
Numer. Math. 47, 89-98 (1985) Numerische 
Ma emaUk 
�9 Springer-Verlag 1985 

Is Gauss Quadrature Optimal for Analytic Functions? 

M.A. Kowalski l, A.G. Werschulz* 2.3, and H. Wo~niakowski** 1.3 

1 Institute of Informatics, University of Warsaw 
2 Division of Science and Mathematics, Fordham University 
3 Department of Computer Science, Columbia University 

Summary. We consider the problem of optimal quadratures for integrands 
f :  [ - 1 , 1 ] - - , ~  which have an analytic extension f to an open disk D, of 
radius r about the origin such that Ill_-< 1 on D,. If r =  1, we show that the 
penalty for sampling the integrand at zeros of the Legendre polynomial of 
degree n rather than at optimal points, tends to infinity with n. In particu- 
lar there is an "infinite" penalty for using Gauss quadrature. On the other 
hand, if r > l ,  Gauss quadrature is almost optimal. These results hold for 
both the worst-case and asymptotic settings. 

Subject Classifications: AMS(MOS): 65D30; CR: G1.4. 

1. Introduction 
1 

This paper deals with approximations to S f(x)dx by algorithms whose sole 
- 1  

knowledge of f consists of samples at points from the interval [ - 1 , 1 ] .  We 
assume that integrands belong to the class F(D,) of functions f :  [ - 1 ,  l i a r  
having an analytic extension to D ,=  {ze•: I zl < r} whose modulus is bounded 
by unity on b r. 

One of the best-known methods of approximating such integrals is Gauss 
quadrature. This algorithm is derived by requiring the approximation to be 
exact for polynomials of as high a degree as possible. There are many papers 
dealing with the error analysis of Gauss quadratures, see for instance [1, 6, 7, 
8, 9, 12]. In particular, sharp error estimates are known for analytic functions 
on the ellipse with foci -I-1 and the sum of semi-axes q, where q > 1. The 
behavior of Gauss quadrature for the class F(D,) with r >  1 follows easily. We 
know no previous results for the class F(D1). 
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The goal of this paper is not the study of Gauss quadrature per se. We are 
actually interested in the intrinsic error of Gauss information, i.e., the minimal 
error among all algorithms which evaluate the integrand at Gauss nodes. 
(There is no a priori reason to believe that Gauss quadrature uses Gauss 
information optimally, i.e., that the error of Gauss quadrature equals the 
intrinsic error of Gauss information.) Our aim is to compare the intrinsic error 
of Gauss information using n nodes to the n-th minimal error, i.e., the minimal 
error among all algorithms which evaluate the integrand at n points. When the 
former is worse than the latter, this tells us that not only is Gauss quadrature 
bad, but it is bad precisely because any algorithm using Gauss information is 
bad. 

A number of papers [3, 10, 11] show that for large values of r Gauss 
quadrature is almost optimal. Note that as r increases the class F(Dr) looks 
more like a class of polynomials, while F(D| consists of constants. In this 
paper we address the question: 

Is Gauss quadrature close to optimal for all r? 
We pursue our results in both a worst-case and an asymptotic setting [-14, 

15]. When r = 1, there is no "breathing room" between the interval of integra- 
tion and the region of analyticity of integrands. We first consider the case r = 1 
in the worst-case setting. Due to I-4, 5], the n-th minimal worst-case error is 

roughly e x p ( - c V ~  ) for some c>0.  On the other hand, we show that in the 
worst-case setting the error of any algorithm using n Gauss nodes is at least 
about n- 2. 

We next consider the case r = 1 in the asymptotic setting. We apply general 
results of [15] to show that the n-th minimal asymptotic error is roughly 

e x p ( - c ] / n )  for some c>0.  We prove that the minimal (asymptotic) error 
of any algorithm using n Gauss nodes is roughly n-2. 

Hence in both settings there is an unbounded penalty for using Gauss 
nodes when r =  1. We stress that this is a bad property of Gauss nodes rather 
than Gauss quadrature. That  is, this holds for any algorithm using Gauss 
nodes. 

We finally discuss the case r > l  which allows some "breathing room" 
between the interval of integration and the region of analyticity of integrands. 
We show that in both the worst-case and asymptotic settings the n-th minimal 
error is roughly e x p ( - c n )  for some c >0 and that Gauss quadrature is almost 
optimal. 

Hence optimality of Gauss quadrature for analytic functions requires a 
strong assumption on analyticity of integrands f, i.e., fEF(Dr) with r >  1. The 
integration problem for the class F(Dr) with r>  1 is essentially easier than the 
corresponding problem for the class F(DI). 

2. H o w  bad is Gauss  Quadrature when r = 1 ? 

2.1. Worst-Case Setting 
1 

We want to approximate Sf (x )dx  for feF=F(D1) using the following infor- 
mation about f -1 

N~(f) = [ f  (x 1),f(x2) .... ,f(x~)] 
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where x~e [ -1 ,1 ] .  By an algorithm rp we mean amy mapping such that q~: 

N,(F)~R.  If (p is linear, i.e., tp(N,(f))= ~ aj(Xk) for some a k, we will refer to 
k = l  

~0 as a quadrature rule (or, more briefly, a quadrature). 
In the worst-case setting we measure the error e(N,, q~) of an algorithm rp 

using N, by 

It is well-known, see [2] and also [14, Thm. 3.1, p. 54], that 

e (N.): = infe(N., ~o)= sup x) dx :f~F, N.(f)= 0 
tO 

(1) 

and the infimum in (1) is attained for a linear algorithm (quadrature). Bojanov 
[4, 5] proved that 

e(n):= inf e(N,) > e x p ( -  5 xl/ /n~) (2) 
X l , X 2 , . . . , X n  

and found information N* and a quadrature Q*, 

N *  - -  x *  x *  . ( f ) - [ f (  1 ) , f ( 2 )  . . . . .  f ( x * ) ] ,  

Q*(N*(f))= L a*f(x~), 
k = l  

such that 

(3) 

e(N*, Q*)= e x p ( -  rq//n~). (4) 

Due to [2], see also [14, Thin. 7.1, p. 48], the estimate (2) is valid even if the 
points x i are chosen adaptively, i.e., x i is allowed to depend on f ( x  O, f(x2) . . . .  , 
f(xl-1). Hence N* and Q* are almost optimal, i.e., the choice of x* and a k 
nearly minimizes the error of any algorithm using n samples. 

We compare the almost optimal information N* with Gauss information 
NL 

G N~ (f)= [f((l),f((:) .. . . .  f ( ( , ) ] ,  (5) 

where (k is the k-th zero of the Legendre polynomial P,. We now prove that 
the choice of nodes (k is very poor. 

Theorem 1. 
e(Nf)=O(n-2). [] 

Here we use the O-notation, which may be thought of as a "two-sided" O- 
notation. That is, f =  0 (g) iff f = 0 (g) and g = 0 (f). 

Proof Let h(z):= ~ z - : i  (=-P~(z)  ] i=ll---~i \ z"P~(1/z) ]" Note that heF, N~(h)=0 and [h(z)[ 

=1 for Iz[=l .  We first prove that 

1 1 

I , : =  I Ih(x)12dx<e(g~) < I Ih(x)ldx=:d,. (6) 
- 1  - 1  
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Indeed, let N ( f ) : = [ f ( ( O , f ' ( ( l )  . . . . .  f(( . ) , f ' ( ( , )] .  Obviously e(N,~)>e(N). Due 
1 

to [4] we have e(N)= ~ Ih(x)12dx which proves the left inequality of (6). 
- 1  

Choose now an arbitrary geF  such that N.G(g)=0. Since the function g(z)/h(z) 
is analytic in D1, by the maximum modulus principle we get 

sup Ig(z)/h(z)l = sup Ig(z)/h(z)l = sup Ig(z)[ ~ 1. 
zED~ Izl = 1 lz l  = i 

Hence g (x) < I g (x) l < I h (x)l for every x ~ [ - 1,1 ]. Since g is arbitrary, this and (1) 
yield e(N. ~) < J.. The proof of (6) is completed. 

By ~t 

P.(~) = ~-1 ~(r +1/~2-1 cosO)"dO 
0 

(see [13, p. 87]), we get 
n / 2  

x"P.(l/x)=n-1 ~ [(1 +tcos0)"+(1 - tcos0)"]  dO 
0 

=r~ - I  F. [ t ~ + ( - t )  ~] S cos~OdO 
k = O  0 

where t= ] /1  - x  2 and xe[0, 1]. For n > 4  we have 

(1 q (n-2)(n-3)8 t 2)2 < 1 + ~ t2 -~ n(n-1)(n-2)(n-3)t '64 

<Tr -1 ~ [ t k + ( - t )  k] ~ coskOdO < t k 
k = O  0 k = O  

= (1 + t) ~ < exp(n t). 
We thus proved 

[1-t (n-2~n-3)( l_x2)]2<=x.Pn(1/x)<=exp(nr  (7) 

For Ix [< l  we have P.(x)=l+P.'(~(x))(x-1) where ~(x)e [ -1 ,1 ] .  Due to 
Markov's inequality we have for I ffl _-< 1, I P.'(~)I _-< n 2 max Ie.(x) l = n 2. Therefore 
for Ix[<l ,  Ixl-<l 

I P.(x)l _-> 1 -n2(1  -x). (8) 

We are now ready to estimate I. and J.. We first show that I , ,>cln -2 for a 
positive c 1 which does not depend on n. By the right inequality of (7) we get 

,[ P.(x) ] 2 , 
1 ,=2  S dx > 2 S ]P,(x)12 e x p ( -  2nV' l - xZ)dx 

o I_x"P.(1/x).l o 
1 

> 2 ~ IP.(x)[2 e x p ( -  2nl/1 -x2)dx=: i , , ,  
a 

where a =  1-1/(2nZ). 
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Since e x p ( - 2 n ] / 1 - - X  2) monotonically increases, due to (8) we have 

Thus 

1 
L > 2 e x p ( -  2 n],/1 - aZ)~ (1 --n2(1 -x))2dx 

a 

> 2 e x p ( -  2) 3-@ [1 - (1  -n2(1 - a))3] = 7 e x p ( -  2) 
= 12n 2 

I . > ~ e x p ( - 2 ) n  -z. 

To complete the proof it is enough to show that Jn<=c2n -2 where c 2 does 
not depend on n. By the left inequality of (7), for w = ( n -  2 ) (n -  3)/8 we get 

j =2i ~ dx<2 i dx 
x P.(1/x) = o [ l + w ( 1 - x 2 ) ]  z 

1 d x  1 dx 
=2(1 +w)-2~ r 1 w 2 <2(1 +w)-2~ 2 

0 [ - - - - X 2  0 
l+w ] 
16 

=2(l +w)-l=nE_5n+14. 

This gives the desired inequality and completes the proof. [] 

To understand the bad properties of Gauss information, suppose one needs 
1 

to find an z-approximation, i.e., to compute I=I(f) such that !f(x)dx 
o 

-I(f)  <e for all f from F. To get I(f) we use n samples of f. From (2) and 

(4) we conclude that the minimal number of samples n has to be about In 21/5. 
Using the information N* of (3) with n=[O.O8rc-21n21/e], the quadrature 
Q*(N*(f)) of (3) yields an z-approximation since e(N*,Q*)<e. The cost of Q* 
is proportional to n. From this we conclude that the z-complexity, i.e., the 
minimal cost of computing an z-approximation is given by 

comp(e) = O(ln 2 l/z) 

and Q* is an almost optimal complexity algorithm. 
Suppose now one wants to find an z-approximation using n Gauss nodes. 

Then, due to Theorem 1, n has to be of order e -1/2 and the e-complexity 
(minimal cost) of Gauss information is given by 

compo(5) = O (5-1/2). 

Let pen(e):=compG(e)/comp(e) be the penalty of using Gauss information 
instead of the optimal one. From this we get 

Theorem 2. 
pen(e) = 0(5-1/2 In-z l/e), 

so that 
lim pen(e)= + oo. [] 
~ 0  
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2.2. Asymptotic Setting 

In the worst-case setting the error  of an a lgor i thm is defined for fixed infor- 
ma t ion  N n and for the worst integrand f. In some situations we prefer to fix f 
and apply to it informat ion Nn with n tending to infinity. This is called the 
asymptotic setting. In this setting, information is an infinite sequence 

57 (f) = [ f  (xl), f  (x2) .. . .  , f  (xk) ....  ]. 

We stress that  the point  x i can be chosen adaptively, i.e., x i can be an arbi t rary 
function of f (xl) ,  f ( x 2 )  . . . . .  f(xl- 1). By an algorithm Cp using 57 we now mean 
a sequence CO={~0,}~= 1 where ~o. uses N , ( f ) = [ f ( x l )  . . . . .  f (x , ) ] ,  i.e., r  
N , ( F ) o ~ .  The n-th error of Co at f is defined as 

en(co,f): = ~ f ( x ) d x - c p , ( N , ( f ) ) .  

In  the asymptot ic  setting we wish to choose an a lgor i thm CO as well as the 
nodes x k for which the sequence en(co,f) goes to zero as fast as possible for all 
f f rom F. 

Recently, Tro jan  1-15] showed a surprising relation between the worst-case 
and asymptot ic  settings. For  the integrat ion prob lem his results can be sum- 
marized as follows. (The quantit ies e(N,) and e(n) are defined as in Sect. 2.1.) 

Given f~F ,  let N~ denote the following nonadaptive information 

NY(g) = [g()~l), g()~2) . . . . .  g ()~n)], 

where xl  = x l  and 2 i=21(f (~1)  . . . . .  f(xi-1)) for i = 2 , 3  . . . . .  n. 
(i) For  any informat ion ~7, any a lgor i thm ~ using ~7 and any nonnegat ive 

sequence {6,}~= 1 converging to zero, the set F o of f for which 

e,(co,f)=o(6.e(N/)) 
is boundary.  

(ii) There exist informat ion 57* and an a lgor i thm 3 "  using N* such that  

e.(co*,f) < e([n/4J). 

Remark. The s ta tement  in (i) that  F o is boundary  means  that  F - F  o = F .  That  
is, for any nonnegat ive  sequence { ,},= ~ converging to zero, the set of  f for 
which 

. e.(co,f) 
lm sup ~ > 0 
~o~ 6,e(N~) 

is dense in F. [ ]  

F r o m  (i) with 6 , = e x p ( - l , / n )  and f rom (2) it follows that  for arbi trary 
informat ion 57 and an arbi t rary  a lgor i thm (~ using 57 the set of  f for which 

is boundary.  
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Let N* and Q* be given by (3). Define information 

2~* (f): = IN* (f), N* (f), Ng (f)  .. . . .  N*k(f) .... -] (10) 

and the algorithm Up*= {~p*} using 57* as 

* N * N *  ~P.( .(f))"=Q2k , (2k- , ( f ) ) ,  k=[ log2(n+l ) J ,  (11) 

where N. consists of the first n samples of 57*. From (4) we get 

e. (~*,f) < exp ( - nl/(n + 1)/8 ), (1 2) 

for all f from F. Due to (9), 57* and Up* are almost optimal in the asymptotic 
setting. 

We now compare N* to corresponding Gauss information, 

57z(f): = [N~(f),  N2G(f), N4G(f) .. . . .  N2Gk(f) .... ] (13) 

where N2G~ is given by (5). We prove that Gauss information is also very poor 
in the asymptotic setting. 

Theorem 3. For any algorithm Up using 576 and any nonnegative sequence {6,} 
converging to zero the set of f for which en(up,f)=o(n- 2 b,) is boundary. [] 

Proof. For each positive integer n, let k=Llog2(n+ 1)J and 

IYff ( f ) := [Nff(f), N2~ (f)  ..... N~,_ ~(f)]. 

We first estimate e(Nff). The same arguments as in the proof of (6) with 

i 
h(z)= I~ LzZ-p~(1/zij j=O 

lead to the inequality 
1 

e(N~)>= ~ hZ(x)dx='.Ik . (14) 
- 1  

Let b : = ~  g71. Due to the right hand side of (7), we have for xe[b, 1] 

l-Ix2~p2J(1/x)l <exp 2 2 2J <exp(2~/2) �9 
j = O  3 ', j = O  

From (8) for xe[b, 1] we get 

k--1 k--1 k - 1  

I1 P22(x) > [ I  E1-22J(1 - l / q ~ 2 -  2k+')] 2> 1-[ (1 --22J-2k+') 2 
j = 0  j = 0  j = 0  

k - 1  oo 

= [ I  ( 1 - 2 - 2 J - ' ) 2 >  M (1_2-2~-  1)2=..c. 
j = l  j = o  
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Observe that c exists and is positive. Hence h2(x)>cexp(-21/2) for b < x <  1. 
We now estimate I k. 

1 l 

I k = 21 h2(x)dx >= 21 h 2 (x)dx >= 2(1 - b)c e x p ( -  21/~ ) 
0 b 

=2(1 - t / 1 - 2  -2k+ 1)c e x p ( -  2l/2) > 2- 2k+1 C exp(-- 21/~ ). 

Since 2-2k>n-2 /4 ,  (14) implies 

e(N~)>cln -2 

for a positive c 1 which does not depend on n. Note that this estimate is sharp. 
Indeed, Theorem 1 yields e(N2~k_d= O(n-2). Obviously e(N2~k_,)>e(/V~). There- 

fore e ( ,~ )  = O(n- 2). 

This and (i) complete the proof. [] 

Theorem 3 states that the speed of convergence of algorithms using Gauss 
information is at most n -2 whereas (9) and (12) state that the optimal speed is 

roughly e x p ( -  c]/n) where c > 0. 
We now show the superiority of the optimal algorithm. Let s 1 (n)= n-2 and 

s2(n)=exp(-c]/n ). Assume that one wants to choose the minimal n such that 
si(n)~e. Then for the function s 1 we have n=nl(e)= O(e-1/2) whereas for the 
function s 2 we have n=n2(e)= O(ln 2 l/e). The penalty function 

pen(s): = nl (e) = O(e- 1/2 In- 2 l/s) 
nz(e) 

goes to + ~ as e goes to zero. 

3. Gauss Quadrature is Almost Optimal when r > 1 

In this section we show that Gauss quadrature is almost optimal for the class 
F(D,) with r > 1 in both the worst-case and asymptotic settings. 

We begin with the worst-case setting. The quantities e(N,, q~), e(N,), and e(n) 
are defined as in Sect. 2.1, except that now F=F(D,). To show that Gauss 
quadrature is almost optimal, we need some auxiliary results for the integra- 
tion problem for a different class of integrands. Let E~ be an ellipse whose foci 
are + 1 and sum of semi-axes is q > 1. By F(E~) we mean the set of functions f :  
[ - 1 ,  1 ] ~ R  having an analytic extension f to Eq such that Ill_-< 1 on Eq. For 
the class F(Eq) Bakhvalov [1] proved (see also [6, 7, 8, 12]) that the minimal 
worst-case error of algorithms using n samples of f is O(q-2n). Furthermore he 
showed that the worst-case error of Gauss quadrature is of order q-2n. Thus 
Gauss quadrature is almost optimal in the worst-case setting for the class 
F(E~). 

We shall use Bakhvalov's results to show that Gauss quadrature is alse 

almost optimal for F(Dr) with r > l .  Let q l = r + ~ l  and q 2 - - r + ~ l .  



Is Gauss Quadrature Optimal for Analytic Functions? 97 

Since Eq2 c D~cEql, we have F(E~,)cF(D,)~F(Eq~). Therefore there exist posi- 
tive constants cl and c 2, independent of n, such that 

C 1 ql 2n <e(n)<e(N~, Gn)<=c2q2 2n. (15) 

Here Nff, G, are Gauss information and Gauss quadrature  respectively. Ob- 
serve that q2/ql < 1 and for large r the ratio q2/ql is close to one. Since r >  1, 
(q2/ql) -2n goes t o  zero as n tends to infinity. Thus there is a large gap in the 
bounds of the estimate (15). In contrast  to this, the e-complexity is known to 
within a constant.  (The e-complexity is defined as at the end of Sect. 2.1, except 
that now F=F(D~).) Since comp(e)=  O(inf{n: e(n)<e}), (15) yields 

Theorem 4. For the class F(D,) with r> 1 the e-complexity of the integration 
problem in the worst-case setting is 

comp(e) = O(ln i/e). 

Furthermore, Gauss quadrature G~ with n = [ln(c2/e)/(21nq2)] yields an e-approxi- 
mation with almost minimal complexity. [] 

We now turn to the asymptotic setting. F r o m  Trojan 's  result (i) with F 
=F(D,)  and from (15) we get 

Theorem 5. For arbitrary information N, any algorithm ~p using N and any 
nonnegative sequence {fin} converging to zero, the set of f for which 

e~(~p,f)=o(3nql 2~) 
is boundary. 

Furthermore, for the algorithm q56= {tp~} defined as the following sequence 
of Gauss quadratures 

tp~(N.(f)): = G2~-, (N2~-~ (f)), k = [log 2 (n + 1)J, 

where N. consists of n samples of IqO from (12), we have 

e~(~p~,f)=O(q-~2"), Vf~F(D,). [] 

Theorem 5 states that  the speed of  convergence of  Gauss quadratures is at 
least q2 2n whereas the speed of  convergence of  any algori thm is at m o s t  q~2n. 
We stress that there is no practical difference between the functions qi-2n and 
q2 2~. Indeed, suppose we choose the minimal n such that q~-2~ <e.  Then 

n=n,(e)= [ In 1/e ] = O(ln l/e). 
L2 In 1/qi J 

Since nl(e ) is of  the same order as  n2(e), we have to perform roughly the same 
number of function evaluation to make the error smaller than e, whether the 
speed of convergence is q~-2, or q2 2n. This establishes that  Gauss quadrature  is 
almost optimal in the asymptot ic  setting for the class F(D,) with r > 1. 

Acknowledgments. We are indebted to N.S. Bakhvalov for suggesting how to find a lower bound on 
I of (6). We would also like to thank J.F. Traub for his valuable comments on an earlier version 
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