x, ) SG,(x,)
NG(x;,.... %, V)SG,(y) for every yel(x,)—{x, ;}. Choose such a vertex
y=+x,, 1 (using the hypothesis that I' is thick). Then G (()NG(y, x,, X, 1, -3 X320 1)
SG(X3n- 1) Thus G (x4, %) NG (Xq, ..., X ) SC (MNHZG (x5, 1) O
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