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I. Introduction 

The main theorem of this paper is the following: 

Theorem 1. Let X be a Moi}ezon space and Y a compact complex space of 
general type. Then the set of  surjective meromorphic mappings of X onto Y is 
finite, i, 2 

We recall that a compact  complex space X is called a Moi~ezon space if the 
transcendence degree of its field of meromorphic  functions is equal to the dimen- 
sion of X. A compact  complex manifold Y of dimension n is said to be of general 
type if 

1 
sup lim .2S., dim F ( KT)> 0  , 

m ~ + ~  m 

where K r is the canonical line bundle of Y and F(KT) is the space of holomorphic 
sections of the line bundle K~'. A compact  complex space Y is said to be of general 
type if any (and hence every) non-singular model of Y is of general type. 

If dim Y = I ,  Theorem 1 reduces to the classical theorem of de Franchis 
[3; p. 139]. Thus our result settles one of the conjectures of Lang [9]. In the 
theorem of de Franchis, Y is a curve of genus at least 2. The condition on Y in 
higher dimension suggested by Lang is that Y be hyperbolic. We assume instead 
that Y is of general type. It is very likely that a compact  hyperbolic space is 
necessarily of general type. 

The proof, easily reduced to the case where both X and Y are non-singular, 
projective-algebraic, is by a combination of arguments in [2, 3, 6, 12]. 

Theorem 1 implies that the group of bimeromorphic  automorphisms of a 
compact  complex space of general type is finite (see [2, 5] for a direct trans- 
cendental proof and [10] for a direct algebraic proof). It is, of course, desirable 
to find an algebraic proof of Theorem 1. 

* Partially supported by NSF Grant GP-42020X. 
** Supported by "Sonderforschungsbereich Theoretische Mathematik'" at University of Bonn. 
1 Throughout the paper, X and Y denote reduced irreducible complex spaces. 
2 It has been pointed out by Professor Y. Namikawa that Theorem 1 holds for any compact complex 
space X which is not necessarily a Moi~ezon space. See the argument given at the end of the paper. 
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Improving on the result in [6], we show the following 

Theorem 2. Let X be a complex space and A a complex subspace of X. Let Y be 
an n-dimensional compact complex space of general type. Then every meromorphic 
map f: X - A - - *  Y of maximal rank n extends to a meromorphic map f:  X ~ Y. 

From Theorems 1 and 2, we obtain 

Corollary. Let X and Y be as in Theorem 1. Let A be a complex subspace of X. 
Then the set of meromorphic maps f:  X - A --, Y of maximal rank n (where n = dim Y) 
is finite. 

We say that f :  X -  A --, Y is of rank n if its differential is of rank n at some 
regular point of X - A  where f is holomorphic. Theorem 1 is proved in w167 2~6.  
The proof of Theorem 2 is indicated in w 7. 

2. Reduction to the Case where X and Yare Non-Singular, 
Projective Algebraic 

Every Moigezon space X is bimeromorphic to a projective algebraic variety 
(see Theorem 1 of [11]). By Hironaka's theorem on resolutions of singularities, 
X is bimeromorphic to a non-singular projective algebraic variety. 

Let Y be a compact complex manifold of general type. Let F(K'~)* be the dual 
space of F (K~') and P (F (K~)*) the projective space of lines in F (K~)*. The natural 
map f,,: Y-*P(F(K'~)*) is, in general, meromorphic and its image is a variety of 
dimension n ( = d i m  Y) for some m>0,  (see [1] for details). By pulling back 
meromorphic functions of fro(Y), we obtain n algebraically independent mero- 
morphic functions on Y. We have shown that if Y is of general type, it is a 
Moigezon space. Hence, Y is bimeromorphic to a non-singular projective 
algebraic variety. 

3. Schwarz Lemma 

In this section we same that X is a compact complex manifold of dimension n 
and Y is an n-dimensional projective algebraic manifold of general type. As 
before, K~ denotes the canonical line bundle of Y. 

Then we have a positive integer m, a subspace W of F(K~) and a line bundle 
L over Y with a holomorphic section a6F(L)  such that 

(1) L-1K~ is very ample, 

(2) s~F(L - 1 K ~ ) ~ a s E F ( K ' ~ )  defines an isomorphism of F (L- t  K~) onto W. 

For the proof  of this assertion, see [7, 6]. Let So, s l , . . . ,  sN be a basis for 
F(L IK '~)and  t o , q , . . . , t N  the corresponding basis for W. Thus, t i=asi for 
i = 0, 1, . . . ,  N. The common zeroes of t o, t l ,  . . . ,  tN is equal to the zeroes of the 
section a, which may or  may not be empty. 

We define a volume element coy on Y by 

 ,:=(ZltjA  jl) 
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This formal expression stands for the following 2n-form. In terms of a local 
coordinate system yl . . . .  , y" of Y, write 

t j=hj (dy  I/x .../x dy")", 

where hj is a locally defined holomorphic function. Then 

c~ = ( 2  I hJ [2)1/m ( ] f ~ ) ,  dy' A d~ 1 A...  A dy" A df~" 

is a globally defined 2n-form on Y vanishing at the zeroes of the section a~F(L)  
and positive elsewhere. 

Considering Llocally as product U • C where U is a small open subset of Y, 
we can represent the section a by a holomorphic function a v on U. Then the 
function 

H 
where H : = ~ l h s ]  2, 

lau[ 2' 

is everywhere positive since the zeroes of H cancel out with the zeroes of lac,] 2. 
Since ?~ ~ (log H) = (? fi (log H/] av 12), the Ricci tensor 

1 
R ~ =  - - -  ~2 log H/~y~8~ ~ 

m 

is welt defined everywhere on Y (even at the zeroes of H) and is negative definite. 
(The fact that the Ricci tensor is negative definite follows from the condition that 
L- t K7 is very ample. In fact, from the definition of R,~ above one sees immediately 
that - R ~  is the metric tensor induced from the Fubini-Study metric of PN (C) by 
the imbedding Y--* P~(C) defined by (s o, sl,  ..., sN).) We may summarize this by 
saying that the Ricci form associated to the volume form mr is negative-definite 
everywhere. 

Lemma 1. Let ~o be the PoincarO-Bergman volume element of the unit polydisk 
A" o f  dimension n. Then there exists a positire constant c such that 

f *  ~)r < c .  ~ .for every meromorphic map f: A" --* Y. 

Proof This is an equi-dimensional generalization of the Schwarz-Pick- 
Ahlfors lemma. Following Yau [12], we observe that f *  t j, which is holomorphic 
outside the singularity set (i.e., the set of points of indeterminacy) A c A", extends 
to a holomorphic " form" on A" by the theorem of Hartogs since codlin A>2.  
It follows that f * e ) r  extends also to a smooth 2n-form on A". The usual proof 
of the equi-dimensional Schwarz lemma for holomorphic mappings can be 
applied to the function u=f*cor/eo on A". See [3, 4] for details. 

Lemma 2. There exists an everywhere positive volume form e) x on X such that 

f *  e)r < O)x for every meromorphic map f: X ~ Y. 

Proof. We cover X by a (locally) finite open cover {D~} such that each D~ is 
biholomorphic to the polydisk A". Let co~ be the volume form on D~ corresponding 
to the volume form on A". Let {&} be a partition of 1 subordinate to {D~}. We set 

(1) X : -~ ~ p i (J) i . 
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Then there is a positive constant c such that f *  oJ~ < c-oJ x for every meromorphic 
map f: X --, Y. By normalizing ~x ,  we may assume that c = 1. 

4. Compactness of the Set of Surjective Meromorphic Mappings 

Throughout  this section we assume again that X is a compact complex manifold 
of dimension n and Y is an n-dimensional projective algebraic manifold of general 
type. We set 

M(X, Y)-'= the set of surjective meromorphic mappings of X onto Y. 

Let W be the subspace of F(K~) defined in w 3. As pointed out in the proof 
of Lemma, the theorem of Hartogs implies that every meromorphic mapping 
f: X--, Y induces a linear map f * :  W~F(K"~). 

In both Wand F(K~) we define a norm II tt, (see [2]). 

Ilsll2:= S Is ^-~l TM for seF(K~),  
X 

]ltIIZ:= S It A ~I 1/m for t e w .  
g 

The symbolic expressions Is^31TM and I t^ f l  TM should be interpreted in the 
same way as ( ~ [ t  i ^ til) 1/m in the definition of mr; they are 2 n-forms on X and Y, 
respectively. Although these norms do not satisfy the convexity condition 
IIs+s'll-< Ilsll + LIs'll, we shall call them "norms"  by abuse of language. 

Lemma 3. There is a positive constant c such that Hf*tll<cltt[[ for every 
t~ W and every meromorphic mapping f: X ---, Y. 

Proof Since II,~.tll =121" Ilttl for every complex number 2, it suffices to show 
that there is a constant c such that IIf* tl[ < c  whenever Iltll ~ 1. Let to, t~ . . . . .  tN 
be the basis for W chosen in w 3. Every t in W can be written uniquely as 

t =  y~ ~ j ( t )  �9 tj ,  

where 20(0 . . . . .  2N(t) are complex numbers which depend linearly on t. Let c' be 
the maximum of ~ 12j(t)l 2 as t runs through the compact subset tltl[ < 1 of W. 
By Schwarz's inequality, we have 

I t ^ i l < c ' . ~ [ t i ^ i i l  on Y if Iltll<l. 

Hence, 

I f * t ^ f * i l < c ' . f * ( ~ l t j ^ i ~ l )  on S if Iltll<l. 

Integrating the m-th roots of both sides, we obtain 

I l f* t l l2<c ' l / '~ f*oJr  if Iltll < 1. 
x 

Because of Lemma 2, it suffices to set 

e : c r l / r a  S O)X" 
X 



Meromorphic Mappings onto Compact Complex Spaces of General Type 11 

Lemma 4. II f *  t Lt > tlttl for every surjective .feM (X, Y) and t ~ W. 

Proof. We have 

Ilf* tl[ 2 = f f*[ t  A i[ TM = (deg f )  ~ I t A ~ 1~/" = (deg f)llttl z >= []tll z . 
g g 

Two remarks are in order. Although the 2n-form It A FI x/" vanishes on a sub- 
variety of Y, it defines a nonzero element of H2"(Y; R). The formula 

f*  It A i11/" = (deg f )  ~ It Afl TM, 
X Y 

where deg f denotes the mapping degree of f, is well known when f is smooth. 
But deg f can be defined even when f is meromorphic and the formula above is 
still valid. Let 2 be (a desingularization of) the graph of f and let f :  2 --* Y be 
the holomorphic lift of f Then we define d e g f = d e g f .  The meromorphic 
mapping f is surjective if and only if d e g f >  1. 

Lemma 5. I f  f e M ( X ,  Y), then the induced linear map f*" W~F(K~:) is 
injective. 

Proof. Let t be a nonzero element of Wand U an open subset of X in which f 
is regular and non-degenerate. Being a holomorphic section of K~, t cannot 
vanish identically on the open subset f (U) of Y. Hence, f * t  cannot vanish 
identically on U. 

To state the next lemma, let 

S: = the dual space of F (K~), 

T := the  dual space of W(cF(Kr~)), 

i: = the natural meromorphic mapping X --, P(S), 

j ,  = the natural imbedding Y ~  P(T), 

where P(S) and P(T) denote the projective spaces consisting of complex lines 
through the origin in S and T respectively. 

Let f e M ( X ,  Y). Since f * :  W~F(KT)  is injective by Lemma 5, its dual 
m a p f , : S ~ T  is surjective. Let f :P(S) -~P(T)  be the meromorphic map 
induced by f , .  The proof of the following lemma is straightforward. 

Lemma 6. Let f 6 M ( X ,  Y). Then the diagram 

P(S) f -~ P(T) 

i j 

X - - f  -~ y 

commutes. 

Lemma 7. Two distinct elements f, g~ M (X, Y) give rise to distinct meromorphic 
mappings f ,  ~, of P(S) into P(T). 

Proof. This follows from Lemma 6 and the fact that j: Y-~ P(T) is an imbedding. 
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Lemma 8. {f*; f eM(X ,  Y)} is a compact subset of Hom (W, F(K~!)). 

Proof Let M*=  { f * ; f ~  M(X, Y )}. Let c be a fixed positive constant. Then 
the set 

,/~: = {q~eHom (W, F(K~)); tltl] _< [)p (t)l[ < c Ittll for all re W} 

is a compact subset of Horn (W, F(K"~)). Let c be the constant given in Lemma 3. 
Then M*c45 by Lemmas 3 and 4. Let {.~} be an infinite sequence of elements 
in M(X, Y). By taking a subsequence if necessary, we may assume that {fk*} 
converges to an element q~ in ~ since ~ is compact. Since ~0 satisfies l}~0(t)II > HtI[, 
q~ is an injective homomorphism W ~  F(K~). The dual map of ~0 is a surjective 
homomorphism S--, T and induces a meromorphic map r P(S)-, P(T). Since 
q0=lim~* and j(Y) is closed in P(T), it follows that ~ o i(x)ej(Y) if x is a point 
in X (not belonging to the singularity set ofO o i). This shows that r o i: X ~ P(T) 
is a meromorphic map of X into j(Y). If we set f= j -1  o ~p o i, then ~0 = f * .  Since 
f *  is in ~b, it satisfies l}f*(t)l[->_ ifttl and hence f is of maximal rank. This shows 
that f is in M (X, Y). 

Remark. The proof of Lemma 5 shows that if f eM(X ,  Y), then f * :  F(K'~) 
~F(K~) is injective. Hence, dim F(K~c)_>--dim F(K"~) if M(X, Y) is nonempty. 
This shows that X must be of general type if there is a surjective meromorphic 
mapping f :  X --, Y. 

The compactness of M(X, Y)has been obtained by P. Kiernan independently. 

5. Analytic and Algebraic Structures on M(X, Y) 

Let S and T be the dual spaces of F(K'~) and W, respectively, as in w 4. Let 

It: = Horn (S, T). 

Each element of the projective space P(H) induces, in a natural way, a mero- 
morphic map P(S)~P(T). If f e M(X ,  Y), then f ,  is a nonzero element of H 
by Lemma 5. (In fact, f ,  is a surjective map S -~ T.) Let f be the element of P(H) 
represented by f ,  e H. Let 

~l:----{f; f eM(X ,  Y)}cP(H). 

By Lemma 7, ill is in a natural one-to-one correspondence with M (X, Y). By 
Lemma 8, M is a compact subset of P(H). 

Let Z be the set of elements of P (H) such that the induced meromorphic 
mappings P(S)~P(T)  send i(X) into j(Y). Then Z is an algebraic variety in 
P (H). Let ~ = (..., ~ , . , . )  and q = (..., r/z, ...) be homogeneous coordinate systems 
for P(S) and P(T), respectively, Let ( = (  . . . .  (~, ...) be the naturally induced 
homogeneous coordinate system for P(H). If J is the ideal of homogeneous 
polynomials Q(tl) defining the variety j (Y)cP(T),  then Z is defined by the set 
of homogeneous polynomials 

{Qa(~):=Q(~. ~(a)); QeJ and aei(X)}, 

where ~. r denotes the matrix multiplication of ~ and ~. 



Meromorphic Mappings onto Compact Complex Spaces of General Type 13 

Clearly, .~/ is the subset of Z consisting of those elements which map i(X) 
surjectively onto j(Y). This shows that M is an open subset of Z. On the other 
hand, M is compact. Hence, N/ is an algebraic subvariety of P(H). 

Now, we are in a position to prove the main lemma. 

Lemma 9. Let X be an n-dimensional compact complex manifold and Y an 
n-dimensional projective algebraic manifold of general type. Then M(X, Y) is 
finite. 

Proof The C*-bundle H - { 0 } - , P ( H ) ,  restricted to any algebraic subvariety 
of P(H), is (even topologically) non-trivial unless the subvariety is 0-dimensional. 
Over the subvariety ~/ this bundle has a section, namely f e M - ~ J ,  eH-{O}.  
Hence, N/ is 0-dimensional, i.e., finite. Being in one-to-one correspondance 
with M, M (X, Y) is finite. 

6. The Case dim X > dim Y 

In this section we assume that X is a p-dimensional projective algebraic manifold 
and Y is an n-dimensional projective algebraic manifold of general type. We 
continue to denote the set of surjective meromorphic mappings f :  X--+ Y by 
M(X, Y). 

If p<n ,  then M(X, Y) is empty. The case p = n  was settled in the preceding 
section. We assume therefore that p>n.  Assuming that M(X, Y) is infinite, we 
choose a countable infinite subset {ft , f2,- . .} of M(X, Y) and fix it once and 
for all. 

For each point x of X, let G,(X)x be the Grassmannian of n-planes in the 
tangent space T~(X). Then G,(X): = U G,(X)x is a bundle over X whose standard 

xaX 

fibre is the Grassmannian of n-planes in C p. We say that an n-plane V~ G,(X) x 
is transversal (with respect to {~,.y2 . . . .  }) if every fj induces an isomorphism 
V-~ Tfj(x) (Y). 

Lemma lO. There exists a transversal VeG,(X) such that TfIIV, Tf21V .... 
are mutually distinct. (Here TJ) denotes the differential of.l) and maps T(X) into 
T(Y).) 

Implicit in the statement is that fi ,J~ . . . .  are all regular at x when VeG.(X)x. 

Proof For each j, let Sj be the singularity set of the meromorphic mapping Jj. 
For each j, let Nj be the set of VeG,(X)~, such that j) is regular at x and Tfj: V 

Ti/x)(Y ) is not an isomorphism. For each pair (i,j), let P,.j be the set of V~ G.(X)~ 
such that both f~ and fj are regular at x and Tfi lV= TJ}I V. Clearly, ~ ( S )  is a 
subvariety of G,(X), where ~: G , ( X ) ~ X  is the projection. The set Nj is a sub- 
variety of G,(X)-~-t(S~).  The set P~j is a subvariety of G, (X) -~  ~(S~wS). 
Hence 

o:= G.(x)-((U ~_t (sj))~@ Nj)utU PO) 
j j i , j  
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is dense in G,(X).  (In fact, G is the intersection of countably many dense open 
subsets G, (X) - re- 1 (S j), G, (X) - (g-  1 (S j) w Nj) and G, (X) - rc 1 (Si w Sj) w P0, 
i,.j= 1, 2, ....) Any element V in G satisfies the requirements of Lemma 10. 

To complete the proof of Theorem 1, let V~G,(X)x  be as in Lemma 10. Let X' 
be a subvariety of X passing through x such that Tx(X ' )= V. (This is where we 
use the assumption that X is projective algebraic.) By Lemma 10, f~ ] X', f21X', ... 
are mutually distinct elements of M ( X ' ,  Y'). On the other hand, we know that 
M ( X ' ,  Y') is finite since dim X ' = d i m  Y'. This contradiction arose from the 
assumption that M (X, Y) is infinite. 

7. Proof  of Theorem 2 

As in w 2, we may assume that Y is a non-singular projective algebraic manifold 
of general type and that X is non-singular. We may also assume that f :  X - A  ~ Y 
is holomorphic since the points of indeterminacy may be included in A. 

We shall show that the proof can be reduced to the case where A is also non- 
singular. Let B be the singular locus of A so that A - B  is a non-singular subspace 
of X - B. Suppose that f :  X - A ~ Y extends to a meromorphic map f :  X - B --* Y. 
Fix an imbedding YcPN(C ) and let w ~ . . . ,w  N be a homogeneous coordinate 
system for PN(C). The meromorphic functions f * (wJ /w  k) on X - B  extends to 
meromorphic functions on X since B has codimension at least 2 in X. Hence, 
f extends to a meromorphic map f :  X ~ Y. 

Localizing f we may further assume that X is a unit polydisk D v in C p and A 
is the polydisk {0} x D p- 1 c D p. We denote the punctured disk D -  {0} by D* so 
that DP-({0} x D p 1)=D* x D p-1. Since the second Cousin problem is solvable 
for the domain D* x D"-  1, we can lift the holomorphic map f :  D* x D p- ~ ---, Y 
c PN (C) to a holomorphic map f :  D* x D v-  1 ~ Cu+ 1. Then f is given by a system 
of N +  1 functions q~~ . . . ,  zP), . . . ,  ~oN(z 1, . . . ,  z') holomorphic in 0 <  [z ~ [< 1, 
Iz21<l . . . . .  I z ' l < l .  

Now we use the particular imbedding YCPN(C) constructed in w 3. We recall 
that the imbedding was defined using a certain (N+  1)-dimensional subspace W 
of F(KT).  It suffices to prove the following 

Lemma 11. Let 

~pJ(zl,...,zP)= ~ A~(zZ, . . . , zP)(z l )  h, j = 0 , 1 , . . . , N ,  

be Laurent expansions with respect to the variable z I with holomorphic coefficients 
A~(zZ, . . . ,  zP). Then AJh(z 2 . . . .  , zP)=O for  h <  - m .  

P r o o f  This lemma was proved when p = n and the map f :  D* x D" 1 __, y is 
of maximal rank in our earlier paper [6], where the particular construction of 
the imbedding Y c ~ ( C )  was used strongly. We note that the integer m appearing 
in Lemma 11 is the exponent in KT. 

Assume that p > n .  Since f :  D * x D P - 1 - - ,  Y is of rank n, there exists an 
n-dimensional plane P in C p (not necessarily through the origin) such that the 
restriction o f f  to the intersection P ~ ( D *  x D p ~) is of rank n. 
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By moving  P sl ightly if necessary,  we may  assume that  P intersects  the hyperp lane  
z l = 0  t ransversal ly .  By a l inear  change of  the coord ina t e  system in C p, we may  
further assume that  P is defined by 

zn+ 1 = a n + l ,  . . . ,  zp= a p, 

where  a "+ ~, . . . ,  a t' are constants .  We define 

c~ = (a" + 1 . . . . .  ap), 

L ( z l ,  . . .  , Z n ) = , f  ( z  1 . . . . .  zn ,  a "+ ~ . . . .  , aP) ,  

(flJ(zl , . . . ,  z n) = ( p J ( z  1 . . . .  ,Z n, a n * l  . . . . .  aP).  

Then ((po, . . . ,  q)~) gives the lift o f  f ~ .  The Lauren t  expans ions  of  (p~ are  given by 

q0J(Zl,.-.,zn) = ~ A J h ( z 2 , . . . , z n ,  a n * l , . . , , a P ) ( z l ) h .  

Since L e m m a  11 holds  for p =  n and hence for s  we ob ta in  

A J h ( z Z , . . . , z " , a " + l , . . . , a P ) = O  for h < _ - m .  

Since f ,  r emains  to be of rank n when c~ = (a  "+ 1 . . . . .  a p) is moved  slightly, we have 

z "+1, zP)=0  for h < - m  A ~ ( z 2 ,  . . . ,  z", . . . .  

for (z "+1, . . . ,  z p) in a n e i g h b o r h o o d  o f ( a  "+a, . . . ,  a p) a n d  hence  for all (z "*1 . . . .  , z"). 
This  comple tes  the  p r o o f  of L e m m a  11. 

As s ta ted  in F o o t n o t e  (2), we shall extend Theo re m 1 to an a rb i t r a ry  compac t  
complex  space X. Let 9J/(X) a n d  ~JJ/(Y) be the fields of  m e r o m o r p h i c  funct ions 
on  X and Y, respectively.  Let X* be a project ive  a lgebra ic  variety with 9JI(X) 
= 9JI(X*). Then 

Mer  (X, Y) c {q9 : 9Jl (Y) --, ~ (X); injective morph i sm}  

= {q): 9Jl(Y) ~ ~ I (X*) ;  injective morph i sm}  

= M e r  (X*, Y). 

Since we have shown tha t  Mer  (X*, Y) is finite, we may  conc lude  that  M e r ( X ,  Y) 
is also finite. 
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