
Inventiones math. 52, 283-298 (1979) ITlveYltio~es 
mathematicae 
~9 by Springer-Verlag 1979 

The Structure of Crossed Product C*-Algebras: 
A Proof of the Generalized Effros-Hahn Conjecture* 

Elliot C. Gootman 1.* and Jonathan Rosenberg 2 

1 Department of Mathematics, University of Georgia, Athens, Georgia 30602, USA 
2 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA 

Abstract. If G is a second countable locally compact group acting con- 
tinuously on a separable C*-algebra A, then every primitive ideal of the 
crossed product C*(G, A) is contained in an induced primitive ideal, and if G 
is amenable, equality holds. Thus if G is amenable and acts freely on 
Prim(A), the "generalized Effros-Hahn conjecture" holds: there is a canoni- 
cal bijection between primitive ideals of C*(G,A) and G-quasi-orbits in 
Prim(A). Applications to the "Mackey machine" for a non-regularly embed- 
ded normal subgroup of a locally compact group are discussed. The proof 
of the theorem is based on a "local cross-section" result together with 
Mackey's original methods. 

One of the oldest and most natural problems in group representation theory is to 
determine information about irreducible representations of a group G from 
knowledge of the irreducible representations of some normal subgroup N and of 
the action of G on N and its dual. In the context of unitary representations of locally 
compact groups, this problem was attacked, and to a large extent solved, in an 
important paper of Mackey [18]. However, a reasonable answer to the problem 
seemed to require that N be "regularly embedded" - otherwise difficult ergodic- 
theoretic difficulties arise and one is unlikely to be able to classify all the irreducible 
representations of G up to unitary equivalence (see, e.g., [22] for extensive 
discussion of these issues). Work of many investigators (beginning with Guichardet 
[14]) suggested, however, that even when N is not regularly embedded, it should 
nevertheless be possible to classify the irreducible representations of G up to weak 
equivalence. This, in turn, suggested that representations of group extensions 
should be viewed in terms of the structure of "crossed product" and "twisted 
crossed product" C*-algebras. 
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Given a C*-algebra A and a locally compact group G acting continuously by *- 
automorphisms on A, one can construct in a natural way an associated "crossed- 
product" C*-algebra C*(G, A) (for various versions of the construction, see [11, 27, 
8, 6, 26, 13]), representations of which correspond to covariant pairs of repre- 
sentations of G and of A. For instance, when A is the group C*-algebra C*(H) of a 
locally compact group H on which G acts by automorphisms, C*(G, A) is just the 
group C*-algebra of the semidirect product group G x ~H. In the simplest case, 
when A is the abelian C*-algebra of continuous functions vanishing at infinity on 
some homogeneous space X = G/H of G, the Mackey imprimitivity theorem [ 16, 18] 
asserts that every representation of C*(G, A) is "induced" from a representation of 
H. More generally, when A is type I and G acts "smoothly" on the dual ,4 of A (i.e., A 
is "regularly embedded" - there are several ways [ 17, part 4; 18; 11 ; 23] of phrasing 
this precisely), one still knows [26] that every irreducible representation of 
C*(G,A) is induced from an irreducible representation of C*(H,A), where H is 
the stabilizer in G of some point in ,4. In particular, every primitive ideal of 
C*(G, A) is the kernel of an induced representation (namely, one induced from a 
representation lying over a single primitive ideal of A). 

In their memoir [8], E.G. Effros and F. Hahn suggested that this last statement 
may be true for completely arbitrary "non-smooth"  group actions as well, at least if 
G is amenable and A is abelian. Thus one would have a substitute for the 
imprimitivity theorem (on the C*-algebra level) that would apply even in the 
puzzling case of"non-transitive quasi-orbits ' .  The purpose of this paper is to prove 
their conjecture, at least in the separable case, without placing any restrictions on G, 
A, or the nature of the action of G. We should mention that considerable progress 
had already been made in this direction over the years (see [14, 27, 8, 12, 24, 25]). 
Sauvageot [25] has proven our theorem in full for the case of G discrete, along with 
the "easy direction" of the theorem (the fact that every primitive ideal of C*(G, A) 
contains an induced primitive ideal) for arbitrary amenable G. However, virtually 
all of the existing literature on the "hard direction" of the theorem (the reverse 
containment) assumes either that G is close to being discrete, or else that G is close 
to being abelian and one has extra information about A. Our interest had therefore 
been focused on methods that would work when G is, say, a connected non- 
compact Lie group. A key motivating example here was that of an irrational flow 
on a torus, which occupies a central role in the representation theory of non-type I 
Lie groups (see Sect. 4.4 at the end of this paper). The methods of [12, w and 
the extensive work of Pukanszky [20, 21] (see also [13]) had shown that the Effros- 
Hahn conjecture was true for this transformation group, but the proofs depended 
on special circumstances that do not hold in general. 

Our method of proof is based on a "local cross-section theorem", perhaps of 
independent interest in the study of transformation groups, along with a local 
version of Mackey's original proof [15, 16, 18] of the imprimitivity theorem. The 
cross-section theorem was suggested by recent work in the theory of measure 
groupoids [9] and also by the observation that local cross-sections exist for the 
irrational flow on the torus, and perhaps were the ingredient needed for the general 
case. 

One word about terminology: all topological transformation groups are 
assumed jointly continuous. If (G, X) is a topological transformation group, a G- 
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quasi-orbit in X is an equivalence class for the relation ~ on X defined by 
x~y<=>Gx and Gy have the same closure in X. (The reader is cautioned that this 
definition, which is the one given in [8], is not the same as that used in [18], 
[22] or [1], where a quasi-orbit is an equivalence class of ergodic measures.) For 
x~X,  G x denotes the stabilizer of x in G. The term representation always means 
strongly continuous unitary representation when applied to groups and con- 
tinuous *-representation on a Hilbert space when applied to C*-algebras, and 
all Hilbert spaces used are separable. 

The main results of this paper are Theorem 3.1 and its Corollaries 3.2 and 3.3. 
Section 1 contains our local cross-section theorem (Theorem 1.4) as well as various 
preliminaries on cross-sections for homogeneous spaces (1.5) and the "regularized" 
topology on the primitive ideal space of a C*-algebra (1.6). Section2 is largely 
technical and contains a measure-theoretic version of Theorem 1.4 that is needed 
for the proof of the main theorem. The reader may prefer to skip this section on first 
reading and proceed directly to Sect. 3. Section4.1 contains an explicit counter- 
example (which also appears, but only implicitly, in [27]) showing that amen- 
ability of G is necessary in 3.2 and 3.3. Our theorem has as an immediate 
consequence a version of the generalized Effros-Hahn conjecture for the "twis- 
ted covariance algebras" of [13] - we are grateful to Philip Green for pointing 
this out to us. As a consequence, one has a very general version of the "Mackey 
machine" [18, 23] for group extensions in which the normal subgroup need not 
be type I or regularly embedded. This is discussed in Sect. 4.2 and 4.3. Finally, 
Sect. 4.4 illustrates the discussion of 4.3 in the case of connected Lie groups, for 
which Pukanszky [20, 21] has obtained much more complete information (see 
also [13]). 

w A "Local Cross-Section" Theorem for Polish Transformation Groups 

We begin with a lemma which, although easy to prove, does not seem to have been 
used before in the context suggested below. 

Lemma 1.1. Let (G, X) be a topological trans[ormation group with G locally compact 
and second countable and with X Polish, and let Q be a G a G-invariant subset of X. 
Equip the space X of all closed subgroups o/'G with the Fell topology (see [1, Ch. II, 
w and let S: Q ~ S be the map assigning to each point y of Q its stabilizer G~,. Then 
there exists a point of continuity for S in Q. 

Proof. Since Q is a Ga subset of X, it itself is Polish [2, Ch. IX, w ] and we may as 
well assume Q =X. By [1, Ch. II, Prop. 2.1 and 2.3], there exist countably many 
lower semi-continuous functions~ on X, with values in [0, 1], such that a point of X 
is a point of continuity for S if and only if it is a point of continuity for each.~. Every 
Polish space is Baire, so by [2, Ch. IX, w and w exercise 22a], the complement of 
the set of continuity points for each f~ in X is meagre, hence so is the complement of 
the set of joint continuity points for all the f,. This complement cannot be all of the 
Baire space X, and thus S has a point of continuity. 

Corollary 1.2. Let (G, X), S and S be as in Lemma 1.1, and let Q be a quasi-orbit of G in 
X. Then there exists a point of continuity in Q for the map S: Q ~ x. 
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Proof By the p roof  of [8, Lemma 1.1], Q is a G o subset of X. 

The statement of  the following lemma is more  general than needed for the proof  
of  the cross-section theorem, but will be used in the proof  of  the main theorem of 
this paper. 

L e m m a  1.3. Let (G,X) be a Hausdorff topological transformation group with G 
locally compact, and let S: X ~ Z be the map assigning to x e X its stabilizer G x. Let C 
be a compact subset of G, M a symmetric neighborhood of  the identity in G, and Y any 
subset of X.  Then given ye  Y and any neighborhood V of  y in Y,, there exists a 
neighborhood W ~_ V of y such that if re V, s, t e C and s v, t v~ W, then s t -  1 ~ M Gy. In 
addition, if y is a continuity point for the restricted map Sly: Y ~ Z, then there exists a 
neighborhood U of y in Y such that for all ueU,  Cc~Gy~ MG,.  

Proof If  the first s tatement were false, we could choose a ne ighborhood  base W, _~ V 
of  y, and points v, e V, s,, t ,~C such that  s,v, ,  t , v ,~W, ,  but s , t~ l ( fMGy.  By 
compactness  of  C, we may pass to a subsequence and assume s, ~ s, t, ~ te  C. Then 
v ,=s21(s , v , )=t21( t , v , )  converges to s - l y  and t - l y ,  so s t - l e G y .  As M is a 
ne ighborhood  of  the identity, s, t 2 1 e M s t  - t  eventually, and we have a con- 
tradiction. If  the second statement were false, we could choose a ne ighborhood  base 
W, of y in Y and points w, e W,, c,E Cc~Gy, with c , r  By compactness  of C 
again, we may pass to a subsequence and assume c, ~ceCcaGy .  Let O be a 
symmetr ic  open ne ighborhood of  the identity in G, with O 2 c M. Then 0 c c~ G~. 4= f~, 
and by the continuity of SIy at y, O c c~ Gw. + ~3, V n > n 0. Thus there are o, e 0, t, e Gw, 
with o. c = t,, Vn > n o. Thus c, = c, c -  1 c = (c, c -  1) (o~ 1 tn)eO 2 Gw" eventually, which 
is a contradiction. 

Theorem 1.4. Let (G,X) be a topological transJbrmation group with G locally 
compact and second countable and with X Polish. Let S be as in Lemma 1.3 and let 
x e X  be a point of  continuity of S. Let M be a compact symmetric neighborhood of the 
identity in G and let V be a neighborhood of x in X.  Then there is a Borel set T ~  V 
which is a "local transversal" for the action of M at x, in the sense that M .  T is a 
neighborhood of x in which every element can be written in the form m. t, with m 6 M  
and te T; furthermore, the t is unique and the Borel structure of T is identical to the 
quotient Borel structure induced by the natural map of M .  T onto T. 

Proof Let P be a compact  s y m m e m c  ne ighborhood  of  the identity with p2 ___ M,  
and let N = M 6. By the first part  of  L e m m a  1.3, applied to the compact  set N and the 
symmetric  ne ighborhood  P of  the identity, there exists a ne ighborhood  W 1 ~_ V o f x  
which in particular satisfies the property that  if we W1, n e N ,  n we 14:1, then nePG x. 
By the second part  of  Lemma 1.3, there exists a ne ighborhood  W z o f x  such that for 
all yeW2,  PNc~Gx~PGy.  

Let Wbe an open ne ighborhood  ofx  with W _  W 1 c~ W 2. We claim that on W, the 
relation ~ ,  where y ~ z  if and only if y = n z  for some neN,  is an equivalence 
relation. It is clearly reflexive and symmetric. If y, z, we W with y ~ z and z ~ w, then 
y = n z for some neN.  Thus n = p~ gl  with Pl eP, g~ eG~. gl = P~ 1 n e G x ~ P N  ~_ PG~, 
so gl=p2g2 ,  p2eP, g2eG~. Thus y = n z = p l P a g 2 . z = p l p 2 . z .  So y s p 2 z ,  and 
similarly z e P  z w; hence y e P 4 w  c_N w. As N is compact ,  the equivalence class 
N w c~ W of a point  we W is closed in IV,, while the saturat ion NO c~ W of an open set 



The Structure of Crossed Product C*-Algebras 287 

O ~  Wis open, since Wwas chosen open in 32 and O is thus open in X. Lemma 2 of 
[4] thus applies to give a Borel set T_~ W which intersects each equivalence class in 
one and only one point. The argument above shows W_c M.  T, so that M- T is a 
neighborhood of x, while ifm I t 1 = m  2 t 2 for mieM,  tieT, then tl =(m~- 1 m2 ) t2 ~t2 ,  
hence tl = t  2. 

Finally, we must show that a subset B ~_ T is Borel if and only if M B  is Borel in 
MT. But Tis  Borel in X, hence is a standard Borel space, and ifB is Borel in T, it 
follows that the analytic space M T  is a disjoint union of the two analytic Borel 
spaces M B  and M(BCc~T), and thus that M B  is Borel in M T [ 1 ,  Ch. I, Prop. 2.4]. For 
the converse, note that the map M x T--* M T sending (m, t ) ~  m t is continuous in 
the relative topologies of the spaces involved, thus Borel. The inverse image of the 
Borel set M B c _ M T i s  the Borel set M x B ~ _ M  x T, and thus B is Borel in T. 

Remark. The above argument required merely that N be chosen equaI to M 2. The 
choice N = M  6 implies the stronger result that if m~ m2m 3 t = m 4 m s m 6 s ,  with 
mi~M and s, t~ T, then s = t. This will be used in Proposition 2.2 and Lemma 3.8. 

For use in w 3, we prove the following: 

Proposition 1.5. Let  G, X and Z be as in Lemma 1.1. For each H e X, let c n be a cross- 
section G/H ~ G, and let d n: G --* G be given by dH(g ) = cH(g H). Then the c n can be 
chosen so that the function d: G x X ~ G given by d(g, H ) = d n ( g  ) is Borel. Also, for  
each x~32 let c~ be a cross-section G/Gx--*G, let d~: G--*G be given by dx(g) 
=cx(gGx), and let d: G x 32 --* G be given by d(g, x) =dx(g ). Then the c x can be chosen 
so that d is Borel. 

ProoJi The second part  of the proposition follows from the first and the fact that 
S: X -~X, S(x)=G~, is Borel. For the first part, define the following equivalence 
relation on G x Z: 

(g,H)~(I ,K)<=~.H=K and g H = I H .  

It is easy to see that the saturation of each compact subset (and in particular of each 
point) ofG x 22 is closed. Since each closed subset ofG x X is a K~, it follows that the 
saturation of every closed subset of G x Z is Borel, and thus by [2, Ch. IX, w 
there exists a Borel transversal T for the equivalence relation. The equivalence 
relation is a closed subset of(G x Z) x (G x Z), so as in the proof of 1.4, the saturation 
of any Borel set B g Tis both analytic and coanalytic, thus Borel. Hence the natural 
map G x X ~ T is Borel, and we may take d to be this map followed by projection 
onto G. 

Now let G be a second countable locally compact group acting continuously as 
a group of *-automorphisms of a separable C*-algebra A. For the purpose of 
studying the primitive ideal structure of the crossed product C*-algebra C*(G, A), 
the natural object of investigation is the topological transformation group 
(G, Prim(A)), where Prim(A) denotes the primitive ideal space of A with its usual 
hull-kernel topology. However, this topology need not be Hausdorff, hence the 
previous results do not immediately apply. It is known, however, that one can 
introduce a new topology on Prim(A), with respect to which it becomes a Polish 
space. For reference, we summarize what we need in the following proposition. 
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Proposition 1.6. Prim(A) can be endowed with a new topology with respect to 
which it becomes a Polish space. This new topology, called the regularized 
topology, is stronger than, but generates the same Borel structure as, the hull- 
kernel topology. Furthermore, in the regularized topology, (G, Prim(A)) is u 
topological transformation group. 

Proof Prim(A) is in one-to-one correspondence with a subset X of the compact 
Hausdorff  space JV'(A) of C*-pseudo-norms on A [10,w X is Polish [5, 
Th6or6me7] and the natural map (p: X ~ P r i m (A)  is a Borel isomorphism [7, 
Lemma 2.3]. If N / ~  N in X, then Ni(a  ) : [I a + qo(Ni)[1 A/~(N,) ~ N(a) = tb a + cp(N)II a/,p IN) 
for each aeA.  If I is a closed two-sided ideal in A with INqo(N), then N(x):#O 
for some x e I, hence N~(x)4:0 V i>  i 0' and I r (p(Ni), i >  io, so ~o(N~)-, ~p(N). Finally, if 
g~ ~ g  in G and N i --*N in X, then for aeA,  

Ig," N(a) - g" N(a)l = [Ni(g F ~ a) - N(g -~ a)} 

< [N~(g/- 1. a ) -  Ni(g- l .  a)] + IN~(g- 1. a ) - N ( g -  ~. a)l 

< Jig/-1" a - g  -1-  all + [N/(g - I  - a ) - N ( g  -1 -a)l ~ 0 ,  

so gi.Ni ~ g . N  in X. 

w A Measurable "Local Cross-Section" Theorem 

Throughout  this section, let(G, X) be a topological transformation group with G 
locally compact and second countable and with X Polish, and let # be a finite quasi- 
invariant measure on X with support all of X. For the purposes of the main 
theorem, we need a measurable version of Theorem 1.4, in which the transversal lies 
in a prescribed p-conull subset of X. We carry through the details in this section and 
end with a description of the fiber measures obtained from the integral decom- 
position of # over the transversal. 

Lemma 2.1. With G, X and # as above, let M be a compact symmetric neighborhood of 
the identity in G, let xoEX  (chosen, say, as in 1.1), and let T be a Borel subset of  X 
which is a "local transversal" for the neighborhood M .  T of Xo, as described in 
Theorem 1.4. Let #1 denote the restriction o f #  to M .  T, and v the image o f #  1 on T 
under the natural map O: M .  T ~ T, so that for Borel B c_ T, v(B) = # ( M .  B). I f  X o is 
any #-conull Borel subset of X, one can find a v-conull analytic set S ~_ T and a l~- 
conull analytic set D ~_ X o n M  Tsuch that 0 maps D onto S, and for which there exists a 
Borel cross-section r S -~ D. 

Proof As M T i s  analytic, so is X o n M T ,  and one can find a standard Borel subset 
F ~_ X o ~ M T o n  which #1 is concentrated. O(F) is an analytic subset of Ton  which v 
is concentrated, and one can apply [1, Ch. I, Proposition 2.15] to O: F -~(O(F), v). 

As a is one-to-one, S is Borel isomorphic with its image Y~_ X o n M T ,  and Yis an 
analytic transversal for a #l-conull subset D C_XonMT. Thus, for each deD, O(d) 
= O(y) for one and only one y~ Y The measurable analog of Theorem 1.4 is the 
following: 

Proposition 2.2. M Y  is an analytic subset of X of positive #-measure, the map ~b of M Y  
onto Y given by ~(m y) = y is well-defined and Borel, and the Borel structure of Y is 
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identical to the quotient Borel structure induced by t~. Furthermore, if m 1 m2y 1 
-=m3m4Y2,for mi6M and yj~Y, then Yl =Y2- 

Proof. M Y i s  clearly analytic. To see that it is of positive measure, observe first that 
for d= mt~D,  with m~M, t~T ,  there exists y ~ Y  of the form y=m' t ,  with m'eM. 
Thus D c- M 2 Y and ~t (M 2 Y) > 0. But M 2 c a n  be covered by a finite number  of 
translates of  M, and the result follows by quasi-invariance of/~. Now pick y a = m 5 t~ 
and Y2 = m6 t2,  with yi~ Y, mjEM, and tkE T. If m x m 2 Yl = m3 m4 Y2 with mj~M, then 
ml m 2 m s t~ = m  3 m4m 6 t 2 and t~ = t  2 by the remark following Theorem 1.4. Thus 
O(y 0 = 0(y2), so Yl = Y2 by the construct ion of  Y. Thus ~ is well-defined, and the last 
statement is verified. The remaining statements follow exactly as in the proof  of  the 
corresponding part  of  Theorem 1.4. 

For  the rest of  the paper, we will use only the "measurable"  transversal Y, and 
will no longer mention T. With slight abuse of  previous notation, l e t / q  be the 
restriction of/~ to M .  Y a n d  let v be the measure ~,(#~) on Y. For  yeY,, O-~({y}) 
= M -y c- G. y; G. y is Borel isomorphic to G/Gr and thus has a unique G-invariant 
measure class. Also, for each ye  Ythere exists a measure fl~. on M . y  such that for all 
Borel sets S c- M- Y, 

tz(S) = ~ fly(S) dr(y). 
Y 

The fly are called fiber measures, and are unique up to v-null sets in Y ([ 17, w 11] and 
[1, Ch. I1, w The following proposi t ion is a "local version" of L e m m a  11.5 of  
[173. 

Proposition 2.3. For v-almost all y~ Y,, fly is the restriction to M . y of a measure in the 
unique G-invariant measure class on G. y. 

Proof. As in [17], let t: G x X ~ G  • X be given by t(g,x)=(g, gx), and let 2 be any 
finite measure in the Haa r  measure class of G. Then (t,(2 x #I))IG • ~Y ~ 2 x Pl, and 
again as in [17, w it follows that for v-almost all y~Y, 

Sy~{gEGl(g, fly)lM.y~fly } is 2-conull in G. 

We shall show tlmt for any such y, fly is equivalent to the restriction to M y  of a 
quasi-invariant measure on Gy. Define the measure 2 , f l  r on G.y  by (2,fly)(A) 
= J' fir(g- 1 A) d2(g) for all Borel sets A c- G y. Then 2 ,  fly is quasi-invariant since 2 is, 

G 

while (2*fly)[My~ fly by our condit ion on y. As S i 1 is 2-conull in G, it is dense, and 
for any symmetric  ne ighborhood  L of e in G, we have MC- us iL  for some finite 
number  ofsi  in Sy 1. Choose  such an L with LZC-M. I f A c - L y  with (2,f ly)(A)=0,  
then fl~.(g t A ) = 0  a.e. (d2), so fly(l I A ) = 0  for some leL~S~7 1. As l 1A c-My, we 
have f ly(A)=(/ ,  a fir)IMp,(1- 1A)=0.  Finally, for any A c M y  with (2,fl,.)(A)=O, A 
= u ( A m s i L y  ) with (2,fly)(Ams~Ly)=OVi. Thus (2*fly)(si-~Ac~Ly)=OVi, so 
fly(s~lAc~Ly)=OVi, by the previous comments.  Similarly, s~-lAc~Lyf~My and 
si~S~ 1, so fl~.(Ac~siLy)=((si-1),flr)lMy(Si-lAc~Ly)=O Vi, and fly(A)=0. Thus 
fly~(2*fly)] m, and we are done. 
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w The Generalized Effros-Hahn Conjecture 

Throughout this section, we assume G is a second countable locally compact group 
acting continuously by *-automorphisms on a separable C*-algebra A. Before 
proving the main theorem, we first discuss the setting in which the results ofw will 
be applied, and then describe the generalized Effros-Hahn conjecture, as for- 
mulated by Sauvageot [24, 25]. 

For measures on Prim(A), the notions of Borel measure, G-quasi-invariance 
and G-ergodicity depend only on the Borel structure of Prim(A), and are thus, by 
Proposition 1.6, independent of whether we are considering the hull-kernel or the 
regularized topology�9 The notion of G-quasi-orbit in Prim(A) is topological, of 
course, but clearly every quasi-orbit in the regularized (stronger) topology is 
contained in a quasi-orbit in the hull-kernel (weaker) topology. Each repre- 
sentation z~ of A determines (up to equivalence) a Borel measure # on Prim(A), 
which may be assumed finite, and a/~-measurable field of representations i~---,~z i 

| 

based on (Prim(A),p) such that lri is homogeneous with kernel i, and ~ 
Prim(A) 

�9 r~idl~(i ) [7]. For a factor representation R of C*(G, A), let (V, ~) be the associated 
covariant pair of representations of G and of A, respectively. The measure # 
determined, as above, by ~ is then G-quasi-invariant and ergodic [25, w167 and 
thus lives on a quasi-orbit X in Prim(A) with the regularized topology, precisely as 
in the proof of Lemma 1.1 of [8]. As a measure on Prim(A) with the regularized 
topology, p has support X, and thus as a measure on the regularizedquasi-orbit X, IL 
has support all of X. It follows that all the results ofw apply to the system (G, X, p). 

R also determines, of course, a quasi-orbit of Prim(A) equipped with the hull- 
kernel topology�9 Furthermore, this latter quasi-orbit (which contains X) depends 
only on the kernel of R, so there is a well-defined map 

Prim(C*(G, A)) ~ {G-quasi-orbits in Prim(A), with the hull-kernel topology}�9 

On the other hand, one has a natural construction of induced primitive ideals from 
hull-kernel G-quasi-orbits in Prim(A), arising from the notion of induced 
representations, due originally to Mackey [17] but generalized by numerous 
authors (e.g., [11, 8, 26]) over the last 25 years (for a very general treatment, far more 
powerful than anything we need here, see [13])�9 As defined by Sauvageot, an 
induced primitive ideal is the kernel of a representation of C*(G, A) induced from a 
homogeneous representation L = (w, z) of C*(H,A), where z is a homogeneous 
representation of A with kernel J in Prim(A), and H is the stabilizer of J in G. The 
hull-kernel G-quasi-orbit determined by such an induced primitive ideal is exactly 
the hull-kernel G-quasi-orbit of J in Prim(A). 

Our main theorem is 

Theorem 3.1. Every primitive ideal of C*(G, A) is contained in an induced primitive 
ideal. 

Corollary 3.2. (the generalized Effros-Hahn conjecture). I f  G is amenable, every 
primitive ideal of C*(G,A) is an induced primitive ideal. 
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Proof Proposition 4.2 of [25] proves the reverse of the inclusion to be proven in 
Theorem 3.1. 

Corollary 3.3. I f  G is amenable and acts freely on Prim(A), then there is one and only 
one primitive ideal of C*(G, A) lying over each hull-kernel quasi-orbit in Prim(A). In 
particular, if every orbit is also hull-kernel dense, then C*(G, A) is simple. 

Proof IfG acts freely on Prim(A), all isotropy subgroups are trivial and there is only 
one induced primitive ideal over each quasi-orbit. 

We shall prove Theorem 3.1 in a sequence of lemmas below, but first we must 
review Sauvageot's construction of an induced primitive ideal from a given 
irreducible representation of C*(G, A), and establish notation. Accordingly, let R 
be an irreducible representation of C*(G,A), let (V,n) be the corresponding 
covariant pair of representations of G and of A, respectively, and let X _~ Prim(A) be 
the regularized quasi-orbit on which the measure /~ determined by the homo- 
geneous decomposition of n lives. Henceforth we shall consider only the 
regularized topology on X. 

By definition of the measure /~, R may be realized on the Hilbert space 
e 

Lz(x, p, aft), with 7r = ~ 7~ x d~(x), zx being a homogeneous representation of A on 
X 

)ff with kernel xeX(~_ Prim(A)). Let W be the "natural"  representation of G on 
Lz(x, l~, ~ff) by translations, so that 

(W(s) f ) (x)=(d#(s- lx) /d#(x))~f(s- lx) ,  for seG, x s X  and feL2(X,~t,~).  

Then the operator U(s)=-V(s)W(s-1), seG, is decomposable, and we may write 

u(s) = ~ ~o(S, x) d~(x), 
X 

where Uo(s , x) is a unitary operator on ~ ,  depending measurably on x e X  for each 
fixed seG. For each fixed s, t eG we have the cocycle identity 

Uo(s-lt, x)=Uo(s-l ,x)Uo(t ,  sx) for/~-almost all x e X ,  

while for fixed seG, aeA, we have the intertwining relation 

rc~(sa)=Uo(s,x)= ~ l~(a) Uo(s,x) -1 for/~-almost all xEX. 

Lemma 3.4. We may choose a certain #-conull Borel set X o ~_ X and replace U o by a 
"regularized version" U, satisfying the following properties: 

i) for each fixed seG, U(s,x)= Uo(s,x) for l~-almost all x. 
ii) U is jointly Borel in G and X. 
iii) Vs, teG and xeXoc~S 1 X o n s - l t X o ,  U(s It, x )=U(s-~ ,x )U( t ,  sx). 
iv) V xe  X o, s~--,~ ~(s) =-- U(s, x) is a unitary representation of G ~ on 9f  , and (~ ~, ~ )  

is a covariant pair of representations of (G~, A) on 3r 
v) VxcXo,  U(s- 1 t, x) = U(s- 1, x) U(t, s x) for almost all (s, t)~G • G. 

Proof (i)- (iv) are discussed in [24, w and [25, w but note that the X o in [24, 25] 
may have to be cut down further by a null set for (iv) to hold. (v) follows easily from 
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the fact that U 0 can be chosen to satisfy (v) and that U can be chosen so that U(s, x) 
= Uo(s, x) a.e. on G x X. Again, X 0 may have to be cut down by another null set. 

For xeXo,  let r x be the representation of C*(G x, A) determined by the covar- 
iant pair (ax,nx), and let ?x=(~xfL,)=Ind(ax,nx) be the induced representation 
of C*(G, A). Sauvageot shows in [25, w167 3~4] that x~--~? x is a/t-measurable field of 
representations of C*(G, A), and that for /t-almost all xEXo, the rx are homo- 
geneous with the same kernel, and this kernel is an induced primitive ideal. 
Cutting down X 0 by a null set again, we may suppose all the ?x are homo- 
geneous with the same kernel. This kernel is the induced primitive ideal which 
we shall show contains kernel R. The key to our proof is that on a set M. Y 
(given by Proposition 2.2) which "looks like a rectangle", the cocycle U may be 
"untangled" (written locally as a coboundary) exactly as in Mackey's proof of 
the imprimitivity theorem. 

Accordingly, let X 0 be a/t-conull Borel subset of X chosen as above, let M 
be a compact symmetric neighborhood of the identity in G, and let Y be an 
analytic subset of X o satisfying all the hypotheses of Proposition 2.2. Le t / t l  be 
the restriction o f / t  to M Y  and let v=~b,(/t O, where t~ :M.Y- - ,Y  is given by 
O(my)= y, exactly as in Proposition 2.2 and the subsequent discussion. Instead 

(9 
of working with Sauvageot's representation S ?,,d/t(x), we shall work with the 

X (9 

weakly equivalent homogeneous representation f=( f f ,~)=  S ?rdv(y), and show 
kernel (~)_~kernel R. r 

For seG and ye  Y, let Oy(s)= U(s-1, y), so that by property (v) of Lemma 3.4, 
we have, for yeY, U(t, sy)=Oy(s) -10y(t -1 s) for almost all s,t~G. Note that for 
s~Gy, yeY, Oy(s)= U(s-l,y)=ay(s-1). Recall that fy is usually realized on a space 
3r of functions q0y: G ~ which satisfy ~oy(ts)=Oy(s)q~y(t) for s~Gy, t~G, and 
which are square-integrable with respect to some quasi-invariant measure on 
G/Gy. For our purposes, it will be more convenient to realize fy on a space ~ of 
functions %: Gy ~ ,  and the ensuing discussion shows how to do this mea- 
surably in y. 

Let # 1 ( ' ) =  ~ fly(" )dr(y) be a decomposition of/t~ into fiber measures over Y. 
Y 

By Proposition 2.3, we may assume that for all ye  Y, fly is the restriction to M . y  
of a quasi-invariant measure 7y on G.y, and by the construction of 7y in the 
proof of Proposition 2.3, it is clear that the Yy can be measurably chosen, in the 
sense that for a bounded Borel function f on X, y~--*~f(x)dTy(x) is measurable 

X 
and v-integrable. Choose Borel cross-sections cy: G/Gy ~ G such that(y, s)~--~dy(s) 
=cy(sGy) is Borel from Yx G to G (Proposition 1.5). Then if ~ = L 2 ( G  .y, 7:  ~ ) ,  
we have unitary operators ~y ~ ~ given by restriction of functions on G to the 
transversal cy(G/Gy) for G/Gy, followed by transportation of functions over to 
orbits in X. The realization of fy thereby obtained on ~ is given by the 
following formulas, where we use the same letters fy=(Sy, ~y) for simplicity: 

( ~y(a) (p) (t y) = n,(dy( t)- 1. a) q~(t y) 

and 

(~y(s) ~o) (t y) = Oy(dy(s- 1 t)- 1 S -  1 dy(t)) q)(s- 1 t y) (dTy(s- 1 t y)/dTy(t y))~, 
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where a~A, s, teG, ye Y and ~0e~, .  By the choice of 7~ and d~., this realization of 
?,. on ~f~. is clearly still v-measurable  in y. 

Fix any non-zero vector  

q) = ~ q),dv(y) 

in the Hilbert  space of  f, such that  the associated vectors g,y in ~ are suppor ted  
in M - y .  To prove kernel ?___ kernel R, it suffices to exhibit, for any compac t  set 
K_~ G, a sequence ~i of  vectors  in the Hi lber t  space of R, depending only on K 
and with ~']l~l]z = ]lq~]l 2, such that  for any g~L~(G) with suppor t  in K and for any 
aeA, we have 

(3.5) ~ (R(g@a*)~i,~i)=~f(g@a*)~o, qo). 1 
i 

Note that  (3.5) is equivalent  to 

(3.6) ~ (V(g) ~,, re(a) ~,) = (8(g) ~0, ~(a) qo) 
i 

= 5 (e,,(g) qo,,, ~y(a) qoy) dv(y). 
r 

Fix K compac t  in G we may  assume without  loss of  generality that  K 
contains the identity. To  construct  the ~i's, we need the following 

L e m m a  3.7. Y contains a countable disjoint collection { Yi} of Boret subsets, whose 
union is v-conutI it, Y, such that, for each i, 

sYic~Yi+f~ for s e M K M  implies seMZGy, .['or any yeY  r 

Proof We first show Y contains a countable  collection of subsets T,., whose 
union is v-conull in Y, such that  on each T~, the m a p  S: T~ -~ Z, sending a point  in 
T~ to its stabilizer group, is continuous,  and then apply L e m m a  1.3 to each T v By 
[1, Ch. II, Prop. 2.1 and 2.3], there exist countably  many  real-valued Borel 
functions ,~ on Y such that  for any T_~ Y,, Sir: T - . Z  is cont inuous if and only if 
J)lr: T--+Z is cont inuous for each j. An obvious  i teration of Lemma4.1 ,  Ch. 2, of  
[19] (a var iant  of  Lusin 's  theorem) allows us to find, for each i >  1, a Borel 
subset T i of Y such that  v(Y-T~)< 1/i and all the.fjlr~ are cont inuous (recall that  
Y and all its subsets are metric  spaces since X is Polish). 

We now apply L e m m a  1.3 to each T i. For  each xeT~, there exists a neigh- 
bo rhood  W o f x  in T~ such that  for all ueW, M Z K M ~ G ~ _ M G , ,  and such that  if 
sWc~W4:f~ for s~MKM, then s~MG x. Each T~ can be covered by countably  
many  such W's, say T i = Q). W u. 

J 
For  a fixed W u and s~MKM, sWuc~Wu4:g implies seM2Gw for any weWu,  

since s=mg for some meM and gsG~,  with x c W  u, and thus g 
=m-~ssGxnM2KM~_MG,,  for any w~W u, so that  s=mgeMZG~. The above  

Linear combinations of elements of L~(G, A) of the form g| g~I2(G) and a~A, are dense in 
C*(G, A) - see, for instance, the preliminary comments in w 1 of [13] 
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implication is clearly true for any subset of W~;, so we can denote by {Y~} the 
(countable) collection of sets obtained by considering Wll, W12-Wll  . . . . .  W~j 

- U 0 w,,.... 
k < i l = l  l < j  

Lemma 3.8. Let ~ denote the subspace of Jt~y consisting of functions with support c 
@ 

M. y, and let ,Y{'i = ~ ~ dr(y). Let s denote the subspace of L2(X, I~, ~ )  consisting 
Y~ 

of functions with support ~ M Y  u Then ~ and 5F i are invariant, respectively, under 
@ 

the representations ~ and n, and if, for r q~ydv(y)6~, we define (~i~o)(my) 
Y, 

=(Oy(dy(m)))-lq~y(my), then ~k i is a unitary operator from ~ to ~ i  which 
intertwines fr and lr. Furthermore, if P~ and Q~ denote, respectively, the projection 
from the Hilbert space o f f  onto ~ and the projection from the Hilbert space of R 
onto ~ ,  we have 

QiV(s)~i~p=~iP~(s)~o, for (P~,Y{~i and s~K. 

Proof. ~ is clearly an isometry by virtue of the relationship between the 
measures involved. The invariance of ~ and Y~ under ~ and re, respectively, is 
clear. That r intertwines ~ and ~z follows from the relationship rc~(sa) 
= Uo(s, x) rc~_~(a) Uo(s, x)- 1. All the details thus far are just as in the proof of the 
imprimitivity theorem - the cochain of which U is (locally) a coboundary 
provides us with the intertwining isometry ~ .  The only novelty is in the last 
statement, which we proceed to check. For simplicity we drop the Radon- 
Nikodym derivatives. For seK and ~0~f~, 

Q~ V (s) ~9 i ~o[,,y = V (s) ~9~ (p[,,y = V(s) W(s- ~) W(s) ~ qol,,y 

= U(s, m y) (~k i ~o) (s- a m y) = U(s, m y) ZMr,(S- ~ m y) (~i qo) (s- 1 m y), 

for my~MY~, while 

tp , P~ if(s) rpJ,,y = ( O y(dy(m)))- 1 ( p~ ~(s) qO)y(m y) 

= (O,(dy(m)))- ~ (a(s) q,), (m y) 
= (O~(ddm)))-'. O,(d~(s- ~ m ) - '  s-~ dy(m)). % ( s -  ~ my). 

If, for s -~myeMYi ,  (6i~o)(s-~my)=(Oy(d~,(s-~m)))-~%,(s-~my), we have equal- 
ity exactly as in the imprimitivity theorem. The last thing to check, then, is that 
if myeMY~, s6K and s-amy~MY~,  then in fact s - a m y ~ M y .  But if s - ~ m y  
=m'y'  for some m'eM, y'eY~, then m -~ s m ' s M K M  and sends y'sY~ to Y6Yu By 
Lemma 3.7, m - ~ s m ' ~ M Z G y , , s o y = m - ~ s m ' y ' e M Z y  ', and y=y '  by the last 
statement of Proposition 2.2. 

We now finish the proof of the main theorem. Pick O#q~q)ydv(y )  and 
Y 

write r  with q)~e~f~. Lemma3.8 implies that if ~=O~q)~, then (V(s)~ u 
n(a)~i)=(~(s)~p ~ fr(a)q~i) for all i and all s~K, aeA. Clearly, then, ]lq~ll a 

@ @ 

=ZIl~,tl z. Also, ~ c _ y ~ , d v ( y ) ,  and ~ d v ( y )  is F-invariant, so for i#j ,  
Yi Yi 
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?(C*(G,A))qoi_[_?(C*(G,A))~o j. It follows that for any aeA and geLl(G) with 
supp g _~ K, 

(l~(g) (r 7~(a) q)) = 2 ( ~ ( g )  q~ 7~(a) @i) 
i 

= ~ S (g(s) 6(s) q)i, ~(a) q)i) ds 
i K 

= 2 f (g(s) V(s) ~, ~(a) ~i) ds 
i K 

= ~ (V(g) ~i, r~(a) ~i), 
i 

and we are done. 

w Concluding Remarks 

4.1. The amenability of G is necessary in Corollaries 3.2 and 3.3. Indeed, suppose 
G is a non-amenable group which acts freely on a compact Hausdorff space X, 
preserving a finite measure. (For an example, let G be the free group on two 
generators embedded as a non-closed discrete subgroup of a non-commutative 
compact Lie group X. Then G acts freely by left translation and leaves Haar  
measure invariant.) By the Krein-Milman theorem, there exists a G-invariant 
ergodic measure /~ on X. Form the representation z of C*(G,X)= C*(G, C(X)) 
on Lg(x,#), in which G acts by translations and C(X) acts by multiplication 
operators. Since/~ is ergodic, this is a factor representation, whose kernel will be 
a primitive ideal of C*(G, X) (provided that G and X are second countable). This 
primitive ideal does not contain an induced primitive ideal, since if it did, the 
restriction V of ~ to G would be weakly contained in the left regular repre- 
sentation 2 of G (which is the restriction to G of any irreducible induced 
representation from an isotropy subgroup, since G acts freely). However, V 
contains the trivial one-dimensional representation of G on constant functions, 
which is not weakly contained in 2 since G was assumed non-amenable.2 

4.2. To see how our results apply to the "Mackey machine" for group exten- 
sions, it is convenient to generalize them first to the "twisted covariance 
algebras" of [13]. (These are essentially equivalent to the "verallgemeinerte L 1- 
Algebren" of H. Leptin, the "twisted group algebras" of R.C. Busby and H.A. 
Smith, and the "produits crois~s restreints" of N. Dang Ngoc. We have adopted 
P. Green's notation here since it agrees most closely with our own.) Such an 
algebra C*(G,A, J-)  is a quotient of the ordinary crossed product C*(G, A), so 
we easily obtain from 3.1 and 3.2 the following theorem. 

Theorem 4.2. Every primitive ideal of a twisted covariance algebra C*(G,A,~-) 
(with G and A separable) is contained in an induced primitive ideal. I f  GIN ~ is 
amenable, every primitive ideal of C*(G, A, J )  is an induced primitive ideal. 

Proof The first statement follows from 3.1, since one sees from Corollary 5 of 
[13] that if R is an irreducible representation of C*(G,A) that "preserves J- ,"  

2 We note that this example is implicit in [27], th6or6me 4.20 and Proposition 5.2, but we thought 
it best to make it more explicit. 
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then the f constructed from R in Sect. 3 also preserves J-. (We thank Phil Green 
for pointing this out to us.) 

The second statement follows similarly from 3.2, except for the difficulty that 
G may not be amenable even if G/Nj is, hence Proposition 4.2 of [25] need not 
apply directly. However, one can modify Sauvageot's proof by applying Lem- 
ma 6.2 of [24] with G/N 9- in place of G (note that N:z operates trivially on 
Prim(A), so that the action of GINs- on Prim(A) is well-defined) and by using 
amenability of G/Nj. 

Now we immediately get our version of the "Mackey machine". 

Theorem 4.3. Let G be a second countable locally compact group and let N be a 
closed normal subgroup of G. Then every irreducible unitary representation of G 
weakly contains a representation induced from a homogeneous representation ~r of 
the stabilizer G~ of some primitive ideal J of C*(N), such that the restriction of cr 
to N is homogeneous with kernel J. I f  G/N is amenable, every irreducible 
representation of G is weakly equivalent to an induced representation of this form. 

Proof By the Corollary to Proposition 1 of [13], we may view C*(G) as 
C*(G, C*(N),Y) for some twisting map 3- with N , = N .  

Note that when N is type I, Gj may be identified with G o where p is the 
(unique up to unitary equivalence) irreducible representation of N with kernel J. 
In this case, p extends to a projective representation of Gp as in the Mackey 
theory [18, 23] and when GIN is amenable, Theorem 4.3 says that every irreduc- 
ible representation of G is weakly equivalent to a representation obtained by 
Mackey's procedure (using projective representations of the "little groups" 
Gp/N). When G/N is not amenable, however, 4.1 indicates that there may be 
"bad"  primitive ideals of C*(G) not obtainable by inducing from stability 
groups. (The example may be modified so as to occur in a purely group 
theoretic context. For instance, let G be the semidirect product of H =SL(2, 7l) 
acting on N =  Z 2 in the usual way. Then H acts freely on a dense quasi-orbit in 
.g ='lr 2 and preserves Haar measure.) 

4.4. Theorem 4.3 has many potential applications to the unitary representation 
theory of groups with non-regularly embedded normal subgroups, for which the 
ordinary "Mackey machine" fails. Many interesting examples are provided by 
connected Lie groups, especially the solvable ones. Although there is nothing 
new to be accomplished for these, since the primitive ideal spaces of such groups 
have already been determined by Pukanszky [20, 21] along with considerable 
extra information, our theorem provides an alternative proof for some of 
Pukanszky's results. If G is a connected, simply connected Lie group and N is its 
commutator subgroup, then N is locally algebraic and type I by [21, Lemma 
1.1.1]. (When G is solvable, N is nilpotent and the Kirillov orbit method 
provides a very explicit picture of ~g. For more general G, our understanding of 
1~ is somewhat less precise.) By 4.3, every irreducible representation of G is 
therefore weakly equivalent to a representation induced from a homogeneous 
representation ~r of some stability group Gp, where p e n  and aIN is a multiple of 
p. (In particular, this proves [21, Lemma 1.2.5] that every irreducible repre- 
sentation of G is weakly equivalent to one living over a single orbit in N.) Since 
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Gp ~_ N, G o is normal  and all points in the same G-orbit have the same stabilizer. 
In fact, in this case G o is the same for all p in any G-quasi-orbit Q in N [21, 
Lemmas 1.1.4 and 1.1.5]. Therefore we may apply 4.3 again with G o in place of 
N and conclude that the set of  primitive ideals of C*(G) lying over Q is 
parametrized by the set of  G-quasi-orbits in 

{ J e P r i m  C*(Gp): J lies over Q}, 

This result should be compared  with [21, Proposi t ion 1], which is slightly 
different since Pukanszky works with a group K that is in general smaller than 
Gp. (His method has the advantage that the Mackey obstruction to extending p 
to K vanishes, so that the relevant part  of C*(K) is type I and one may use /s  in 
place of Prim C*(K). That one may use K in place of G o in the analysis of  the 
part of Prim C*(G) lying over Q is a consequence of the very special nature of 
the projective dual of  the abelian "little g roup"  GjN, )  

In some special cases, direct application of  3.2 may also be of  help in 
computing the primitive ideal space of  a connected group G. If G and N are as 
above, we may take some sequence of  subgroups N = N o c N 1 ~_ N2 ~ . . ,  ~ Nn = G 
(the inverse image of a flag in G/N) in which Ni+ 1 is the semi-direct product  of 
Ni by an action of H, so that C*(Ni+ 1)~ C*(IR, C*(N~)). By 3.2, we conclude that 
every primitive ideal of  C*(N,.+ 1) is induced. (The problem, of course, is that this 
statement is vacuous for ideals lying over one-point  orbits in Prim(Ni). ) For  
instance, let G be the "Dixmier  g roup"  [3] with Lie algebra spanned by basis 
elements e~, . . . ,e  7 with non-trivial brackets 

[ e l , e 2 ] = e 3 ,  [ e l , e 4 ] = e s ,  [ e t , e s ] = - e 4 ,  [ e 2 , % ] = e T ,  [ e 2 , e T ] = - e 6 ,  

and let N 1 denote the connected normal  subgroup with Lie algebra spanned by 
e 2 . . . .  ,e 7. Then N 1 -~ H 3 x  H, where H is the universal covering group of  the 
motion group of  the plane. Points in N~ ( 2  Prim(N1)) in general position have 
quasi-orbits that  look topologically like 2-tori on which exp(He  1) acts by 
irrational flows. Since such flows are free, one knows by 3.2 and 3.3 that there is 
a unique primitive ideal of  C*(G)~ C*(exp(He 0, C*(N1) ) lying over each such 
quasi-orbit. Similar phenomena  occur for many other non-type I solvable Lie 
groups, or for type I solvable groups with non-regularly embedded connected 
normal subgroups. 
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Note Added in Proof 

Finally, we mention one more application of Theorem 4.3 - namely, one gets a quick proof of the 
theorem of Roger Howe (in "The Fourier transform for nilpotent locally compact groups, I", Pacific 
J. Math. 73, 307-327 (1977), Proposition 5, p. 321) that if G is a second countable, locally compact 
nilpotent group, then every irreducible unitary representation of G is weakly equivalent to a 
monomial representation. Indeed, let ~e(~. One may as well assume rE is faithful on the center Z of 
G. Let A be a maximal abelian subgroup of Z~2)(G). One quickly checks that if Q is the quasi-orbit in 

determined by rr, then every point in Q has the same stabilizer H in G, where H is the centralizer 
of A in G. Thus ~ is weakly equivalent to a representation induced from H (Theorem 4.3). But H has 
shorter nilpotent length than G, since Zc2)(G)c~H =A (recall A is maximal abelian in Z~21(G))c_Z(H). 
So induction on the length of the central series finishes the argument. (Note: the above is just 
Howe's proof restated, not a new argument. But the proof of the general Effros-Hahn conjecture 
makes it much clearer where Howe's facts about weak containment are coming from.) 


