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1. Statement of Results 

Let V be a closed (i.e. compact without boundary) connected n-dimensional 
Riemannian manifold of class C 3. Denote by Stk(V ) the space of the orthonormal 
tangent k-frames of V. There is a natural fibration Stk(V)--,V associated to the 
tangent bundle T(V); its fiber is the Stiefel manifold St~ of the orthonormal k- 
frames in IR". According to our notations Stl(V ) is the bundle of the unit 
tangent vectors. The Riemannian structure on V induces an R-action in StI(V) 
called the geodesic flow. Consider the natural projection Stk(V)-~Stl(V ) (its 
fiber is StT,-~) and lift the geodesic flow to a flow in Stk(V ) as follows: 

Take a frame (el, e 2 . . . .  , ek) at a point v~V, eIET~(V). The geodesic flow sends 
e I to vectors tangent to the geodesic determined by e 1. The lifted flow sends our 
original frame to the frames parallel to it along the geodesic. This flow in Stk(V ) 
is called the k-frame flow. 

1.1. Main Theorem. I f  the sectional curvature of V is negative, and if the 
dimension of V is odd and different from 7, then the k-frame flow is ergodic for 
each k = 1, 2, ..., n -  1 = dim V -  1. Moreover, it is Bernoullian. 

1.2. Remarks. (a) The ergodicity of the 1-frame flows (i.e. of the geodesic flows) 
on the negatively curved manifolds is a well known fact (see [1]). 

(b) Each k-frame flow is a natural factor of the (k+ 1)-frame flow, hence, the 
ergodicity of the (n-1)- f rame flow implies the ergodicity of all k-frame flows 
with k =< n - 1. 

(c) We will show in Sect. 3 that the ergodicity of the 2-frame flow for the even 
dimensional manifolds of negative curvature implies the ergodicity of the (n-1)- 
frame flow with one possible exception of n = 8. 

(d) For  the exceptional dimension 7 we shall establish the ergodicity of the 2- 
frame flow. 

(e) The n-frame flow can be ergodic only when V is not orientable. In this 
case its ergodicity is equivalent to the ergodicity of the ( n -  1)-frame flow (see 
[5]). 

Notice also that for n = 3 the ergodieity was proved in [6] and for n = 5 this 
is an unpublished result of D. Anosov. 
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Examples and Counterexamples 

(i) When V has constant negative curvature, all the frame flows are ergodic, and 
this property is stable under small perturbations of the metric (see [7]). One can 
show for an arbitrary V that the set of the negatively curved metrics with the 
ergodic n-frame flow is open and dense in the space of all C3-metrics on V of 
negative curvature (the density is established in [5], and the openness requires a 
simple additional argument). 

(ii) When V is a K~ihler manifold (of real dimension greater than 2), none of 
the k-frame flows with k>2  is ergodic because the complex structure on a 
K~ihler manifold is invariant under the parallel translation. The simplest exam- 
ples of such manifolds are obtained by dividing the complex hyperbolic spaces 
by cocompact lattices (see [2]). This gives for each even dimension (>2) an 
example of a negatively curved manifold with the nonergodic 2-frame flow. 
Observe that the other locally symmetric spaces of rank 1 (the quaternion 
hyperbolic spaces and the hyperbolic Cayley plane) provide similar examples. 

Let us describe the ergodic components for these actions. We know that V is 
covered by a symmetric space 17 of rank 1 (of the non-compact type), i.e. V 
= IT/F, F=n l (V  ). The group of isometries of 17 acts on each manifold Stk(17 ). 
This action is not transitive (k>2) unless V has constant sectional curvature. 
Take an orbit ScStk(17 ) and project it into Stk(V). We obtain a smooth compact 
manifold SCStR(V) which is fibered over St~(V) and is invariant under the k- 
frame flow. One can easily show that this action is ergodic in S and, hence, by 
varying the orbit S we get the ergodic decomposition of Stk(V ). 

In the general case the ergodic decomposition is a refinement of the 
"holonomy decomposition" of StR(V). The following theorem provides examples 
when the reverse is also true. 

Kgthler Manifolds 

Suppose that V is a compact K~ihler manifold of complex dimension m = n/2. 
Denote by SCk(V)CStk(V), k = l ,  2, .~.,/n, the manifold of the unitary k-frames. 
The manifold ScI(V ) coincides with Stl(V), and each Sck(V ) is fibered over 
Scl(V); the fiber is the complex Stiefel manifold of the (k -  1)-frames in IU "-~. 
Each SCk(V ) is invariant under the k-frame flow. 

1.3. Theorem. I f  V has negative sectional curvature, then the frame flow in SCR(V ) 
is ergodic in the following two cases: 

(a) m is odd, k = 1, 2,...; m; 
(b) m=2, k = l ,  2. 

1.4. Remark. We will see in Sect. 6 that, if m is even, then the ergodicity of the 2- 
frame flow in Sc2(V ) implies the ergodicity of the m-frame flow in Scm(V). 

About the Proofs. In Sect. 2 we reduce the ergodicity problem to some standard 
questions in algebraic topology which are resolved in Sects. 5 and 6. In Sect. 3 
we present some necessary facts on Lie groups. Section 4 is devoted to an 
elementary proof of the ergodicity of the 2-frame flows. 
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2. Reduction of the Problem to the Topology of Sphere Bundles 

The fibration St._I(V)--~Stl(V ) is a principal fiber bundle  with the structure 
group S O ( n -  1). 

2.1. Ergodicity Lemma.  I f  V has negative curvature and if the ( n -  1)-frame flow 
is not ergodic, then the structure group of the fibration St,_ I(V)---~Stl(V) can be 
reduced to a proper closed subgroup G c S O ( n - 1 ) .  Furthermore, if the 2-frame 
flow is not ergodic, then the action of G on the sphere S "-2 is not transitive (see 
[5], [6]). 

2.2. The Complex Version of  the Lemma.  When V is K~hler and when the m- 
frame f low in Scm(V ) is not ergodic, then the structure group of the fibration 
SCm(V)--~Scl(V ) can be reduced to a proper closed subgroup G ~  U(m-1) .  Fur- 
thermore, if the 2-frame f low in Sc2(V ) is not ergodic, then the action of G on the 
sphere S 2m-3 is not transitive. This also follows from [53, [6]. 

2.3. Remark. The conclusions of  the lemmas hold when " n o t  ergodic"  is replaced 
by " n o t  Bernoull ian".  This follows from [6], [13], [14]. 

3. Groups Acting on Spheres 

The table below contains the list of  all subgroups  of  the special o r thogona l  
group SO(p + 1) which act transitively on the sphere S p (see e.g. [12]). 

p=2q SO(p+ 1) 

p = 4 q + l  SO(p+ 1), U(2q+ 1), SU(2q+I) 

p = 4 q - 1  SO(p+ 1), U(2q), SU(2q) 
Sp(q), Sp(q) x U(1), Sp(q) • Sp(1) 

There are additional transitive actions on the following spheres 

p = 7 Spin(7) 

p = 9 Spin (9) 

p=6 r 

Using the first and the last lines of  the table and the Ergodici ty L e m m a  we 
immediately  obtain Remark  1.2(c). 
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4. Proof of the Ergodicity of the 2-frame Flows 

Start with a simple general fact. 

4.1. Lemma (compare with [8]). Let X--*S q be a fibration with the fiber S p. I f  
this fibration admits a structure group G which acts non-transitively on the fiber, 
then there is a section S q ~ X. 

Proof. We must show that the boundary homomorphism ~: nq(Sq)~nq_l(S p) 
from the homotopy sequence of the fibration is trivial. 

Take an orbit T ~ S  p of a point under the action of G and consider the 
corresponding subfibration Y ~ X  with the fiber T. The homomorphism ~ can be 
decomposed into the boundary homomorphism nq(Sq)~nq_~(T) and the in- 
clusion homomorphism nq_ 1 ( T ) ~  nq_ ~(SP). Since T + S p, the inclusion homo- 
morphism is trivial, and hence, 0 is also trivial. 

4.2. Corollary. Consider the unit tangent bundle of the (n-I)-dimensional sphere 
n n - - 1  St2--~S . I f  n is odd, then the structure group of this bundle cannot be reduced 

to a subgroup which is not transitive on the fiber (= S" 2). 

This follows from Lemma 4.1 and from the classical fact of the non-existence 
of vector fields on the even dimensional spheres. 

We are able now to prove the Main Theorem for k=  2. 

4.3. Proposition. The 2-frame f low on an odd dimensional manifold V of negative 
curvature is ergodic. 

Proof. By restricting the bundle S t E ( V ) - - ~ S t l ( V )  t o  the tangent sphere at a point 
in V, we get the bundle St" 2--.S ~- 1. Corollary 4.2 says that its structure group 
must be transitive on the fiber (=S"-2) ,  and hence, this is also true for the 
ambient fibration St 2 (V)-~ St 1 (V). Lemma 2.1 concludes the proof. 

Kfihler Manifolds. The ergodicity of the unitary 2-frame flow can be proved by 
the same argument as above in view of the following fact. 

4.4. Proposition. Consider the fibration Sc'~--*S 2m-1, where Sc'~ denotes the 
manifold of the unitary 2-frames in flY". I f  m is odd, then there is no section 
S2,,- 1 ~ Sc'~. 

For the proof see [15]. 

5. Proof of the Ergodicity of the (n - 1)-frame Flows 

Using the Ergodicity Lemma and the results of the previous section we reduce 
the main theorem to the following fact. 

5.1. Proposition. The structure group of the fibration SO (n)= St"~_ 1-~ Sn- 1 cannot 
be reduced to a subgroup G c S O ( n - 1 )  which acts transitively on S ~- 2, provided n 
is odd and different from 7. 

Proof. According to the table from Sect. 3 we must consider the following cases. 
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Case I. G = U(q), 2q = n - 1 ,  n > 3. In this case the proposition is equivalent to 
the non-existence of quasi-complex structures on S 2q, q4:l ,  3, but this is a 
known fact (see [3]). 

Case 2. G=Sp(q)•  4 q = n - 1 ,  n>9.  Denote by Xen4q_~(SO(4q) ) the ele- 
ment corresponding to the bundle SO(4q + 1 ) ~ S  4q. We must show that Z is not 
contained in the image I c 7~4q_ 1 ($0(4  q)) of T/~4q_ 1 (Sp(q) x Sp(1)) under the 
homomorphism corresponding to the inclusion Sp(q) x Sp(1)=SO(4q). Observe 
that ~_4q_I(SO(4q))=Z+Z and ~aq_l(Sp(1)) is finite (see [4], [9]). It follows 
that I is equal to the image of n4q_.l(Sp(q)) alone. But the inclusion 
Sp(q) ~ SO (4 q) factors as Sp (q) ~ U(2 q) .t , S0(4 q), and by the previous case, 
the image j ,  (Tt4q_ 1 (U(2 q))) ~ rc4q_ 1 (SO (4 q)) does not contain ;t. 

Case 3. G=Spin(7), n=9.  Suppose that the structure group of the fibration 
i 

S 0 ( 9 ) ~ S  s is reduced to Spin(7)~SO(8). In this case the element ;(ercv(SO(8)) 

corresponding to the fibration S0(9 ) -*S  8 must be contained in the image 
I=rCT(SO(8)) of the inclusion homomorphism. Consider the commutative dia- 
gram: 

Spin(7) ~ 0(8) 
:'\/g 

S T 

The map f is a fibration with the fiber ~ 2 ,  and the image of the characteristic 
homomorphism ~: rc3(ST)~rt6(t132) has a non-trivial 3-component (see [3]; in 
fact, this image coincides with 7~6(~2)=7~3,  see  [10]). Using the exact sequence 

f* 
Z = Try(Spin(7)) , ~7($7) = 7~ --~. ~6 (~2)  

we conclude that the image f,(Z~)c7Z=n7(S 7) h a s  at least index 3. On the other 
hand, g,C~)= 2~2~ =rcv(S7), and the contradiction finishes the proof. 

Case4. G=Spin(9), n=17. Suppose that the structure group of the fibration 
S0(17)---~S 16 is reduced to Spin(9)cSO(16). We derive the contradiction as 
before from the fact that the image of the characteristic homomorphism 
7z 15 (S 15) ~ ~ 14 (Spin (7)) of the fibration Spin (9) ~ S 15 (with the fiber Spin (7)) has 
a non-trivial 3-component (see [3]; notice that the group rct4(Spin(7)) is of order 
27. 32. 5.7, see [10]). 

Cases 1 and 2 imply the proposition for the remaining groups S U, Sp and Sp 
x U(1), and the proof is finished. 

6. Proof of the Ergodicity of the m-frame Flows on the Kiihler Manifolds 

We consider now a K~ihler manifold V of complex dimension m and the bundle 
S c , , ( V ) ~ S c l ( V  ) from Section 1. Suppose that the structure group is reduced to a 
proper subgroup G c U(m-1).  When m - 1  is odd, the table from Section 3 
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shows that G cannot act transitively on S 2"-3,  and together with the complex 
version of the Ergodicity Lemma this implies Remark 1.4. 

Observe further that the connected component of the identity in G cannot be 
simply connected. Otherwise, the real Chern class c~(V) would vanish, but on a 
K~ihler manifold of negative curvature c 1 is represented by a negative (1, 1)- 
form. This shows that for m = 2, 3 the group G must coincide with U(m-  1). 

Turn now to the case when m > 5  is of the form 2 q +  1. The group G must be 
transitive on S 4q- 1 (see Sect. 4), and the only remaining possibility is the one of 
G = Sp(q)• U(1)c  U(2q). But this cannot happen because of the following. 

6.1. Lemma. The structure group of the fibration U ( 2 q + I ) - . S  4q+1 cannot be 
reduced to Sp(q) x U(1)c  U(2q). 

Proof We must show that the characteristic element Z~n4q(U(2q) ) of the 
fibration U ( 2 q + I ) ~ S  4q+~ is not contained in the image of the inclusion 
homomorphism rc4~(Sp(q) x U(1)) = n4q(Sp(q)--~ 7z4q (U(2q)). It follows from Pro- 
position4.4 that the image of Z under the projection 7z4q(U(2q))--~rt~(S 4q-1) 
= 7/z does not vanish, and hence, we must only prove that the homomorphism 

P. P 
n4q(Sp(q)) ,7taq(S4q- 1), corresponding to the fibration Sp(q) , S4q- a, 
vanishes. 

When q is even Z,,q(Sp(q))=0 (see [4]), and the proof is finished. 
Let q be odd and consider the exact homotopy sequence of the last fibration 

p* t~ i* 
rC4q(Sp(q))_ ~ 7Z4q(S4q- a) ~ 7r4q_ l(Sp(q - 1)) ~ 7t4q_ l(Sp(q)) 

Z2 

By using the facts that ~4q(Sp(q))=TZ2, ~4q_t(Sp(q))=7s (see [-4]) and 
rc4q_l(Sp(q-1))=7/2 (see [11]) we conclude that p .  vanishes. The proof  is 
finished. 
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