Meromorphic Mappings onto Compact Complex Spaces of General Type

Shoshichi Kobayashi (Berkeley)* and Takushiro Ochiai (Bonn)**

To the memory of Yotaro Tsukamoto

1. Introduction

The main theorem of this paper is the following:

Theorem 1. Let X be a Moišezon space and Y a compact complex space of general type. Then the set of surjective meromorphic mappings of X onto Y is finite.^{1,2}

We recall that a compact complex space X is called a *Moišezon space* if the transcendence degree of its field of meromorphic functions is equal to the dimension of X. A compact complex manifold Y of dimension n is said to be of general type if

 $\sup_{m\to+\infty}\lim_{n\to+\infty}\frac{1}{m^n}\dim\Gamma(K_Y^m)>0,$

where K_Y is the canonical line bundle of Y and $\Gamma(K_Y^m)$ is the space of holomorphic sections of the line bundle K_Y^m . A compact complex space Y is said to be of general type if any (and hence every) non-singular model of Y is of general type.

If dim Y=1, Theorem 1 reduces to the classical theorem of de Franchis [3; p. 139]. Thus our result settles one of the conjectures of Lang [9]. In the theorem of de Franchis, Y is a curve of genus at least 2. The condition on Y in higher dimension suggested by Lang is that Y be hyperbolic. We assume instead that Y is of general type. It is very likely that a compact hyperbolic space is necessarily of general type.

The proof, easily reduced to the case where both X and Y are non-singular, projective-algebraic, is by a combination of arguments in [2, 3, 6, 12].

Theorem 1 implies that the group of bimeromorphic automorphisms of a compact complex space of general type is finite (see [2, 5] for a direct transcendental proof and [10] for a direct algebraic proof). It is, of course, desirable to find an algebraic proof of Theorem 1.

^{*} Partially supported by NSF Grant GP-42020X.

^{**} Supported by "Sonderforschungsbereich Theoretische Mathematik" at University of Bonn.

¹ Throughout the paper, X and Y denote reduced irreducible complex spaces.

² It has been pointed out by Professor Y. Namikawa that Theorem 1 holds for any compact complex space X which is not necessarily a Moišezon space. See the argument given at the end of the paper.

Improving on the result in [6], we show the following

Theorem 2. Let X be a complex space and A a complex subspace of X. Let Y be an n-dimensional compact complex space of general type. Then every meromorphic map $f: X - A \rightarrow Y$ of maximal rank n extends to a meromorphic map $f: X \rightarrow Y$.

From Theorems 1 and 2, we obtain

Corollary. Let X and Y be as in Theorem 1. Let A be a complex subspace of X. Then the set of meromorphic maps $f: X - A \rightarrow Y$ of maximal rank n (where $n = \dim Y$) is finite.

We say that $f: X - A \rightarrow Y$ is of rank *n* if its differential is of rank *n* at some regular point of X - A where *f* is holomorphic. Theorem 1 is proved in §§ $2 \sim 6$. The proof of Theorem 2 is indicated in § 7.

2. Reduction to the Case where X and Y are Non-Singular, Projective Algebraic

Every Moišezon space X is bimeromorphic to a projective algebraic variety (see Theorem 1 of [11]). By Hironaka's theorem on resolutions of singularities, X is bimeromorphic to a non-singular projective algebraic variety.

Let Y be a compact complex manifold of general type. Let $\Gamma(K_Y^m)^*$ be the dual space of $\Gamma(K_Y^m)$ and $P(\Gamma(K_Y^m)^*)$ the projective space of lines in $\Gamma(K_Y^m)^*$. The natural map $f_m: Y \to P(\Gamma(K_Y^m)^*)$ is, in general, meromorphic and its image is a variety of dimension $n(=\dim Y)$ for some m > 0, (see [1] for details). By pulling back meromorphic functions of $f_m(Y)$, we obtain *n* algebraically independent meromorphic functions on Y. We have shown that if Y is of general type, it is a Moišezon space. Hence, Y is bimeromorphic to a non-singular projective algebraic variety.

3. Schwarz Lemma

In this section we same that X is a compact complex manifold of dimension n and Y is an *n*-dimensional projective algebraic manifold of general type. As before, K_Y denotes the canonical line bundle of Y.

Then we have a positive integer m, a subspace W of $\Gamma(K_Y^m)$ and a line bundle L over Y with a holomorphic section $a \in \Gamma(L)$ such that

(1) $L^{-1}K_Y^m$ is very ample,

(2) $s \in \Gamma(L^{-1} K_Y^m) \to a s \in \Gamma(K_Y^m)$ defines an isomorphism of $\Gamma(L^{-1} K_Y^m)$ onto W.

For the proof of this assertion, see [7, 6]. Let s_0, s_1, \ldots, s_N be a basis for $\Gamma(L^{-1}K_Y^m)$ and t_0, t_1, \ldots, t_N the corresponding basis for W. Thus, $t_i = a s_i$ for $i = 0, 1, \ldots, N$. The common zeroes of t_0, t_1, \ldots, t_N is equal to the zeroes of the section a, which may or may not be empty.

We define a volume element ω_Y on Y by

 $\omega_Y := \left(\sum |t_j \wedge \bar{t}_j|\right)^{1/m}.$

This formal expression stands for the following 2n-form. In terms of a local coordinate system y^1, \ldots, y^n of Y, write

 $t_i = h_i (dy^1 \wedge \dots \wedge dy^n)^m,$

where h_i is a locally defined holomorphic function. Then

$$\omega_{\mathbf{Y}} = \left(\sum |h_j|^2\right)^{1/m} (\sqrt{-1})^n dy^1 \wedge d\bar{y}^1 \wedge \dots \wedge dy^n \wedge d\bar{y}^n$$

is a globally defined 2*n*-form on Y vanishing at the zeroes of the section $a \in \Gamma(L)$ and positive elsewhere.

Considering Llocally as product $U \times \mathbb{C}$ where U is a small open subset of Y, we can represent the section a by a holomorphic function a_U on U. Then the function

$$\frac{H}{|a_U|^2}, \quad \text{where } H := \sum |h_j|^2,$$

is everywhere positive since the zeroes of *H* cancel out with the zeroes of $|a_U|^2$. Since $\partial \bar{\partial} (\log H) = \partial \bar{\partial} (\log H/|a_U|^2)$, the Ricci tensor

$$R_{\alpha\bar{\beta}} = -\frac{1}{m} \partial^2 \log H / \partial y^{\alpha} \partial \bar{y}^{\beta}$$

is well defined everywhere on Y (even at the zeroes of H) and is negative definite. (The fact that the Ricci tensor is negative definite follows from the condition that $L^{-1} K_Y^m$ is very ample. In fact, from the definition of $R_{\alpha\bar{\beta}}$ above one sees immediately that $-R_{\alpha\bar{\beta}}$ is the metric tensor induced from the Fubini-Study metric of $P_N(\mathbb{C})$ by the imbedding $Y \rightarrow P_N(\mathbb{C})$ defined by (s_0, s_1, \ldots, s_N) .) We may summarize this by saying that the Ricci form associated to the volume form ω_Y is negative-definite everywhere.

Lemma 1. Let ω be the Poincaré-Bergman volume element of the unit polydisk Δ^n of dimension n. Then there exists a positive constant c such that

 $f^*\omega_{\mathbf{Y}} \leq c \cdot \omega$ for every meromorphic map $f: \Delta^n \to \mathbf{Y}$.

Proof. This is an equi-dimensional generalization of the Schwarz-Pick-Ahlfors lemma. Following Yau [12], we observe that f^*t_j , which is holomorphic outside the singularity set (i.e., the set of points of indeterminacy) $A \subset \Delta^n$, extends to a holomorphic "form" on Δ^n by the theorem of Hartogs since codim $A \ge 2$. It follows that $f^*\omega_Y$ extends also to a smooth 2n-form on Δ^n . The usual proof of the equi-dimensional Schwarz lemma for holomorphic mappings can be applied to the function $u = f^*\omega_Y/\omega$ on Δ^n . See [3, 4] for details.

Lemma 2. There exists an everywhere positive volume form ω_X on X such that

 $f^*\omega_Y \leq \omega_X$ for every meromorphic map $f: X \to Y$.

Proof. We cover X by a (locally) finite open cover $\{D_i\}$ such that each D_i is biholomorphic to the polydisk Δ^n . Let ω_i be the volume form on D_i corresponding to the volume form on Δ^n . Let $\{\rho_i\}$ be a partition of 1 subordinate to $\{D_i\}$. We set

$$\omega_{\mathbf{X}} := \sum \rho_i \omega_i.$$

Then there is a positive constant c such that $f^*\omega_Y \leq c \cdot \omega_X$ for every meromorphic map $f: X \to Y$. By normalizing ω_X , we may assume that c=1.

4. Compactness of the Set of Surjective Meromorphic Mappings

Throughout this section we assume again that X is a compact complex manifold of dimension n and Y is an n-dimensional projective algebraic manifold of general type. We set

M(X, Y):=the set of surjective meromorphic mappings of X onto Y.

Let W be the subspace of $\Gamma(K_Y^m)$ defined in § 3. As pointed out in the proof of Lemma, the theorem of Hartogs implies that every meromorphic mapping $f: X \to Y$ induces a linear map $f^*: W \to \Gamma(K_X^m)$.

In both W and $\Gamma(K_X^m)$ we define a norm || ||, (see [2]).

$$\begin{split} \|s\|^2 &:= \int\limits_X |s \wedge \bar{s}|^{1/m} \quad \text{for } s \in \Gamma(K_X^m) \\ \|t\|^2 &:= \int\limits_Y |t \wedge \bar{t}|^{1/m} \quad \text{for } t \in W. \end{split}$$

The symbolic expressions $|s \wedge \bar{s}|^{1/m}$ and $|t \wedge \bar{t}|^{1/m}$ should be interpreted in the same way as $(\sum |t_j \wedge \bar{t}_j|)^{1/m}$ in the definition of ω_Y ; they are 2*n*-forms on X and Y, respectively. Although these norms do not satisfy the convexity condition $||s+s'|| \leq ||s|| + ||s'||$, we shall call them "norms" by abuse of language.

Lemma 3. There is a positive constant c such that $||f^*t|| \leq c ||t||$ for every $t \in W$ and every meromorphic mapping $f: X \to Y$.

Proof. Since $\|\lambda t\| = |\lambda| \cdot \|t\|$ for every complex number λ , it suffices to show that there is a constant c such that $\|f^*t\| \leq c$ whenever $\|t\| \leq 1$. Let t_0, t_1, \ldots, t_N be the basis for W chosen in § 3. Every t in W can be written uniquely as

$$t = \sum \lambda_j(t) \cdot t_j,$$

where $\lambda_0(t), \ldots, \lambda_N(t)$ are complex numbers which depend linearly on t. Let c' be the maximum of $\sum |\lambda_j(t)|^2$ as t runs through the compact subset $||t|| \leq 1$ of W. By Schwarz's inequality, we have

$$|t \wedge \overline{t}| \leq c' \cdot \sum |t_j \wedge \overline{t}_j|$$
 on Y if $||t|| \leq 1$.

Hence,

$$|f^*t \wedge f^*\bar{t}| \leq c' \cdot f^* \left(\sum |t_j \wedge \bar{t}_j| \right) \quad \text{on } X \text{ if } ||t|| \leq 1.$$

Integrating the *m*-th roots of both sides, we obtain

$$||f^*t||^2 \leq c'^{1/m} \int_X f^* \omega_Y \quad \text{if } ||t|| \leq 1.$$

Because of Lemma 2, it suffices to set

$$c=c'^{1/m}\int_X\omega_X.$$

Lemma 4. $||f^*t|| \ge ||t||$ for every surjective $f \in M(X, Y)$ and $t \in W$.

Proof. We have

$$\|f^*t\|^2 = \int_X f^* |t \wedge \bar{t}|^{1/m} = (\deg f) \int_Y |t \wedge \bar{t}|^{1/m} = (\deg f) \|t\|^2 \ge \|t\|^2.$$

Two remarks are in order. Although the 2n-form $|t \wedge \bar{t}|^{1/m}$ vanishes on a subvariety of Y, it defines a nonzero element of $H^{2n}(Y; \mathbf{R})$. The formula

$$\int_X f^* |t \wedge \tilde{t}|^{1/m} = (\deg f) \int_Y |t \wedge \tilde{t}|^{1/m}$$

where deg f denotes the mapping degree of f, is well known when f is smooth. But deg f can be defined even when f is meromorphic and the formula above is still valid. Let \hat{X} be (a desingularization of) the graph of f and let $\hat{f}: \hat{X} \to Y$ be the holomorphic lift of f. Then we define deg $f = \text{deg } \hat{f}$. The meromorphic mapping f is surjective if and only if deg $f \ge 1$.

Lemma 5. If $f \in M(X, Y)$, then the induced linear map $f^*: W \to \Gamma(K_X^m)$ is injective.

Proof. Let t be a nonzero element of W and U an open subset of X in which f is regular and non-degenerate. Being a holomorphic section of K_Y^m , t cannot vanish identically on the open subset f(U) of Y. Hence, f^*t cannot vanish identically on U.

To state the next lemma, let

S := the dual space of $\Gamma(K_X^m)$,

T := the dual space of $W(\subset \Gamma(K_Y^m))$,

i := the natural meromorphic mapping $X \rightarrow P(S)$,

j := the natural imbedding $Y \rightarrow P(T)$,

where P(S) and P(T) denote the projective spaces consisting of complex lines through the origin in S and T respectively.

Let $f \in M(X, Y)$. Since $f^* \colon W \to \Gamma(K_X^m)$ is injective by Lemma 5, its dual map $f_* \colon S \to T$ is surjective. Let $\tilde{f} \colon P(S) \to P(T)$ be the meromorphic map induced by f_* . The proof of the following lemma is straightforward.

Lemma 6. Let $f \in M(X, Y)$. Then the diagram

$$P(S) \xrightarrow{\tilde{f}} P(T)$$

$$\uparrow i \qquad j \uparrow$$

$$X \xrightarrow{f} Y$$

commutes.

Lemma 7. Two distinct elements $f, g \in M(X, Y)$ give rise to distinct meromorphic mappings \tilde{f}, \tilde{g} of P(S) into P(T).

Proof. This follows from Lemma 6 and the fact that $j: Y \rightarrow P(T)$ is an imbedding.

Lemma 8. $\{f^*; f \in M(X, Y)\}$ is a compact subset of Hom $(W, \Gamma(K_X^m))$.

Proof. Let $M^* = \{f^*; f \in M(X, Y)\}$. Let c be a fixed positive constant. Then the set

 $\Phi := \{ \varphi \in \operatorname{Hom}(W, \Gamma(K_X^m)); \|t\| \le \|\varphi(t)\| \le c \|t\| \text{ for all } t \in W \}$

is a compact subset of Hom $(W, \Gamma(K_X^m))$. Let c be the constant given in Lemma 3. Then $M^* \subset \Phi$ by Lemmas 3 and 4. Let $\{f_k\}$ be an infinite sequence of elements in M(X, Y). By taking a subsequence if necessary, we may assume that $\{f_k^*\}$ converges to an element φ in Φ since Φ is compact. Since φ satisfies $\|\varphi(t)\| \ge \|t\|$, φ is an injective homomorphism $W \to \Gamma(K_X^m)$. The dual map of φ is a surjective homomorphism $S \to T$ and induces a meromorphic map $\tilde{\varphi}: P(S) \to P(T)$. Since $\varphi = \lim f_k^*$ and j(Y) is closed in P(T), it follows that $\tilde{\varphi} \circ i(x) \in j(Y)$ if x is a point in X (not belonging to the singularity set of $\tilde{\varphi} \circ i$). This shows that $\tilde{\varphi} \circ i: X \to P(T)$ is a meromorphic map of X into j(Y). If we set $f = j^{-1} \circ \tilde{\varphi} \circ i$, then $\varphi = f^*$. Since f^* is in Φ , it satisfies $\|f^*(t)\| \ge \|t\|$ and hence f is of maximal rank. This shows that f is in M(X, Y).

Remark. The proof of Lemma 5 shows that if $f \in M(X, Y)$, then $f^*: \Gamma(K_Y^m) \to \Gamma(K_X^m)$ is injective. Hence, dim $\Gamma(K_X^m) \ge \dim \Gamma(K_Y^m)$ if M(X, Y) is nonempty. This shows that X must be of general type if there is a surjective meromorphic mapping $f: X \to Y$.

The compactness of M(X, Y) has been obtained by P. Kiernan independently.

5. Analytic and Algebraic Structures on M(X, Y)

Let S and T be the dual spaces of $\Gamma(K_X^m)$ and W, respectively, as in §4. Let

 $H := \operatorname{Hom}(S, T).$

Each element of the projective space P(H) induces, in a natural way, a meromorphic map $P(S) \rightarrow P(T)$. If $f \in M(X, Y)$, then f_* is a nonzero element of Hby Lemma 5. (In fact, f_* is a surjective map $S \rightarrow T$.) Let \hat{f} be the element of P(H)represented by $f_* \in H$. Let

 $\widehat{M} := \{\widehat{f}; f \in M(X, Y)\} \subset P(H).$

By Lemma 7, \hat{M} is in a natural one-to-one correspondence with M(X, Y). By Lemma 8, \hat{M} is a compact subset of P(H).

Let Z be the set of elements of P(H) such that the induced meromorphic mappings $P(S) \rightarrow P(T)$ send i(X) into j(Y). Then Z is an algebraic variety in P(H). Let $\xi = (..., \xi_{\alpha}, ...)$ and $\eta = (..., \eta_{\lambda}, ...)$ be homogeneous coordinate systems for P(S) and P(T), respectively. Let $\zeta = (..., \zeta_{\lambda}^{\alpha}, ...)$ be the naturally induced homogeneous coordinate system for P(H). If J is the ideal of homogeneous polynomials $Q(\eta)$ defining the variety $j(Y) \subset P(T)$, then Z is defined by the set of homogeneous polynomials

$$\{Q_a(\zeta):=Q(\zeta\cdot\xi(a)); Q\in J \text{ and } a\in i(X)\},\$$

where $\zeta \cdot \xi$ denotes the matrix multiplication of ζ and ξ .

Clearly, \hat{M} is the subset of Z consisting of those elements which map i(X) surjectively onto j(Y). This shows that \hat{M} is an open subset of Z. On the other hand, \hat{M} is compact. Hence, \hat{M} is an algebraic subvariety of P(H).

Now, we are in a position to prove the main lemma.

Lemma 9. Let X be an n-dimensional compact complex manifold and Y an n-dimensional projective algebraic manifold of general type. Then M(X, Y) is finite.

Proof. The C*-bundle $H - \{0\} \rightarrow P(H)$, restricted to any algebraic subvariety of P(H), is (even topologically) non-trivial unless the subvariety is 0-dimensional. Over the subvariety \hat{M} this bundle has a section, namely $\hat{f} \in \hat{M} \rightarrow f_* \in H - \{0\}$. Hence, \hat{M} is 0-dimensional, i.e., finite. Being in one-to-one correspondence with $\hat{M}, M(X, Y)$ is finite.

6. The Case dim $X > \dim Y$

In this section we assume that X is a p-dimensional projective algebraic manifold and Y is an n-dimensional projective algebraic manifold of general type. We continue to denote the set of surjective meromorphic mappings $f: X \to Y$ by M(X, Y).

If p < n, then M(X, Y) is empty. The case p = n was settled in the preceding section. We assume therefore that p > n. Assuming that M(X, Y) is infinite, we choose a countable infinite subset $\{f_1, f_2, ...\}$ of M(X, Y) and fix it once and for all.

For each point x of X, let $G_n(X)_x$ be the Grassmannian of *n*-planes in the tangent space $T_x(X)$. Then $G_n(X) := \bigcup_{x \in X} G_n(X)_x$ is a bundle over X whose standard fibre is the Grassmannian of *n*-planes in \mathbb{C}^p . We say that an *n*-plane $V \in G_n(X)_x$ is *transversal* (with respect to $\{f_1, f_2, \ldots\}$) if every f_j induces an isomorphism

 $V \to T_{f_j(x)}(Y)$. **Lemma 10.** There exists a transversal $V \in G_n(X)$ such that $Tf_1 | V, Tf_2 | V, ...$ are mutually distinct. (Here Tf_j denotes the differential of f_j and maps T(X) into T(Y).)

Implicit in the statement is that f_1, f_2, \ldots are all regular at x when $V \in G_n(X)_x$.

Proof. For each *j*, let S_j be the singularity set of the meromorphic mapping f_j . For each *j*, let N_j be the set of $V \in G_n(X)_x$ such that f_j is regular at *x* and Tf_j : $V \to T_{f_j(x)}(Y)$ is not an isomorphism. For each pair (i, j), let P_{ij} be the set of $V \in G_n(X)_x$ such that both f_i and f_j are regular at *x* and $Tf_i | V = Tf_j | V$. Clearly, $\pi^{-1}(S_j)$ is a subvariety of $G_n(X)$, where $\pi: G_n(X) \to X$ is the projection. The set N_j is a subvariety of $G_n(X) - \pi^{-1}(S_j)$. The set P_{ij} is a subvariety of $G_n(X) - \pi^{-1}(S_i \cup S_j)$. Hence

$$G := G_n(X) - ((\bigcup_j \pi^{-1}(S_j)) \cup (\bigcup_j N_j) \cup (\bigcup_{i,j} P_{ij}))$$

is dense in $G_n(X)$. (In fact, G is the intersection of countably many dense open subsets $G_n(X) - \pi^{-1}(S_j)$, $G_n(X) - (\pi^{-1}(S_j) \cup N_j)$ and $G_n(X) - \pi^{-1}(S_i \cup S_j) \cup P_{ij}$, i, j = 1, 2, ...) Any element V in G satisfies the requirements of Lemma 10.

To complete the proof of Theorem 1, let $V \in G_n(X)_x$ be as in Lemma 10. Let X' be a subvariety of X passing through x such that $T_x(X') = V$. (This is where we use the assumption that X is projective algebraic.) By Lemma 10, $f_1 | X', f_2 | X', ...$ are mutually distinct elements of M(X', Y'). On the other hand, we know that M(X', Y') is finite since dim $X' = \dim Y'$. This contradiction arose from the assumption that M(X, Y) is infinite.

7. Proof of Theorem 2

As in § 2, we may assume that Y is a non-singular projective algebraic manifold of general type and that X is non-singular. We may also assume that $f: X - A \rightarrow Y$ is holomorphic since the points of indeterminacy may be included in A.

We shall show that the proof can be reduced to the case where A is also nonsingular. Let B be the singular locus of A so that A-B is a non-singular subspace of X-B. Suppose that $f: X-A \to Y$ extends to a meromorphic map $f: X-B \to Y$. Fix an imbedding $Y \subset P_N(\mathbb{C})$ and let w^0, \ldots, w^N be a homogeneous coordinate system for $P_N(\mathbb{C})$. The meromorphic functions $f^*(w^j/w^k)$ on X-B extends to meromorphic functions on X since B has codimension at least 2 in X. Hence, f extends to a meromorphic map $f: X \to Y$.

Localizing f, we may further assume that X is a unit polydisk D^p in \mathbb{C}^p and A is the polydisk $\{0\} \times D^{p-1} \subset D^p$. We denote the punctured disk $D - \{0\}$ by D^* so that $D^p - (\{0\} \times D^{p-1}) = D^* \times D^{p-1}$. Since the second Cousin problem is solvable for the domain $D^* \times D^{p-1}$, we can lift the holomorphic map $f: D^* \times D^{p-1} \to Y$ $\subset P_N(\mathbb{C})$ to a holomorphic map $\tilde{f}: D^* \times D^{p-1} \to \mathbb{C}^{N+1}$. Then \tilde{f} is given by a system of N+1 functions $\varphi^0(z^1, \ldots, z^p), \ldots, \varphi^N(z^1, \ldots, z^p)$ holomorphic in $0 < |z^1| < 1$, $|z^2| < 1, \ldots, |z^p| < 1$.

Now we use the particular imbedding $Y \subset P_N(\mathbb{C})$ constructed in § 3. We recall that the imbedding was defined using a certain (N+1)-dimensional subspace W of $\Gamma(K_Y^m)$. It suffices to prove the following

Lemma 11. Let

$$\varphi^{j}(z^{1},...,z^{p}) = \sum_{h=-\infty}^{\infty} A_{h}^{j}(z^{2},...,z^{p})(z^{1})^{h}, \quad j=0, 1,...,N,$$

be Laurent expansions with respect to the variable z^1 with holomorphic coefficients $A_h^j(z^2, ..., z^p)$. Then $A_h^j(z^2, ..., z^p) = 0$ for $h \leq -m$.

Proof. This lemma was proved when p=n and the map $f: D^* \times D^{n-1} \to Y$ is of maximal rank in our earlier paper [6], where the particular construction of the imbedding $Y \subset P_N(\mathbb{C})$ was used strongly. We note that the integer *m* appearing in Lemma 11 is the exponent in K_Y^m .

Assume that p > n. Since $f: D^* \times D^{p-1} \to Y$ is of rank *n*, there exists an *n*-dimensional plane *P* in \mathbb{C}^p (not necessarily through the origin) such that the restriction of *f* to the intersection $P \cap (D^* \times D^{p-1})$ is of rank *n*.

By moving P slightly if necessary, we may assume that P intersects the hyperplane $z^1 = 0$ transversally. By a linear change of the coordinate system in \mathbb{C}^p , we may further assume that P is defined by

$$z^{n+1}=a^{n+1},\ldots,z^p=a^p,$$

where a^{n+1}, \ldots, a^p are constants. We define

$$\begin{aligned} &\alpha = (a^{n+1}, \dots, a^p), \\ &f_{\alpha}(z^1, \dots, z^n) = f(z^1, \dots, z^n, a^{n+1}, \dots, a^p), \\ &\phi_{\alpha}^{j}(z^1, \dots, z^n) = \phi^{j}(z^1, \dots, z^n, a^{n+1}, \dots, a^p). \end{aligned}$$

Then $(\varphi_{\alpha}^{0}, \ldots, \varphi_{\alpha}^{N})$ gives the lift of f_{α} . The Laurent expansions of φ_{α}^{j} are given by

$$\varphi^j_{\alpha}(z^1,\ldots,z^n) = \sum_{h=-\infty}^{\infty} A^j_h(z^2,\ldots,z^n,a^{n+1},\ldots,a^p)(z^1)^h.$$

Since Lemma 11 holds for p=n and hence for f_{α} , we obtain

$$A_h^j(z^2,...,z^n,a^{n+1},...,a^p) = 0$$
 for $h \le -m$.

Since f_{α} remains to be of rank *n* when $\alpha = (a^{n+1}, \dots, a^p)$ is moved slightly, we have

 $A_{h}^{j}(z^{2},...,z^{n},z^{n+1},...,z^{p})=0$ for $h \leq -m$

for (z^{n+1}, \ldots, z^p) in a neighborhood of (a^{n+1}, \ldots, a^p) and hence for all (z^{n+1}, \ldots, z^n) . This completes the proof of Lemma 11.

As stated in Footnote (2), we shall extend Theorem 1 to an arbitrary compact complex space X. Let $\mathfrak{M}(X)$ and $\mathfrak{M}(Y)$ be the fields of meromorphic functions on X and Y, respectively. Let X^* be a projective algebraic variety with $\mathfrak{M}(X) = \mathfrak{M}(X^*)$. Then

 $Mer(X, Y) \subset \{\varphi : \mathfrak{M}(Y) \to \mathfrak{M}(X); \text{ injective morphism} \}$ $= \{\varphi : \mathfrak{M}(Y) \to \mathfrak{M}(X^*); \text{ injective morphism} \}$ $= Mer(X^*, Y).$

Since we have shown that Mer (X^*, Y) is finite, we may conclude that Mer(X, Y) is also finite.

References

- 1. Iitaka, S.: On D-dimensions of algebraic varieties. J. Math. Soc. Japan 23, 356-373 (1971)
- 2. Kobayashi, S.: On the automorphism group of a certain class of algebraic manifolds. Tohoku Math. J. 11, 184–190 (1959)
- Kobayashi, S.: Volume elements, holomorphic mappings and Schwarz lemma. Proc. Symp. Pure Math. 11 (1968), Amer. Math. Soc. Entire Functions and Related Parts Analysis, pp. 253–260
- 4. Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. New York: Marcel Dekker 1970
- 5. Kobayashi, S.: Transformation groups in differential geometry, Ergebnisse der Math., Vol. 70. Berlin-Heidelberg-New York: Springer 1972
- 6. Kobayashi, S., Ochiai, T.: Mappings into compact complex manifolds with negative first Chern class. J. Math. Soc. Japan 23, 137-148 (1971)

- 7. Kodaira, K.: Holomorphic mappings of polydiscs into compact complex manifolds. J. Diff. Geometry 6, 33-46 (1971)
- 8. Lang, S.: Diophantine geometry. Wyley 1962
- 9. Lang, S.: Higher dimensional diophantine problems. Bull. Amer. Math. Soc. 80, 779-787 (1974)
- Matsumura, H.: On algebraic groups of birational transformations. Accad. Naz. dei Lincei 34, 151-155 (1963)
- 11. Moišezon, B.G.: On *n*-dimensional compact varieties with *n* algebraically independent meromorphic functions, I, II, III. Amer. Math. Soc. Translations, ser. 2, 63, 51-177 (1967)
- 12. Yau, S.T.: Intrinsic measures of compact complex manifolds. Math. Ann. 212, 317-329 (1975)

Received February 24, 1975

S. Kobayashi University of Berkeley Department of Mathematics Berkeley, California 94720 USA