Meromorphic Mappings onto Compact Complex Spaces of General Type

Shoshichi Kobayashi (Berkeley)^{*} and Takushiro Ochiai (Bonn)^{**}

To the memory of Yotaro Tsukamoto

I. Introduction

The main theorem of this paper is the following:

Theorem 1. *Let X be a Moi}ezon space and Y a compact complex space of general type. Then the set of surjective meromorphic mappings of X onto Y is finite, i, 2*

We recall that a compact complex space X is called a *Moisezon space* if the transcendence degree of its field of meromorphic functions is equal to the dimension of X. A compact complex manifold Y of dimension n is said to be of *general type* if

 $\sup_{m \to +\infty} \lim_{m^n} \frac{1}{m^n} \dim \Gamma(K_Y^m) > 0,$

where K_Y is the canonical line bundle of Y and $\Gamma(K_Y^m)$ is the space of holomorphic sections of the line bundle K_{ν}^{m} . A compact complex space Y is said to be of general type if any (and hence every) non-singular model of Y is of general type.

If dim $Y=1$, Theorem 1 reduces to the classical theorem of de Franchis [3; p. 139]. Thus our result settles one of the conjectures of Lang [9]. In the theorem of de Franchis, Y is a curve of genus at least 2. The condition on Y in higher dimension suggested by Lang is that Y be hyperbolic. We assume instead that Y is of general type. It is very likely that a compact hyperbolic space is necessarily of general type.

The proof, easily reduced to the case where both X and Y are non-singular, projective-algebraic, is by a combination of arguments in [2, 3, 6, 12].

Theorem 1 implies that the group of bimeromorphic automorphisms of a compact complex space of general type is finite (see [2, 5] for a direct transcendental proof and [10] for a direct algebraic proof). It is, of course, desirable to find an algebraic proof of Theorem 1.

^{*} Partially supported by NSF Grant GP-42020X.

^{**} Supported by "Sonderforschungsbereich Theoretische Mathematik" at University of Bonn.

¹ Throughout the paper, X and Y denote reduced irreducible complex spaces.

² It has been pointed out by Professor Y. Namikawa that Theorem 1 holds for any compact complex space X which is not necessarily a Moisezon space. See the argument given at the end of the paper.

Improving on the result in [6], we show the following

Theorem 2. *Let X be a complex space and A a complex subspace of X. Let Y be an n-dimensional compact complex space of general type. Then every meromorphic map f:* $X - A \rightarrow Y$ *of maximal rank n extends to a meromorphic map f:* $X \rightarrow Y$ *.*

From Theorems 1 and 2, we obtain

Corollary. *Let X and Y be as in Theorem 1. Let A be a complex subspace of X. Then the set of meromorphic maps f:* $X - A \rightarrow Y$ *of maximal rank n (where n = dim Y) is finite.*

We say that $f: X - A \rightarrow Y$ is of rank *n* if its differential is of rank *n* at some regular point of $X-A$ where f is holomorphic. Theorem 1 is proved in §§ 2~6. The proof of Theorem 2 is indicated in \S 7.

2. Reduction to the Case where X and Yare Non-Singular, Projective Algebraic

Every Moisezon space X is bimeromorphic to a projective algebraic variety (see Theorem 1 of [11]). By Hironaka's theorem on resolutions of singularities, X is bimeromorphic to a non-singular projective algebraic variety.

Let Y be a compact complex manifold of general type. Let $\Gamma(K_v^m)^*$ be the dual space of $\Gamma(K_\gamma^m)$ and $P(\Gamma(K_\gamma^m)^*)$ the projective space of lines in $\Gamma(K_\gamma^m)^*$. The natural map f_* : $Y \rightarrow P(\Gamma(K^m_Y)^*)$ is, in general, meromorphic and its image is a variety of dimension $n(=\dim Y)$ for some $m>0$, (see [1] for details). By pulling back meromorphic functions of $f_m(Y)$, we obtain n algebraically independent meromorphic functions on Y. We have shown that if Y is of general type, it is a Moisezon space. Hence, Y is bimeromorphic to a non-singular projective algebraic variety.

3. Schwarz Lemma

In this section we same that X is a compact complex manifold of dimension n and Y is an *n*-dimensional projective algebraic manifold of general type. As before, $K_{\rm v}$ denotes the canonical line bundle of Y.

Then we have a positive integer m, a subspace W of $\Gamma(K_{Y}^{m})$ and a line bundle L over Y with a holomorphic section $a \in \Gamma(L)$ such that

(1) $L^{-1} K_Y^m$ is very ample,

(2) $s \in \Gamma(L^{-1} K_Y^m) \rightarrow a s \in \Gamma(K_Y^m)$ defines an isomorphism of $\Gamma(L^{-1} K_Y^m)$ onto W.

For the proof of this assertion, see [7, 6]. Let s_0, s_1, \ldots, s_N be a basis for $\Gamma(L^{-1}K_Y^m)$ and t_0,t_1,\ldots,t_N the corresponding basis for W. Thus, $t_i=a s_i$ for $i = 0, 1, \ldots, N$. The common zeroes of t_0, t_1, \ldots, t_N is equal to the zeroes of the section a, which may or may not be empty.

We define a volume element ω_Y on Y by

 $\omega_{\mathbf{Y}}:=(\sum|t_i\wedge \bar{t}_i|)^{1/m}.$

This formal expression stands for the following 2n-form. In terms of a local coordinate system y^1, \ldots, y^n of Y, write

 $t_i=h_i(dy^1 \wedge \cdots \wedge dy^n)^m$,

where h_i is a locally defined holomorphic function. Then

$$
\omega_Y = (\sum |h_j|^2)^{1/m} \left(\sqrt{-1}\right)^n dy^1 \wedge d\bar{y}^1 \wedge \cdots \wedge dy^n \wedge d\bar{y}^n
$$

is a globally defined 2*n*-form on Y vanishing at the zeroes of the section $a \in \Gamma(L)$ and positive elsewhere.

Considering Llocally as product $U \times C$ where U is a small open subset of Y, we can represent the section a by a holomorphic function a_{U} on U. Then the function

$$
\frac{H}{|a_U|^2}, \quad \text{where } H := \sum |h_j|^2,
$$

is everywhere positive since the zeroes of H cancel out with the zeroes of $|a_{ij}|^2$. Since $\partial \overline{\partial}$ (log H) = $\partial \overline{\partial}$ (log $H/|a_{ij}|^2$), the Ricci tensor

$$
R_{\alpha\bar{\beta}} = -\frac{1}{m}\partial^2 \log H/\partial y^{\alpha}\partial \bar{y}^{\beta}
$$

is well defined everywhere on Y (even at the zeroes of H) and is negative definite. (The fact that the Ricci tensor is negative definite follows from the condition that $L^{-1} K_Y^m$ is very ample. In fact, from the definition of $R_{\alpha\bar{\beta}}$ above one sees immediately that $-R_{\alpha\bar{\beta}}$ is the metric tensor induced from the Fubini-Study metric of $P_N(C)$ by the imbedding $Y \rightarrow P_N(C)$ defined by (s_0, s_1, \ldots, s_N) .) We may summarize this by saying that the Ricci form associated to the volume form ω_Y is negative-definite everywhere.

Lemma 1. Let ω be the Poincaré-Bergman volume element of the unit polydisk *A" of dimension n. Then there exists a positire constant c such that*

 $f^* \omega_Y \leq c \cdot \omega$ for every meromorphic map $f: A^n \to Y$.

Proof. This is an equi-dimensional generalization of the Schwarz-Pick-Ahlfors lemma. Following Yau [12], we observe that $f * t_i$, which is holomorphic outside the singularity set (i.e., the set of points of indeterminacy) $A \subset \Delta^n$, extends to a holomorphic "form" on Δ^n by the theorem of Hartogs since codim $A \ge 2$. It follows that $f^* \omega_Y$ extends also to a smooth 2*n*-form on Δ^n . The usual proof of the equi-dimensional Schwarz lemma for holomorphic mappings can be applied to the function $u = f^* \omega_y / \omega$ on Δ^n . See [3, 4] for details.

Lemma 2. *There exists an everywhere positive volume form* ω_X *on* X such that

 $f^* \omega_Y \leq \omega_X$ for every meromorphic map $f: X \to Y$.

Proof. We cover X by a (locally) finite open cover $\{D_i\}$ such that each D_i is biholomorphic to the polydisk Δ^n . Let ω_i be the volume form on D_i corresponding to the volume form on Δ^n . Let $\{\rho_i\}$ be a partition of 1 subordinate to $\{D_i\}$. We set

$$
\omega_X\!:=\!\sum \rho_i\omega_i.
$$

Then there is a positive constant c such that $f^* \omega_Y \leq c \cdot \omega_X$ for every meromorphic map $f: X \to Y$. By normalizing ω_X , we may assume that $c = 1$.

4. Compactness of the Set of Surjective Meromorphic Mappings

Throughout this section we assume again that X is a compact complex manifold of dimension n and Y is an *n*-dimensional projective algebraic manifold of general type. We set

 $M(X, Y)$: = the set of surjective meromorphic mappings of X onto Y.

Let W be the subspace of $F(K_v^m)$ defined in §3. As pointed out in the proof of Lemma, the theorem of Hartogs implies that every meromorphic mapping f: $X \rightarrow Y$ induces a linear map $f^*: W \rightarrow \Gamma(K^m_Y)$.

In both *W* and $\Gamma(K^m)$ we define a norm $\|\cdot\|$, (see [2]).

$$
||s||^2 := \int\limits_X |s \wedge \overline{s}|^{1/m} \quad \text{for } s \in \Gamma(K_X^m),
$$

$$
||t||^2 := \int\limits_Y |t \wedge \overline{t}|^{1/m} \quad \text{for } t \in W.
$$

The symbolic expressions $|s \wedge \overline{s}|^{1/m}$ and $|t \wedge \overline{t}|^{1/m}$ should be interpreted in the same way as $(\sum |t_i \wedge \bar{t}_i|)^{1/m}$ in the definition of ω_Y ; they are 2*n*-forms on X and Y, respectively. Although these norms do not satisfy the convexity condition $||s+s'|| \le ||s|| + ||s'||$, we shall call them "norms" by abuse of language.

Lemma 3. *There is a positive constant c such that* $||f^*t|| \leq c||t||$ *for every* $t \in W$ and every meromorphic mapping $f: X \rightarrow Y$.

Proof. Since $||\lambda t|| = |\lambda| \cdot ||t||$ for every complex number λ , it suffices to show that there is a constant c such that $|| f^* t || \leq c$ whenever $||t|| \leq 1$. Let $t_0, t_1, ..., t_N$ be the basis for W chosen in §3. Every t in W can be written uniquely as

$$
t = \sum \lambda_j(t) \cdot t_j,
$$

where $\lambda_0(t)$, ..., $\lambda_N(t)$ are complex numbers which depend linearly on t. Let c' be the maximum of $\sum |\lambda_i(t)|^2$ as t runs through the compact subset $||t|| \le 1$ of W. By Schwarz's inequality, we have

$$
|t \wedge \overline{t}| \leqq c' \cdot \sum |t_j \wedge \overline{t}_j| \quad \text{on } Y \text{ if } ||t|| \leqq 1.
$$

Hence,

$$
|f^*t \wedge f^*\overline{t}| \leq c' \cdot f^*\left(\sum |t_j \wedge \overline{t}_j|\right) \quad \text{on } X \text{ if } \|t\| \leq 1.
$$

Integrating the m-th roots of both sides, we obtain

$$
||f * t||^2 \leq c'^{1/m} \int_X f^* \omega_Y
$$
 if $||t|| \leq 1$.

Because of Lemma 2, it suffices to set

$$
c = c'^{1/m} \int\limits_X \omega_X \, .
$$

Lemma 4. $|| f * t || \ge ||t||$ *for every surjective* $f \in M(X, Y)$ *and* $t \in W$ *.*

Proof. We have

$$
||f^*t||^2 = \int\limits_X f^*|t \wedge \overline{t}|^{1/m} = (\deg f) \int\limits_Y |t \wedge \overline{t}|^{1/m} = (\deg f) ||t||^2 \ge ||t||^2.
$$

Two remarks are in order. Although the $2n$ -form $\lvert t \wedge \bar{t} \rvert^{1/m}$ vanishes on a subvariety of Y, it defines a nonzero element of $H^{2n}(Y; \mathbf{R})$. The formula

$$
\int\limits_X f^* |t \wedge \overline{t}|^{1/m} = (\deg f) \int\limits_Y |t \wedge \overline{t}|^{1/m},
$$

where deg f denotes the mapping degree of f, is well known when f is smooth. But deg \tilde{f} can be defined even when \tilde{f} is meromorphic and the formula above is still valid. Let \hat{X} be (a desingularization of) the graph of f and let $\hat{f}: \hat{X} \to Y$ be the holomorphic lift of f. Then we define deg $\hat{f} = \deg \hat{f}$. The meromorphic mapping f is surjective if and only if deg $f \ge 1$.

Lemma 5. If $f \in M(X, Y)$, then the induced linear map $f^*: W \to \Gamma(K_X^m)$ is *injective.*

Proof. Let t be a nonzero element of W and U an open subset of X in which f is regular and non-degenerate. Being a holomorphic section of K_{Y}^{m} , t cannot vanish identically on the open subset $f(U)$ of Y. Hence, $f * t$ cannot vanish identically on U.

To state the next lemma, let

 $S =$ the dual space of $\Gamma(K_X^m)$,

T:=the dual space of $W(\subset \Gamma(K_v^m))$,

 $i:$ the natural meromorphic mapping $X \rightarrow P(S)$,

 $i =$ the natural imbedding $Y \rightarrow P(T)$,

where $P(S)$ and $P(T)$ denote the projective spaces consisting of complex lines through the origin in S and T respectively.

Let $f \in M(X, Y)$. Since $f^*: W \to \Gamma(K_Y^m)$ is injective by Lemma 5, its dual $map f_* : S \to T$ is surjective. Let $\tilde{f}: P(S) \to P(T)$ be the meromorphic map induced by f_* . The proof of the following lemma is straightforward.

Lemma 6. Let $f \in M(X, Y)$. Then the diagram

$$
P(S) \xrightarrow{\tilde{f}} P(T)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
X \xrightarrow{\tilde{f}} Y
$$

commutes.

Lemma 7. *Two distinct elements f,* $g \in M(X, Y)$ *give rise to distinct meromorphic mappings* \tilde{f} *,* \tilde{g} *of P(S) into P(T).*

Proof. This follows from Lemma 6 and the fact that $j: Y \rightarrow P(T)$ is an imbedding.

Lemma 8. { f^* ; $f \in M(X, Y)$ } *is a compact subset of* Hom $(W, \Gamma(K^m))$.

Proof. Let $M^* = \{f^*; f \in M(X, Y)\}\$. Let c be a fixed positive constant. Then the set

 Φ = { φ e Hom $(W, \Gamma(K_{X}^{m}))$; $||t|| \leq ||\varphi(t)|| \leq c||t||$ for all $t \in W$ }

is a compact subset of Hom $(W, \Gamma(K_X^m))$. Let c be the constant given in Lemma 3. Then $M^* \subset \Phi$ by Lemmas 3 and 4. Let $\{f_k\}$ be an infinite sequence of elements in $M(X, Y)$. By taking a subsequence if necessary, we may assume that $\{f_k^*\}$ converges to an element φ in Φ since Φ is compact. Since φ satisfies $\|\varphi(t)\| \geq \|t\|$, φ is an injective homomorphism $W \to \Gamma(K_{\mathcal{X}}^m)$. The dual map of φ is a surjective homomorphism $S \rightarrow T$ and induces a meromorphic map $\tilde{\varphi}$: $P(S) \rightarrow P(T)$. Since $\varphi = \lim f^*$ and $j(Y)$ is closed in $P(T)$, it follows that $\tilde{\varphi} \circ i(x) \in j(Y)$ if x is a point in X (not belonging to the singularity set of $\tilde{\varphi} \circ i$). This shows that $\tilde{\varphi} \circ i: X \to P(T)$ is a meromorphic map of X into $j(Y)$. If we set $f = j^{-1} \circ \tilde{\varphi} \circ i$, then $\varphi = f^*$. Since f^* is in Φ , it satisfies $||f^*(t)|| \ge ||t||$ and hence f is of maximal rank. This shows that f is in $M(X, Y)$.

Remark. The proof of Lemma 5 shows that if $f \in M(X, Y)$, then $f^*: F(K_v^m)$ \rightarrow *F(K*^m) is injective. Hence, dim $F(K^m_\nu) \geq \dim F(K^m_\nu)$ if $M(X, Y)$ is nonempty. This shows that X must be of general type if there is a surjective meromorphic mapping $f: X \rightarrow Y$.

The compactness of $M(X, Y)$ has been obtained by P. Kiernan independently.

5. Analytic and Algebraic Structures on *M(X, Y)*

Let S and T be the dual spaces of $\Gamma(K_N^m)$ and W, respectively, as in §4. Let

 $H:={\rm Hom}(S,T).$

Each element of the projective space $P(H)$ induces, in a natural way, a meromorphic map $P(S) \rightarrow P(T)$. If $f \in M(X, Y)$, then f_* is a nonzero element of H by Lemma 5. (In fact, f_* is a surjective map $S \to T$.) Let \hat{f} be the element of $P(H)$ represented by $f_* \in H$. Let

 $\hat{M}:=\{\hat{f}; f\in M(X, Y)\}\subset P(H).$

By Lemma 7, \hat{M} is in a natural one-to-one correspondence with $M(X, Y)$. By Lemma 8, \tilde{M} is a compact subset of $P(H)$.

Let Z be the set of elements of $P(H)$ such that the induced meromorphic mappings $P(S) \rightarrow P(T)$ send $i(X)$ into $j(Y)$. Then Z is an algebraic variety in $P(H)$. Let $\xi = (..., \xi_{\alpha}, ...)$ and $\eta = (..., \eta_{\lambda}, ...)$ be homogeneous coordinate systems for $P(S)$ and $P(T)$, respectively. Let $\zeta = (\ldots, \zeta_2^*, \ldots)$ be the naturally induced homogeneous coordinate system for *P(H). If J* is the ideal of homogeneous polynomials $O(n)$ defining the variety $j(Y) \subset P(T)$, then Z is defined by the set of homogeneous polynomials

$$
\{Q_a(\zeta) \colon Q(\zeta \cdot \xi(a)); \ Q \in J \text{ and } a \in i(X)\},
$$

where $\zeta \cdot \zeta$ denotes the matrix multiplication of ζ and ζ .

Clearly, \hat{M} is the subset of Z consisting of those elements which map $i(X)$ surjectively onto $j(Y)$. This shows that \hat{M} is an open subset of Z. On the other hand, \hat{M} is compact. Hence, \hat{M} is an algebraic subvariety of $P(H)$.

Now, we are in a position to prove the main lemma.

Lemma 9. *Let X be an n-dimensional compact complex manifold and Y an n*-dimensional projective algebraic manifold of general type. Then $M(X, Y)$ is *finite.*

Proof. The C*-bundle $H - \{0\} \rightarrow P(H)$, restricted to any algebraic subvariety of *P(H),* is (even topologically) non-trivial unless the subvariety is 0-dimensional. Over the subvariety \hat{M} this bundle has a section, namely $\hat{f} \in \hat{M} \rightarrow f_* \in H - \{0\}$. Hence, \hat{M} is 0-dimensional, i.e., finite. Being in one-to-one correspondance with \hat{M} , $M(X, Y)$ is finite.

6. The Case dim $X >$ **dim Y**

 $V \to T_{f_1(x)}(Y).$

In this section we assume that X is a *p*-dimensional projective algebraic manifold and Y is an n-dimensional projective algebraic manifold of general type. We continue to denote the set of surjective meromorphic mappings $f: X \rightarrow Y$ by $M(X, Y)$.

If $p < n$, then $M(X, Y)$ is empty. The case $p = n$ was settled in the preceding section. We assume therefore that $p>n$. Assuming that $M(X, Y)$ is infinite, we choose a countable infinite subset $\{f_1, f_2,...\}$ of $M(X, Y)$ and fix it once and for all.

For each point x of X, let $G_n(X)$, be the Grassmannian of *n*-planes in the tangent space $T_x(X)$. Then $G_n(X) = \bigcup G_n(X)_x$ is a bundle over X whose standard fibre is the Grassmannian of *n*-planes in *C^p*. We say that an *n*-plane $V \in G_n(X)_x$ is *transversal* (with respect to $\{f_1, f_2, ...\}$) if every f_i induces an isomorphism

Lemma 10. *There exists a transversal* $V \in G_n(X)$ *such that* $Tf_1 | V, Tf_2 | V, ...$ *are mutually distinct. (Here Tf_j denotes the differential of* f_j *and maps T(X) into T(Y).)*

Implicit in the statement is that f_1, f_2, \ldots are all regular at x when $V \in G_n(X)_x$.

Proof. For each *j*, let *S_i* be the singularity set of the meromorphic mapping f_i . For each j, let N_i be the set of $V \in G_n(X)$ _x such that f_i is regular at x and Tf_i : V \rightarrow $T_{f_j(x)}(Y)$ is *not* an isomorphism. For each pair *(i, j)*, let P_{ij} be the set of $V \in G_n(X)_x$ such that both f_i and f_j are regular at x and $Tf_i|V=Tf_j|V$. Clearly, $\pi^{-1}(S_j)$ is a subvariety of $G_n(X)$, where $\pi: G_n(X) \to X$ is the projection. The set N_i is a subvariety of $G_n(X)-\pi^{-1}(S_j)$. The set P_{ij} is a subvariety of $G_n(X)-\pi^{-1}(S_i\cup S_j)$. Hence

$$
G := G_n(X) - ((\bigcup_j \pi^{-1}(S_j)) \cup (\bigcup_j N_j) \cup (\bigcup_{i,j} P_{ij}))
$$

is dense in $G_n(X)$. (In fact, G is the intersection of countably many dense open subsets $G_n(X) - \pi^{-1}(S_i)$, $G_n(X) - (\pi^{-1}(S_i) \cup N_i)$ and $G_n(X) - \pi^{-1}(S_i \cup S_i) \cup P_{i,j}$, $i, j = 1, 2, \ldots$) Any element V in G satisfies the requirements of Lemma 10.

To complete the proof of Theorem 1, let $V \in G_n(X)$, be as in Lemma 10. Let X' be a subvariety of X passing through x such that $T_r(X') = V$. (This is where we use the assumption that X is projective algebraic.) By Lemma 10, $f_1 | X', f_2 | X', \ldots$ are mutually distinct elements of $M(X, Y)$. On the other hand, we know that $M(X', Y')$ is finite since dim $X' = \dim Y'$. This contradiction arose from the assumption that $M(X, Y)$ is infinite.

7. Proof of Theorem 2

As in §2, we may assume that Y is a non-singular projective algebraic manifold of general type and that X is non-singular. We may also assume that $f: X - A \rightarrow Y$ is holomorphic since the points of indeterminacy may be included in A.

We shall show that the proof can be reduced to the case where A is also nonsingular. Let B be the singular locus of A so that $A - B$ is a non-singular subspace of $X - B$. Suppose that $f: X - A \rightarrow Y$ extends to a meromorphic map $f: X - B \rightarrow Y$. Fix an imbedding $Y \subseteq P_N(C)$ and let w^0, \ldots, w^N be a homogeneous coordinate system for $P_N(C)$. The meromorphic functions $f^*(w^j/w^k)$ on $X-B$ extends to meromorphic functions on X since B has codimension at least 2 in X . Hence, f extends to a meromorphic map $f: X \rightarrow Y$.

Localizing f, we may further assume that X is a unit polydisk D^p in \mathbb{C}^p and A is the polydisk $\{0\} \times D^{p-1} \subset D^p$. We denote the punctured disk $D - \{0\}$ by D^* so that $D^p - (\{0\} \times D^{p-1}) = D^* \times D^{p-1}$. Since the second Cousin problem is solvable for the domain $D^* \times D^{p-1}$, we can lift the holomorphic map $f: D^* \times D^{p-1} \to Y$ $\subset P_N(C)$ to a holomorphic map $\tilde{f}: D^* \times D^{p-1} \to C^{N+1}$. Then \tilde{f} is given by a system of $N+1$ functions $\varphi^{0}(z^{1},..., z^{p}), ..., \varphi^{N}(z^{1},..., z^{p})$ holomorphic in $0 < |z^{1}| < 1$, $|z^2|$ < 1, ..., $|z^p|$ < 1.

Now we use the particular imbedding $Y \subset P_N(C)$ constructed in § 3. We recall that the imbedding was defined using a certain $(N + 1)$ -dimensional subspace W of $\Gamma(K_v^m)$. It suffices to prove the following

Lemma 11. *Let*

$$
\varphi^{j}(z^{1},..., z^{p}) = \sum_{h=-\infty}^{\infty} A_{h}^{j}(z^{2},..., z^{p})(z^{1})^{h}, \quad j=0, 1, ..., N,
$$

be Laurent expansions with respect to the variable $z¹$ with holomorphic coefficients $A_h^j(z^2, ..., z^p)$. Then $A_h^j(z^2, ..., z^p) = 0$ for $h \leq -m$.

Proof. This lemma was proved when $p = n$ and the map $f: D^* \times D^{n-1} \to Y$ is of maximal rank in our earlier paper [6], where the particular construction of the imbedding $Y \subseteq P_N(C)$ was used strongly. We note that the integer m appearing in Lemma 11 is the exponent in K_v^m .

Assume that $p>n$. Since $f: D^* \times D^{p-1} \to Y$ is of rank *n*, there exists an *n*-dimensional plane P in \mathbb{C}^p (not necessarily through the origin) such that the restriction of f to the intersection $P \cap (D^* \times D^{p-1})$ is of rank n.

By moving P slightly if necessary, we may assume that P intersects the hyperplane $z^1 = 0$ transversally. By a linear change of the coordinate system in \mathbb{C}^p , we may further assume that P is defined by

$$
z^{n+1} = a^{n+1}, \ldots, z^p = a^p,
$$

where a^{n+1}, \ldots, a^p are constants. We define

$$
\alpha = (a^{n+1}, \dots, a^p),
$$

\n
$$
f_x(z^1, \dots, z^n) = f(z^1, \dots, z^n, a^{n+1}, \dots, a^p),
$$

\n
$$
\varphi_x^j(z^1, \dots, z^n) = \varphi^j(z^1, \dots, z^n, a^{n+1}, \dots, a^p).
$$

Then $(\varphi_2^0, \ldots, \varphi_n^N)$ gives the lift of f_x . The Laurent expansions of φ_a^j are given by

$$
\varphi_{\alpha}^{j}(z^{1},..., z^{n}) = \sum_{h=-\infty}^{\infty} A_{h}^{j}(z^{2},..., z^{n}, a^{n+1},..., a^{p})(z^{1})^{h}.
$$

Since Lemma 11 holds for $p = n$ and hence for f_a , we obtain

$$
A_h^j(z^2, ..., z^n, a^{n+1}, ..., a^p) = 0
$$
 for $h \leq -m$.

Since f_{α} remains to be of rank *n* when $\alpha = (a^{n+1}, \dots, a^p)$ is moved slightly, we have

 $A_h^j(z^2, ..., z^n, z^{n+1}, ..., z^p) = 0$ for $h \leq -m$

for (z^{n+1}, \ldots, z^p) in a neighborhood of (a^{n+1}, \ldots, a^p) and hence for all (z^{n+1}, \ldots, z^n) . This completes the proof of Lemma 11.

As stated in Footnote (2), we shall extend Theorem 1 to an arbitrary compact complex space X. Let $\mathfrak{M}(X)$ and $\mathfrak{M}(Y)$ be the fields of meromorphic functions on X and Y, respectively. Let X^* be a projective algebraic variety with $\mathfrak{M}(X)$ $=\mathfrak{M}(X^*)$. Then

Mer $(X, Y) \subset \{\omega : \mathfrak{M}(Y) \to \mathfrak{M}(X);$ injective morphism} $=\{\varphi : \mathfrak{M}(Y) \rightarrow \mathfrak{M}(X^*)\; ; \; \text{injective morphism}\}$ $=$ Mer (X^*, Y) .

Since we have shown that Mer (X^*, Y) is finite, we may conclude that Mer (X, Y) is also finite.

References

- 1. litaka, S.: On D-dimensions of algebraic varieties. J. Math. Soc. Japan 23, 356-373 (1971)
- 2. Kobayashi, S.: On the automorphism group of a certain class of algebraic manifolds. Tohoku Math. J. 11,184-190 (1959)
- 3. Kobayashi, S.: Volume elements, holomorphic mappings and Schwarz lemma. Proc. Symp. Pure Math. 11 (1968), Amer. Math. Soc. Entire Functions and Related Parts Analysis, pp. 253-260
- 4. Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. New York: Marcel Dekker 1970
- 5. Kobayashi, S.: Transformation groups in differential geometry, Ergebnisse der Math., Vol. 70. Berlin-Heidelberg-New York:Springer 1972
- 6. Kobayashi, S., Ochiai, T.: Mappings into compact complex manifolds with negative first Chern class. J. Math. Soc. Japan 23, 137-148 (1971)
- 7. Kodaira, K.: Holomorphic mappings of polydiscs into compact complex manifolds. J. Diff. Geometry 6, 33-46 (1971)
- 8. Lang, S.: Diophantine geometry. Wyley 1962
- 9. Lang, S.: Higher dimensional diophantine problems. Bull. Amer. Math. Soc. 80, 779-787 (1974)
- 10. Matsumura, H.: On algebraic groups of birational transformations. Accad. Naz. dei Lincei 34, 151-155 (1963)
- 11. Moišezon, B.G.: On *n*-dimensional compact varieties with *n* algebraically independent meromorphic functions, I, If, III. Amer. Math. Soc. Translations, ser. 2, 63, 51-177 (1967)
- 12. Yau, S.T.: Intrinsic measures of compact complex manifolds. Math. Ann. 212, 317-329 (1975)

Received February 24, 1975

S. Kobayashi University of Berkeley Department of Mathematics Berkeley, California 94720 USA