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1. Introduction

The main theorem of this paper is the following:

Theorem 1. Let X be a MoiSezon space and Y a compact complex space of

general type. Then the set of surjective meromorphic mappings of X onto Y is
finite. "2

We recall that a compact complex space X is called a MoiSezon space if the
transcendence degree of its field of meromorphic functions is equal to the dimen-
ston of X. A compact complex manifold Y of dimension # is said to be of general
type if

N
sup lim o dim I'(K¥)>0,

m— 4 %0

where K, is the canonical line bundle of Y and I'(K¥) is the space of holomorphic
sections of the line bundle K7. A compact complex space Y is said to be of general
type if any (and hence every) non-singular model of Y is of general type.

If dim Y=1, Theorem 1 reduces to the classical theorem of de Franchis
{3; p.139]. Thus our result settles one of the conjectures of Lang [9]. In the
theorem of de Franchis, Y is a curve of genus at least 2. The condition on Y in
higher dimension suggested by Lang is that Y be hyperbolic. We assume instead
that Y is of general type. It is very likely that a compact hyperbolic space is
necessarily of general type.

The proof, easily reduced to the case where both X and Y are non-singular,
projective-algebraic, is by a combination of arguments in [2, 3, 6, 12].

Theorem 1 implies that the group of bimeromorphic automorphisms of a
compact complex space of general type is finite (see [2, 5] for a direct trans-
cendental proof and [10] for a direct algebraic proof). It is, of course, desirable
to find an algebraic proof of Theorem 1.

* Partially supported by NSF Grant GP-42020X.

** Supported by “Sonderforschungsbereich Theoretische Mathematik ™ at University of Bonn.

' Throughout the paper, X and Y denote reduced irreducible complex spaces.

It has been pointed out by Professor Y. Namikawa that Theorem 1 holds for any compact complex
space X which is not necessarily a MoiSezon space. See the argument given at the end of the paper.
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Improving on the result in [6], we show the following

Theorem 2. Let X be a complex space and A a complex subspace of X. Let Y be
an n-dimensional compact complex space of general type. Then every meromorphic
map f* X —A—Y of maximal rank n extends to a meromorphic map f- X - Y.

From Theorems 1 and 2, we obtain

Corollary. Let X and Y be as in Theorem 1. Let A be a complex subspace of X.
Then the set of meromorphic maps = X —A— Y of maximal rank n (where n=dim Y)
is finite.

We say that f: X — A4 —Y is of rank »n if its differential is of rank n at some

regular point of X —A where f is holomorphic. Theorem 1 is proved in §§ 2 ~6.
The proof of Theorem 2 is indicated in § 7.

2. Reduction to the Case where X and Y are Non-Singular,
Projective Algebraic

Every MoiSezon space X is bimeromorphic to a projective algebraic variety
(see Theorem 1 of [11]). By Hironaka’s theorem on resolutions of singularities,
X is bimeromorphic to a non-singular projective algebraic variety.

Let Y be a compact complex manifold of general type. Let I'(KF)* be the dual
space of I'(K¥) and P(I" (K})*) the projective space of lines in I' (K¥)*. The natural
map f,.: Y- P(I'(K¥)*) is, in general, meromorphic and its image is a variety of
dimension n(=dim Y) for some m>0, (see [1] for details). By pulling back
meromorphic functions of f,(Y), we obtain n algebraically independent mero-
morphic functions on Y. We have shown that if Y is of general type, it is a
Moisezon space. Hence, Y is bimeromorphic to a non-singular projective
algebraic variety.

3. Schwarz Lemma

In this section we same that X is a compact complex manifold of dimension n
and Y is an n-dimensional projective algebraic manifold of general type. As
before, K, denotes the canonical line bundle of Y.

Then we have a positive integer m, a subspace W of I'(K¥) and a line bundle
L over Y with a holomorphic section asI' (L) such that

(1) L-1K% is very ample,
(2) selI'(L ! K¥)— asel'(K%) defines an isomorphism of I'(L" ' K%}) onto W.

For the proof of this assertion, see [7, 6]. Let sq,s;,..., sy be a basis for
(LYK% and tg,t,...,ty the corresponding basis for W. Thus, t;=as; for
i=0,1,...,N. The common zeroes of t4,¢;,...,ty is equal to the zeroes of the
section a, which may or may not be empty.

We define a volume element wy on Y by

wy=(Y1t; AL;)V™



Meromorphic Mappings onto Compact Complex Spaces of General Type 9

This formal expression stands for the following 2n-form. In terms of a local
coordinate system y', ..., y" of Y, write

ti=hdy' - Ady"Y,
where h; is a locally defined holomorphic function. Then

(UY=(Z |hj|2)l/m (V?l)"dyl AV A AdYy A dY"

is a globally defined 2n-form on Y vanishing at the zeroes of the section ae ' (L)
and positive elsewhere.

Considering Llocally as product U x C where U is a small open subset of Y,
we can represent the section a by a holomorphic function a; on U. Then the
function

H
——3, where H:i=) {h]?,
layl
is everywhere positive since the zeroes of H cancel out with the zeroes of |ay |2
Since ¢¢é (log Hy=00 (log H/|ay|?), the Ricci tensor

1
R,p= —= d*log H/oy*oy*

is well defined everywhere on Y (even at the zeroes of H) and is negative definite.
(The fact that the Ricci tensor is negative definite follows from the condition that
L-' K7 is very ample. In fact, from the definition of R, 3 above one sees immediately
that —R,; is the metric tensor induced from the Fubini-Study metric of B (C) by
the imbedding Y— B, (C) defined by (s¢, sy, ..., Sy)) We may summarize this by
saying that the Ricci form associated to the volume form w, is negative-definite
everywhere.

Lemma 1. Let w be the Poincaré-Bergman volume element of the unit polydisk
A" of dimension n. Then there exists a positive constant ¢ such that

f*oy=Ec-w  for every meromorphic map [ A" — Y.

Proof. This is an equi-dimensional generalization of the Schwarz-Pick-
Ahlfors lemma. Following Yau [12], we observe that f*¢;, which is holomorphic
outside the singularity set (1.e., the set of points of indeterminacy) 4 < 4", extends
to a holomorphic “form™ on 4" by the theorem of Hartogs since codim A=2.
It follows that f*wy extends also to a smooth 2n-form on 4", The usual proof
of the equi-dimensional Schwarz lemma for holomorphic mappings can be
applied to the function u=f*wy/w on 4". See [3, 4] for details.

Lemma 2. There exists an everywhere positive volume form wy on X such that
[*wy=wy for every meromorphic map f: X - Y.

Proof. We cover X by a (locally) finite open cover {D;} such that each D, is
biholomorphic to the polydisk 4”. Let w; be the volume form on D; corresponding
to the volume form on 4" Let {p;} be a partition of 1 subordinate to {D,}. We set

C‘)x’=z,0iwr
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Then there is a positive constant ¢ such that f*wy < c - wy for every meromorphic
map f X — Y. By normalizing wy, we may assume that c=1.

4. Compactness of the Set of Surjective Meromorphic Mappings

Throughout this section we assume again that X is a compact complex manifold
of dimension n and Y is an n-dimensional projective algebraic manifold of general
type. We set

M (X, Y):=the set of surjective meromorphic mappings of X onto Y.

Let W be the subspace of I'(KY) defined in § 3. As pointed out in the proof
of Lemma, the theorem of Hartogs implies that every meromorphic mapping
f: X =Y induces a linear map f*: W— I'(K%).

In both W and I'(K%) we define a norm | |, (see [2]).

Isl?:=[|sAs['™  for sel'(K%),
X

lt|?:= [t At]t™ for teW.
Y

The symbolic expressions |sAS|!/™ and |t Af|'/™ should be interpreted in the
same way as (3. |t; A f;[)'/™ in the definition of wy; they are 2n-forms on X and Y,
respectively. Although these norms do not satisfy the convexity condition
Is+s'I|< sk +1s'], we shall call them “norms” by abuse of language.

Lemma 3. There is a positive constant ¢ such that |f*t|Sc|t| for every
teW and every meromorphic mapping f: X - Y.

Proof. Since ||At]|=]|A|-||t]| for every complex number 2, it suffices to show
that there is a constant ¢ such that || f*t]| =<c whenever |t|S1. Let ¢, ¢, ..., 1y
be the basis for W chosen in §3. Every t in W can be written uniquely as

t=Y A1) ¢},

where 1, (2), ..., Ay(t) are complex numbers which depend linearly on ¢. Let ¢’ be
the maximum of } [4;(t)|> as ¢t runs through the compact subset ||t| <1 of W.
By Schwarz’s inequality, we have

ltntlSc Y |t;aL]  on Y if |t £1.
Hence,
If*enf*t|Sc - f* (X1 atl)  on X if i =1
Integrating the m-th roots of both sides, we obtain

If*e2sct™ | fxoy if el <1
X

Because of Lemma 2, it suffices to set

o ptljm
c=c""{ wy.
X
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Lemma 4. || f*t] = ||t|l for every surjective fe M (X, Y) and te W.
Proof. We have

Ilf*t|I2=£f*lt/\fl”'"=(degf)£ [t ALl =(deg f)llt]* 2 lie].

Two remarks are in order. Although the 2n-form |t A%|'/™ vanishes on a sub-
variety of Y, it defines a nonzero element of H?>"(Y;R). The formula

Jr*ienilim=(deg /) lentf'™,
X Y

where deg f denotes the mapping degree of f, is well known when f is smooth.
But deg f can be defined even when f is meromorphic and the formula above is
still valid. Let X be (a desingularization of) the graph of f and let f: X — Y be
the holomorphic lift of f Then we define degf=degf. The meromorphic
mapping f is surjective if and only if deg f = 1.

Lemma 5. If feM(X,Y), then the induced linear map f*: W—I'(K%) is
injective.

Proof. Let t be a nonzero element of Wand U an open subset of X in which f
is regular and non-degenerate. Being a holomorphic section of K¥,t cannot
vanish identically on the open subset f(U) of Y. Hence, f*t cannot vanish
identically on U.

To state the next lemma, let

S:=the dual space of I'(K%),

T:=the dual space of W(<I'(KY})),

i:=the natural meromorphic mapping X — P(S),

Jj:=the natural imbedding Y- P(T),
where P(S) and P(T) denote the projective spaces consisting of complex lines
through the origin in S and T respectively.

Let feM(X,Y). Since f*: W—TI'(K%) is injective by Lemma 5, its dual
map f,: S— T is surjective. Let f: P(S)— P(T) be the meromorphic map
induced by f,. The proof of the following lemma is straightforward.

Lemma 6. Let fe M(X, Y). Then the diagram

P(S)—L— P(T)

1
i j

X—~L—Y

commutes.

Lemma 7. Two distinct elements f, ge M (X, Y) give rise to distinct meromorphic
mappings f, g of P(S) into P(T).

Proof. This follows from Lemma 6 and the fact that j: Y— P(T)is an imbedding.
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Lemma 8. {/*; fe M(X, Y)} is a compact subset of Hom (W, I'(KT).

Proof. Let M*={f*; feM(X,Y )}. Let ¢ be a fixed positive constant. Then
the set

:= {peHom (W, I (K}); ] = lo 0 £ c|t] for all e W}

is a compact subset of Hom (W, I'(K%)). Let ¢ be the constant given in Lemma 3.
Then M*< @ by Lemmas 3 and 4. Let { £} be an infinite sequence of elements
in M(X,Y). By taking a subsequence if necessary, we may assume that {f*}
converges to an element ¢ in @ since @ is compact. Since ¢ satisfies o (O] = izl
¢ 1s an injective homomorphism W I'(K'%). The dual map of ¢ is a surjective
homomorphism S— T and induces a meromorphic map &: P(S)— P(T). Since
@=lim f* and j(Y) is closed in P(T), it follows that @ o i(x)ej(Y) if x is a point
in X {not belonging to the singularity set of @ o i). This shows that ¢ i: X — P{T)
is a meromorphic map of X into j(Y). If we set f=j"!0@ o, then ¢ = f*. Since
S*is in @, it satisfies || f*(t)]| = |¢|| and hence f is of maximal rank. This shows
that fis in M(X, Y).

Remark. The proof of Lemma 5 shows that if fe M(X,Y), then f*: I'(K})
~'(K%) is injective. Hence, dim I'(K¥)zdim I'(K%) if M(X, Y) is nonempty.
This shows that X must be of general type if there is a surjective meromorphic
mapping f1 X - Y,

The compactness of M (X, Y) has been obtained by P. Kiernan independently,

5. Analytic and Algebraic Structures on M(X, Y)
Let § and T be the dual spaces of I'(K) and W, respectively, as in §4. Let
H:=Hom (S, T).

Each element of the projective space P(H) induces, in a natural way, a mero-
morphic map P(8)— P(T). If feM(X,Y), then f, is a nonzero ¢lement of H
by Lemma 5. (In fact, f, is a surjective map S — T.) Let f be the element of P(H)
represented by f e H. Let

M:={f; feM(X, Y)}<P(H).

By Lemma 7, M is in a natural one-to-one correspondence with M (X, Y). By
Lemma 8, M is a compact subset of P(H).

Let Z be the set of elements of P(H) such that the induced meromorphic
mappings P(S)— P(T) send i(X) into j(¥). Then Z is an algebraic variety in
P(H). Let £={...,¢,,...)and =(...,#,, ...} be homogeneous coordinate systems
for P(S) and P(T), respectively. Let {=(...,{3,...) be the naturally induced
homogeneous coordinate system for P(H). If J is the ideal of homogeneous
polynomials Qx) defining the variety j(Y)< P{T), then Z is defined by the set
of homogeneous polynomials

{Q.(0):=Q((-&(a)); QeJ and aci(X)},

where { - & denotes the matrix multiplication of { and &.
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Clearly, M is the subset of Z consisting of those elements which map i(X)
surjectlvely onto j(Y). This shows that M is an open subset of Z. On the other
hand, M is compact. Hence, M is an algebralc subvariety of P(H).

Now, we are in a position to prove the main lemma.

Lemma 9. Let X be an n-dimensional compact complex manifold and Y an
n-dimensional projective algebraic manifold of general type. Then M(X,Y) is
finite.

Proof. The C*-bundle H — {0} — P(H), restricted to any algebraic subvariety
of P(H), is (even topologically) non-trivial unless the subvariety is 0-dimensional.
Over the subvariety M this bundle has a section, namely fe M - f.eH—{0}.
Hence, M is O-dimensional, ie. finite. Being in one-to-one correspondance
with M, M (X, Y) is finite.

6. The Case dim X>dim Y

In this section we assume that X is a p-dimensional projective algebraic manifold
and Y is an n-dimensional projective algebraic manifold of general type. We
continue to denote the set of surjective meromorphic mappings f: X - Y by
M(X,Y).

If p<n, then M (X, Y) is empty. The case p=n was settled in the preceding
section. We assume therefore that p>n. Assuming that M (X, Y) is infinite, we
choose a countable infinite subset {f, f5,...} of M(X,Y) and fix it once and
for all.

For each point x of X, let G,(X), be the Grassmannian of n-planes in the
tangent space T,(X). Then G,(X):= () G,(X), is a bundle over X whose standard

xeX

fibre is the Grassmannian of n-planes in C?. We say that an n-plane Ve G,(X),
is transversal (with respect to {f, f,,...}) if every f; induces an isomorphism
Vo Tp o (Y).

Lemma 10. There exists a transversal Ve G, (X} such that Tf|V,TH\|V,...
are mutually distinct. (Here Tf; denotes the differential of f; and maps T(X) into
T(Y))

Implicit in the statement is that f;, f,, ... are all regular at x when Ve G, (X),.

Proof. For each j, let S; be the singularity set of the meromorphic mapping f;.
For each j, let N; be the set of VeG,(X), such that f; is regular at x and Tf;: V
— Ty, () is not an isomorphism. For each pair (i, j), let F; be the set of Ve G,(X),
such that both f; and f; are regular at x and Tf;|V=Tf;| V. Clearly, n'(S)) is a
subvariety of G,(X), where n: G,(X)— X is the projection. The set N; is a sub-
variety of G,(X)—n~*(S;. The set P, is a subvariety of G, (X)—n '(S;US)).
Hence

Gi=G,(X)~(Jn~ ,»uUN)u(U Py)

Jj
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is dense in G,(X). (In fact, G is the intersection of countably many dense open
subsets  G,(X)—n"'(S), G (X)—(x"'(S)uN) and G,(X)—n '(S;uS)UP)),
i,j=1,2,....) Any element V in G satisfies the requirements of Lemma 10.

To complete the proof of Theorem 1, let Ve G,(X), be as in Lemma 10. Let X'
be a subvariety of X passing through x such that T, (X')=V. (This is where we
use the assumption that X is projective algebraic.) By Lemma 10, f; | X', 5| X', ...
are mutually distinct elements of M (X', Y’). On the other hand, we know that
M(X',Y’) is finite since dim X'=dim Y’. This contradiction arose from the
assumption that M (X, Y) is infinite.

7. Proof of Theorem 2

As in § 2, we may assume that Y is a non-singular projective algebraic manifold
of general type and that X is non-singular. We may also assume that f: X —4 > Y
is holomorphic since the points of indeterminacy may be included in A.

We shall show that the proof can be reduced to the case where A is also non-
singular. Let B be the singular locus of A so that A — B is a non-singular subspace
of X — B. Suppose that f: X — 4 — Y extends to a meromorphicmap f: X —B—- Y.
Fix an imbedding Y< B(C) and let w°, ..., w" be a homogeneous coordinate
system for Py (C). The meromorphic functions f*(w//w") on X — B extends to
meromorphic functions on X since B has codimension at least 2 in X. Hence,
f extends to a meromorphic map f: X - Y.

Localizing f, we may further assume that X is a unit polydisk D? in C” and A
is the polydisk {0} x D?~'< DP, We denote the punctured disk D— {0} by D* so
that D? — ({0} x D?~1)=D* x DP~!, Since the second Cousin problem is solvable
for the domain D* x D”~', we can lift the holomorphic map f: D*xD?~'->Y
< B,(C) to a holomorphic map f: D* x DP~!' — CV*!, Then [ is given by a system
of N+1 functions ¢°(z',...,2°),..., @ (2!, ..., zF) holomorphic in 0<|z'|<1,
|22|<1,...,|2°| < 1.

Now we use the particular imbedding Y < B,(C) constructed in § 3. We recall
that the imbedding was defined using a certain (N + 1)-dimensional subspace W
of I'(K%). It suffices to prove the following

Lemma 11. Let
Qi )= Y A @), j=0,1,... N,

be Laurent expansions with respect to the variable z! with holomorphic coefficients
Aj(Z?, ..., 2°). Then A}(z?%,...,z°)=0 for h< —m.

Proof. This lemma was proved when p=n and the map f: D*xD" ! - Y is
of maximal rank in our earlier paper [6], where the particular construction of
the imbedding Y < B (C) was used strongly. We note that the integer m appearing
in Lemma 11 is the exponent in K%.

Assume that p>n. Since f:D*xDP-! Y is of rank n, there exists an
n-dimensional plane P in C” (not necessarily through the origin) such that the
restriction of f to the intersection P (D* x DP~1) is of rank n.
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By moving P slightly if necessary, we may assume that P intersects the hyperplane
z! =0 transversally. By a linear change of the coordinate system in CP?, we may
further assume that P is defined by

+1 +1
=gt L, 2P =aP,
where a"*1, ..., a? are constants. We define
—_ +1
a={a@""",...,a°,
1 1 +1
LGS =fE, . L aP),

eIz, ..., =92, ... 2N a" Y, L, aP).

Then (9?2, ..., oY) gives the lift of f,. The Laurent expansions of ¢} are given by

el ..., 2" Lnadttt L db) (2

il
™
T~
JN

Since Lemma 11 holds for p=n and hence for f,, we obtain
Alz%, ..., 2% a .. ,aP)=0 for hE —m.

Since f, remains to be of rank n when a=(a""", ..., a?) is moved slightly, we have
Az, ..., 2" 2" L, 2P =0  for hE—m

for (z"*!, ..., zP) in a neighborhood of (a"*!, ..., a¥) and hence for all (z"*!, ..., ").
This completes the proof of Lemma 11.

As stated in Footnote (2), we shall extend Theorem 1 to an arbitrary compact
complex space X. Let I (X) and M(Y) be the fields of meromorphic functions
on X and Y, respectively. Let X* be a projective algebraic variety with 9i(X)
=P (X*). Then

Mer (X, Y)< {p: M(Y)— IN(X); injective morphism}
={p: M(Y) - M(X*); injective morphism}
=Mer (X* Y).

Since we have shown that Mer (X*, Y) is finite, we may conclude that Mer(X, Y)
is also finite.
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