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w 1. Introduction 

An irreducible, unitary representation of a locally compact, unimodular 
group is said to be square-integrable if it can be realized on an invariant subspace 
for the left regular representation. The discrete series is the set of equivalence 
classes of such representations. In Harish-Chandra's work on the Plancherel 
formula for semisimple Lie groups, the discrete series plays the central role. Thus, 
among the representations of a semisimple Lie group, the discrete series repre- 
sentations are of particular interest. 

According to Harish-Chandra's criterion [13], a connected semisimple Lie 
group G has a non-empty discrete series exactly when it contains a compact 
Cartan subgroup. If G does contain a compact Cartan subgroup H, Harish- 
Chandra parameterizes the discrete series by, roughly speaking, the dual group/q 
of H, modulo the action of the normalizer of H in G. To be more precise, 1 denote 
the Lie algebras of G, H by 9, D, and their complexifications by 9 4, If .  Via ex- 
ponentiation, / t  becomes isomorphic to a lattice Acil)*(D*=dual space of D); 
the lattice A contains the root system 4~ of (9 4, t)r For simplicity, assume that G 
has a complexification G C, which is simply connected. Then, according to Harish- 
Chandra's fundamental results on the discrete series [13], for every nonsingular 1 
2e A, there exists a unique tempered 2 invariant eigendistribution Oa, such that 

(1.1) Oal i t  = ( - 1)q 1-1 (e~/2 ; I 1 ~  ~/,,(c,, .a.) > o - -  e - • /2)  

* Supported in part by the Sonderforschungsbereich 40 (Reine Mathematik) at the University of 

Bonn, and by N S F  Grant  G P  32843. 
t i.e. (2, cr for all c~e~. 
2 A distribution is called tempered if it extends continuously to the space of rapidly decreasing func- 

tions [ 13]. 
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here W denotes the Weyl group of H in G, q is one half the dimension of the 
symmetric space corresponding to G, and e(w)=sign of w. Every such Oa is the 
character of a discrete series representation, and conversely. 

Harish-Chandra's character formula (1.1) completely determines the discrete 
series characters on the set of elliptic elements. However, it does not give a direct, 
global description. For a number of reasons, it would be desirable to know the 
characters also outside the elliptic set. Harish-Chandra's construction of the O~ 
is analytic, intricate, and difficult. On the other hand, his proof of the uniqueness 
suggests that one ought to be able to construct the O~. with essentially combinatorial 
arguments. 

In this paper, I shall look at the following four problems: 

a) finding an essentially combinatorial construction of the discrete series 
characters; 

b) to describe the Oa globally, in as explicit a manner as possible; 

c) to prove Blattner's conjecture about the decomposition of a discrete series 
representation under the action of a maximal compact subgroup; and 

d) obtaining concrete realizations of all discrete series representations (not 
just "most"  of them, as in [31, 32, 35]). 

At present, I can attack these problems only if the symmetric space of G carries 
a Hermitian symmetric structure, and if, in addition, G has a faithful finite di- 
mensional representation 3. However, it seems likely that at least a) and b) can be 
treated by similar methods, even in the absence ofa  Hermitian symmetric structure. 

The basic tool is a certain relationship between the various discrete series 
characters which belong to the same infinitesimal character. Let 4~ c and 4~" denote 
the sets of, respectively, compact and noncompact roots in 4~. I now fix a system 
of positive roots 7' in q~, and I look at the invariant eigendistributions Ox para- 
meterized by the set 

(1.2) {2~A[(2, c~)>0 for all c~7"}. 

It is known in principle that 04,  with 2 restricted to lie in the set (1.2), is given by 
a formula which depends on the parameter 2 in a coherent manner. The formula 
makes sense whether or not 2 lies in the set (1.2). Hence, by letting 2 wander over 
the larger set 

(1.3) {2~A1(2, ~)> 0 for all c~ 7" c~ 4~c}, 

one obtains a family of invariant eigendistributions O(7", 2), which depends on 
the choice of the system of positive roots 7", and which is parameterized by the set 
(1.3). By construction, 

(1.4) O(7" ,2)=Oa,  provided (2 ,~)>0 for all ~ 7". 

Moreover, for any we W=Weyl  group of H in G, 

(1.5) O(wT', w~)= o(7", )t). 

3 I have made this latter assumption in order to avoid some unpleasant, but presumably minor, 
technical complications. 
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Suppose that fl~4~" is a simple root, relative to the system of positive roots q', 
and let s~ denote the reflection about the root/3. Then, as will be shown in this paper, 

(1.6) O(~,  2)+O(s~ ~ , 2 ) = O .  

Here O denotes an invariant eigendistribution, which is induced from a maximal 
cuspidal parabolic subgroup; the inducing character, restricted to a Levi compo- 
nent M of the parabolic subgroup, belongs to the class of invariant eigendistri- 
butions O( . . . . . . .  ) of M. This is the relationship between the various discrete 
series characters, which was alluded to before. 

The identity (1.6) can be used as a vehicle for certain inductive arguments. 
If one wants to prove any given statement about the invariant eigendistributions 
O(~,  2 ) - a n d  hence, about the discrete series charac te rs - i t  suffices to verify 
the statement for only one choice of a system of positive roots 7', provided one 
can show that the statement is compatible with the relationship (1.6). Thus, in 
order to get such inductive arguments going, one must understand the invariant 
eigendistributions O(~,  2) corresponding to at least one system of positive roots ~. 
If the symmetric space of G admits a Hermitian symmetric structure, for some 
choices of ~, the O(71, 2) are fairly simple from many points of view, as will be 
explained next. 

Let K be the maximal compact subgroup of G which contains H. I shall assume 
that G/K is Hermitian symmetric. In a natural fashion [9], the invariant complex 
structures on G/K are in one-to-one correspondence with those systems of positive 
roots ~, which have the property 

(1.7) cq, 0{2 C I/'t U3 q Dn ::::::> 0{ 1 -'~ 0~2 ~ (/). 

Fix such a 7-', and equip G/K with the corresponding invariant complex structure. 
In [9], Harish-Chandra has constructed a class of representations T~, on spaces 
of holomorphic sections of homogeneous vector bundles on G/K ; the parameter 2 
runs over the set (1.3). The family of these representations is known, somewhat 
informally, as the "holomorphic discrete series". In general, the representations 
Ta are neither unitary nor irreducible. However, if,t ties in the set (1.2), Ta turns out 
to be a discrete series representation, and its character is O~, [9]. The characters 
of the representations Tx have been globally computed by Martens [28] and Hecht 
[16]. In particular, their computations provide explicit and global formulas for 
the invariant eigendistributions O(7', )() corresponding to any system of positive 
roots 7 ~ which satisfies (1.7). Beginning with such a system of positive roots, 
and using the identity (1.6), one can then study the O(q', it) by inductive arguments. 

I continue to assume that G/K is Hermitian symmetric. For reference purposes, 
I fix a system of positive roots ~o, subject to the condition (1.7). Under the action 
of the Weyl group Wof H in G, every system of positive roots is conjugate to one 
which satisfies 

(1.8) q'c~ 4'c= % c~ 4'% 

In view of(1.5), if one wants to understand the O(~,  2), it suffices to consider systems 
of positive roots ~ as in (1.8). For any such ~, there exists a chain of positive root 

systems 

(1.9) % ,  q ' l ,  . . . ,  q',, = q ' ,  



50 W. Schmid 

such that each ~ is obtained from the preceding % i by reflection about a non- 
compact, simple root. According to the relationship (1.6), there exists a definite 
induced invariant eigendistribution Oj, with 

(1.lO) Oj = O ( ~ ,  ,~)~-O(IPj_ 1,2) 

Summing over j, with alternating signs, one finds 

(1.11) O(~,  2 ) = ( -  1) m O(tP0, 2 ) + ~ L 1 ( -  1)m-J O~. 

The character formula of Martens and Hecht completely determines O(~0, 2). 
Each Oj is an induced invariant eigendistribution, and the inducing character in 
turn belongs to the class of invariant eigendistributions O( . . . . . . .  ), for a lower 
dimensional subgroup of G. Thus, at least in principle, the formula (1.11) allows 
one to compute O(~ u, 2); the computation proceeds by induction on the dimension 
of G. 

According to the description which was given above, the invariant eigen- 
distributions O(~P, 2) were obtained in terms of Harish-Chandra's discrete series 
characters. However, it is possible to construct them directly, by induction on the 
dimension of G. As follows from the explicit description of the O r, coupled with 
the inductive hypothesis, the formula (1.11) describes an invariant eigendistri- 
bution. Without using Harish-Chandra's results on the discrete series characters, 
! shall show that the definition (1.11) does not depend on the choice of the chain 
(1.9), and that O(~,  2) is tempered whenever ,t lies in the set (1.2). In particular, 
these arguments prove the existence of the discrete series characters, provided, 
of course, G/K carries a Hermitian symmetric structure. Except for the computa- 
tion of the characters of the "holomorphic discrete series", which uses some 
function theory, the arguments are essentially combinatorial. 

As follows from the formula (1.11), the invariant eigendistributions O(~, 2) 
can be built up from the characters of the "holomorphic discrete series": every 
O(~, 2) is a linear combination of eigendistributions, which are induced up from 
cuspidal parabolic subgroups 4, such that the inducing characters, on the Levi 
components of the parabolic subgroups, are characters of "holomorphic discrete 
series representations". In [37], such a formula is worked out explicitly for the 
group Sp(n, IR) (Theorem 1 of [37]); it has a rather straightforward appearance. 
Analogous formulas exist for any simple matrix group which operates on a 
Hermitian symmetric space. However, as will be explained below, it is only 
necessary to deal with the case of Sp(n, IR). 

The characters of the "holomorphic discrete series" are known completely, 
and the process of inducing an invariant eigendistribution from a parabolic 
subgroup can be carried out explicitly. The type of formula which was just men- 
tioned therefore leads to a concrete and a global description of the discrete series 
characters (cf. Theorem 2 of [37]). Unfortunately, this description, which amounts 
to a semi-explicit formula, is highly complicated; for example, it is impossible 
to tell from the formula that the discrete series characters are tempered. As is 
argued in [37] by means of concrete examples, the complicated appearance of 

4 For the purpose of this statement, G itself should be viewed as a parabolic subgroup. 
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the formula merely reflects the relatively complicated nature of the discrete series 
characters. For a general group G, it will be very difficult to express the discrete 
series characters by a completely explicit global formula in closed f o r m - i f  it 
can be done at all. 

On the other hand, the methods of this paper give a reasonably direct algo- 
rithm for computing the discrete series characters, provided, of course, G has a 
Hermitian symmetric quotient G/K. Let B be an arbitrary Caftan subgroup of G, 
and B j a particular connected component  of B. To B j one can attach a certain 
semisimpte subgroup G' of G, which contains both a split and a compact Cartan 
subgroup, and which has the following property: the discrete series characters 
of G, restricted to B j, can be expressed in a simple manner in terms of discrete 
series characters of G', restricted to the identity component  of a split Cartan 
subgroup 5. When G/K carries a Hermitian symmetric structure, G' turns out to be, 
up to covering, a product of copies of Sp(k, IR), for various integers k. Moreover, 
if G is simple, but not locally isomorphic to Sp(n, 1R), G' is either Sp(2, IR) or a 
product of copies of SL(2, IR), again up to covering, For Sp(2, IR) and SL(2, IR), the 
discrete series characters can be computed easily enough. Hence, if G is simple, 
with Hermitian symmetric quotient G/K, but not locally isomorphic to Sp(n, IR), 
a computat ion of the discrete series characters of G presents no major problems. 
By the same reasoning, for G = Sp(n, IR), it really suffices to compute the discrete 
series characters on the identity component  of a split Cartan subgroup. For any 
given n, and for any particular discrete series character, this can be done by means 
of the semi-explicit formula which was mentioned above. 

Unless 2 lies in the set (1.2), the invariant eigendistribution O(7 ~, 2) need not 
be the character of an irreducible representation. However, using the identity 
(1.11), one can show that O(~ ,  2) is always the character of a virtual representation, 
i.e. of a formal, finite, integral linear combination of irreducible G-modules. Thus, 
in the obvious manner, for each irreducible K-module, one can define the multi- 
plicity of the given K-module in the virtual representation corresponding to 
O(~P, 2). Blattner's conjecture predicts the K-decompositions of the discrete 
series representations. Formally, at least, the conjecture makes sense for all of the 
O(q ~, 2), not just for the discrete series characters. In order to prove Blattner's 
conjecture, it therefore suffices to verify this extended version of the conjecture 
for a single choice of positive root system q~, and to show that it is consistent with 
the identity (l.6). As will be demonstrated in this paper, the conjecture is indeed 
consistent with (1.6), whether or not G/K carries a Hermitian symmetric structure. 
If G/K is Hermitian symmetric, and if 7 ~ satisfies the condition (1.7), every 6)(7 ~, 2) 
arises as the character of a representation of the "holomorphic  discrete series". 
The K-multiplicities of these representations were computed by Harish-Chandra 
[9]. Hence, for every connected, semisimple matrix group G, with Hermitian 
symmetric quotient G/K, Blattner's conjecture becomes a consequence of the 

relationship (1.6). 
In analogy to the Borel-Weil-Bott theorem about compact Lie groups, 

Langlands [27] had conjectured that the discrete series representations of a 

5 This feature is an important ingredient of the construction of the invariant eigendistributions 
O(7 ~, 2). As was pointed out to me by Zuckerman, it can also be deduced directly from Harish-Chandra's 
construction of the discrete series characters. 
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connected, semisimple Lie group G can be realized on L2-cohomology groups of 
holomorphic line bundles over the quotient of G by a compact Cartan subgroup H. 
Narasimhan-Okamoto [31] obtained a similar statement involving vector bundles 
over G/K, provided G/K carries a Hermitian symmetric structure, but they could 
prove it only for "most"  discrete series representations. The original conjecture, 
again only for "most"  discrete series representations, was proven in [35]. Other 
realizations of discrete series representations appear in [21, 32, 36]. In all cases, 
the arguments depend on an alternating sum formula and a vanishing theorem. 
The proofs of the vanishing theorems are based on what amounts to curvature 
computations. Such curvature computations cannot be pushed far enough to give 
sharp vanishing theorems: they work equally well on the quotient of G by a uni- 
form discrete subgroup; in this setting, the sharp versions of the vanishing theorems 
are demonstrably false. 

Among the various concrete realizations of discrete series representations, 
perhaps the most attractive is Parthasarathy's construction, in terms of the Dirac 
operator [32]. As will be shown below, the sharp vanishing theorem for the Dirac 
operator can be derived from Blattner's conjecture. In particular, if G/K admits 
a Hermitian symmetric structure, all discrete series representations of G can be 
realized on suitable L 2 kernels of the Dirac operator. With slight modifications, 
the arguments which deduce the sharp vanishing theorem for the Dirac operator 
from Blattner's conjecture also work in the settings of [2I, 3t, 35]. I do not know 
whether Btattner's conjecture implies the complete Langlands conjecture E27]. 

In order to put the results of this paper into perspective, I shall briefly discuss 
the previous status of problems a)-d), which were raised above. Harish-Chandra's 
proof of the uniqueness of the Oz amounts to an algorithm, which makes it possible 
to compute the discrete series characters globally, at least in principle.Whenever 
this algorithm can be carried out concretely, it provides a direct, combinatorial 
constructions of the O~, which is then quite independent of Harish-Chandra's 
existence proof. The algorithm proceeds by induction over the set of conjugacy 
classes of connected components of Cartan subgroups, equipped with a certain 
partial ordering. In general, this ordered set has a rather complicated structure. 
Even for low dimensional groups, it becomes quite difficult to work out the algo- 
rithm explicitly. As far as I know, only the groups of real rank one [14], the in- 
definite unitary groups [19], and Sp(2, 1R) [20] have been treated by this method. 
It has been suggested that one might be able to guess a general, global formula for 
the discrete series characters, once enough special cases are known. If one had a 
conjectured explicit formula, it might not be too hard to verify it, by checking it 
against Harish-Chandra's algorithm. However, as was already mentioned, a 
completely explicit, global formula cannot be written down so easily. 

Instead of looking at each Ox individually, one may ask whether the sum of 
the O~, extended over all 2 in an orbit of the Weyl-group of (gc, be), has a simple 
global formula. From many points of view, such a formula would accomplish as 
much as a solution of problem b). According to a suggestion of Zuckerman, for 
every matrix group G, the sum of the Ox should be expressible in terms of characters 
induced from finite dimensional characters of parabolic subgroups. Harish- 
Chandra has proven that this can be done, at least inprinciple.In the case of groups 
of real rank one and for the indefinite unitary groups, Zuckerman has carried out 
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the computations explicitly [41] (also cf. [29]); he is now investigating the various 
series of classical groups. In spirit, his approach is similar to the approach taken 
in this paper. 

Let rt~ be a particular discrete series representation, with character Oa. Ac- 
cording to the version of Langlands' conjecture proven in [35], if the parameter 2 
is sufficiently nonsingular, i.e, if 

(1.12) 1(2, c~)[>c whenever ~4~,  

for some suitably chosen constant c, 7tx can be realized on an L 2 cohomotogy 
group of a homogeneous, holomorphic line bundle Sx over G/H. After adjusting 
the constant c in (1.12), one can show that the natural mapping from the L 2 co- 
homology group in question to the corresponding sheaf cohomology group is 
injective. It is also possible to analyze the sheaf cohomology group with the 
methods of complex analysis: under the action of K, the sheaf cohomology group 
breaks up in the manner predicted by Blattner's conjecture for ~ .  Since the 
representation space ofz~injects into this sheaf cohomology group, the K-multi- 
plicities of 7zx must be bounded by the predicted multiplicities. By these arguments 
one half of Blattner's conjecture was proven in [34, 36], but of course only for 
discrete series representations with sufficiently nonsingular parameter 2. Hotta 
and Parthasarathy have succeeded in simplifying the arguments of [34, 36] and 
sharpening the hypotheses slightly, by working with the Dirac operator on G/K, 
rather than with cohomotogy [22]. Except for the results of [22, 36], Blattner's 
conjecture was known only in the cases of SL(2, It) [2], the de Sitter group [5], 
and the "holomorphic discrete series" [9], where it comes up as a by-product of 
explicit constructions of discrete series representations. 

The difficulties of realizing all discrete series representations of a given group 
were already described. Of the various vanishing theorems based on curvature 
computations, Parthasarathy's [32] is the sharpest, and perhaps even the best 
possible. The fact that Blattner's conjecture, if proven, allows one to realize all 
discrete series representations has been known to a number of people for some time. 
It has not appeared in writing, presumably because Blattner's conjecture was 
not available. 

To conclude the introduction, I shall give a quick guide to the organization 
of this paper. Besides establishing notation, section two deals with preliminaries 
about Cartan subgroups and Weyl groups. Most of the material is familiar to 
experts, but there seems to be no convenient reference for it. Section three recalls 
the results of Martens and Hecht on the characters of the "holomorphic discrete 
series". The existence and the main properties of the invariant eigendistributions 
O(~, 2), for groups G with Hermitian symmetric quotient G/K, are stated in w 4. 
Sections five and six contain the proofs of these results. In w 7, which begins with a 
general discussion of Blattner's conjecture, I prove the conjecture, provided 
G/K carries a Hermitian symmetric structure. The precise vanishing theorem 
for the Dirac operator is deduced from Blattner's conjecture in w 8; I have also 
used this opportunity to show how Parthasarathy's construction [32] can be 
simplified by using some of the methods of [35, 36]. In the final section, I speculate 
about the possibilities of extending the arguments of this paper to the case of an 
arbitrary semisimple matrix group. 
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w 2. Cartan Subalgebras and Subgroups 

It is the purpose of this section to dispose of various preliminaries about 
semisimple Lie groups, and to establish notation. I intend to use much of the 
material also in a future paper. For this reason, some of the statements are pre- 
sented in greater generality than is needed here. The major point will be a re- 
formulation of Kostant's and Sugiura's classification of conjugacy classes of 
Cartan subalgebras, some results on the Weyl group of a general Cartan subgroup, 
an investigation of 1he connected components of a Cartan subgroup, and finally 
some simple observations about certain reductive subgroups. Many of the argu- 
ments below are straightforward, or are known to experts. I have therefore tried 
to keep the proofs succinct; sometimes only a sketch of a proof will be given. 

Although semisimple Lie groups will really be the objects of interest, the usual 
reasons make it advantageous to consider also reductive groups. Throughout,  
G will stand for a connected, reductive Lie group, which contains a maximal 
compact subgroup K of the same rank as G. In order to avoid some unpleasant 
technicalities, I shall also assume that G is a matrix group. Because of the hypo- 
theses, one can choose a compact Cartan subgroup H of G, with H < K .  It is 
known that 

(2.1) H is connected, and K contains the normalizer of H. 

The Lie algebras of the groups G, K, H will be denoted by the corresponding 
small German letters .q, f, 6, and their complexifications by g~, re:, be; as a general 
notational convention, the superscript 112 shall always mean "complexification". 

The differentials of the characters of H form a lattice A c ib*. Each 2eA belongs 
to the character e x, which is given by 

(2.2) e~(expX)=e <~'x>, for Xe  b. 

The set of nonzero roots of (gO b~') lies in A. Depending on the particular context, 
it will be referred to as q~(G, H), q~(H), q~(b), or simply as qs. A finite covering of G 
need not be a matrix group again; the following simple lemma provides a criterion 
for deciding whether certain coverings are linear. In order to state it, I let ( , )  be 
the positive definite inner product on ib* induced by the trace form of a faithful 
finite dimensional representation of G. 

(2.3) Lemma. I f  an integral multiple of 2e ib* belongs to A, and/f2(2, c~) (~, c~)-* c2g 
.[or all o~Eq), then there exists a finite covering of G by a matrix group G, such that 2 
lifts to a character e ~ on the inverse image ITI of H. 

For semisimple Lie groups, this statement is well-known. The general case 
can be reduced to the semisimple case; details are left to the reader. 

Since K contains the center of G, G/K is a noncompact symmetric space. 
Hence g has a Cartan decomposition 

(2.4) g=f |  

and a Cartan involution 

(2.5) 0: g--+g, with 01~=1, 0 [ p = - l .  
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Because b is 0-stable, 0 preserves the root space decomposition of 9 r with respect 
to b r 

(2.6) gr = [}r174 ((~):{~. g~'). 

A root ~eq, is called compact or noncompact, depending on whether g~c~ r or 
.q~ep r I let 4 ,~ (or .4,"(b ), O"(H), etc.) denote the set of compact roots, and O" the set 
of noncompact roots. Equivalently, 0" can be described as the root system of 
(if, be). 

For each cteO, I once and for all choose nonzero elements Y~eg ~, Z~eib, 
subject to the following conditions: 

[Z~,Y~]=2Y,, [Z, ,Y = ] = - 2 Y  ,, 

(2.7) [Y=, Y-.a] =Z=, 2 =  -Z~=Z ~, 

Y~=-Y_~ if c~eO ~, Y,=Y ~ if c~eo" 

(barring denotes complex conjugation, relative to the real form g cge). Every 
triple Y=, Y=, Z= spans a copy of the Lie algebra ~1(2, C) in ,qr which is invariant 
under complex conjugation, and which can therefore be regarded as the com- 
plexification ~" of a subalgebra ~ c g .  Then %~_~u(2) if c~e4) ~, and %~-~1(2, IR) 
i f~eO ~. 

Following Koranyi-Wolf [23], I introduce the Cayley transform corre- 
sponding to a noncompact root ~: it is the automorphism G: gr -~ gr given by 

(2.8) G = Ad exp ~- ( Y ~ -  Y,). 

As direct consequences of the definition, 

(2.9) 
G = I  on {Xebr X>--0}. 

By an explicit computation in SL(2, ~'), one can check that 

(2.10) GZ~= Y~+ Y-~' 
c~ Z~= -Z~ .  

Two roots in an abstract root system are said to be strongly orthogonal if 
they are not proportional, and if neither their sum nor their difference is a root. 
For ~, fleO(b), this amounts to the relation [%, ~t~] =0. Hence 

(2.11) G c~ = c~ G, provided ~, fle O" are strongly orthogonal. 

Now let ScO"(b) be a strongly orthogonal subset (i.e. a subset consisting of 
pairwise strongly orthogonal roots). In view of (2.11), 

(2.12) Cs=l-L~sC~ 

is well defined. According to (2.9) and (2.10), the Cartan subalgebra Csb r of gr 
is preserved by complex conjugation. Hence Cs b e = b~', for some Cartan subalgebra 
b s of the real Lie algebra .q. 
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The elements Y~eg" are not completely determined by the requirements (2.7), 
so that the construction of the Cartan subalgebra bs ~ g depends not only on the 
set S, but also on the choice of the Y,. However: 

(2.13) Remark. Let Cs and Cs be the Caytey transforms corresponding to the 
same strongly orthogonal set of noncompact roots S, but to different choices of 
the Y,. Then c s o A d h = A d h o g  s, for a suitably chosen hEH. In particular, the 
conjugacy class of bs depends only on S. 

The verification of this remark, which can be reduced to the case ofG = SL(2, IR), 
is left to the reader. 

Now let b c g be an arbitrary Cartan subgroup. Then b has a splitting 

(2.14) b = b ~ @ b  , 

such that, under every finite dimensional representation of G, the elements of b, 
act with purely imaginary eigenvalues, and the elements o f b  with real eigenvalues. 
If b happens to be 0-invariant, one can also describe b ~ as the (+  1)-eigenspace 
of 0 and b_ as the ( - 1)-eigenspace, 

(2.15) Lemma. Every Cartan subalgebra of the form bs, with S a strongly orthogonal 
subset of q~"(b), remains invariant under the Cartan involution O. Moreover, 

bs, ~ =bsca f =  {Xcb](c~, x ) = o  tor all otiS}, 

bs._ = @ ~ s  IR(Y,+ Y_~). 

Essentially, the following observations constitute a proof: the common 
kernel of the element of S, viewed as linear functionals of b, is left pointwise 
fixed by Cs; the span of the iZ~, c~S, is a complement of this kernel in b; and 
finally csZ~= Y~+ Y_~ ties in p whenever c~eS (cf. (2.10)). 

According to (2.1), the Weyl group of H in G (i.e. the normalizer of H modulo H) 
coincides with the Weyl group of H in K. It will be referred to as W(G, H), or 
simply as W(H). I can now restate Kostant's [24] and Sugiura's [38] classification 
of conjugacy classes of Cartan subalgebras, in terms of data attached to the 
compact Cartan subgroup H. The first part of the proposition is due Martens [28]. 

(2.16) Proposition. Every Cartan subalgebra of g is conjugate to one of the form b s, 
for some strongly orthogonal subset S of q~"(b). Two Cartan subalgebras bsl, bs~, 
corresponding to two such sets S1, $2, are conjugate if and only if some element of 
W(H) maps S1 u ( - $1) onto $2 w ( -  $2). 

For the proof, I shall need some lemmas about abstract root systems. It will 
be convenient to have the following definitions: a subset S of an abstract (reduced) 
root system q5 is a strongly orthogonal spanning set if it consists of pairwise 
strongly orthogonal roots, and if every c~e4, can be represented as a Q-linear 
combination of the elements of S. An abstract root system q~ has the property SO 
if it contains a strongly orthogonal spanning set. Clearly 4' has this property 
precisely when every irreducible component of q~ does. 

(2.17) Lemma. Let 4) be an irreducible root system with the property SO, and 
S ~ 4' a strongly orthogonal spanning set. I f  roots of two different lengths occur in cb, 
then not all roots in S can be short. 
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Proof  by contradiction. Let S =  {71, ---, L}, with all 7f being short roots. 
I renormalize the inner product on the underlying vector space, so that (7i, ~i)= 1. 
I now pick a long root ae4). Since the case of the root system G2 can be eliminated 
by a simple check, one must have (c~,~)=2; also, (c~, yi)= _+ 1 or 0, for all i. Hence, 
if c~ is expressed as ~ = ~ ci 7i, each ci equals 0 or +_ 1. On the other hand, ~ c~ = 
(c~, c~) = 2, which immediately leads to a contradiction. 

(2.18) Lemma (cf. Proposition II.3 of [28]). Let 4) be an abstract root system, 
4)' a sub-root system, and 4)"= {~4)1c~ ~- 4)'}. t f  4) and q)' both have the property SO, 
then so does 4)". Moreover, the sum of  the ranks o f  4)' and 4)" is then equal to the 
rank o f  q~. 

Proof. A simple inductive argument reduces the problem to the case when 
4) '= {_+ c~}, for some c~e 4). Also, I may assume that 45 is irreducible. By assumption, 
q, contains a strongly orthogonal spanning set S. If a conjugate of c~ under the 
action of the Weyl group lies in S, there is nothing more to be done. Otherwise, 
since the Weyl group of an irreducible root system operates transitively on the 
set of roots of a given length, ~ must be short and every yeS must be tong; at this 
point, (2.17) has to be invoked, of course. I enumerate S as { 71, ..., 7,}, and I 
renormalize the inner product on the underlying vector space, so that (7i, 7~)= 1. 
By simple inspection, the root system Gz can be excluded. Hence, and because 
c~ is short, (c~,~)=�89 If one expresses c~ as ~c~Ti, one now finds that ~c~= � 89  and 
c~ = +�89 or 0. Thus, after renumbering the "~ and replacing some by their negatives, 
if necessary, c~=�89 -72). But then fl=�89 +72) is also a root. For i+  1, 2, fl-+Yi 
is longer than y~ and cannot be a root. Consequently, 4)" contains {fl, ~/3, ..., 7s} 
as a strongly orthogonal spanning set. 
(2.19) Lemma. In an abstract root system with the property SO, any two strongly 
orthogonal spanning sets are conjugate under the action of  the Weyl group. 

Proof  by induction of the rank. I may assume that the root system 4~ in question 
is irreducible. Let $1, $2 be two strongly orthogonal spanning sets. Because of 
(2.17), and because the Weyl group acts transitively on the long roots, S~ and 
some conjugate of $2 have a root c~ in common. But this reduces the problem to 
the orthogonal complement ofc~ in 4), whose rank is lower by one. 

I return to the setting of Proposition(2.16). The next few lemmas, besides 
entering the proof  of (2.16), wilt be needed later. 

(2.20) Lemma. Let S1, S 2 be two strongly orthogonal subsets o f  q~"(b), such that 
some element w of  W ( H )  maps $I w ( - St) onto $2 u ( - $2). Then, for  a suitably 
chosen representative k ~ K o f  w, Ad k o Cs, = cs~ ~ Ad k. 

Proof. The problem can be subdivided into two special cases, namely w Sx = $2 
on the one hand, and w = 1, $I u ( - S ~ ) =  $2 w ( - S z )  on the other. To deal with 
the first situation, I begin with an arbitrary representative k e K  of w. As follows 
from the definition of the Cayley transform, A d k o c s ,  o A d k  -~ is the Cayley 
transform corresponding to $2, but a possibly different choice of the Y~. Thus one 
can quote (2.13): ifk is modified by some h e H ,  one obtains Adko Cs, A d k  -x o = C S 2 .  

In the second special case, when w = 1, there exists an h E H, such that Ad h(Y~)= Y~ 
whenever +a~S1 c~ Sz, and Adh(Y)=  - Y~ whenever q-a~S1 c~(-Sz) .  But then 
k = h has the desired property. 
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I now consider an arbitrary Cartan subalgebra b e g .  The root system of 
(gr b e) will be denoted by q~(b). In terms of the decomposition b = b~ | b of(2.14), 
I define the two sub-root systems 

q,(b)~ = {~r (~, b >=0},  
(2.21) 

~b(b)_ = {c~eq)(b)]{e, b~ ) = 0 } .  

Equivalently, q~(b)~ consists of all roots which assume purely imaginary values 
on b, and ~b(b)_ of all roots with real values on b. At this point, it should be 
remembered that G has a compact Cartan subgroup. 

(2.22) Lemma. The root system (b(b)_ has the property SO. Its elements span the 
dual space of b . 

Proof Let ac.q be a maximally split Cartan subalgebra, with b c a .  If the 
splitting a=a+  |  is defined in analogy to (2.14), b must lie in a .  As is asserted 
by [38], (b(a) contains a strongly orthogonal subset {y, . . . .  ,7s}, such that 

(2.23) a+ Qb_  ={Xea [ (y i ,  X>=0 ,  1 <i<s}.  

Corresponding to each y~, since y; assumes real values on a, there exists a copy of 
~I(2, IR) in .q, which is spanned by real generators of the +';~-root spaces and by 
their commutator. Because the y~ are strongly orthogonal, any two of these copies 
ofs I(2, IR) commute. Their product is a subalgebra ~ c .q, of rank s, which centralizes 
a~ |  and which contains ~ c~ a as a split Cartan subalgebra. Evidently s has a 
toroidal Cartan subalgebra t, whose direct sum with a~ | b_ becomes a Cartan 
subalgebra of .q. The conjugacy class of a Cartan subalgebra depends only on its 
split part [38]. Hence one can replace b by one of its conjugates, without altering 
b_, so as to arrange b+ =a~ |  In ~c, t r and ~Cc~ae- are conjugate. A suitable 
inner automorphism of ge therefore provides an isomorphism a r b e, which acts 
as the identity on be_, and which maps b~ into a~" | Under this isomorphism, 
~b(b) corresponds to a sub-root system of q~(a)_, namely to 

(2.24) {c~eq)(a) [c~J_yi, 1 <=i<s} 

(cf. (2.23)). Since g contains a toroidal Cartan subalgebra, 4~(a)_ has the property 
SO [38]. According to (2.18), the root system (2.24), and thus 4~(b) , must also 
have this property; moreover, 

rk 4~(b)_ = rk ~b(a)_ - s = dim a_ - s = dim b ,  

as was to be shown. 

(2.25) Lemma. Let W(b)_ be the subgroup qf the Weft group of (gr b r generated 
by the reflections about the root hyperplanes corresponding to the roots in q~(b)_. 
Then ever), we W(b)_ can be realized by an element of the normalizer of b in G. 

Proof Every c~eq~(b)_ is real on b. The c~-root space is therefore spanned by 
some E, eg. The E'~s, together with b ,  generate a semisimple (because of (2.22)) 
subalgebra g_ c g ;  by construction, g_ centralizes b~ and contains b as a split 
Caftan subalgebra. To g_, there corresponds a connected subgroup G of G. 
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According to s tandard  results, the normal izer  of b_ in G acts on b_ as the full 
Weyl group  of  (g~, b~ ). Hence the lemma.  

Since the roots  in q~(b) _ assume real values on b, for each ~e~P(b)_ one can 
choose a real genera tor  E~ e,q of the c~-root space of (gr be), and an element F~ e b , 
subject to the following condit ions:  

[F~, E~] = 2 E~, [F~, E ~] = - 2 E .~, 
(2.26) 

[E~,E ~ ] = F ~ = - F ~ .  

According to (2.22), ~P(b)_ contains a strongly or thogonal  spanning set {~ . . . . .  ~}.  
For  i # j ,  [E+~,, E• =0 .  Hence  the product  

iTz 
I~.~=lexp ~ (E~ +E_~Q 

is well-defined. In order to state the next lemma,  I assume that  b = b s ,  for some 
strongly or thogonal  subset Sc4'n(b) .  As usual, c s denotes the Cayley t ransform 
(2.12). 

(2.27) Lemma.  Under the hypotheses just mentioned, there exists an element b 
of the normalizer of b in G, which operates on b r as an element of W(b)~ , such that 

iTz 
Cs o Ad b = Ad b o l-[~ ~- ~ Ad exp -4-- (E~ + E_ ~,). 

It should be emphasized that the s ta tement  holds regardless of the part icular  
choices which were made in defining the various ingredients of the lemma. 

Proof The i somorph ism Cs: b r b e induces an i somorphism of the dual spaces 

c~: b** - , b  ~*, 

whose inverse maps  S onto  a strongly or thogonal  spanning set of q~(b).. Tak ing  
into account  (2.19), one can enumera te  the elements of S as ?~, . . . ,  7~, and one can 
find some w~ W(b)_ , so that  

(2.28) c~wa~=Tj, for l<=j<s. 

Because of (2.25), w can be realized by an element b 1 of the normal izer  of  b in G. 
For each j, P~ = Ad b I (Cs Z~.) lies in the Lie product  of the root  spaces of  (gr b c) 
corresponding to cL; and - c ~  and (c~.,/~ ) = 2  as follows from (2.27), (2.28), and . I '  ! . j 

the fact that Cs is an a u t o m o r p h i s m  of gr Hence, in the notat ion of (2.26), P% = F~,; 
i . e .  

(2.29) Adbt(csZT)=F~,  1 < j < s .  

Next, I introduce 

(2.30) /~j = i Ad b t (Cs Y~,), E_ ~, 

By an explicit compu ta t ion  in SL(2,1F), one checks that 
Hence the complex  conjugate  o f / ~ ,  is 

- iAdb~(~;s  Y__~) = - i A d b l ( c s  1 Y y ) = / ~ ,  

= - i Ad b 1 (Cs Y_ ~j). 

c~ 1 g - ~ =  - c s  Y~,j. 
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so that  / ~ j e 9 ;  similarly, /~_, eg.  In view of their definition and of (2.29), the 
/~+~, are therefore real generators  of  the _+c~j-root spaces of (gr be), and in place 
of  E• they satisfy the identity (2.26), for e=c~j. But this is possible only if 
E,j=a~E,,, E _ , = a f  ~ E_,, with a suitable nonzero  constant  ajelR.  Modifying 
bl by an element of exp b_, one can arrange a~ = _+ 1. Thus  

(2.31) iAdbl(c s Y~,)=ejE~j, iAdbl(c s Y ~ , ) =  - e j E  ,,, 

with e j =  • 1. For  each j, Ad exP-2 - (E~ , -E_~ , )  maps  F~, to its negative, E~, to 

-E~,, E ~ ,  to - E ~ , ,  and it acts as the identity on the c~fhyperplane in b; this can 
again be checked by a compu ta t i on  in SL(2, IR). If one defines b 2 as the product  of  

rc E Ad exp ~ -  ( ~, - E ~,), extended over  t hose j  for which ej = - 1, then 

Adb2(E, +E ,,)=ej(E~ +E ~,) , l<=j<=s. 

Also, b 2 normalizes  b, and Ad b 2 operates  on b as an element of  W(b)_. I now set 
b = b i- J b 2 a. As a consequence of (2.31) and the definition of Cs, for 1 __< j < s, 

iAdb(E,+E_~, )=cs(Y_~-  Yy,)=(Y_~ - Y~,). 

This finally implies the identity concerning Cs. The assert ion about  b has already 
been verified individually for both  b~ and b 2. 

Proof of (2.16). Let b e g  be an arbi t rary  Car tan  subalgebra.  According  to 
(2.22), 4~(b)_ has a s trongly o r thogona l  spanning set {a t . . . .  ,a~}, with s = d i m b  _. 
Using these roots,  one can construct  a suba lgebra  5 c g, which centralizes b ~, 
and which contains b_ as a split Ca r t an  subatgebra.  The  direct sum of b+ with a 
toroidal  Car t an  suba lgebra  of ~ is a toroidal  Car t an  suba lgebra  of g, and hence 
conjugate  to b. Replacing b by one of its conjugates,  one can therefore arrange 
that  b o b +  @9, b o b +  0 9 .  This reduces the first s ta tement  of the proposi t ion  to 
the special case g_~91(2, IR), for which it is easy to check. 

The  "if" par t  of  the second s ta tement  is a direct consequence of (2.20). In 
order  to prove the "only  if" part,  I consider two strongly or thogona l  subsets S~, 
Sz of ~"(b), such that  the Car tan  subalgebras  bs~ and bs2 are conjugate,  say 

(2.32) bs2 = Ad g bsl, 

with g e G. An appl icat ion of (2.27) to b = bs, gives the identi ty 

Cs, o Ad b 1 = Ad b I o 1 ~  = 1 Ad exp J ~ -  (E~, + E_ ~,), 

for a suitable b 1 in the normal izer  of bs,, which operates  on bs, as an element of  
W(bsl) . On the other  hand,  since 

bsr = Ad g - 1 bes~ = Ad g - t o Cs~ (be') 

= Ad g -  1 o Cs2 ~ Ad g(Ad g -  1 be), 
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one may view A d g - l o C s 2 o A d g  as a Cayley transform, where now A d g - l H  
plays the role of H. Thus another application of (2.27) leads to the identity 

Ad g -  1 o Cs2 o Ad g o Ad b 2 = Ad b z o I-[~ = 1 Ad exp --4- (E~j + E _ ~,), 

with the usual conditions on b 2. The two identities about Csl and Cs2 together imply 

Cs~ o Adgo Ad b = A d g o  Adb o Cs~ ; 

here b = b 2 b f  ~ normalizes bsl and operates on bsl as an element of W(bs~)_. I set 
k =gb ,  so that the preceeding identity becomes Cs~ o Ad k = Ad k o Cs. Because of 
(2.32), 

Ad k b r = Ad k o cg ~ (bsr = cg  ~ o Ad k (bs r ) 

:cd~' o AdgoAdb(b~,)-c-'- s2 bs~=b e- 

Thus k normalizes H (hence k e K ,  cf. (2.1)). As can be read off from (2.15), because 
A d k b s = b s ~ ,  Adk must map @_+~s,g ~ onto @_+,~s2gL This is possible only if 
the element we W(H) which Adk represents maps $1 w ( - $ 1 )  onto Sz w ( - $ 2 ) .  
The proof  of (2.16) is now complete. 

To each Cartan subalgebra b e g ,  there corresponds a Cartan subgroup, 
namely the centralizer of b in G. Since G was assumed to be a matrix group, every 
Cartan subgroup B is Abelian. Clearly two Cartan subgroups are conjugate 
precisely when the associated Cartan subalgebras are; hence (2.16) also provides 
a classification of conjugacy classes of Cartan subgroups. 

It will be necessary to have certain information about the Weyl group of a 
general Cartan subgroup B. This Weyl group, i.e. the normalizer of B in G modulo B, 
will be denoted by W(B) or W(G, B). In a natural manner, W(B) can be identified 
with a subgroup of the Weyl group of (gr be), for which I shall use the symbol 
W(B)r 
(2.33) W(B)= W(B)r 

I recall the definition of W(b)_ in (2.25). To have consistent notation, this group 
will now be referred to as W(B)_. As follows from its definition, 

(2.34) W(B)_ is a normal subgroup of W(B). 

In order to understand W(B) better, it is helpful to relate it to the Weyl group 
W(H) of a compact Cartan subgroup H. For this purpose, without loss of generality, 
I assume that b = bs, for some strongly orthogonal subset S of r I now write 
B s instead of B. Via the Cayley transform Cs: I) _ bs, one can transfer W(H) and 
its subgroups to subgroups of W(Bs) r In particular, 

(2.35) U (Bs)= {Cs o wo Cs 1 [we W (H), w S c S w ( -  S)} 

is a subgroup of W(Bs)r (here W(Bs) r is viewed as a transformation group on bs~). 
The notation U(Bs) is not entirely satisfactory, because the group (2.35) depends 
not only on B s, but also on the choices of H and S; however, bringing out this 
dependence in the notation would lead to complications. 
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(2.36) Proposition. The Wef t  group W (Bs) contains U (Bs). Every w e  W (Bs) can be 
expressed as a product w 1 w2, with w 1 ~ U(Bs), w 2 ~ W(Bs )  . 

In order to have a more complete description of W(Bs) ,  one must determine 
W(Bs)_  c~ U(Bs); this will be done in (2.43) below. 

P r o o f  Suppose w e  W ( H )  maps S into S u ( - S), and let k ~ K  be an element of K 
which represents w. I now apply (2.20), with S I = S ,  S 2 = A d k - I ( S ) ,  Cs2 ~ 
Ad k-~  o Cs o Ad k, and for the trivial element of W(H).  Conclusion: if k is properly 
chosen, one can arrange that c s o Ad k = Ad k o c s. Hence c s o w o Cs i can be realised 
as Adk, which implies Cs o w o c s l ~ W ( B s ) . T o  prove the second statement, I let 
w e W ( B s )  be given, and I represent it as Adg, g e G .  In particular, b s = A d g  b s. One 
can now proceed just as in the proof of (2.16), with $1 = $ 2 = S .  It is argued there 
that g = k b-~, for some k in the normalizer of H and some b in the normalizer of B; 
moreover,  

a) Adb  operates on b s as an element of W(B~)_ ; 

b) Adk, viewed as element of W(H) ,  maps S into S u ( - S ) ;  

c) Cs ~ Ad k o Cs I = Ad k. 

Hence, if one sets w~ and w 2 equal to the elements of W(Bs )  determined by, 
respectively, Ad k and Ad b-~, one obtains the desired decomposition of w. 

As a matrix group, G has a complexification Ge; G C is a connected, reductive, 
complex Lie group, which contains G as a real form. When the Lie algebra of G e 
is identified with 9 r the subgroup G c G e corresponds to the subalgebra 9 c 9 r 
Any given Cartan subgroup B of G can be complexified to a Cartan subgroup B r 
of G e. The exponential map of G e maps the Lie algebra b e of B e onto B e. In 
particular, every b e B  can be written as b = e x p X ,  for some Xebe ;  of course, 
X need not lie in b. This fact will be used in the statement of(2.38) below. 

I continue to consider an arbitrary Cartan subgroup B c G, with Lie algebra b. 
The definition of the splitting b = b +  Q b _  in (2.14) should be recalled. For the 
purpose of stating the next proposition, it is necessary to introduce the weight 
lattice A(cP(B)) of the root system q~(B); one must be slightly careful here, because 
G need not be semisimple: 

2c ib*  O b *  belongs to A(~(B) )  if and only if 

(2.37) a) the linear functional 2 vanishes on the center of g, and 
b) 2(2, ~)(e, e ) - I  eN, for all eE~b(B). 

(Inb),  ( , )  denotes an inner product on ib* |  coming from the trace form of 
faithful finite dimensional representation of G). 

Although the following statement is certainly not unknown, I could nor find 
a convenient reference for it (however, cf. 1.4.1.3 of [39]). 

(2.38) Proposition. There exists  a unique direct product decomposit ion B = B + �9 B ,  
such that  

a) B ~ is compact,  and its identity component  B ~ is a torus, wi th Lie algebra b ~ ; 

b) B is connected and is isomorphic, via the exponent ial  map, to its Lie algebra b .  
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Moreover, B ~ /B ~ can be generated by 

{exp(i X)]X ~ b_, ~ 2, X )  ~ 7r ~, .for all 2 ~ A (qS(B))}. 

The latter is a finite subgroup of B+, in which every element has order two. 

Proof With respect to a given faithful finite dimensional representation of G, 
every b e e x p b  has positive eigenvatues, whereas the elements of a compact 
subgroup have eigenvalues of modulus one. Also, B can be diagonalized over ~7. 
Hence the decomposition, of it is known to exist at all, is necessarily direct and 
uniquely determined. In order to verify the existence of the decomposition, it 
should be observed that G is the product of a connected semisimple subgroup and 
a central torus; this central torus is contained in expb~. Hence, without loss of 
generality, I may assume G to be semisimple. If the decomposition of B, including 
the statement about B+/B ~ has been established in some finite covering of G, 
it then also follows for G. Thus I can further reduce the problem, by requiring that 
G r be simply connected. Now let b6B be given. According to the remarks above 
the proposition, b = exp(X +i Y), with X, Ycb. Clearly exp b lies in B, so that 

B = e x p b  -expb+-(Gc~exp(ib));  

here the first factor is isomorphic to b via exp, and the second is a torus. It 
remains to identify the last factor. 

Complex conjugation in 9 r lifts to an automorphism of G ~:, which will also be 
denoted by g ~-~ ~. Since G ~" is, by assumption, semisimple and simply connected, 
the group of real points in G r is known to be connected (e.g. (4.7) of [4]); it therefore 
coincides with G. Thus, if X e b, 

exp(iX)~ G <=~ exp(iX) = exp(iX) 

~=~ exp(iX) = e x p ( -  iX) <=~ exp(2iX)= 1. 

In the simply connected group G ~', any Z E b ~" exponentiates to the identity precisely 
when 

(2.39) (2, Z)c27z i~ ,  for all .a.eA(q~(B)). 

On b~, every weight 2 assumes purely imaginary values, on b_ real values. For 
Z = 2 i X ,  with Xeb,  (2.39) now implies X e b .  Hence 

G c~ exp(ib)= {exp(iX)tXeb__, (2, X ) e r c ~  for all 2eA(q)(B))}. 

As was already shown, every element of this group has order two. Since it lies in 
the torus exp(ib | b, ), it must also be finite. The proposition follows. 

More delicate information about the connected components of a Cartan 
subalgebra B can be obtained by considering the centralizer of B ~ in G. 

(2.40) Lemma. The centralizer of BC§ ) has a factorization (not necessarily direct) 
as B ~ . GB, such that Gn is a connected, semisimple subgroup of G. In GB, Bc~ GR 
lies as a split Cartan subgroup. The rank of a maximal compact subgroup KR of Ge 
agrees with the rank of GR. I f  G/K is Hermitian symmetric, then so is Ge/Km In 
this situation, er, ery simple .['actor of GB is isomorphic, up to covering, to Sp(n, IR), 
.for some n. 
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Proof Together with b ,  the E, corresponding to c~eq~(b)_ (notation of (2.26)) 
span a subalgebra gBEg. Because of (2.22), gB is semisimple; it contains b as a 
split Caftan subalgebra. Let GB be the connected subgroup with Lie algebra gs- 
Virtually by construction, B ~ �9 G B is at least the identity component of the centralizer 
of B ~ . To prove the connectedness of the centralizer, I look at a typical element g. 
Since Ad g(gs)= g~, and since any two split Cartan subalgebras of g8 are conjugate, 
modifying g by a suitable element of Gs, one can arrange that Adg(b ) = b ,  
i.e. g~ B. The connectedness of the centralizer thus comes down to the containment 
B c B ~  Gs. In analogy to A(@(B)), I set 

A (4,(b)_) -- {2 e b* 12(2, a)(c~, c~)-1 e Z for all c~e 4~(b)_ }. 

Applying (2.38) to both B in G and to B c~ GB in GB, one would be able to deduce 
B c B ~ GB from the following statement: 

for every/~eA(q~(b)_), there exists some 

(2.41) 2~A(45(B)), such that p=2[b . 

To verify (2.41), I choose a system of simple roots {~1, " ' ' ,  0~r} in 4~(B), such 
that {al . . . . .  c~s}, s < r, forms a system of simple roots for the sub-root system q~(b)_ ; 
this can be done because g~ is the derived algebra of the centralizer in gr of a 
subalgebra of the Cartan algebra b e. If 21 . . . .  ,2,~A(~b(B)) are the fundamental 
weights dual to cq, ..., cr then 21, ..., 2s restrict to generators of A(q~(b)_). This 
implies (2.41), and hence also the connectedness of the centralizer of B ~ As for 
the remaining assertions, since b is a split Cartan subalgebra of g~, B must 
intersect G B in a split Cartan subgroup. Conjugating B if necessary, one may 
assume B ~ : H .  But then H is a Cartan subgroup of the centralizer of B ~ and 
hence H c~ G8 turns out to be a compact Cartan subgroup of Gs. Again if B ~ c H, 
GB remains stable under the Cartan involution 0. Thus K c~ G~ becomes a maximal 
compact subgroup of G~. The quotient Gn/K c~ GB can be naturally identified 
with the B ~ - G~-orbit of the identity coset in G/K. This orbit inherits an invariant 
complex structure from that of G/K, provided G/K is Hermitian symmetric, 
because the group B~ - G~ contains the center of K: at the tangent space of the 
identity coset in G/K, the complex structure tensor is given by an element of the 
center of K (see Chapter VIII of [17]). Finally, every simple factor of G~ contains 
both a split and a compact Cartan subgroup. If it is also known to operate on a 
Hermitian symmetric space, this narrows down the possibilities to Sp(n, lR) or 
its adjoint group, as can be deduced from Moore's [30] description of the root 
system of a Hermitian symmetric space, or in a number of other ways. 

(2.42) Remark. If B = B  s, for some strongly orthogonal subset Sc4~"(l)), I shall 
write Gs instead of GB~. In this case, H n G s lies in Gs as a compact Cartan subgroup, 
whose Lie algebra is spanned by { iZ,  Iae S} (cf. (2.7)). Moreover, H = B ~ + . ( G s c~ H). 

Indeed, H contains B ~ and this implies that H ca G s is a Cartan subgroup S,+,  
of Gs. For every aeS, iZ,  belongs to the derived algebra of the centralizer of 
bs,+ in gr On the other hand, iZ~Et). Hence the Lie algebra of Gsc~H at least 
contains the span of {iZ~ ~ S}. The dimension of the latter, namely the cardinality 
of S, agrees with the rank of Gs, so that the containment must be an equality. 
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Finally, as a count of dimensions shows, B ~ �9 (Gsc~ H ) - w h i c h  is obviously a S,+ 
subtorus of H -  cannot be smaller than H. 

At this point, it is easy to complete the description of the Weyl group which 
was given in (2.36). Since Gs centralizes B ~ every g in the normalizer of Gsc~ H S,-t, 
in Gs commutes with B ~ " in particular, g normalizes H. Hence the Weyl group S,-4 , 
W(Gs, Gs ~ H) can be embedded, in a natural manner, into W(G, H). In analogy 
to the group U(Bs), I define 

U (Gs, Gsc~ Bs)= {c~o w o  Cs 1 Iwe W (as, Gs n H), wS c S w ( -  S)}. 

(2.43) Corollary. In the notation of (2.36), 

U (Bs) c~ W (Bs)_ = U (Gs, Gs ~ Bs). 

Proof According to the proof of (2.36), if w~W(G, H) maps S into S w ( - S ) ,  
then w has a representation as Adk, such that c s o A d k o c (  l = A d k .  Hence 
CsO w o Cs 1, viewed as an element of W(Bs), is also represented by Ad k. If 
CsOWOCsl~W(Bs)_, Adk must operate trivially on B ~ �9 s, ~, so that k eB  ~ Gs. 
But then weW(Gs,  Gsc~H), which proves the containment U ( B s ) ~ W ( B s ) c  
U(Gs, Gs~ Bs). The reverse containment follows from the argument which shows 

that U(Bs)c W(Bs), applied to Gs and Gs c~ B s instead of G and B s. 
I return to the setting of (2.40), and I let B j be a connected component of the 

Cartan subgroup B. For every c~eq~(b)_, e ~ assumes nonzero, real values on B, 
and hence either only positive, or only negative values on B j. Those c~eq~(b)_, 
for which e~>0 on B J, form a sub-root system q~ of q~(b)_. Since q~(b)_ can be 
naturally identified with ~(G~, B c~ GB), one may think of 4~ / also as a sub-root 
system of the latter. The E, corresponding to c~e~ (notation of (2.26)) and b 
together span a reductive subatgebra of 98, which contains b as a split Cartan 
subalgebra. The connected subgroup which this Lie algebra determines shall 
be denoted by G(BJ). 

(2.44) Proposition. The group G(B ~) is semisimple; it contains both a split and a 
compact Cartan subgroup. The identity component B ~ of B lies in B ~ . G(B~), and 
BJc B ~ - Z(G(BJ)) (Z(. . .)= center of...). I f G/K happens to be Hermitian symmetric, 
every simple factor of G(B j) is isomorphic, up to covering, to Sp(n, IR),for some n. 

With the help of this proposition, it is possible to make an important re- 
duction in the problem of explicitly computing the characters of the discrete 
series (cf. (4.22) below). For most of this paper, G/K will be assumed to be Hermitian 
symmetric. In that case, the proof of the proposition becomes even simpler. 
I have included the general case here, because it wilt be needed in w 5, where some 
of the arguments are given in greater generality than necessary for the purposes 
of this paper. 

Proof Since GR meets every component of B, the statement does not really 
concern G, but only GB. In other words, I may assume that B is a split Cartan sub- 
group of a connected, semisimple Lie group G, which is also known to contain a 
compact Cartan subgroup. I set 4~=4~(b); then �9 is an abstract, reduced root 
system with the property SO (cf. (2.22)). Now let A=A(q~) be the weight lattice 



66 W. Schmid 

of the root system q~, i.e. 

A = {2~b*12(2, ~) (c~, ~)-1 ~TZ for all ~e~},  

and A ' c A  the sublattice generated by 2A, q~J, and all sums ~1 +~2, with cti~q~, 
air q~J, i=  1, 2. Because of (2.38), the sub-root system ~ satisfies 

(2.45) A' c~ (b c q~;. 

In particular, this implies 

(2.46) ~1 ,~2~ ,  0~1 , (X2~ (/)j , 0~1 -f- 0~2 G (iD ::::> 0~1 ~- ~2 C (ibj �9 

I now claim the following: if q~ is a reduced, abstract root system with the prop- 
erty SO, and if ~/r is a sub-root system of q~ satisfying (2.45), then 

(2.47) q~J has the property SO, and rk ~J= rk cb. 

Assuming (2.47), which will be verified presently, it is a simple matter to prove 
the proposition. Because of the assertion about the rank of 4' ~, G(B j) must be 
semisimple; G(B j) contains a compact Cartan subgroup since qri has the property 
SO [38]. With the simplifying assumptions which were made, the Lie algebra 
of G(B j) contains b, so that B~ For any bEB j, there exists some bomB ~ 
such that e'(b)= e'(bo) whenever ~c ~J. But this means b boleZ(G(BJ)), and hence 
BJ~B ~ Z(G(BJ)). If G/K has a Hermitian symmetric structure, each irreducible 
component of the root system q~ must be of type C, (cf. (2.40)). As can then be 
deduced directly from (2.45) and (2.46), each irreducible component of q; must 
also be of type Ck, for some k. Hence each simple factor of G(B j) is isomorphic, 
up to covering, to Sp(k, IR). 

It remains to prove (2.47); the argument will proceed by induction on the rank. 
If (b has rank one, 2A contains (b, so that 4, = ~b j. Now let �9 have rank greater than 
one. If 4' fails to be irreducible, each irreducible component of ~b can be assumed 
to satisfy (2.47), and hence q, itself also satisfies (2.47). Otherwise, for an irreducible 
root system of rank greater than one, (2.46) guarantees the existence of at least 
one root fl~(b j. In terms of/3, I define 

~={c~blc~• ~J=OSc~ (bJ, / i=weight  lattice of 

the root system 4~={#eb*[p• 2(#, c~) (~, ~)-le2g if c~e~}. 

According to (2.18), ~ has the property SO, and the rank of q~ is exactly one less 
than the rank of 4). For any/~ e/t,  there exists some 2e A, such that 2 differs from # 
by a multiple of/3; this statement is analogous to, and can be verified in the same 
manner as, (2.41). Since 2eA, and since # L/3, 2 2 - 2 #  must be an integral multiple 
of/3. Thus 

(2.48) 22 c A'. 

Now let A' be the sublattice of A generated by 2A, ~J, and all sums ~ + a2, with 
~ie~, ~ir J, ~, + ~z e ~ .  Because of (2.48), a '  contains A, which implies 

(2.49) A' c~ ~ c ~J. 

As was already mentioned, ,b has the property SO. In view of (2.49), and by in- 
duction, one can now infer the statement (2.47) for q~. 
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It must still be shown that ~J has the property SO. If fl is strongly orthogonal 
to every root in ~ there is no problem. Otherwise, I select 7 a $  j, such that fl_+ 7 
are roots. Then both f l+7 and f l -7  belong to @J, and they must both be strongly 
orthogonal to any root which is orthogonal to them. Because of (2.18), the ortho- 
gonal complement of 7 in SJ contains a strongly orthogonal spanning set. Com- 
bined with fl + 7, it becomes a strongly orthogonal spanning set of tbJ. This de- 
monstrates (2.47) and completes the proof of the proposition. 

The final remarks of this section will be devoted to the centralizer of the split 
part B of a Cartan subgroup B. Without loss of generality, I assume B=Bs ,  
for some strongly orthogonal subset S c q~"(l)). On the Lie algebra level, the central- 

iF ir izer in .qr of bs,_ can be described as m s |  _ ,  where 

(2.50) ms ~=span of bes,~ and all root spaces of (go, bs r corresponding to roots 
in q~(bs) + 

(cf. (2.21)). Any root in 4~(bs) + assumes purely imaginary values on bs. Hence the 
Lie algebra ms r defined by (2.50) arises as the complexification of a real subalgebra 
mscg .  Clearly, 

(2.51) ms@bs ,_  is the centralizer of bs,_ in 9. 

The Cartan involution 0:9-~9 lifts to an involutive automorphism of G, 
which shall also be referred to as 0. Then K is the group of fixed points of 0. Ac- 
cording to (2.15), 0 leaves bs invariant, hence also Bs, Bs, +, etc. The following 
statements are fairly standard; see w 4 of [40], for example. 

(2.52) Lemma. The centralizer of Bs, can be uniquely factored into the direct 
product Ms" Bs, _, with O M s = M s. The identity component M ~ of  Ms is reductive, 
it contains M ~ ~ K as a maximal  compact subgroup and o Bs,+ as a compact Cartan 
subgroup, and it corresponds to the Lie algebra ms.  For every m e Ms,  Ad m : ms r ms r 
belongs to the adjoint group of  the complexified Lie algebra mCs. 

In particular, Ms ~ again satisfies all hypotheses which were originally imposed 
on G. For the study of M s / M  ~ it is helpful to introduce the intermediate normal 
subgroup 

(2.53) M t s = { m e  M s ] A d m :  M~ M ~ is inner} 

(cf. [-40], w 3). I shall also consider the finite group 

(2.54) Fs = { e x p ( i X ) I X e  bs, _, (2, X } ~ Z ,  for all 2eA(cI)(Bs))} , 

which first came up in (2.38). 

(2.55) Lemma. The f ini te  group F s is central in M~s, and Nits = M ~ . Fs. 

Proo f  As follows from its definition, F s is Abelian and commutes with Ms~ 
hence it is central in Ms t. Every coset in M*s/M~ has a representative g which 
centralizes Ms ~ Since g also commutes with Bs, _, it must lie in B s. According to 
(2.38), for some f e F s ,  g f--1 lies in Bs ~ But then g f - l ~ M s c ~ B s = B ~  so that f 
and g determine the same coset in M*s/M~ . 

There is one simple observation in this context which should be recorded for 
future use. If the set S consists of a single noncompact root fl, the group Ga of 
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(2.42) is i somorphic  to SL(2, IR) or its adjoint group. In either case, F B is precisely 
the center of G~. Since H intersects Gp in a compact  Caf tan subgroup, it must 
contain F~. Thus:  

(2.56) Remark. If S={fl},  for some flecb"(b), F~ has order  two or is trivial, and 

Every element of the normalizer  of B ~ in M ~ centralizes b s Hence the S,+ , - -  
Weyl group W ( M  ~ o Bs, + ) may be viewed as a subgroup of  

(2.57) { w e W ( G ,  Bs)IWlbs._ = 1}; 

a normal  subgroup,  in fact, as is not  hard to check. 

(2.58) Lemma.  Ms~M* s is isomorphic to the quotient o f  the group (2.57) modulo 
W (M ~ B ~ + ). 

Proof  If an element w of the group (2.57) is represented as Adg,  with gEG, 
then g must centralize Bs, _, so that g e M  s . Bs, _. In particular, the representative 
g can be chosen to lie in M s. Subject to the condit ion g~ Ms,  g becomes determined 
up to a factor in M s n B = Bs, + c M*s. I f A d g  represents an element of W ( M ~ B ~ + ), 
one could have picked g from M ~ which lies in Ms*. These remarks describe a welt- 
defined hom omorph i sm  of the quotient  of the two Weyl groups into Ms~M* s. To 
show surjectivity, I pick g e m s .  Up to conjugacy, M ~ contains only a single 
compact  Car tan subgroup. Hence, if g is modified by a suitable factor in M ~ 
g can be made to normalize bs, +. Since g also centralizes bs,_, Adg  represents an 
element of the group (2.57). The injectivity of the mapping, finally, follows directly 
from the definition of Ms*. 

I identify the root  system q)(bs) + in (2.21) with the root  system of(ms r b r s, ~), i.e. 

(2.59) ~(bs) + -~ q~(M ~ , B ~ + ). 

On the other  hand, since the Cayley transform Cs: b~-~ b~ acts as the identity on 
bE, +, ~(bs)+ can also be naturally identified with a sub-root  system of q~(b): 

(2.60) q~(bs)+ -~ {aE(b(b)la • S}. 

The Car tan involution preserves ms r and acts as the identity on bs r ~. Consequently,  
the root  spaces of ~m r b r s, s, ~) must  be 0-stable. Just as in the case of (.qr [)r a root  
~ e q , ( m  o, o Bs,+) is called compact  or noncompact ,  depending on whether the 
corresponding root  space lies in t ~ or pc. Via the identification (2.59), for each 
a~q~(bs)+, one has the notion of compactness or noncompactness  of a in terms 

ITI~ C of the pair ( s, bs. ~ ), and via the identification (2.60), in terms of the pair (.qr be). 

(2.61) Lemma.  Under the identification (2.60), a root aEq~(bs)+ is either strongly 
orthogonal to all roots in S, or to all roots in S with exactly  one exception. In the f i rs t  
case, the two notions o f  compactness or noncompactness in terms of  (mr bsr ) and 
in terms of  (g r b r agree, and in the second case, they are opposed. 

Proof  If ~q0(bs)~ fails to be strongly or thogonal  to two roots 7~, 72 ES, then 
-+ 71, ~ +- 7z must all be roots, because a • 7~- Since (a + 7~, a + 72) = (a, a ) >  0, 

7~ - 7 2  is also a root ;  contradict ion!  I now let B( ,  ) denote the trace form of a 
faithful finite dimensional  representat ion of G; it is negative definite on [ and 
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positive definite on p. Hence, if X is a generator  of the e - rootspace  of (gr be'), the 
compactness_or noncompac tness  of e relative to (gr b r can be read off from the 
sign of B(X, X). Similarly, the sign of 

B(cs X, cs X)= B(cs X, Cs I X)= B(cZ X, X) 

C C determines the compactness  or noncompac tness  of a relative to (ms, bs, ~). It 
therefore suffices to show that  c 2 X = X if ~ is s trongly o r thogona l  to all yeS,  and 
that otherwise c 2 X = - X. In the first situation, the identity c~ X = X is essentially 
clear. In the second situation, one may  as well assume that  S consists of a single 
root y, which is or thogonal  to a, but not s t rongly or thogonal .  In the notat ion of 
(2.7), Z~., Y~, Y y  span a copy of ~l(2, C ) i n  gr Because of the hypotheses,  X lies in 
an irreducible, three-dimensional  module  of this copy of ~t(2, ~),  in the zero- 
eigenspace of Zy. The identity c~ X = - X  now follows from a compu ta t ion  with 
SL(2, r 

Just  as in the case of G/K, the quot ient  M~176 may be regarded as a 
symmetr ic  space, of  the noncompac t  type. 

(2.62) Lemma.  If G/K is Hermitian symmetric, and if no simple factor of G is 
isomorphic, up to covering, to S0(2,2n+1), for some n>=2, then M~176 is 
again Hermitian symmetric. I f  G is isomorphic to S0(2, 2 n + 1) or its two[bld linear 
covering, then M~ ~ c~ K is also Hermitian symmetric, unless S consists of a single 
root, which is short. In this exceptional situation, M ~ ~-SO(l, 2n), at least up to 
covering. 

Proof Let G/K be Hermi t ian  symmetric .  One can then introduce an ordering 
on q'(b), such that  the sum of two positive noncompac t  roots is never a root.  
I shall apply the converse of  this s tatement,  which is also true, to M~176 
Specifically, I shall verify this proper ty  for the restricted positive root system in 
(b(bs),,  which the not ion of compactness  and noncompac tness  taken relative to 
(m~', b ~" �9 s, ,  ); the exception ment ioned in the l emma is excluded, of course. Wi thout  
loss of  generality, I assume G to be simple. If all roots in q~(bs),, identified with 
roots in (b(b) via (2.60), are strongly or thogonal  to S, there is nothing to be done, 
thanks to (2.61). Otherwise, there exist ~e(bs) , and yeS ,  which are not s t rongly 
or thogonal .  Since ~ L 7, ~-+Y must be roots, and ~ and y must  be short. Thus one 
is reduced to looking at a simple G, with G/K Hermi t ian  symmetric ,  and such 
that there exist roots of two different lengths. As can be deduced either from 
Moore ' s  results [30] or from the classification, this implies G~-SO(2, 2 n +  1) or 
G ~-S p(n, IR), up to covering. The complet ion of the p roof  is now left to the reader. 

w 3. The "Holomorphic Discrete Series" 

T h r o u g h o u t  this section, and for most  of the remainder  of this paper,  I shall 
consider a connected,  reductive Lie group  G, which admits  a faithful finite dimen- 
sional representat ion,  which has a compac t  center, and whose quotient  G/K by a 
maximal  compac t  subgroup  K carries a Hermi t ian  symmetr ic  structure. The  
discussion in w 2 applies to such a group;  I shall freely use the nota t ion  established 
there. 
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For groups of this type 6, Harish-Chandra [9] has constructed a certain 
class of representations in a very explicit manner. Some of the representations 
are unitary and belong to the discrete series, whereas others cannot be unitarized 
and are reducible. The class of square-integrable representations among these is 
often referred to, somewhat informally, as the holomorphic discrete series. As 
will be shown in the next few sections, the characters of Harish-Chandra's rep- 
resentations, including the non-unitary ones, can be used as the basic building 
blocks for the characters of the discrete series. Below, I shall briefly recall Harish- 
Chandra's construction, in the manner which is most convenient in the context 
of this paper. 

Since G/K carries a Hermitian symmetric structure, there exists an ordering 
of the root system 4~(b), such that the sum of two noncompact positive roots is 
never a root. For the time being, I fix such an ordering, and I denote the resulting 
set of positive roots by 7'. For emphasis, 

(3.1) c~,/~ q' ~,t,"(b) ~ ~ +/~r r  

The choice of 7/determines a splitting 

(3.2) 

(cf. (2.6)). Both p, 

pC=p+@p_ ,  with 

p+ = @ 9 %  ~e  ~ c~ r 

P-  = @ 9 - %  ~eT'c~cb"(b) 

and p_ are Ad K-invariant, Abelian subalgebras of .qC, which 
are complex conjugate to each other. In the complexification G c of G, they ex- 
ponentiate to unipotent, Abelian subgroups P., P .  The semidirect product 
K r P§ turns out to be a parabolic subgroup of G r and 

(3.3) G c~ (K r P, ) = K.  

Hence G/K can be identified with the G-orbit of the identity coset in GC/K c. P~. 
For dimension reasons, the orbit is open, and so the embedding 

(3.4) G/K ~ GC/K c. P+ 

induces an invariant complex structure on G/K; (3.4) is the usual embedding of 
the Hermitian symmetric space G/K in its compact dual. 

I recall the definition of A ~ ib* as the lattice of differentials of characters of H 
(cf. (2.2)). With the usual notation, I set 

(3.5) p =�89 Z ~ ,  c~. 

Now let 2e ib*  be such that 

(3.6) 2+peA, and (2 ,a )>0  forall  cceku~q~(b ) 

(q~(b) = set of nonzero, compact roots of (gr be)). Since A contains the roots, 

(3.7) 1~=2-pc+pn 

6 H a r i s h - C h a n d r a  does  n o t  a s s u m e  tha t  G is l inear .  
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also lies in A; here Pc and p, denote one half of the sum of the positive compact, 
resp. noncompact, roots. Because of the first condition in (3.6), 2(2, ct)(c~, c~) -~ e;g 
for all roots c~. In conjuction with the second condition, this implies (2-Pc ,  ~)>0, 
whenever ae  ~uc~ ~b~(b). On the other hand, because 2p, is the highest weight of 
a one dimensional K-module, namely of the highest exterior power of p +, p, is 
perpendicular to q~c(b ). Thus 

(3.8) (#, ~)>0,  for all ~e T c~ 4)~(b), 

and consequently there exists an irreducible, holomorphic Kr V u, of 
highest weight p. It extends uniquely to K r P,, so that one may regard V, as a 
K r P+ -module. 

Like any finite dimensional, holomorphic representation of K r P~, V, associates 
a holomorphic vector bundle to the principle bundle 

K r p~ --*Gr r P+, 

which will be denoted by f ,  ~ Gr r P+. The action of G r on Gr r P, lifts to 
this bundle. Hence the restriction Uu---,G/K is a G-homogeneous, holomorphic 
vector bundle. I set F~ = space of holomorphic sections of "//~---, G/K (# and 2 are 
related by (3.7)). In a natural fashion, Fx carries the structure of a Frech6t space, 
on which G acts by translation. The G-action is continuous, viewed as a map from 
G xFx  to Fx. 

As is not hard to show (cf. w 7), the space of K-finite vectors in the G-module 
F x is isomorphic, as K-module, to V~, tensored with the symmetric algebra of t0,. 
In particular, the irreducible K-module V, occurs exactly once in Fa. Moreover, 
this K-submodule lies in every closed, G-invariant subspace of Fx. The center of 
ll(g r (=  universal enveloping algebra of gO) therefore operates on Fx according 
to a one-dimensional representation. By trivializing the vector bundle ~ over a 
neighborhood of the closure of G/K, the representation of G on the Frech6t 
space Fa can be made infinitesimally equivalent to a representation on a Hilbert 
space, namely on V, tensored with the space of L: boundary values of holomorphic 
functions on the Shilov boundary of G/K; details are given in [16]. Since the 
multiplicities of the various irreducible K-modules in Fasatisfy the bound occurring 
in Harish-Chandra's definition of quasi-simplicity [10], the representation of G 
on Fa is infinitesimally equivalent to a quasi-simple representation on a Hilbert 
space. Hence the usual proofs of the existence of a character apply to the G-module 
Fx: the character of F x is an invariant eigendistribution. 

The construction of the G-module Fa above depends not only on the choice 
of the parameter 2eib*,  but also on the choice of the system of the positive roots 
7'cq~(b); 7 j must satisfy (3.1), and Lp and 2 must be related by (3.7). In order to 
emphasize the dependence on both 7 ~ and 2, I define 

(3.9) O(~,  2)= character of the G-module Fa. 

In her thesis [28], Martens has investigated those of the G-modules Fa which 
b e l o n g - u p  to infinitesimal equ iva lence- to  the discrete series. In particular, she 
has explicitly and globally computed their characters. For the purposes of this 
paper, one needs the character formula for all of the Fa. The general case has been 
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t reated by Hecht  [16], with quite different methods.  I shall proceed to quote his 
result, after disposing of  some preliminaries.  

According  to a deep theorem7 of Ha r i sh -Chandra  [11], each invariant  
eigendistr ibut ion on a reductive Lie group  is a locally L 1 function, which is real 
analytic on the regular  set - in more  precise language, each invariant  eigendistribu- 
t ion can be represented as integrat ion against  such a function. Henceforth,  I shall 
slur over the dist inction between an invar iant  eigendistr ibut ion and the function 
that  represents it. Every regular e lement  of the group G lies in a Car t an  subgroup.  
Hence, in order  to describe an invariant  eigendistribution,  it suffices to give a 
formula  for it on one Car tan  subgroup  from each conjugacy class. I now consider 
a Ca r t an  subgroup  B s ~ G, corresponding  to a s trongly or thogona l  subset S ~ 4)" (bs). 
The  Cayley t ransform Cs: [ c ~  _ bs ~ maps  S on to  a s t rongly o r thogona l  spanning 
set of  ~(bs)_ (cf. (2.2l)), say {cq, . . . ,  cq}. Every e ~' assumes real values on B s. The 
reflection abou t  cq lies in the Weyl group  of Bs; lifted to an au tomorph i sm of B s, 
it maps  the character  e~z: B s ~ IR* to its inverse, whereas it preserves e% for j 4 = i. 
Hence  the conjugates  of  

(3.10) {beBsl [e~'(b)l < 1 for 1 _< i_<s} 

cover  a dense open subset of B s. In passing, it should be remarked  that  e ~ assumes 
only positive real values on Bs, provided that  c~ is a m e m b e r  of a strongly o r thogona l  
spanning set s of  4)(bs)_, as follows from the a rguments  in the p roof  of (2.44). 
The  absolute  value signs in (3.10) are therefore irrelevant;  some conjugate  of 
every regular  be  B s ties in the set (3.10). 

The Car tan  subgroup  B s is wholly conta ined in its complexif icat ion B~'. Since 
the Cayley t ransform establishes an i somorph ism between H e and B e s, every 
function on B s, or on a subset of  B s, can be pulled back via Cs to the appropr ia te  
subset  of H e. The torus H contains the center of  G ~', so that every 2 c A  lifts to a 
character  e z on H e. When  this character  is restricted to H, the nota t ion  agrees 
with that  of (2.2). Using these conventions,  the character  formula  of Mar tens  and 
Hech t  can be stated as follows: 

(3.11) Theorem. (Martens [28], Hecht  [16]). Let S be a strongly orthogonal subset 
o f  cI)"([~), such that S c  ~P. Then 0(71, 2), restricted to the subset (3.10) of  Bs, and 
pulled back to the corresponding subset o f  I ~  via Cs, is given by 

~w~Wtm e(w) e wx . 
( - 1)q I -L~, (e  ~/2 - e - ' /2 )  , 

here e(w), for  w ~ W (H), denotes the sign of  w, and q = ~ dim~ G/K. 

Some remarks  are in order. As is usual also with Weyt 's character  formula,  
bo th  numera to r  and denomina to r  should be multiplied through by e p, or e -p. 
As the formula  stands, the exponent ia l  terms need not  be well-defined on H e , 
since 2 m a y  not lie in A. I f  2 satisfies 

(3.12) ( 2 , ~ ) > 0  fora l l  c(e7/, 

7 A careful analysis of the arguments in [16] shows directly that the character of F a is a locally L ~ 
function, so that one does not really have to appeal to the theorem at this point. 
8 This is not a general fact; G/K must be Hermitian symmetric. 



On the Characters of the Discrete Series. The Hermitian Symmetric Case 73 

in addition to (3.7), the G-module Fa belongs to the discrete series [13], up to 
infinitesimal equivalence, of course. In this case, the character O(7/, 2) is tempered 
[13, 39], as it must be. To deduce the temperedness from (3.11), one merely has to 
show that (w2, 7)>0 whenever weW(H) ,  ?,eS. Since W(H) is the Weyl group of 
H in K, and since AdK normalizes p+, W(H) preserves ~u c~ 4,"(b). Thus w -1 S c  T, 
for every we W(H), and the inequality (w2, 7)>0 follows from (3.12). Observe that 
the preceding argument proves the temperedness of O(T,  2) as soon as (2, c0>0 
for all ~e ~ c~ q~". 

The global formula for O(7', 2) has a very simple form. One might hope that 
this is typical for the characters of the discrete series, but unfortunately it is not. 
To begin with, in general the discrete series characters can be described by consistent 
formula only on a Weyl chamber of the root system q'(bs)_, rather than on a whole 
quadrant of the type (3.10). More seriously, the disconnectedness of a Cartan 
subgroup enters the general formula in an essential manner, as happens already 
for Sp(2, IR). Finally, the coefficients of the various exponential terms that could 
conceivably enter the formula, which are + 1 or 0 in (3.11), may be arbitrarily large 
integers in general. 

w 4. The Characters of the Discrete Series 

The main statements of this section involve the process of inducing an invariant 
eigendistribution from a cuspidal parabolic subgroup. It will therefore be necessary 
to introduce certain conventions about this process. I continue with the assump- 
tions and with the notation of w 2; in particular, the group G is to have a faithful 
finite dimensional representation. At a later point, G/K will also be required to be 
Hermitian symmetric. 

To begin with, I consider the Cartan subgroup Bs corresponding to a strongly 
orthogonal subset S c r As was described in w 2, the centralizer of Bs._ can be 
factored as Ms.  Bs, _. It is possible to choose some X e b s . ,  such that 

(4.1) c~eq~(bs), (a, X)  =0  ~ C~lb~..~ =0 .  

Those root spaces of (.qr b r which belong to roots c~ with (c~, X ) > 0  span a nil- 
potent subalgebra nr162 n r is invariant under complex conjugation, and it is 
therefore the complexification ofa subalgebra n c g. Evidently Ms.  Bs, _ normalizes 
the connected subgroup N = expn of G. The semidirect product 

(4.2) M s . Bs,_ . N 

turns out to be a cuspidal parabolic subgroup. This is just the standard con- 
struction which attaches to each Cartan subgroup a class of cuspidal parabolic 
subgroups. 

In order to have a definite correspondance between invariant eigendistributions 
and the locally L 1 functions which represent them, I choose and keep fixed a 
particular normalization of the Haar measure dg of G. The Haar measure dk on K, 
dm on Ms, db on Bs, _, and dn on N can be chosen subject to the normalization 

(4.3) ~ . f (g )dg=~MsS~ .~  _ ~s f (kmbn)e2~ n d b d m d k ,  
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for every compactly supported, continuous function f Here pNe b~,_ is defined by 

(4.4) pN=�89 {c~e q~(bs)] (c~, X ) >  0} Jbs ' - ; 

equivalently, e 2pN can be described as the character by which Bs._ operates on the 
top exterior power of n r 

I now consider an invariant eigendistribution 4' on M s (which will be tacitly 
identified with the locally L 1 function that represents it), and a particular veb* _. 
The formula 

(4 .5)  O(f)=~K~Ms~Bs _ ~Nf(kmbnk-~)4'(m)e~-PN(b)dndbdmdk 

defines a distribution O on G. If 4' happens to be given as the character of a (quasi- 
simple) representation of M s, 0 is the character of an induced representation 
[8, 18, 40]. In the context of unitary representations, v is generally required to 
take imaginary, rather than real, values on b s , .  Nevertheless, the usual arguments 
about the inducing of characters apply to this situation as well, and they show that 

(4.6) O is an invariant eigendistribution, which is independent of the particular 
choice of N 

(i.e. independent of the particular X in (4.1)). 

When induced invariant eigendistributions come up below, 4' will be given 
in terms of an invariant eigendistribution on the identity component M ~ of M s, 
in a manner which is again suggested by the procedure of inducing representations. 
At this point, one should recall the definition (2.53) of the normal subgroup 
MS* c Ms, the definition (2.54) of the finite group F s c Mrs, and the statement of 
Lemma(2.55). I assume that the following data are given: an invariant eigen- 
distribution 4'o on M ~ and a character ~: F s ~ C*, which satisfy 

( 4 . 7 )  4'o(fm)=~(f)4'o(m), whenever f eFsc~M ~ meMO; 

here 4'o is viewed as a function. Because of (4.7), one can define a locally L ~ function 
4'~ on Ms t, by setting 

( 4 . 8 )  4'1(fm)=~(f)Oo(m), if f e F  s, m e M  ~ 

One checks easily that 4'~ is again an invariant eigendistribution. For each meMs,  
qS~ o Adm depends only on the class ofm in Ms/MS*. Since this quotient is finite, 

(4 .9)  4 ' = ~ M ~ / M s  4'~ oAdm on Ms* 
(o on the complement of M~ in M s 

describes a distribution 4' on Ms. 

(4.10) Remark. 4' is an invariant eigendistribution. 

Proof By definition, 4' remains invariant under inner automorphisms. For 
meMs,  Adm operates on ms r as an element of the complex adjoint group; cf. (2.52). 
Hence Adm acts trivially on the center of the universal enveloping algebra of ms ~. 
This makes 4' an invariant eigendistribution. 

To recapitulate, the invariant eigendistribution O of (4.5) can be put together 
from the following ingredients: a strongly orthogonal subset S c~"(b), a linear 
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functional veb*,_,  an invariant eigendistribution q~o on M~ and a character  
of  Fs, subject to the condit ion (4.7). 

As in w A c i b *  will stand for the lattice of differentials of characters of H. 
I define 
(4.11) 2e ib*  is admissible i f 2 - p e A ;  

here p denotes one half of the sum of the positive roots, relative to some ordering 
of 4~(b ). The particular ordering does not matter:  any two choices of p differ by a 
sum of roots. According to (2.15) and (2.52), H contains the compact  Cartan 
subgroup B ~ of Ms ~ By restriction, each 2e ib*  thus determines an element S,+ 

of ibm, ~. 

(4.12) Remark. I f2e  ib* is admissible, then the restriction of 2 to bs, + is admissible, 
relative to M ~ and B~ 

Proof I let X be an element of bs,_ with the proper ty  (4.11, and I choose an 
ordering of q~(bs), such that (~, X ) >  0 implies the positivity of z~. Via the Cayley 
t ransform Cs, this ordering can be carried over to q~(b). The ordering also induces 
one on the root  system of (ms r b~'4 ), compat ibly with the identifications (2.59) 
and (2.60). Because of the choice of the ordering, and because of the manner  in 
which the Caf tan involution operates on q~(bs), if ~e ~b(b) is positive and does not 
vanish identically on bs,~, then some other  positive root  has the same restriction 
to bs, ~ as - ~. Now let p be one half of the sum of the positive roots in q>(b), and 
poe ib*  + one half of the sum of the positive roots of (m~', bsr ). According to 
what was just said, the restriction of p to bs, ~ coincides with P0; this gives the 
remark. 

It is necessary to examine in some more detail the case when S consists of a 
single noncompac t  root, say /~. One can then pick a system of positive roots in 
q~(b), such that cz E ~b(b) is positive whenever (~,/~) > 0. Now let 2 e /b*  be admissible. 
With p set equal to one half of the sum of the roots in the positive root  system 
chosen above, 2 - p  lies in A, and hence lifts to a character  e ~-p of H. According 
to (2.56), H contains F~. Hence e ~-f' restricts a character  (x: F~--* ~*.  

(4.13) Remark. The character  ~ does not depend on the particular choice of the 
positive root  system. Moreover ,  if/~ is replaced by -/~,  in which case M B = Mp 
and F ~  =F~, ~ remains unchanged. 

Proof Any two legitimate choices of p differ by a sum of roots  c~, with (~z, f l)= 0. 
Via (2.59) and (2.60), each such ~ may be viewed as a root  of (nt~:, b~" ~ ), so that 
e~-=l on the center of M~, which contains F~. If - f i  takes over the role of fl, 
one can simply replace the positive root  system used in the definition of ~a by its 
negative. It therefore must be shown that  e 2p=- 1 on F B. By an argument similar 
to the one in the proof  of (4.12), 2p must differ from a suitable multiple off l  by a 
sum of roots of (m~, b~, + ). On the other hand, (2p, fl) (fl, fl)-i  is an integer. This 
reduces the problem to showing that e ~  1 on F~, which can be deduced from the 
definition of Fe. 

In view of (2.59) and (2.60), the root  system of (m~', b~, ~ ) can be canonically 
identified with the set of roots in q~(b) which are perpendicular  to ft. As (2.61) 
demonstrates,  such a root  a may well be compact  as a root  of (M~, B~,, ), and 
noncompac t  as a root  of  (G, H). 
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(4.t4) Remark. Let 7 ~ c q~(b) be a system of positive roots, for which fl is a simple 
root. If 2 e i b* satisfies (2, c~) > 0 for every c~ e 7 j c~ q~C(b), then also (2, c~) > 0, when- 
ever c~e~ is perpendicular  to fl and compact ,  considered as a root  of (M~, B~, ~ ). 

Proof When such a root  c~ is compact  also as a root  of (G, H), there is nothing 
to be said. Otherwise, according to (2.61), c~+_/3 must be roots. As sums of two 
noncompac t  roots, both are compact .  Since/3 is simple and ~ positive, c~+/3e 7 ~. 
Thus (2, ~+ /3 )>0 ,  and hence (2, c~)>0. 

The statement of Theorem (4.15) below is of an inductive nature. In order to 
get the induction going, one must agree to the following convent ion:  if G is a 
connected,  compact  Lie group, i.e. if G = K, the one point space G/K is considered 
to be Hermit ian symmetric.  In this case, every root  with respect to a Caf tan  sub- 
group H c  G is a compact  root,  and every positive root  system has the proper ty  
(3.1). The invariant eigendistributions O (~P, 2) of Theorem (3.11) are then precisely 
the characters of the finite dimensional,  irreducible G-modules. 

(4.15) Theorem. Let G be a reductive Lie group, subject to the usual hypotheses of 
this paper, and such that G/K is Hermitian symmetric. For each positive root system 

~ 4~(b), and for each admissible 2 �9 i b* (cf. (4.11)), which satisfies the condition 

(*) (~, 2 ) > 0  whenever c~eTc~q~c(b), 

there exists an invariant eigendistribution 6)(7 j, 2) on G, with the following properties: 

a) I f  the positive root system 7 j fulfills (3.1), O(~f, 2) agrees with the invariant 
eigendistribution described by (3.11). 

b) Under translation by elements of the center Z(G), 0 (7  t, 2) transforms ac- 
cording to the rule 

O(7 ~, 2) (zg)=  e ~-p (z)O(~P, 2)(g), 

for zeZ(G) and g e G  (p=one half of the sum of the positive roots, relative to an 
arbitrary positive root system; O(LP, 2) is viewed as a function). 

c) Let/3 be a noncompact root, which is simple for 7 j. Removing/3 from ~ and 
replacing it by -/3, one obtains another positive root system, 711. The sum of O(~P, 2) 
and 0 ( ~ ,  2) equals an induced invariant eigendistribution, which will now be 
described. The restriction of 2 to bp. + determines a functional #eib~, +, which is 
admissible for M~, according to (4.12). In the root system of (M~, B~. + ), via the 
identifications (2.59) and (2.60), Lp cuts out a system of positive roots ~Po" Because 
of(4.14), ~B and r satisfy (*), relative to M~ and B~, +. By induction 9, 7t~ and l~ deter- 
mine an invariant eigendistribution C~o on M~. As follows from b), applied to M~, 
(a o has the transformation property (4.7), with (=(a  as in (4.13), and with S= {/3}. 
The inverse Cayley transform c~ ~ maps b~,_ into ib, so that 2o c~ ~ restricts to a 

functional v e b ~ . .  Let 0 be the induced invariant eigendistribution corresponding 
to the data S = {/3}, v, C~o, and (z. Then 

o(7', ~)+ o(%, ,~)= o.  

The preceeding conditions a)-c) determine the invariant eigendistributions 0 (ud,)~) 
completely. In addition, the distributions 0 (7 j, )~) satisfy 

9 At this point, remark (4.16) should be taken into account. 
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d) For each weW(H) ,  O(w7 j, w2)=O(T ,  2). 

e) The restriction of O(~P, 2) to H is given by the formula 

( -  1) q ~ w ( m  e(w) ewa 

l-i, ~e ( e'/2 - e-'/2) 

(q=�89 dim~ G/K" to make the formula meaningful on H, both numerator and de- 
nominator may have to be multiplied through by eP). 

f) Under the stronger hypothesis 

(2, c0>0 /f c~eq'c(b)c~ T (**) 
(2, ~)>0 if c~eq"(b)a 7-' 

the distribution 0 ( 7  j, 2) is tempered [13, 39]. 

In particular, the distributions 0 ( 7  j, 2), with tp and 2 subject to the condition 
(2, c0>0 for all c~e 7 j, are precisely the characters of the discrete series [13]. 

(4.16) Remark. In order to inductively apply the theorem itself in c), one must 
know that M~/M~ ~ K is again Hermitian symmetric. According to (2.62), this 
is almost always true; but it fails iffl is a short, noncompact root in a simple factor 
of G, which is isomorphic, up to covering, to S0(2, 2n+  1), n>2.  There are two 
possible ways of dealing with the exception. For G=SO(2, 2n+  1), any positive 
root system 7 j c q~(b) can be connected to one of the type (3. I) by a chain of positive 
root systems q~=%,  ~ t , . . . ,  TN, such that each ~1 is obtained from ~ - t  by 
changing the sign of a long, noncompact, simple root. In c), one can therefore 
simply exclude the case of any noncompact, simple root fl for which 0 0 m~/m~ ~ K 
fails to be Hermitian symmetric. With this restriction in c), the existence and 
uniqueness statements of the theorem remain correct; I shall prove this version 
of the theorem. Alternatively, it is possible to widen the scope of the theorem 
slightly, so as to make the class of groups G which it treats closed under the passage 
from G to M~" a group G belongs to the larger class precisely when all of its non- 
compact, simple factors are, up to covering, either copies of SO(l, 2n), or auto- 
morphism groups of Hermitian symmetric spaces. For groups with factors iso- 
morphic to SO(I, 2n), the statement of condition a) must then be modified, of 
course (cf. w 9). 

(4.17) Remarks. I) The condition c) is symmetric in 7 j and ~ ,  as follows from 
(4.13) and the fact that/~ can be changed into - #  by an element of W(BI~), which 
operates trivially on Bo. ~ . 

II) Let G =  T-G1 . . . . .  GN be a factorization of G, such that the Gi are con- 
nected semisimple subgroups, intersecting each other only in the center of G, 
if at all, and T a central torus. Then O can be expressed as a product O1 . . . . .  ON, 
multiplied by the restriction of the character e z-p to T; here Oi denotes the in- 
variant eigendistribution on Gi, parameterized in the manner of the theorem by 
7 j and 2, restricted to G~. This is a consequence of the uniqueness statement in the 
theorem; each application of the transition process c) only involves one of the 
factors G i. 
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III) Under a finite covering (~--* G by another linear group 0, O(ke, 2) pulls 
back to the invariant eigendistribution on (~ which corresponds to 7 ~ and 2. 
Again, one can infer this from the uniqueness statement; the condition c) is 
compatible with going to the covering group. 

The proof of the theorem will be given in w 5 and w 6. It is e l emen ta ry - i f  
somewhat l eng thy - ,  and almost entirely combinatorial, except for the use of(3.11), 
which has a funct ion- theore t ic  proof [16]. The main purpose of the theorem 
is to serve as a vehicle for inductive arguments: in order to verify a property of the 
distributions 0 ( 7  ~, 2), it suffices to verify it whenever the positive root system 7 j 
satisfies (3.1)-this is usually a simple m a t t e r - ,  and then to show that the property 
is consistent with statement c) in (4.15). The proofs of the theorem itself, of the 
other theorems in this section, and of Blattner's conjecture are all based on such 
inductive arguments. 

From Theorem (4.15), one can deduce a global formula for the distributions 
O(h u, 2), in terms of those described by (3.11) and the process of inducing in- 
variant eigendistributions. Since the inducing process of inducing is computable 
[8, t8, 40], and since the distributions of (3.11) are completely understood, the 
formula can be used, at least in principle, to explicitly write down the character of 
any given discrete series representation on any given Cartan subgroup. Special 
cases of this formula will be discussed, with only a sketch of a proof, in [37]. For 
actual computations, Theorems (4.21) and (4.22) below are much more useful, 
however. 

In order to state those two theorems, I must take care of some preliminaries. 
Let G'cG be a connected, reductive subgroup, which contains the compact 
Caftan subgroup H of G. For reference purposes, I choose a positive root system 
7~o ~ ~/'(G, H); it restricts to a positive root system in 45(G', H). As usual, p and p' 
shall denote one half of the sum of the positive roots in, respectively, q~(G, H) 
and q>(G', H). According to (2.3), there exists a finite covering G' -~ G' of G' by a 
matrix group (~', such that both p and p' lift to characters on the inverse image / )  
of H in (~'. In passing, one should observe that 

(4.18) if2~ib* is admissible relative to G, then it is also admissible relative to G' 

(cf. (4.11)). 

(4.19) Remark. There exists a unique function A~,w on G', which can be expressed 
as the difference of two characters of finite dimensional representations of (~', and 
such that the restrictions of Ac, G, t o / )  is 

with c~ running over all roots in % outside of ~(G', H). 

Proof Since e p and e ~ make sense on /4, the product multiplies out as an 
integral linear combination of characters o f / t .  The center of the complexification 
of 0 '  lies in /4. It therefore suffices to show that the product remains invariant 
under the action of every w in the Weyl group of the root system q~(G', H). For 
any such w, ~(w) is plus or minus one, depending on whether w alters the sign of 
an even or of an odd number of positive roots in q~(G', H). Of course, the statement 
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also holds with 4~(G, H) in place of ~(G',  H). Hence w flips the sign of an even 
number  of roots in ~0 - (% c~ 4)(G', H)), as was to be shown. 

The definition of A~,~, depends on the choice of the reference positive root  
system %. For  any positive root  system tY = ~b(G, H), I set eG.G,(~)= 4- 1, SO that 

(4.20) AG, G, 1/7/= eG,G,(t[ j) 1-[(e ~/2 -- e -  ~/2), 

with c~ now running over ~- (TJc~q~(G ', H)). To  distinguish the invariant eigen- 
distributions of Theorem (4.15) on G and G', I shall denote them by ~gG(..., ...) 
and O~,(..., ...). Let B be a Car tan subgroup of G. Replacing B by one of its 
conjugates, one can arrange that H = B ~ -G B (cf. (2.40)). In order  to simplify the 
notation, I set G' = B ~ �9 G B. If 7 ~ and 2 satisfy the conditions of (4.15), then 2 is also 
admissible relative to (~', and hence, for any wc W(G, H), 

eG, G' (W 7J) - O~, (W 7/C~ 4~(G', H), w 2) 

is a well-defined invariant eigendistribution on (~'. As can be checked, it depends 
only on the coset of w in W(G', H ) \  W(G, H). 

(4.21) Theorem. Under the hypothesis stated above, 

o J ' ,  = ( -  ' 

�9 �9 oe.,(wq' H), 

in the sense that the right hand side can be pulled down from G' to G', where it then 
agrees with the left hand side; q =�89 dim~ G/K, q' =�89 dim~ G'/G' ~ K. 

When B is a split Car tan subgroup, the statement (4.21) becomes vacuous. 
At the other  extreme, for B =  H, it becomes equivalent to (4.15e). For a general B, 
however, since B c B ~ �9 Gs, it reduces the problem of computing the distributions 
~9(~, )0 on B to the analogous problem with G B taking the place of G, and a split 
Cartan subgroup of G8 taking the place of B. The significance of this reduction 
stems from the fact that each simple factor of G8 is isomorphic,  up to covering, 
to Sp(n, IR), for some n; moreover,  n is always less than or equal to 2, unless a 
simple factor of G is itself i somorphic  to Sp(n, IR). The proof  of (4.21) is a key 
ingredient of the proof  of (4.15), and will be given in w167 5, 6. 

One more unpleasant mat ter  remains to be dealt with: a general Car tan 
subgroup B may have several connected components ;  on two distinct components  
of B, the explicit formula for one of the distributions O(7 j, 2) may look entirely 
different. The next theorem will dispose of this difficulty. I enumerate  the connected 
components  of B as B ~ B ~, . . . ,  B u (B ~ = identity component) .  For  any particular B j, 
I consider the group G(B j) of Proposi t ion (2.44). Possibly after replacing B by one 
of its conjugates, one has H ~ B  ~ . G(BJ). In the discussion above (4.21), I now 
let B ~ . G(B j) play the role of G'. 

(4.22) Theorem. Under the hypotheses stated above, 

OG(t/t,  2)[Bj = (  - -  l)q-q'(dG,G,) -1 

. q,) o ,(w q, H), w 

the same explanations as in (4.2t) apply. 
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Remark. For the characters of the discrete series, the conclusions of Theo- 
rems(4.21) and (4.22) can be deduced directly from Harish-Chandra's con- 
struction 10. 

The statement of Theorem (4.22) looks formally identical to that of Theo- 
rem (4.21). There is an important difference, however: the formula in (4.22) may 
hold only on B J; on some other connected component orB, it may be totally false. 
Just as (4.21), (4.22) is a crucial ingredient of the proof of Theorem (4.15). It will 
be proven in w167 5, 6. 

Thanks to Theorems (4.21) and (4.22), the problem of explicitly computing 
the invariant eigendistributions O(7 s, 2) reduces to one rather special case; it 
suffices to know the 0 ( 7  j, 2) on the identity component of a split Cartan subgroup, 
for all those simple groups which operate on a Hermitian symmetric space, and 
which contain a split Cartan subgroup. As was pointed out before, up to covering, 
only the real symplectic groups have these properties. 

Actually, in many cases, one can compute the invariant eigendistributions 
O(~ ,  2) in terms of the discrete series characters of SL(2, IR). To see this, I consider 
a simple matrix group G, with G/K Hermitian symmetric, and such that G is not 
locally isomorphic to Sp(n, IR) or S0(2, 2 n +  1). All roots of G must then have the 
same length. For any subgroup G' of G which can come up in an application of 
Theorems(4.21) and (4.22), every simple factor has roots of only one length. 
On the other hand, each such simple factor of G' has a Hermitian symmetric 
quotient and contains a split Cartan subgroup. Conclusion: up to covering, 
G' is a product of copies of SL(2, IR) and a central torus. For the group SL(2, IR), 
the distributions O(7 j, 2) are of course well known. Hence, for any given connected 
component B j of a Cartan subgroup B c G, there is a simple, explicit formula for 
the restriction of O(tP, 2) to B j. It will be left to the reader to write out the concrete 
formula. 

One can deal with the group S0(2, 2 n +  1) by very similar arguments. In this 
situation, if G' is a subgroup arising from an application of (4.21) or (4.22), the 
semisimple part of G' is locally isomorphic to Sp(2, IR) or a product of at most 
two copies of SL(2, IR). Since the discrete series characters of Sp(2, IR) have been 
computed [18, 37], one again obtains explicit global formulas for the invariant 
eigendistributions O(~u, 2). These remarks leave open only the case of G = Sp(n, IR), 
which is considerably more difficult, and which is considered in [37]. 

w 5. Some Inductive Arguments 
This section is devoted to some key arguments in the proof of Theorem (4.15). 

Roughly speaking, they will show that (4.21) and (4.22), as well as other statements, 
are compatible with (4.15c). These arguments do not depend on the Hermitian 
symmetric structure of G/K; I therefore shall not specifically assume that G/K is 
Hermitian symmetric. 

To begin with, it is necessary to have an explicit formula for the process of 
inducing an invariant eigendistribution from a maximal cuspidal parabolic 
subgroup. Thus let /~ be a noncompact root of (G, H). I consider an invariant 
eigendistribution q5 o on M~, a character ~: Fa~(I;* which satisfies (4.7), and a 

~o This was pointed out to me by Zuckerman. 
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linear functional ve b ~ , .  These data give rise to an invariant eigendistribution O, 
as described in the beginning of w 4. I shall now use J.A. Wolfs computation of 
induced characters (Theorem 4.3.8 of [40]; as stated there, the theorem contains 
an error, which will be rectified below), to determine the restriction of O to the 
various Cartan subgroups of G. 

Let then B ~  G be a Cartan subgroup. I consider the set of M~- Bt~" - c o n j u g a c y  
classes of Cartan subgroups of Mt~. Be, _, which are conjugate under G to B. 
From each such conjugacy class, I pick a representative, and I enumerate the 
representatives as B1 . . . .  , B,. Of course it may happen that no conjugate of B 
lies in Mt~- Bt~ ; in this case n=0 .  For each B~, I choose a particular gieG so that 
B = Ad gi(Bi). In terms of 4, o, ~, and v, one can define a function ~ ~ on M~- B~,_ 
as follows: 

~9(g)=0 if gg~ M~ . B~, , 
(5.1) 

~(mfb)=(~o(m)((f)e"(b), if m6m~, f ~ F  B, b~B~_ 

(cf. (2.54) and (2.55)). Now let X be a generator of b ~ , .  Since each Bi contains 
B~. _, X also lies in hi. Consequently Ad gi(X)~ b, for 1 _<iN n. 

(5.2) Lemma. For beB, 

1 ~w~w(G.8)O(AdgCt(wb) ) 
O ( b ) = a . 2 7 = 1  CT 

with c~ = 4+ [w~ WIG, B)l w(Ad g, IX)) = Ad g, IX) l, 

~ {weW(G,B)IwX= X} 
a z  

o o W(M~, B~, , ) 

Remark. The expression 

(5.3) Hcceq)(G, B), (a, Ad~:,(X)) > O( ea/2 --  e -  a/2) 

may make sense only on a twofold covering of B; the absolute value, however, 
is well-defined on B. 

Proof The lemma follows from Theorem 4.3.8 of [40], coupled with certain 
observations. Theorem 5 of [18] is an alternative reference, but the notation of 
this paper more closely resembles that of [40]. Both the statement and the proof  
of Theorem 4.3.8 in [40] overlook the possibility that several non-conjugate 
Caftan subgroups of M~. B~,_ can be G-conjugate. Hence, for each i, one must 
take the expression in Theorem 4.3.8 with J = B  i, transfer it to B via Adgi, and 
sum over i. Since the formula to be proved is really meaningful only on the regular 
set, b may be assumed to be regular. In this case, the orbit of gi-lbg~ under the 
normalizer of B~ in Mts. B~,_ has exactly as many elements as the Weyl group 
of B~ in M~. B~, _, namely c~ (in the context of this paper, B is Abelian, as need not 
be true in [40]). In the beginning of w 4, 4) was constructed from q5 o in two steps. 

u Strictly speaking, ~ is a well-defined function only on the regular set in Mt~. Bt~ . . . .  
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The formula (5.1) already takes into account the passage from ~bo to q~l- As far as 
the step from q~l to ~b is concerned, I claim that 

(5.4) every coset in Mp/M~ has a representative g which normalizes Bi; 

this will be shown below. Since M~ is normal in Mp, such a representative also 
normalizes Bir (M~. Bo,_). Moreover, Adg preserves the absolute value of the 
expression (5.3), pulled back to Bi via A d g ;  1. The contribution of B i to the 
formula for O1~ in effect involves a summation over W(G, Bi). Hence, in the 
formula for O, the passage from q~a to ~b reflects itself by a multiplicative factor, 
namely the order of Mp/M~, which equals a, according to (2.58). Now only (5.4) 
remains to be verified. For any geMp, Adg maps Bic~M ~ onto another Cartan 
subgroup of M~. According to (2.52), B~c~M~ and its image under Adg are 
conjugate to each other, relative to the adjoint group of m~. As Rothschild has 
shown 12 (Corollary 2.4 in [33]), these two Cartan subgroups must then also be 
conjugate under M~. Thus, if g is modified by a suitable factor in M~, it will 
normalize B~ r M~, and hence B i. This concludes the argument. 

It will be necessary to have an explicit description of the B~. For this purpose, 
I consider a Cartan subgroup B = Bs, where S c 4~"(b) is a strongly orthogonal set 
of noncompact roots. Let G s be the subgroup of G defined in (2.42). Then B~ . Gs 
is the centralizer of B~ +, and H ~ B  ~ ~ . G s. I set qJ'= q)(B ~ ~. Gs, H); equivalently, 

(5.5) q~' = {c~ e ~b(G, H)Jc~ E Q-linear span of S}. 

According to (2.15), Yt~+ Y-t~ spans bp . Hence, for geG, Adg-l(Bs) lies in 
Mr if and only if Adg(Y~+ Y p)eb s. Now let w e W ( G , H )  be such that 
w/~E q~'. I choose k e K  such that Adk represents w. Then Adk(Y~ + Y-t0 lies in gs; 
moreover, as a conjugate of Y~+Y p, Adk(Yt~+Y t~ ) is semisimple, with real 
eigenvalues. It follows that every split Cartan subalgebra of gs, for example bs,_, 
contains a Gs-conjugate of Adk(Yt~+ Y~). Thus, if geGs is suitably chosen, 
Adgk(Y~+ Y ~)ebs . As was pointed out before, Ad(gk)- l (Bs)  is therefore a 
Caftan subgroup of M~- B~, _. 

(5.6) Lemma. The Mp. B~, _-conjugacy class of the Cartan subgroup Ad(g k)- 1 (Bs) 
depends only on the root wfl~ r it is independent of the particular choices of w, k, 
and g. Thus, to each root wfl~cb', with weW(G,  H), there corresponds an Mp. B~, - 
conjugacy class of Caftan subgroups of Mr . Every Cartan subgroup of 
Mr Bp, _, which is G-conjugate to Bs, belongs to one of these conjugacy classes. 
Two roots w 1 fl, Wzfl, with wiEW(G, H), determine the same conjugacy class if and 
only if W 2 f l  = ~r W W 1 f l ,  for some we W(G, H), such that w ~' = cI)'. 

Proof A preliminary statement will be helpful. Let F e b s _  be given; if geGs 
is such that Adg(F)e bs. _, then 

(5.7) g can be factored as g---g~ ge, with glenormalizer o fbs_  in G s and gzecen- 
tralizer of F in Gs. 

Indeed, both bs,_ and Adg l(bs, _) are split Cartan subalgebras of the centralizer 
of F in Gs, and hence they are conjugate under A d g ;  1, for some g2 in the cen- 
tralizer of F. But then g~ = g g 2  ~ normalizes b s .  As for the first statement of the 

2 This is also implicit in the results of [38]. 



On the Characters of the Discrete Series. The Hermitian Symmetric Case 83 

lemma, the ambiguity in the choices of  w and k means that Adk(Y~+ Y-e) is 
determined only up to the action of  Ad h, for some he H c~ Gs. The factor h can be 
absorbed into g, so that one only needs to worry about  the ambiguity in the 
choice o f g e  G s, with k fixed. I fg and g' are two possible choices, one can apply (5.7), 
with g , g - i  taking the place of g, and with F=Adgk(Ye+ Y-0): 

g,g-1 =glgkrnk-l  g-1, 

for some gl in the normalizer of  b s, and some m in the centralizer of Y~ + Y-e, i.e. 
meM e. Be , .  Now Ad(g 'k)  1(Bs)=Ad(g  1 gkm)-l(Bs)=Adm-l(Ad(gk)-l)(Bs), as 
desired. 

To continue the proof, let B c M e- Be,_ be a Car tan  subgroup which is G- 
conjugate to B s. Replacing B by one of its M e - Be, _-conjugates,  one can arrange 
that B n M t  ~ is obtained from Hen M~ by the Cayley transform construct ion:  
there exists a strongly or thogonal  set S'ccI)(G, H), all of whose members  are 
or thogonal  to fi and noncompact ,  viewed as roots of (M~, H ~ M~), such that 

(5.8) b r c~ m~ = cs. ( b r ~ m ~'); 

the Cayley transform c s, is defined relative to the group M~, rather than G. Just 
as in the proof  of(2.61), one can show that fl is strongly or thogonal  to all roots in S', 
with at most  one exception. I shall proceed assuming there is an exception; the 
other case may be treated similarly, but with fewer complications. Thus, for 
exactly one ?eS ' , / / -+7  are roots. According to (2.61), 7 must be compact,  viewed 
as a root  of (G, H), so that/3 • ? is a pair of strongly or thogonal  noncompac t  roots. 
Let S " = S ' - { 7 } ;  then every root  in S" is strongly or thogonal  to ft. The Cayley 
transforms corresponding to S", relative to M~ and G, therefore coincide. Also, 
Cs, = Cs.. ~ c~, where c~ is the Cayley transform corresponding to 7, relative to the 
g r o u p  M~. Since b~ = ct~ b e, and in view of  (5.8), 

b r = Cs,, o c~. o c e b r 

I claim that c~, o c 0 b e = Ad g o ce+ ~, o c e _ ~ b e, for some g e G which commutes  with Cs,,. 
As far as the verification of this claim is concerned, one may as welt assume that 
rb(G,H)={+_fi, +_y, _+ (fl_+ y)}, and G=Sp(2,1R). But then the claim becomes 
essentially obvious, because both c~ o c e b e and c~ ~ ~ o c 0_~b r are complexifications 
of split Car tan  subalgebras. Thus, up to conjugacy, B corresponds to the strongly 
or thogonal  subset S"w{fl+_7} of cb"(G,H). According to (2.t6), for some 
weW(G, H), w(S"w {fl• at least if some of the roots in S"w {fl-+7} are 
replaced by their negatives, which is legitimate. In particular, wfleq)'. Without  
loss of generality, I now assume that w = 1. Ifg e Gs is properly chosen, Ad  g (Y~ + Y e) 
lies in bs, _. It must  be shown that Ad g -~ (Bs) is M e - Be, _-conjugate to B. For this 
assertion, only the sub-root  system { 4- fl, • y, • (fl 4__ 7)} really matters;  the problem 
can again be reduced to the special case G = Sp(2, IR), where it presents no particular 
difficulty. 

Only the final statement of the lemma remains to be proven. Let w~, w 2 e W(G, H) 
be such that w~fleeb', i =  1, 2. For  i =  1, 2, I choose a k~eK which represents w~, and 
g~eGs, so that Ad(g~k~)(Ye+ Ye)ebs ,  . I first suppose that w2fl= • for 
some weW(G, H) with w4~ '=r  The two strongly or thogonal  subsets S and wS 
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of O~"(G, H) span all of q0'. Hence (2.16), applied to Gs, coupled with the fact that 
any two split Cartan subalgebras of gs must be conjugate, shows that i S  and 
+ wS are conjugate under W(B ~ ~ �9 Gs, H). Hence w can be factored into a product 
of an element of W(B~, + . Gs, H) and an element of 

(5.9) {weW(G,  H)[ + w S =  i S } ;  

these two cases may be treated separately. If w has a representation as Ad k, with 
keGs ,  the ki and gi can be chosen so that k z = k k  1, gz=gl  (provided w 2 = w w i ,  
as may be assumed). An argument based on (5.7), similar to one near the beginning 
of this proof, now implies that the two Caftan subgroups Ad(giki)- l(Bs) of 
Ml~- Ba,_ are conjugate. Next, ifw belongs to the group (5.9), it can be represented 
as Ad k, with k normalizing H, B s, and Gs (cf. (2.20)). Again, if the gi and ki are 
suitably chosen, k 2 = k k l ,  g2 =gl .  Thus, 

gz k2 = gl k k 1 = gl k gF 1 k -  1 k gl kl, 

with gl k g7 ~ k- l  e Gs. Applying (5.7) to g=gl k gF ~ k-~ and F = A d ( k  gl kl)(Y~+ Y-e), 
one can find g3 E normalizer of bs,_ in Gs, and m e Me. Be, _, satisfying 

gl kg{  1 k-1 =g3kgl  k lmk{  -1 g~-i k-1.  

Hence gz k2 = gl k k 1 = g3 k gl kl m. Since g3 k normalizes B s, the two Cartan sub- 
algebras Ad(gi ki)-~(Bs) are related by Ad m, and hence Me. Ba, _-conjugate. 

Conversely, I suppose 

Ad(gz kz)-  ~ (Bs) = Ad m- 1 o Ad(g 1 k 1)- ~ (Bs) , 

for some m e M  a . B e , .  Then gzk2 =g3gt kl m, with g3enormalizer of B s. Because 
of (2.36) and (2.20), g3 =k  g4 for some k which normalizes H, B s, and Gs, and such 
that g4eG s. Since g4 normalizes Bs, it can be absorbed into gl; then 

g z k z = k g l  k l m = k g x  k - l  k k l m .  

Since Gs contains g2 and kg~k -~, AdkE(Ya+Y_a) and Adkkl(Y~+Y_a) are 
Gs-conjugate. Let we W(G, H) be the element determined by Ad k. Because of the 
properties of k, wqr=  r The two noncompact roots w E fl and w w~ fl, which both 
lie in r give rise to Cartan subalgebras of gs with one dimensional split parts. 
According to what was just said, these split parts are conjugate under G s. Two 
Caftan subalgebras of .qs are conjugate whenever their split parts are. Hence w 2 fl 
and ww, fl determine conjugate Cartan subalgebras of gs- In view of (2.16), for 
some w'e W(B  ~ + . Gs, H), w2 fl = _+ w'w w I ft. Thus wl fl and 4- w E fl are related by 
an element of W(G, H) which preserves tb'. This completes the proof of Lemma (5.6). 

I shall now combine (5.2) and (5.6). The symbols fl, r (, v, and O shall have 
the same meaning as in the beginning of this section; S is again a strongly orthogonal 
subset of q~"([), and r  is defined by (5.6). I enumerate the set 

{we W (G, H)[wfle q)'} 

as {% . . . . .  w,}; the integer n may not agree with that in Lemma (5.2), of course. For 
! _< i_< n, one can choose a representative k~eK ofw~, such that 

Adki(Y~ + Y-a) = Y~,e + Y-w,e, 
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in the notat ion of (2.7). Since Adk~(Y e + Y e)e.qs, as was argued in prepara t ion  
of (5.6), there exists g~e G s with Ad(gi k3(YB + Y-e)ebs.  Thus Ad(gi ki)-~(Bs) is a 
Car t an  subgroup  of M e �9 Be, . I set 

x =  re+ v_e, 
(5.10) 

X i = A d k i ( X )  = Y,~',e + Y-~,e" 

According to (2.15), X spans be_ ,  and X~ spans bw,~ _, for 1 <_iNn. I recall the 
definition of W ( B s ) "  it is the Weyl group  o f B  s in B~ " Gs (cf. (2.40) and (2.42)). 

(5.11) Lemma.  For beBs ,  

where 

O ( b ) = ~ 7 =  1 Ci - ~w~w ,ss)_ 0(Ad(g~ ki)- l (w b)) 

" I l-l= se,c, ,  ns), <~, Aae, ,X,)> > O( e=/2 - -  e -  ~ /2) (w b ) l -  x, 

c~= 
{we W (B~ ~ . Gs, Bw, e){ w Xi = Xi}  

{we W (B~ ~ . Gs, Bs)lw Ad g~(X~) = Ad g,(X3} 

1 

W ( M ~  B~ , ). 44= W(B~ , . Gs, H) 

Proof  According to (2.36), every w e W ( G , B  s) can be factored as w = w ' w " ,  
with w " e W ( B s ) _  and w'e U(Bs). Moreover ,  as follows from (2.43), 

(5.12) U(Bs)c~ W(Bs)_ ~- {weW(B~ ~ " Gs, H ) l w S c S v o ( - S ) } .  

Thus,  

(5.13) every element of W(G, Bs) can be expressed as a product  uw, with ueU(Bs)  
and we W(Bs) , in exactly as m a n y  ways as the cardinali ty of the group (5.12). 

l enumera te  the elements of U(Bs) as {u~ . . . . .  u,,}. In view of L e m m a  (2.20), with 
$1 = $2 = S, and in view of the definition of Gs, each u~e U(B s) can be represented 
as Adv~ for some v j eK ,  such that  

(5.14) vj normalizes  H, B s, and Gs. 

As i runs from 1 to n, each conjugacy class of Car tan  subgroups  of M e- Be, , 
which contains a G-conjugate of B s, is represented by some Ad(g~k3 l(Bs). The 
conjugacy class of Ad(g~ k3 l(Bs) occurs exactly as m a n y  times as the integer 

(5.15) 
{we W (G, H)lw w~fl = + wifl} - ~ {we W (G, H)lw ~ ' =  q~'} 

~- { we  W (G, H)lw q" = ~ ' ,  w w~ [3= +_w~ [3} 

All this follows from (5.6). Now let a' be the integer a of (5.2), divided by the order  
of  the g roup  (5.12), and c' i the order  of  

(5.16) { w e W (G, Bs)lW Ad gi(Xi) = Ad gi(Xi)}, 
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times the integer (5.15). Putting together (5.2) and the various statements above, 
one finds 

(5.17) O(b)=a'~'~=~ ci 1-~ ~"--t ~w~W{B~)_ ~(Ad(ks -~ vj)(wb)) 

" I 1-~ ~{a, ns}, <~,AO~,{X,,> > o( e~/2 -- e-~/2)( Ad v& b))l- k 

for b~B  s. 

Because of (5.14), for any given i and j, Ad(v)-I k~) represents again an element 
of the set 

{we W (G, H)lw/3e ~'}, 

say wt, with 1 depending on i and j, of course. Also, v)- ~ g~ vj is an element of G s, 
such that 

Hence. 

and similarly 

Ad(v~ ~ gi vj v 71 ki ) (X) e b s . 

0 (Ad (k~ -~ g~-~ v j} {w b)) = 0 (Ad (g, k,)- ~(w b)), 

I lL  re (& n~). <~. Ad ~, {x,} ) > o ( e~/2 - -  e -  ~ / 2 ) ( A d  v~(w b))] 

Since Adv~ preserves S, B s, Gs, etc., one obtains c;=cl. The summation over j 
in (5.17) can therefore be eliminated, if one multiplies the right hand side with the 
order of U(Bs) and sets vj equal to the identity. 

It remains to be shown that the constant C~ in the statement of the lemma 
a'  

equals c~ # U(Bs). Since Ad ki establishes an isomorphism between B~ and Bw, ~, 

one has 
# {we W(G, Bw,~)lwX, = X~} 

(5.18) a ' -  
#W(MO,, Bw,~., �9 # { w ~ W ( B ~  . Gs, H ) I w S c S u ( - S ) }  

for i=  1, ..., n. Because of(2.36) and (2.43), there is an isomorphism 

(5.19) { w e W ( G ,  Bw, p ) [ w X i = X i } ~ - { w ~ W ( G , H ) l w w i f l = + _ w i f l  } . 

Next, I shall investigate the group-{weW(G, H)Iw4Y=4~'}. For every w in this 
group, wS is a strongly orthogonal subset of q~"(G, H), which spans 4~'. Under the 
correspondence (2.16), applied to the group Gs, both S and wS determine the same 
conjugacy class of Cartan subgroups of G s, namely the conjugacy class of split 
Cartan subgroups. Hence there must exist w'e W (B ~ ~ . G s, H), such that w' w S c 
S u ( - S ) .  Taking into account (2.35), one may deduce 

(5.20) 

# {we W(G, H)lwcl)'= 49'} 

# W(B~ . Gs, H).  # U(Bs) 

# {we W ( B  ~ + �9 G s , H ) I w S c S u ( -  S)} " 
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At this point, (5.18-20) give the identity 

a '  1 
. #c- U(Bs)= 

Ci ~ 0 0 ' W(Mw,a,Bw, a,, ). ~ W(B~ - Gs, H) 
(5.21) 

@ {we W(G, H)lw4~' = 4~', ww~fl= +_ wifi} 

-I~ { w e W (G, Bs)] w Ad gi(Xi) = Ad gi(Xi)} 

To complete the proof, the right hand side of (5.21) must be shown to be equal 
to Ci. Now let 

~', = {c~e q,'[c~ • w,/~}; 

via (2.60), ~b~ can be identified with a sub-root system of 4~(G, B~,a), namely 

(5.22) 4~_~r where G~=centralizer of B~,,a, in B ~ "Gs 
- -  S , +  " 

In terms of the isomorphism (5.19), one finds 

{wGW(G, H)Iw~]Y= c1~', wwifl= +_wit~ } ~ {w@W(G, Bw, a) lw~ =49~, w X~= X~}. 

Since Gs has a split Cartan subgroup, so does the semisimple part of G~. Conse- 
quently, q~ must admit a strongly orthogonal spanning set S'~, consisting of roots 
which are noncompact when viewed as roots of (M~ B~ In complete 
analogy to (5.20), with virtually the same arguments, one may conclude 

@ {we W(G, Bw431wcI)'i=cl)'g, wX~=X~} 
(5.24) 

~- W (G~, B~,t~) - @ {we W (G, Bw, t~)lwS'ic S'~ u ( -  S'i ), wXi= X~} 
{We W(Gi, Bw, a)[ wS'i c SI u ( - SD} 

It should be also observed that 

(5.25) W(G,, B,,,a)= {we W(B~ , . Gs, Bw, a)IwXi= X,}. 

By construction, Ad gFl(Bs) is a Caftan subgroup of Gi, whose toroidal part 
lies in the center of G~. Thus, gi can be modified, without destroying any of its 
required properties, such that Ad gT~(Bs) becomes the Cartan subgroup cor- 
responding to the strongly orthogonal set S'i, whose elements are regarded as 
noncompact roots of G~, or equivalently of M,,.,a. If one applies (2.36) and (2.43) 
in this context, with Mw,a taking the place ~3 of G and SI the place of S, one is 
lead to the equality 

{we W(G, Bs)IW Ad gi(Xi) = Ad g,(X,)} 

(5.26) = @ {we W(G, Ad g~-l(B))lwX, = X,} 

@ W(G,,  Ad g~- '(Bs) ) �9 @ {we W(G, Bw,~)l wS', c S', u ( - S',), wX~ = X,} 
z 

{we W (Gi, B,,,,t~)IwS'~S'~u ( -  N'i)} 

Furthermore, as is essentially clear from the definitions, 

# W(G,,  Ad gr l(Bs))= @ {we W ( B ~  . G s, Ad gFl(Bs))[ wXi = X,} 
(5.27) 

= ~ {we W(B ~ ~ �9 Gs, Bs)lW Ad g,(X,)= Ad g~(Xi)}. 

~3 Properly interpreted, these statements remain correct, even though Mw,/~ need not be connected. 
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Combining (5.21) with (5.23-27), one finally obtains the desired identity 
a ~ 

c,,- # U(Bs) = Ci. This completes the proof of Lemma (5.1 1). 
i 

Stating the hypotheses of the main results of this section requires some care. 
I shall consider two alternative sets of inductive hypotheses. Either, if G/K is 
Hermitian symmetric, I assume that (4.15), (4.21) and (4.22) hold for all those 
groups which satisfy the requirements listed in the beginning ofw 2, whose quotient 
by a maximal compact subgroup is Hermitian symmetric, and which are of lower 
dimension than G. O r - a n d  now G/K need not be Hermitian symmetr ic - I  shall 
assume that a modified version of (4.15) holds for all lower dimensional groups 
which satisfy the requirements of w 2: for any such group, invariant eigendistri- 
butions O(T, 2) shall be defined in some definite manner, compatibly with inner 
automorphisms 14, so that (4.15b-e), (4.21), and (4.22) hold. 

I now let ~u c 4'(G, H) be a system of positive roots, // a noncompact root 
which is simple for 7 ~, and ~ the system of positive roots obtained from 7 j by 
replacing/~ with -/~. Further, an admissible (cf. (4.11)) linear functional 2eib* 
shall be given, so that the condition (,) in (4.15) holds. I consider a particular 
invariant eigendistribution on G - i t  will be convenient to denote it by O(7/, 2 ) - ,  
and I define O ( ~ ,  2) by the formula 

(5.28) o (q ' ,  , t)+ o ( z ,  ,~) = o ,  

with O having the same meaning as in (4.15c). 

(5.29) Lemmn. If  O(~P, 2) satisfies (4.15b)and(4.15e), then 0 ( ~  , 2) is an invariant 
eigendistribution, which also satisfies (4.15b) and (4.15e). 

Proof The infinitesimal character of 0 ( 7  ~, 2) can be read off from (4.15e): 
it is 7,x, in Harish-Chandra's notation [6]. Similarly, one can identify the in- 
finitesimal character of the invariant eigendistribution 050 on M~, which enters 
the construction of O. It is known how to compute the infinitesimal character 
of an induced invariant eigendistribution (e.g. Theorem 4.3.8 of [40]). Conclusion: 
both 0 (7  j, 2) and O have infinitesimal character )~; hence so does O ( ~ ,  2). 
Because of (5.1), O ( ~ ,  2) and the negative of O(T, 2) agree on H, which implies 
(4.15e) for O ( ~ ,  2). Because of (4.15b), applied to 05o, and in view of the proof 
of (4.1 2), 05o transforms under Z(M~) according to the rule 

05o(Zm)=eX-~ 05o(m), 

for me M~, zeZ(M~)c  H. By definition, ~x(f)= ea-P(f) for f e Fp. This gives 

05t (z m)=e'~-~ 051 (m), 

whenever me M~, ze Z(M~)~ H (cf. (2.54-56)). 
Every Ad m, with memo, certainly operates trivially on Z(G), so that 

05(z m) = e ~-~ (z) 05(m), 

14 If Theorem (4.15) holds, the compatibility with inner automorphisms follows from the uniqueness 
statement. 
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for m e m o ,  zeZ(G)  (note: because Z(G) is compact, it must lie in M~; cf. (2.52)). 
This last identity, together with the containment Z ( G ) c  M~, implies 

O (z g) = e ~ - r, (z) O (g), 

i fzeZ(G),  ge G, as follows from the definition of O in (4.5). Hence O ( ~ ,  2) satisfies 
(4.15b). 

The hypotheses which preceed the statement of Lemma (5.29) continue to be 
in force. I also assume that 0(7", 2) satisfies (4.15b) and (4.15e), so that the con- 
clusions of Lemma (5.29) hold. 

(5.30) Proposition. I f  O(7", 2) satisfies (4.21), then so does 0 ( ~  , 2). 

Proof The identity which (4.21) asserts is invariant under inner automorphisms. 
It therefore suffices to verify it for one Cartan subgroup from each conjugacy 
class; without loss of generality, I assume B = B  s, for some strongly orthogonal 
subset S c ~ " ( G ,  H). 

Next, I claim that it suffices to prove the identity only on B s, rather than on 
all of G'. Loosely speaking, the statement (4.21) is transitive, in the following 
sense. Let B' be a Cartan subgroup of G' (hence also of G; cf. (2.40)), and /)' its 
inverse image in G'. In (4.21), one can reapply the statement (4.21) to the invariant 
eigendistributions 

0~, (w7" c~ cI)(G', H), w2), 

with (~' taking the place of G and /)' the place of B. This double application of 
(4.21) then becomes equivalent to a single application, with B' in place of B. 
The verification of the preceding remark is straightforward and will be left to the 
reader. Because of the transitivity of (4.21), and because of the inductive hypo- 
theses, it is indeed enough to check the formula in (4.21) on Bs. 

By assumption, (4.21) holds for O(7", 2). I shall now rephrase this identity, 
restricted to B s, in a slightly different form. First of all, instead of summing over 
the quotient of the two Weyl groups, one may sum over W(G, H) and divide by the 
order of W(G', H). Secondly, the positive root system %,  which was used to define 
A~,~., can be chosen in any convenient manner; I shall assume % =  7". For any 
c~eq~(G, H), I define 

{_+l i f c~7"  
(5.31) sgn~,~ = 1 if c~r 7". 

Then, with 4~'= cb(G', H), 

(5.32) ec,, c,' (w7")= ~ ..... ~, ~r sgn,vc~. 

According to (4.19), A G. ~, is invariant under inner automorphisms of the complexi- 
fication of (~'. The Cayley transform Cs is such an automorphism. Via Cs, one can 
transfer 7' to a system of positive roots 7"s in ~(G, Bs), so that 

(5.33) 7" = c~ 7"s- 

It should be recalled that 

(5.34) eb(Bs)_ = {c~E cl)(G, Bs) ] (~, bs, ~ ) = 0} = 4'(G', Bs). 



90 W. Schmid  

Hence,  on the inverse image/ ) s  of B s in 0 ' ,  one has 

( 5 . 3 5 )  AG,G" [Bs = H~e'f's,~r ( ca/2 - -  e-  ~/2). 

With these preparat ions out of the way, the formula in (4.21), restricted to B s, 
can be rewrit ten as follows: 

O(~P, 2)le~ = ( - 1) q- q'( # w(a ' ,  m))-l(~&,Fs,C~(eq}(Bs)_ (e ~/2 - e-~/2)) - '  
(5.36) 

" Zw~W,G,m(1-I,~wVe,,r sgn~,c0 �9 O~'( wTj n 4~', w2). 

The analogous formula for O(kUl, 2) is precisely what must be proven. Since 
~1 and ku coincide, except for 3, 

(5.37) Oe~,(w~ c~ cb', w g)=Oe,,(wT~ ~ cb', w 2) 

whenever w~r Similarly, 

(5.38) 1-L~w~',,,r s g n ~  = _+ 1-[~,,~',~r sgn~, c~, 

with the upper sign applying if w3e  cI)', and the lower sign if w3q~cb'. The formula 
(5.36) is assumed to hold. In view of (5.28), and because of (5.37) and (5.38), the 
formula to be proven becomes equivalent to 

OI ,  = ( -  1)q-q'(4~ W(G, H))- ' (H~,~, ,~, , , , s ,_  (e=/Z-e ,/z))-~ 

(5.39) "Zw~w<G,m, wa~ ' ( I~ ,~ ' , , r  sgn~, ~) 

�9 (Oe,(wq' ~rp', w2)+ oe,(W~l ~ 4,', w2)). 

I shall deduce (5.39) from Lemma  (5.11), plus the inductive hypotheses.  

In order  to apply (5.11) to the present situation, one must give q~o, ~, and v the 
same meaning as in (4.15c). For  each noncompac t  root  7~4~(G, H), I set 

(5.40a) q~ = {c~e q~(G, H)[~ A_ y}. 

According to (2.59) and (2.60), one can identify q~ with the root  system of 
o o (M~,B~, ~), in a natural  manner.  To  simplify the notation, I shall write this 

identification as an identity: 

(5.40 b) ~b, = ~b(M ~ , B ~ + ). 

In terms of the nota t ion just  established, 

(5.41) 40 = 6)M~ (71C~ q'~, 21bo, § 

I let w~, g~, k~, X~, etc. be the same objects as in (5.11). However ,  whereas previously 
g~ was chosen subject only to the two condit ions 

(5.42) gieGs, Adgi(Xi)ebs, _, 

the choice will now have to be made in a more  specific manner.  Relative to the 
complexification G~ of Gs, Xg is conjugate to Z~.o (cf. (2.7) and (2.10)), and hence 
Adgg(X~) and c s Z~,~ are Gse-conjugate whenever g~e Gs. If g~ satisfies (5.42), both 
csZ~,o and Adg~(X~) lie in b es, - ,  and must therefore be conjugate even under the 
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action of the Weyl group of bs ~, in .q~'. This Weyl group coincides with the Weyl 
group of Bs, _ in Gs. Thus, if gl is modified by a suitable element of the normalizer 
of Bs, _ in Gs, one can arrange that 

(5.43) Ad gi(Xi) = 4- c S Zw, l~. 

I have left the sign in (5.43) undetermined, in order to be able to impose a further 
condition. If wjf l= 4-wifl, for l <=i,j<n, then X i =  X~ and Zw,a= 4- Zw, p. Hence, 
without violating (5.43), I can and shall insist on 

(5.44) wjf l= 4- w~fl ~ gj=g~. 

To prevent the subscripts from sprouting too wildly, I shall introduce some 
notational conventions, which will be followed for the remainder of the proof: 

G' = B~ �9 Gs, 4'  --~(G',  H), 

f i i=Wifi ,  Mi=M~. ,B,  Bi=Bw,e,  
(5.45) 

4,, = {~e ,~(G, H)I~, • = ~'(M ~ B~ ), 

W~ = W ( M  ~ B~ ), l ,  i 

for 1 _< i<_n; cf. (5.40). Since Adk~ preserves H and maps B e onto B~, and since the 
invariant eigendistributions OM~ (..., ...) on M~ are defined compatibly with inner 

automorphisms, (5.41) is equivalent to 

(5.46) q5 o o Ad k i- l = OMo(w i t I, c~ ~i, wi 2 Ib,, + ). 

By construction, B s is a Cartan subgroup of G'. Because gieGs, Adg?l(Bs) 
is also a Cartan subgroup of G, and 

- -  1 3 o  (5.47) A d g [ ' ( B ~  s , , .  

At the same time, as follows from the choice of g~, 

(5.48) Ad g/- 1 (Bs) is a Cartan subgroup of M~- B~. _. 

! now define 

(5.49) G', = G' ~ M ~ ; 

o equivalently, one can describe GI as the centralizer of B~ in Mw, ~. In view 
of (2.15), the containment w~[3eep' implies B~ cB~ and hence 

(5.50) B~ c M ~  

As can be inferred from (5.47-50), GI plays the same role with respect to M ~ 
and its Cartan subgroup 

(5.51) Ad g~- 1 (Bs) c~ M ~ 

which G' plays for G and B s. In particular, 

(5.52) GI is connected. 
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Because of the inductive hypotheses, I may apply (4.21) to the invariant 
eigendistribution (5.46), with G'i taking the place of G'. One thus has to consider 
AMoG; and ~Mo,o:, as described by (4.19) and (4.20). The role of the reference 

positive root system 7~0 will be played by the positive root system 7 j c~ 4~ i. Then, 
on the appropriate finite covering of B ~ 

(5.53) AMo o~ = 1 - L ~ ,  n,~,,~,~,(e ~/2 -- e ~/2). 

Every element of the Weyl group W~ of B ~ ~ in M ~ considered as an automorphism 
of B~ . . . .  can be uniquely extended to an element of W ( G ,  H); cf. (2.36) and (2.43). 
I may therefore regard W~ as a subgroup of 

(5.54) {weW(G, n)lw#,= +_~}. 

In terms of this convention, for we W~, 

(5.55) eMO, q(W(Wi  7 ~ ~ q~))= ~ . . . . . .  ~,,,r • sgn~, c~, 

which is analogous to (5.32). 

In order to get the formula for AMOS, ' on the Cartan subgroup (5 .51)-or  on an 
appropriate finite covering the reof -wi th  a definite choice of sign, one must 
transfer the positive root system ~ c~ 4~i from B ~ ~ to the Caftan subgroup (5.51), 
via an inner automorphism of the complexification of G'~. In a connected, reductive, 
complex Lie group, the centralizer of a subalgebra of a Cartan subalgebra is 
automatically connected. Hence, in the preceding sentence, I may replace the 
phrase "via an inner automorphism of the complexification of G'i" by the phrase 
"via an inner automorphism of the complexification of G', which operates trivially 
on X~". I let c~ be the Cayley transform corresponding to the noncompact root fl~. 
According to (2.10), c +1 Z 0 =  _+ Xi. Combined with (5.43), this gives the identity 

Ad g/- 1 o Cs ~ c + 1 (Xi)  = X i ;  

the sign of the exponent depends on the sign in (5.43). Since Adgi, Cs, and c~ all 
belong to the complexification of G', and since c~ operates trivially on b e~,+, the 
positive root system 7 j c~ 4~i corresponds to the following positive root system for 
the Cartan subgroup (5.51) of GI: the image under Ad g; 1 of 

{c~ e 7is[ (a, Ad g~(X,)) =0};  

Us, it should be recalled, is the positive root system ~, carried over into q~(G, Bs) 
by c s. As a consequence of those considerations, on a sitable finite covering of 
Ad g i  1 (Bs) c~ M ~ 

(5.56) AMO, G; =(Haeq, s,~r Adg,(X.)>_o(e a/2 - -  e - a / z ) )  o A d g i .  

With (5.55) and (5.56) as ingredients, I now apply (4.21) to the invariant eigen- 
distribution (5.46). As before, I consider W~ as a subgroup of the group (5.54). 
Then, on Ad g/- 1 (Bs) c~ M ~ 

, 0 - -1  q~o o Adk~ -1 = ( -  1) q'-q: �9 ( #  W ( G i ,  Bi, 4 )) 

(5.57) " (1-[~ ~ ~"s, ~r <~,,Aag,(X,)>- 0( e~/2 -- e -  ~/2)) -1 o Ad gi 

" Z ~ w , ( l ~  . . . . .  ~',~r177 sgn~" c00e,;(ww,~ c~ cb',, ww,2[~, ,  +), 
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where 8"i = 4~, r~ q~' = cl'(G'i, B~ ), and q, = �89 d in~  M~ ~ c~ K, q'~ = �89 dirn~ G'~/G'i c~ K 
(note: both M ~ and GI are 0-stable, so that their intersections with K are maximal 
compact  subgroups). 

For  each i between 1 and n, I let li be the set of indices j, l__<j< n, such that 
fit = +-fli. In other words, {wiljeli} is the wi-coset of the subgroup (5.54) of W(G, H). 
I f jcI , ,  one has X~=X~, M~=M~, G)=G'i, and g~=gi (cf. (5.44)). One can therefore 
add the identities (5.57), corresponding to all the indices in Ii. Since W~ is really 
a subgroup of the group (5.54), the summat ion over [,Vii merely accounts to multi- 
plication by the order  of IV//. Thus, on Adg/-I (Bs)~ M ~ 

r 0 - 1  ~i~,, q~o ~ A d k T '  = ( - l )  q'-q'" ~ W~. (# W(G,,B,.+)) 

(5.58) . (1--Le,es,~Csq~(Ksi_,(~,Adg,(X,))=o(e ~/2 -- e-~/2)) -1 o Adgi  

�9 Zj~,,(I~,w~.~e~,,,~.& sgn~, a) OG(wjtP r~ el)), wj2[b: + ). 

The  centralizer of B~,_ in G' can be factored as 

Za,(B~_)=(G'c~M~).B~, ; 

this follows from, and is analogous to, the factorizat ion 

ZG(Bi, _)=Mi-  Bi,_. 

Since GI is the identity component  of G' c~ Mi, 

(5.59) (G' ~ M,)* = G '  fw,~ -- 6 ' ~  M,* 

(cf. (2.55); note: Fw, t~cG'). For  1 <_iNn, I define 0~ on Za,(Bi, ) as follows: 

O~(g)=0 if g r  . B i _ ,  

(5.60) O~(mfb)=Oe;(w~tpca 4)i, w~R]b,+)(m). ~w,x(f)e" o Ad k~- ~(b) 

if meGi,  .feF~,, and beBi. . 

Strictly speaking, tpg makes sense only on a suitable finite covering of Za.(B~_ ). 
However,  not 0~ itself, only the product  of~b~ with 3M,.a; will occur below, and the 
product  does make sense on Z~,(Bi_ ). In (5.60), v has the same meaning as in 
(4.15c), and the character  ~ , a  of F~, is defined by (4.13); equivalently, ~w,x= 
~ o Ad k/- ~. 

The definition (5.1) of  6, together with (5.58-60), allows one to rewrite the 
formula (5.11) in terms of the 6~: on B s, 

O : ~ 7 - , ( - -  1) ~'-~; " C',-(l-[ . . . .  ~',~r sgn~, a) 

"2w~W,,~, {]l--L~a',C,,"s,.~r e-~/Zm~ wl -* 
(5.61) 

�9 (1-L~. . . .~ .~. .~ ,_ .<~.~, ,x , ,> = oIe " ~ -  e-"~)o w)- l  

. t l - ] ~ e C , ( B s ) , ( c ~ , A d g , ( X , D > o ( e  cq2 -e-~/Z)o wl -~.  ~,o Ad g~-~ o w}, 

with C'i given by 1 

G - - -  0 W(G~, B#.,+). ~ W(G', H) 
(5.62) {we W (G, B~,)Iw X~ = Xi} 

{ w e W(G', Bs)lW Ad g~(X3 = Ad  g~(X/)} 



94 W. Schmid 

If ~e@(G, Bs) satisfies ~r ~/,(Bs)_ , (~, Adgi (X/ ) )>  O, then so does its complex 
conjugate ~ ; moreover, ~ and ~ are distinct. Hence 

(x,>> > o ( e  '2 - e - ~  l 

(5.63) = H~@(G, Bs),O~r (a, Adg, (X,)) > 0 ( e~12 --  e-  ~/2) 

= ( -- 1)"' I I ,~ ' s ,~  ~'("~)-, (~, Adg,(X,)) * 0( e'/2 -- e-  ~/2), 

with m~ = # {c~e ~sl~r (c~, Adgi(X/) ) > 0}. Under the Cayley transform Cs, 
~u s corresponds to ~,  ~(Bs)_ corresponds to 4~', and Adg~(X~) to either Z~, or 
-Zt~ ' (cf. (5.43)). In the derivation (5.63), the inequality (c~,Adgi(X~))>0 could 

just as well have been reversed, so that the sign in (5.43) is really irrelevant. As 
follows from (2.7), 

(2, Z~,) =2(2, fli), whenever 2Eib*. 

These remarks now imply the identity 

( - -  1) m' = H~ET",ar 0 sgn(e, fli) 
(5.64) 

= 17 . . . .  'v.~r o sgn~, c~. sgn(cq fli). 

One may consider W(Bs)_ both as the Weyl group of B s in G and as a subgroup 
of W(G, Bs). The two expressions 

1-[~v~(e ' /Z-e - '/2) and 1 - L ~ , ~ ( , ~ ) _ ( e ~ / Z - e  -~/2) 

are therefore W(Bs)-al ternat ing,  and their quotient is W(Bs)- invar iant .  To- 
gether with (5.63) and (5.64), the just mentioned fact makes (5.61) equivalent to 

1~ = 2  n = l ( -  l )q'-q: " CI " ( H  . . . .  Lp,ar162 sgn(~, fl,)) 

(5.65) "(I-[ . . . .  ~,~,@, sgn~, c~)- ( l - ]~ ' , . , , e ( ,~) -  ( e~/2- e-'/2)) - '  

" Zw~W(Bs)-  IHae~(Bs)-,(a,Adg,(X,))>O( e~/2 --  e - ' / 2 )  ~ W [ - ' "  ~]i o Adg/- '  o w, 

again on B s. 
The final sum on the right hand side in (5.65), except for a suitable multi- 

plicative constant, represents an induced invariant eigendistribution on (~' (cf. 
(5.2); since B s splits modulo  the center of G', the integer n in (5.2), with G=CJ', 
B=[?s, is equal to one). Thus let O~ be the induced invariant eigendistribution 
on (~', which corresponds to the following data:  The noncompact  root B~e q)((~',/t), 
the invariant eigendistribution 

on GI, the character ~w, of Fo,, and the linear functional v o Ad ki-~ on h i , .  Then, 
on Bs, 

0 = ( # W(G', H) ) - I .  ( l ~ , v , ,  ,r ( e'/2 - e-'/2)) 
(5.66) 

"ET=, { ( -  I) ~'-q; "(l-[~w,~',,r o sgn(c~, fl,)) (I-[ . . . .  ,,~r sgn~v c 0 �9 O,}. 

On the other hand, because of the inductive hypotheses, one can apply (4.15c) 
on G', to conclude 

(5.67) Oi = Oe,, (wi 7 ~ ~ rb', wi 2) + Oe, (wi G r q~', w i 2). 
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I recall that {w 1 . . . . .  %} is an enumeration of those weW(G, H) which map fl 
into 4~', and such that fli = wi fl- In order to complete the proof, I had to verify (5.39). 
In view of (5.66) and (5.67), the problem comes down to checking that 

(5.68) ( -  l)q-q' = ( -  l)q '-q:" O . . . .  ~,~tr ~- o sgn(cr fli). 

The root/~i is noncompact, it is simple, relative to the system of positive roots 
wi T, and it lies in the sub-root system 4~'. By a/~i-ladder, I shall mean a maximal 
string of roots of the form {c~+//~i[le2g }. Because of the properties of/~i which 
were just mentioned, each/~i-ladder lies either wholly in q)' or wholly outside q~'; 
also, with the exception of {-+/~i}, it lies entirely in w~U or entirely in -wiT~; 
and finally, again with the exception of { _+/~}, the roots in a/~i-ladder are compact 
and noncompact in an alternating fashion. In particular, the complement of 4~' 
in witt ' is a disjoint union of/~-ladders. Evidently q - q '  can be described as the 
number of noncompact roots in w~ t/,, outside of q~', whereas q i -  q'i is the number 
of roots in wi T, outside of 4~', perpendicular to/~i, which are noncompact when 
viewed as roots of (M ~ B ~ �9 i. +), cf. (2.61), with S=  {C/i}- To demonstrate (5.68), one 
only needs to make sure that each /~i-ladder in w i 7 j, outside of q~', contributes 
equally to both sides of (5.68). 

If such a//i-ladder contains an even number of roots, say 2n, then exactly n 
of these are noncompact, exactly n have a negative inner product with /3i, and 
none is perpendicular to/~i. Hence the ladder does contribute equally. Ifa/~i-ladder 
consists of a single root c~, then e is strongly orthogonal to/~i- According to (2.61), 
the contributions of {c~} to ( - 1 )  q-q'  and to ( - 1 )  q'-q; agree, and there is no 
contribution to the last factor on the right hand side of(5.68). As the only remaining 
possibility, I now consider a/3i-ladder of length 3, lying in wi tp and outside of q~'. 
Exactly one of the three roots has a negative inner product with/?i. If two of the 
three roots are noncompact, then the middle one is compact, and hence noncompact 
relative to M ~ (cf. (2.61)). On the other hand, if only one root is noncompact, it 
must be the middle one, which is therefore compact relative to M ~ In both cases, 
the ladder again contributes equally to both sides of (5.68). At this point, (5.68) 
has been verified, and proof of Proposition (5.30) is now complete. 

The hypotheses which were stated above Proposition (5.30) shall continue 
to be in force. In particular, O(T,  2), O ( ~ ,  2), and O shall have the same meaning 
as in (5.30). Moreover, I shall assume that O(5U, 2), and hence also O (~ ,2 ) ,  
satisfies (4.21). 

(5.69) Proposition. If  0 (~ ,  2) satisfies (4.22), then so does 0 ( ~  , 2). 

The proof will be preceeded by several lemmas. However, one simplifying 
assumption can be made right away. The two statements (4.21) and (4.22) are 
consistent, in the following sense: if one applies (4.21), with the given Cartan 
subgroup B, and then (4.22), with GB and B c~ GB (cf. (2.40)) taking the place of G 
and B, the result amounts to a single application of (4.22). Hence, without loss 
of generality, I shall assume that G is semisimple, and that B is a split Cartan 
subgroup. As in the statement of (4.22), I set G '=  G(BJ). The identity component 
B ~ of B lies in G'; according to the hypotheses, G' also contains H. Consequently, 
there exists a strongly orthogonal set SccI)(G', H), such that B ~ is G'-conjugate 
to the identity component of Bs. Since B j = z- B ~ for some z in the center of G', 
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B j is G'-conjugate to a component of B s. It clearly suffices to verify (4.22) on this 
component of Bs, instead of B j. Thus, in the proof of (5.69), it is legitimate to make 
the following assumptions: 

G is semisimple; 
B j is a connected component of a split Cartan subgroup B; 

(5.70) the group G '=  G(B j) contains H; and 
B = B  s, for some strongly orthogonal subset S c  ~b"(G', H). 

In order to state the first lemma, I let G be semisimple, subject to the usual 
hypotheses, fie q'(G, H) a noncompact root, B a split Caftan subgroup of G which 
is contained in M~- Be. _, and B ~ a connected component of B. Since M~ lies in the 
singular set of G, there exists a root ye~b(G, B) which vanishes on br~me; it is 
uniquely determined, up to sign. 

(5.71) Lemma. Under the hypotheses which were just mentioned, B j lies in M~. B~,_ 
if and only if e ~ assumes positive values on B j. Moreover, if B j lies in M~ . Be, _, then 

B ~ c (G (B j) c~ Me) ~ F~. Br _ 

(cf. (2.44); (...)0 denotes the identity component of. . .) .  

Proof. First, suppose B~ c M~ . B~, _, and let be B j be given. According to (2.55), 
b=b o . b_ . f  with boeM~, b_ eBp, _, and f e F  e. Since B contains both Be,_ and F~, 
b 0 must lie in B c~ M~. Like any element of B n M~, b o can be expressed as exp X, 
with Xem~c~ b r The root y vanishes on m~c~ b ~, so that e '(bo)= 1. On Fe, e' is 
identically equal to one (cf. the remark above (2.56)), and e ~ assumes only positive 
values on Be,_. Hence e~(b)>0. 

Conversely, suppose that e ~ assumes positive values on B j. Since exp b is the 
identity component of B, and in view of (2.38), one can pick an element beB j, of 
the form b=exp(iX),  with Xeb,  and (2, X)e~tZ,  for all 2eA(q~(B)), Now X =  
Xo+X1,  with X0emer~b ,X ,eb~  . I shall show that exp(iXo)eM~, and that 
exp(iX1)eF~. Indeed, the root 7 vanishes on m~c~b, and (7, X} is an integral 
multiple of n; hence 

exp (Y, iX1) =exp  (Y, i X ) =  +_ 1. 

On the other hand, exp (Y, iX} = e~(b)>0, so that 

(7, X } =  (T, X , ) e 2 ~ Z .  

As can be checked (cf. the remarks above (2.56)), this implies exp(iXOeF e. Now 
let # be an element of the weight lattice of the root system (b(M~, Bc~ M~). In 
analogy to the statement (2.41), there exists a 2eA(4)(B)),whose restriction to 
m e c~ b coincides with/~. Since 2 is a weight, 2 has the same restriction to b~,_ as 

a suitable half integral multiple 2 7 ofT. Recall that (7, X}e2r t~ .  Hence 
1 

Appealing to (2.38), one may conclude that exp(iXo)eM ~. The containment 
exp ( iXOeF e is already known. Thus beM~. Since B j lies either entirely inside or 
entirely outside of M~ - Be, _, this gives B ~ c M~ �9 Be, _. 
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It remains to be shown that B~c M~ �9 Bp, _ implies 

BJ c (G(B j) n Mp) ~ . F~ . Ba, _. 

Applying the statement (2.38) to the group G(Bi), one can select a beB ~, of the 
form b=exp (iX), with Xeb satisfying (2, X)en7Z,, for all 2 in the weight lattice 
of the root system cI)(G(BJ), Bc~G(BJ)). I now proceed just as in the argument 
above, with G(B J) playing the role of G, and (G(B ~) c~ Ma) ~ the role of M~. Con- 
clusion: be (G(B J) c~ Mp)~ Since B j-- b. B ~ one obtains the desired result. 

(5.72) Lemma. Let G be a simple Lie group, which contains a compact Cartan 
subgroup H, as well as a split Cartan subgroup, For any two noncompact roots 
f l l , f l2e~(G, H) of the same length, there exists some we W(G,H), such that 
will = + f12. Also, if cI)(G, H) contains roots of two different lengths, then so does 
45"(G, H). 

Remark. For the first assertion, the assumption that G has a split Cartan 
subgroup is not really needed; however, it shortens the proof. 

Proof The noncompact roots, modulo sign and modulo conjugacy under 
W(G, H), classify the conjugacy classes of Cartan subgroups with one-dimensional 
split part; this follows from (2.16). Also, iffl is a noncompact root, the root system 
~b(b~)_ (cf. (2.21)) is spanned by a short root whenever fl is short, and by a long 
root whenever fl is long. Now let A c G be a split Cartan subgroup. According to 
the results of [38], coupled with (2.18), the conjugacy classes of Cartan subgroups 
B with one-dimensional split parts also correspond to the set q~(G, A), modulo 
the action of the Weyl group W(G, A). If such a Cartan subgroup B corresponds 
to a root eeq'(G, A), then ~b(B)_ is spanned by a short root whenever e is short, 
and by a long root whenever ~ is long. In an abstract, irreducible root system, the 
Weyl group operates transitively on the set of roots of any given length. Since 
W(G, A) is the full Weyl group of the root system q~(G, A), these statements imply 
the lemma. 

I now impose the conditions (5.70), and I let the symbols fl, ~b, ~, v, O, and 
have the same meaning as in the very beginning of this section. Then 

(5.73) X =  Yp+ Y_a 

spans bt~ ' _ ; for geG, Ad g - l ( B s ) c M  p . Bp,_ if and only if Ad g(X)ebs. Since B s 
is a split Cartan subgroup, any two conjugates of B s which lie in Mt~. Ba,_ are 
already conjugate under Ma. Hence, according to (5.2), if geG is chosen so that 
Ad g(X)ebs,  for beBs,  

O(b)= C. ~w~W,C,,.~)~b(Ad g - '  (wb)) 

t [ L ~ . ( a ,  n~), <., Aa g(x)) > o ( e~/2 -- e-'/2) (w b) l- ~, 
(5.74a) 

where 

(5.74b) 
# {we W(G, Ba)lwX = X} 

C= 
# W(M~, B~, +). ~ {we W(G, Bs)[W Ad g(X)= Ad g(X)} 

(5.75) Lemma. I f  g eG satisfies Ad g(X)ebs, the restriction of ~b o Ad g-1 to B s 
depends only on Ad g(X), and otherwise not on the particular choice of g. 
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Proof Suppose Ad~(X)=Adg(X) ;  then ~ = g - m ,  for some rneMa. Both 
Ad g-  ~(Bs) n M~ and Ad ~- a(Bs) n M~ are split Cartan subgroups of M~, and 
hence M~-conjugate. It follows that m=m~ "too, for some rnoeM~, and some 
mte Ma which normalizes Ad g- 1 (Bs)" Since 0 is Ad M~-invariant, I may as well 
assume that m=rn~, i.e. that m normalizes Adg-~(Bs). According to (2.52), 
Ad m: m~ --} m~ is an inner automorphism. Hence Ad rn operates on Ad g- 1 (Bs) n 
M~ as an element of the Weyl group of the root system cP(M~, Ad g-1 (Bs) n M~); 
in other words, as an element of W(M~, Ad g- l (Bs )n  M~). Since 0, restricted to 
Ad g- ~ (Bs), is invariant under the action of this Weyl group, the lemma follows. 

I continue with the hypotheses which were stated above (5.75); in particular, 
G' shall denote the group G(B~s). I enumerate the set 

{we W(G, H)lw/TeclJ(G', H)} 

as {w 1 . . . .  , w,}. For each i, I define 

(5.76) /7i = wl/7, and X, = Y~, + Y-tl,, 

in the notation of (2.7). Next, I select representatives k~ for wi, so that 

(5.77 a) Ad k,(X) = X,, 

with X=Y~+Y_a,  as in (5.73). Because of the hypotheses (5.70), the Cayley 
transform Cs may be thought of as being defined relative to the group G'; also, 
each/7~ is a root of (G', H). Hence, in complete analogy to (5.43), with G' playing 
the role of G, one can pick g~e G', such that 

(5.77b) Ad g i ( X i )  = -t- c s  Z #  . 

(5.78) Lemma. For beBSs, 

O(b)=ZT= , C,. ~w(6,,,s~,6')O(Ad(g,k,)-~(wb)) 

" I I-I~e~ll(G, BS), (at, Adg,(X,)) > 0 ( e~/2 - -  e-'12) (wb)I-', 
where 

C i -  
{we W(G', H)lw/Ti= +-/7i} 

, w ( 6 ' ,  1 - 1 ) . ,  o , �9 Ba,, +). ~ {weW(G', Bsr~ G )lwAdgi(X,)=Adgi(X~)} 

Proof The lemma is a consequence of (5.74) and (5.75), together with the 
following two statements: 

(5.79) i fgeG satisfies Adg(X)ebs,  and i fAdg- l (B~)cM~ �9 Ba, _, then Adg(X)= 
w o Ad gi(X~), for some i and some we W(G', Bsc~ G'); 

and 

(5.80) the number of times which any particular w o Adg~(X~) comes up, as i runs 
from 1 to n and w over W(G', Bs n G'), is equal to 

{we W(G', Bs c~ G')lwo Ad g,(X,)=Ad g,(X,)} 

~ {we W(G, Ba)IwX= X} . ~ W(G', H) 
{we W(G', n)lwfl,= + fl~} 

It therefore suffices to prove (5.79) and (5.80). 
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To begin with, if Adg(X)ebs ,  there exists a unique root 7e45(G, Adg- l (Bs) )  
which assumes the value 2 on X, and which vanishes on the orthogonal complement 
of X in Adg-l(bs) ;  also, 7 belongs to the same simple factor of G to which fl 
belongs, and it has the same length as ft. This is true because Ad g-  1 (b~ and b~ are 
conjugate under the action of M~, and in view of (2.7) and (2.10). Since Adg(X) 
determines g up to a right factor in M~, one can transfer 7 back to B s via Adg 
without ambiguity. The Weyl group of B s in G operates transitively on the roots 
in eb(G, Bs) which have the same length as fl, and which belong to the same simple 
factor as ft. Hence the G-conjugates of X in b s are in one-to-one correspondence 
with those roots in ~(G, Bs) which belong to the same simple factor as fl, and which 
have the same length as fl; the correspondence is given as follows: Adg(X) cor- 
responds to the unique root ore cI)(G, Bs) such that <a, Ad g(X)> = 2, and such that 
c~ vanishes on the orthogonal complement of Adg(X) in b s. Moreover, in this 
situation, Adg-l(B~) lies in M~. B~_ if and only if aeeb(G',Bsc~ G'), as can be 
deduced from (5.71). 

Now let ~ e cb(G', B s c~ G') be given, of the same length as fl, and belonging to the 
same simple factor of G. According to (5.72), applied to the appropriate simple 
factor of G, there exists a noncompact root fl'ecb(G', H), which has the same 
length as ~, and hence the same length as fl, and which belongs to the same simple 
factor of G' as ~, and hence to the same simple factor of G as ft. Replacing fl' by 
its negative, if necessary, one can arrange that fl'=fli, for some i; this follows 
again from (5.72). Under the correspondence set up above, the root fli, transferred 
to B s via Cs, corresponds to csZo, = _+Adgi(Xi). Because of the particular way in 
which fl'=fl~ was chosen, the root fl~, transferred to Bs via Cs, is conjugate to _+a 
under the action of W(G', B s c~ G'). Hence, for suitable element w of this Weyl 
group, ~ corresponds to w o Adg~(X~), which verifies the statement (5.79). 

As for the multiplicity of w o Adgi(X~), i f /  is kept fixed, the number of w's 
in W(G', B s c~ G') which give the same w o Ad gi(Xi) is precisely 

(5.81 a) # {we W(G', B s c~ G')[ w o Ad g~(X~) = Ad g~(X~)}. 

The number of indices i for which Adg~(Xi)= +_csZp, takes any given value is 
given by 

# {we W(G', H)lw~= +~}., 

at least if the g~e G' are chosen so that g~ =g~ whenever/~i = + /~ ;  for the purpose 
of verifying (5.80), I shall make this legitimate assumption. As follows from (2.36) 
and (2.43), the integer above coincides with 

(5.81 b) # {we W(G, Ba)lwX = X}. 

The W(G', Bsc~ G')-orbits of Adg~(X~) and of Adg~(Xj) agree if and only if the 
corresponding roots fl~,/~j, transferred to B s via Cs, are conjugate under the 
action of the Weyl group of Bs in G'; in other words, if and only if/?i and /~  have 
the same length and belong to the same simple factor of G'. According to (5.72), 
this happens precisely when +/?~ and +/~j are W(G', H)-conjugate. The number 
of noncompact roots in ,/~(G', H) which are W(G', H)-conjugate to any given/~ or 
its negative is 

# W(G', H) 
(5.81c) 4~ {we W (G', H)lw[l~: + ~j} 
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The multiplicity of woAdg~(X~) is given by the product of the three integers 
(5.81a-c). At this point, both (5.79) and (5.80), and hence the lemma itself, have 
been verified. 

The preceeding lemma is the main ingredient of the proof of Proposition (5.69), 
which closely parallels the proof of (5.30). 

Proof of(5.69). As was pointed out already, I may and shall impose the condi- 
tions (5.70). In particular, the hypotheses of Lemma (5.78) are fulfilled. 

By assumption, O(71, 2) satisfies the identity (4.22): on B~, 

O(ku, 2 ) = ( -  1) q-q' . ( W (G', H)) -~ . (Ao, a,) - ~ 
(5.82) 

Zw~(~,,,) ~ ,  ~,(w~,) . O~,(w~ ~ ~(G', H), w~).  

In order to simplify the notation in what follows, I set 

(5.83) dP(Bs)' = 4)(G', B s c~ G'), W(Bs)' = W(O', B s n G'); 

cl)(Bs)' is a sub-root system of rb(G, Bs) , and W(Bs)'  is a subgroup of W(G, Bs). 
As in (5.33), I let ~s be the system of positive roots ~, transferred to ep(G, Bs) 
via Cs. In the definitions of AG, G, and ~ ,  G,, the role of % shall be played be (/I. Then 

(5.84) eG, G,(w~ u) = 1-L~w~,,~r H) sgnv, ~, 

and on the appropriate covering of Bs, 

(5.85) AG, G ' =  H~c7~s, ar ( e~/2 - -  e-~/2) ; 

these identities are analogous to (5.32) and (5.35). Thus, on B~, 

O(~P, 2 ) = ( -  1) q-q'. ( #  W(G', H)) -~ .  (I-L~'~,~r ( e~/2 -e-~12)) - '  

(5.86) "~wcw(G, m (1-Lcw~v, ~r H) sgn~, c0- O~, (w~Y c~ (b(G', H), w 2). 

The analogous formula for O ( ~ ,  2) on Bk is precisely what must be proven. In 
view of (5.28), this formula which must be proven can be written as follows: on B~, 

O = ( -  1)q-q '. ( #  W(G', n ) )  - 1 .  ( [ I ,~ 's ,  ~r ( e~/2 - e - ' / 2 ) )  -1  

(5.87) " ~w~w(G,m, wp~(w,m {(l-L~w~,, ,r n)sgn~, c0 

�9 (O~, (w7 t c~ (b(G', H), w 2)+ O~, (w~  ~ ~(O', H), w2))}. 

The derivation of (5.87) is very similar to that of (5.39). I shall now deduce (5.87) 
from (5.78), plus the inductive hypotheses. 

Without further mention, I shall use the notation of (5.78). Since the sign in 
(5.77b) was left undetermined, I may insist that 

(5.88) /~j = _+/~, ~ g~= g,. 

Some further notational conventions: 

M, = M~,, B, = Bt~,, W~ = W ( M  ~ B ~ + ), 
(5.89) 

�9 ,=  {ae~(G, H)]aJ_fl,} =(/)(My, B ~ ), ~'  =(b(G', H). i ,  + 
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In terms of these conventions,  one has 

(5.90) 4)0 o Adki -a =OMo(w~Pc~q)i ,  wi2[b,, +), 

which is entirely analogous to (5.46). 
For  each i, Adg~-~(Bs) is a Cartan subgroup of M~-B, ,_ ,  and its identity 

component  is the identity component  of a split Cartan subgroup of G' (recall: 
gi~G').  I now set 

(5.91) G'~ = iden t i ty  componen t  of G'c~ M ~ 

According to (5.71), and because of the manner  in which the g~ and k~ were chosen 
(cf. the p roof  of (5.78)), 

(5.92) Ad g~l (B~) c G'~. F~- B~. _.  

Hence, for each i, one can select an f~eFr such that 

(5.93) f~- Ad g~- ~ (B~s) ~ G'~ . B~, _. 

Because of (5.88), I may also assume that 

(5.94) f l j= + fl~ ~ f~= f~. 

In this situation, 

(5.95) (f~" Adg~-X(B~))~G'~ is a connected component  of the Cartan subgroup 
Ad g ;  ~ (B~) n M ~ of M ~ 

For  every c~e~(G, AdgF~(Bs)) which vanishes on X~, e ~ is identically equal to 1 
on F~. Hence @(G'~,Adgi-~(Bs)nG'~)  consists precisely of those roots c~e 
4~(M~'I Ad g/- ~(Bs) ca M~ such that e ~ assumes positive values on (Yi" Ad g/- ~ (B~)) c~ 
G'~. In other words, G'~ plays the same role with respect to M ~ and (f~-Ad g~-~(B~)) 
n G'~, which G' plays with respect to G and B~. 

Because of the inductive hypotheses, I may  apply the identity (4.22), with 
m ~ in place of G and (f~- Ad g~- ~ (B~)) c~ G'~ in place of B ~. In order  to get an explicit 
formula for AM o, G~ on Ad g~- ~ (Bs), I let Lp c~ 4~ play the role of % in (4.19). As was 
remarked in the proof  of (5.30), every we W~ can be uniquely extended to an 
element of W ( G ,  H). In this manner,  one obtains an inclusion 

(5.96) w,= {we W IC~, H)IwE= + ~,}. 

For  each we W/, one has 

(5.97) ~.M9, ~', (w(w~ ~ c~ cI)i) ) = l-I . . . . .  ,~v, ,r ~• sgn~e ~. 

The same argument  which was used to verify (5.56) can be used in the present 
context:  on the appropria te  finite covering of  Ad g~-l(Bs)c~ M ~ 

(5.98) AMo 6;=(1-L~,s.~r <~,aag,~x,)>=o(e~/Z--e-"2))~ A d  gi. 
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Keeping in mind the inclusion (5.96), and using (5.97) and (5.98), I now in- 
ductively apply (4.22)�9 On ( f -  Ad gs i (BJs)) n a'i, 

q~o o Ad k/-1 = ( -  1) q'-ql - ( : ~  W(GI, B ~ +))-1 
(5.99) " ( l - L t E ~ s ,  ctgi~(Bs)', (cz, Adg , (X , ) )  = 0 ( eal2 - -  e - a / 2 ) )  - 1  o Ad gi 

�9 ~,w~w, (1-[ . . . . .  ~,, ~r162 ~• sgn~,c0 �9 Oe,;(w w i~  r cl)'i, w wi21 b,. ,) 

(recall (5.90)!). Here  45' i = 45 i n 4 '  = aS(G'I, B~ + ), and 

ql = �89 dirrhR Mi~ r K, , 1 , , qi = 3  dim GJGi r K .  

This step is completely analogous to the derivat ion of (5.57). Again just as in the 
p roof  of (5.30), I let Ii be the set of indices j, 1 <=j<__n, such that f l j= Yfli- For  j~I i ,  
one has X i = X ~ ,  M j = M  i, f j=f~ ,  e tc .The  arguments which preceed (5.58) can 
now be applied to (5.99). On (f~�9 AO g~ 1 (B~)) r G', 

~J~,, 4)0 ~ Ad kf  t = ( - 1) q'-q:- @ W~-( # W(G'i, B~ +))-~ 

(5.100) " ( [ -1:~. . ,  : foal , ) ' ,  <~, Ad,,tx,,> = o ( e: i2 - -  e - : i 2 )  ~ A d  gi) -1 

�9 2 j ~ I ,  ( I~r  aft* ' ,  a• sgn~ c0" O~$(ws~I '  c~ cIJj, w/Ib,, +) 

I define Oi on ZG,(Bi, _) , for  1 <i<_m, as follows: 

O~(g) = 0  if gCG' i -F~ .Bi ;  

(5.101) ~(mfb)=O~,;(w,~Pc~c~'~, wi21 b,. +)(m)- (w,~(f)" e ~~ Ad k~ I(b) 

if meG'i, l e F t , ,  b E B i _ .  

Just as in the proof  of (5.3), ~ may  make sense only on a suitable finite covering 
of Z~,(Bg, _); however, only the product  of  Oi with Age, a; occurs below, and this 
product  does make sense on Za,(Bi, _). Now let geB-~ be given. Because of (5.93), 

(5.102) AdgF  l (g)=f~- I  - b0 - b_ ,  with boeG' i b EBi ,_ .  

Since Ad gi(Xi)e bs, and since Xi spans bi, _ ,  Ad g~- l(Bs) contains both f and b . 
Hence  

(5.103) b0e(f~ - Ad gF I(B~)) r G'~. 

Also, Adk? l  (f/)c Fr Ad k~ l (bo)6M ~, and Ad k~ ~(b_)eB~, _. Thus  

(Ad (g~kl)- l(g)) --- ~ ~  Ad k~-l( f~ - l -  bo. b_) 
(5.104) 

= 4b 0 o Ad k; l (bg)  �9 ~w,a(f~-~) �9 e ~ o Ad kT-1 (b_); 

similarly one obtains the corresponding identity for ~s i, on B~, lifted to the appro-  
priate finite covering of B s. Combining (5.100-5.104), and taking into account  
(5.88) and (5.94), one finds 

0 - 1  ~,j~,, i/so Ad(gsks) -1 = ( -  1) q'-~; �9 =1t= W~- ( ,  W(G,,  B,,  +))  

(5.105) �9 (Haei l#  s, e~t!qt(Bs)', ( : ,  A d  I , ( X , ) )  = 0 ( e: i2 - e-: /2))  - '  

" ~S~t, (H:~w,~,, :r :_~a, sgn~, ~)- tpj o A d g ; 1  ; 

this formula holds on B~, but  it may  be quite false on other  components  of  B s. 
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According to (2.44), J 0 B s c B  s.Z(G'). Since every we W(G',Bsc~G' ) can be 
realized as Adg, with g6G', 

(5.106) W(G', B s c~ G') preserves B~. 

In view of the two statements (2.36) and (2.43), there is an isomorphism 

(5.107) {w~.W(G', H)[wfl,= +fli}~-{w~W(O', B~)[wX,=X,}. 

At this point, (5.78) and (5.105-5.107) lead to the following identity on B~: 

0 " - I) q'-q~. ' 

�9 Z w ~ w ( . . > '  {II-[.~,~G. ,,). :+.~.s> ' ,  < : . ~ . , ( x , ) > >  0 ( e :12 -e -< '12 )  ~ wl-' 
(5 .108)  

( 1 - [ : ~ * . ,  : ~ ( . . > ' ,  <:, *~. , (~,)> : o (e: i~ - e - : 1 ~ )  o w ) - '  

" I I~=~@(Bs) ' .  <~,A,lg,(x,)> > o (e~` i2 -e-c '12)  o w[  - 1  . i/s i o A d g ~  -1  o w }  

with C~ given by a formula which looks identical to (5.62). Just as (5.61) implies 
(5.39), with practically the same arguments, (5.87) can be deduced from (5.108). 
The detailed verification will be left to the reader. The proof of Proposition (5.69) 
is now complete. 

w 6. The Proofs of the Main Theorems 

Using the preparatory work of the last section, I shall verify Theorems (4.15), 
(4.21), and (4.22). In addition to the usual hypotheses about G, I now require that 
G/K be Hermitian symmetric. Inductively, I may and shall assume that the theorems 
in question hold for all groups of lower dimension than G. For the purpose of 
constructing the invariant eigendistributions O(q< 2) on G, I keep fixed a partic- 
ular system of positive roots 7 j in q~ = 4)(G, H). Since G/K is Hermitian symmetric, 
one can choose another system of positive roots tP 0 in 4~, such that 

a) 7s0 has the property (3.1), and 
(6.1) 

b) % c~ q : =  7ar ~ c 

( r  of compact roots in ~b). Indeed, any system of positive roots with the 
property (3.1) is W(G, H) - conjugate to one which satisfies b). As was already 
remarked in (4.16), some special considerations become necessary when one of 
the simple factors of G is isomorphic to or a covering of S0(2, 2n+ 1), n>2 .  

(6.2) Lemma. I f  G=SO(2, 2n+1),  any given system of positive roots ~Pc(b= 
cb(G, H) contains a single short, noneompact root 7. The requirement ~ 7~o, imposed 
in addition to (6.1), specifies 7~o uniquely. In this situation, there exists a chain 

% , Z  . . . .  , ~e,. = q ,  

of systems of positive roots in 4, such that each ~ is obtained from ~_ 1 by reflection 
about a simple (relative to ~_ O, long, noncompact root. 

Proof For G = S0(2, 2n + 1), ib* has an orthogonal basis {el, ..., e,+ 1}, so that 

�9 < = {_+(ei_+ej), 2 < i < j < n +  1; •  2<i<_n+ 1}, 

q)'-- {el ; _+(el _+el), 2<_i<_n+ 1}. 
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Replacing some of the e~ by their negatives, if necessary, and permuting e 2 . . . . .  

e,+ 1, one can arrange that e 1 e 7 j, and that 

~chqbC={ei--ej, 2<i<.j<n + 1; ei, 2<_i<n+ 1}. 

If 7Jo is to satisfy the conditions (3.1), 7 j ~ �9 c = 7Jo ~ 0~, and e 1 ~ ~u o, one must set 

~o={ei+_ej, l <=i<j<n+ l; ei, l_<i<n+ l}. 

By successive reflections about simple (at the respective stage), long, noncompact 
roots, one can generate n + 1 distinct positive root systems, all of which contain et, 
and have the same intersection with �9 c as 7Jo . This exhausts all such root systems, 
since the Weyl groups of �9 and 4,c have order 2 "+ l(n + 1)! and 2"n!, respectively. 
Hence the lemma. 

Now back to a general G! Because of the lemma, in addition to (6.1), I can 
make the following assumption about %:  

(6.3) For each simple factor of G which is locally isomorphic to S0(2, 2 n +  1), 
n > 2, 7~o contains the same short, noncompact root as 7 j. 

Let C and C o be the positive Weyl chambers of the root system O, corresponding 
to 7 j and %, respectively. Because of(6.1 b), C and C o lie in the same Weyl chamber 
of the root system �9 c. Hence C can be connected to C o by a chain of Weyl chambers 
of O, all of which lie in the same Weyl chamber of �9 ~, such that any successive two 
have a face in common. Equivalently, 

(6.4) there exists a chain ~o, ~1,-.-, ~,, = 7J of positive root systems, such that 
each ~ is obtained from ~_1 by reflection about a simple (relative to ~_~), 
noncompact root. 

This chain, of course, is not uniquely determined. As follows from (6.2) and (6.3), 
one can arrange that 

(6.5) the noncompact root whose sign is reversed in the passage from ~_1 to 
is long, whenever it belongs to a simple factor locally isomorphic to S0(2, 2n + 1), 

with n> 2 .  

For the time being, I keep fixed a particular chain with the properties (6.4) and (6.5). 
Next, I consider an admissible 2eib* (cf. (4.11)), such that 

(6.6) (2, cQ>0 for all ~ u ~  0 ~. 

Since all of the ~ have the same intersection with �9 ~, the condition (6.6) also holds 
with ~ in place of 7 j. The positive root system 7J0 satisfies (3.1), so that the in- 
variant eigendistribution O(%,  2), as described in w 3, is defined. If Theorem (4.15), 
in particular (4.15c), is to hold, O(~_~,  2 ) + O ( ~ ,  2) must be equal to a certain 
induced invariant eigendistribution, which I shall denote by O~; here i ranges 
between 1 and n. I set 

(6.7) O(~P, 2 ) = ( -  i)" O(%,  2)+ ~7 '= , ( -  1)"-'Oi. 

It remains to be shown that O(~ ,  2) does not depend on the particular choice 
of the ~ ,  and that it has all the desired properties. 
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(6.8) Lemma. I f  the positive root system 7"o has the property (3.1), then 0(7"o, 2) 
satisfies the statements of Theorems (4.21) and (4.22). 

Proof In the case of both (4.21) and (4.22), one may as well assume that the 
Cartan subgroup in question is of the form Bs, for some strongly orthogonal 
subset S ~  4'". I claim in both situations 

(6.9) S=  q~(G', H). 

Indeed, if G'=Bs,  ~ " Gs, this follows directly from the description of Gs. In the 
situation of(4.22), on the other hand, G' equals Bs, ~ . G(B~,), for some connected 
component B~ of B s. Every simple factor of Gs is locally isomorphic to Sp(n, 1R), 
for some n (cf. (2.40)). The root system C, contains a strongly orthogonal spanning 
set which is uniquely determined, except for the signs of its members, all of which 
are long roots. When C, is identified with the root system of Sp(n, 1R), relative 
to a split Caftan subgroup A, every long root c~ exponentiates to a character e ~ 
with positive values everywhere on A. The Cayley transform c s maps S onto a 
strongly orthogonal spanning set of 4~(Gs, Bs ca Gs). As follows from the preceeding 
remarks, this strongly orthogonal spanning set must lie in the root system of 
G(B~s), which implies (6.9) also in the situation of (4.22). In both cases, a root 
c~eq~(G, H) is compact if and only if it is compact, viewed as a root of G. Hence 

(6.10) % ca 4)(G', H) has the property (3.1), relative to the root system q~(G', H). 

Using (6.9) and (6.10) one can read off the statement of the lemma from Hecht's 
explicit formula (3.11). 

Combining the Lemma with (5.29), (5.30), and (5.69), one obtains 

(6.11) Corollary. The formula (6.7) describes an invariant eigendistribution, which 
satis]~es the statements (4.15 b), (4. t5 e), (4.21) and (4.22). 

Now let B ~ G be an arbitrary Cartan subgroup, with identity component B ~ 
and with Lie algebra b. I choose and keep fixed an inner automorphism d of .qe, 
which can be realized as the composition of an inverse Cayley transform and an 
inner automorphism of G, and which induces an isomorphism d: ba'& b r The dual 
isomorphism d* maps 7' to a system of positive roots d*7' in ,b(G, B). The root 
system 4~(b)_, which was defined in (2.21), is a sub-root system of 4,(G, B); it 
consists precisely of those a t  4~(G, B) which assume real values on b. By restriction, 
d* 7" determines a system of positive roots in ~ ( b ) .  I let {~,~ . . . .  ,7s} be the cor- 
responding set of simple roots in 4~(b)_, and I define 

(6.12) C={beB~ for l<_i<_s}. 

Since W(G, B) contains the group generated by the reflections about the roots 
in q~(b)_, the conjugates of C under the action of W(G, B) cover a dense open 
subset of B ~ which includes all regular elements of B ~ Thus knowing q~(7", 2) 
on C amounts to knowing it on all of B ~ 

Under d*,2 corresponds to a complex valued, linear functional d*2 on b, 
The Weyl group of (go be) will be denoted by W~.. As w runs over W~., d* w2 
ranges over all linear functionals on b whichare conjugate tod* 2 under the action 
of the Weyl group of (ge, be). 
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(6.13) Lemma. For every we  We there exists an integer n(w), such that 

O(~,  ~)lc = (1-L~' { ed'~/2 --e-d*~/2)) - ' '  Zw~wr n{w) . e d*wx. 

The integers n(w) do not depend on the particular choice of l. 
It will turn out, of course, that the integers n(w) do not depend on the particular 

choice of the ~/, either, but this fact is not yet known. As should also be pointed 
out, the numerator and the denominator individually may make sense only on a 
suitable finite covering of B; the quotient, however, is well defined on B itself. 

Proof. For ~ = ~0, the statement of the lemma follows directly from the ex- 
plicit formula (3.11). It therefore suffices to prove the analogous assertion about 
each O i. Inductively, one may assume that the lemma is correct in the case of all 
groups of lower dimension than G. This inductive assumption allows one to 
deduce the desired statement about the 0 i from Lemma (5.2). The following 
observations about (5.2) are crucial for this purpose. First of all, the expression is 

N a e + { G ,  B}, (at, Ad g, <X)) > 0 ( e:/2 - e-:/2) 

is real on B: if ae+(G,B)  satisfies the inequality (a, Adg~(X))>0,  then so does 
its complex conjugate i ,  which therefore also contributes in the product. Secondly 
ifg lies in B ~ then Ad g,(g) = m b, for some b e Bp, _ and some m ~ (Mp c~ AO g/-1 (B))0; 
thus ~b(g)=~bo(m)-eV(b), and the inductive hypothesis can be applied to ~o(m). 
Thirdly, since Ad g~(M~)c~ B ~ is the kernel in B of e ~, for some ae</>(G, B), every w 
in the Weyl group of the root system 

+(Ad g~(M~), B c~ Ad g~(M~)) 

can be continued to an element of d - l o  Wr d, which operates trivially on 
Ad gi(X). As the reader can verify, these remarks imply the desired statements 
about the O~, except for the integrality of the coefficients of the exponential terms. 

To deduce the integrality of the coefficients from the inductive hypotheses, 
one may argue as follows. In the formula (5.2), r can be replaced by 

~,~M~ ~ M~ ~ o A d  g ,  

provided the multiplication by a = # M~/M~ is omitted. With this new version 
of the formula, instead of summing over W(G, B), one may sum, in a well defined 
manner, over the quotient 

{we W(G, B)lw Ad g,(X)= Ad g~(X)} \ W(G, B), 

1 
provided the constant - -  is dropped. In other words, the division by c~ in (5.2) 

ci 
does not introduce any denominators. This concludes the proof. 

According to a criterion of Harish-Chandra (Theorem 7 of [13]), 

(6.14) an invariant eigendistribution O on G is tempered if and only if, for every 
Cartan subgroup B, 

I ]-L~<~,., ( e~/2 - e-~/2)(b)l i"  I O(b)l < a(1 + a(b))" 

for all beB,  with suitable positive constants a, m. 

~s One  may have  to go to a finite cover ing  of B; cf. the r emark  below (6.13). 
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As usual, I have identified O with the function that represents it. The function a 
is defined by 

a(b~ �9 exp X) = tl X ii, 

whenever b~ eB~ and Xeb  . Hence, using the notation of (6.12) and (6.13), one 
finds 

(6.15) if 6)(7/, 2) is tempered, n(w)=0 unless e e*wx remains bounded on C. 

Conversely, 

(6.16) 6)(71,2) satisfies the temperedness condition on B ~ provided n(w)=0 
whenever e e*w~ fails to the bounded on C. 

Remark. In Harish-Chandra's criterion (6.14), the sufficiency is more elementary 
than the necessity. For the purposes of this paper, if the inductive hypotheses are 
suitably modified, only the sufficiency is needed. 

(6.17) Lemma. Suppose G is not isomorphic to Sp(n,N) or its adjoint group, 
for any n. Then the invariant eigendistribution 0 ( 7  j, 2) of (6.7) does not depend on 
the particular choice of the ~ .  Moreover, O(T,  2) is tempered whenever 2 satisfies 
the condition (**) of (4.15). 

Proof In the context of Theorems (4.21) and (4.22), every simple factor of G' is 
locally isomorphic to Sp(n, IR) (cf. (2.40) and (2.44)). Because of the assumption 
about G, every simple factor of G' therefore has strictly lower dimension than G. 
In particular, Theorem(4.15) holds for any G' which can occur in an application 
of (4.21) and (4.22) (it is possible to reduce this question from the case of G' to that 
of its simple factors, in the manner described by (4.17)). According to (6.11), it is 
legitimate to apply (4.21) and (4.22) to G. It follows immediately that 6)(7/, 2) 
cannot depend on arbitrary choices. In view of (6.15) and (6.16), the statement 
(4.15 f) for the various groups G' which can occur gives the temperedness of O (7 ~, 2), 
provided 2 satisfies the condition (**). 

(6.18) Lemma. Suppose G~-Sp(n, IR) for some n, and suppose B is a Cartan sub- 
group of G which is not split. Then 0 ( 7  j, 2)[ B does not depend on the choice of the ~ .  
Also, 0 ( 7  j, 2) satisfies the condition for temperedness at least on B, provided (2, c~)> 0 
for all cte 7 t". Similarly, if B j is a connected component of a split Cartan subgroup B, 
and if BJ CZ(G) . B ~ the restriction of 6)(7 j, 2) to B j does not depend on the ~ ; 
moreover, 0 (7 j, 2) has the temperedness property on B j, whenever (**) in (4.15) holds. 

Proof Via the statements (4.21) and (4.22), the problems can be reduced to the 
case of lower dimensional subgroups. The arguments are very similar to those in 
the proof of (6.17). 

IfG is the adjoint group ofSp(n, IR), the distribution O(7', 2) can be pulled back 
to Sp(n, IR), and one can check its various properties there, rather than on G itself. 
For G=Sp(n, IR), if B J is a connected component of Z(G)-B ~ for some split 
Cartan subgroup B, one completely understands the behaviour of O(7', 2) on B J, 
as soon as one knows it on B ~  to (4.15b), which was verified already. 
As follows from these remarks, the question of whether 6)(7 ~, 2) is well defined, 
and the problem of proving (4.15f), at this point need to be taken up only for the 
identity component of a split Cartan subgroup of Sp(n, ~).  
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I now turn to this special case. Thus G will denote the group Sp(n, IR), and A a 
split Cartan subgroup of G. The other symbols, like '/I, 2, O(~ ,  2), etc., will retain 
their previous meanings. I choose an inner automorphism d of G r which can be 
realized as the composition of an inverse Cayley transform and an inner auto- 
morphism of G, such that 

(6.19) d: a ~ b  r 

(a = Lie algebra of A). Let e, . . . . .  % be the simple roots for 7/. Then d* ei, 1 < i __< n, 
is the set of simple roots in q~(G, A), relative to the system of positive roots d* 7 j. 
As in (6.12), I define 

(6.20) C={aeA~ l, l <_i<_n}. 

Thus C is the image under exp of a Weyl chamber in a. According to Lemma 
(6.13), for suitable integers n(w), 

(6.21) O( 7~, 2)1c = (I-L ~, ( ea* =/2 -e-e*' /2))  - ~  Z ~ w r  n(w). e d*wx. 

The remarks which were made below (6.13) also apply here. 
It will be necessary to consider the Cartan subgroups of G which have a one 

dimensional toroidal part. For the present purposes, the enumeration given by 
Proposition (3.16) is not so helpful. Instead, I shall use Konstant's and Sugiura's 
classification directly. For each root eeq~(G,A), one can choose a generator 
E= e g of the s-root space, and an element F~ e a, subject to the conditions 

(6.22) [F~, E~] = 2 E~, [F~, E_ o] = - 2 E_~, [E~, E_ ~] = F~. 

These conditions determine the F~'s completely: F= spans the bracket product of 
the root spaces corresponding to e and - e ,  and <e, F , ) =  2. As follows from this 
remark, 

(6.23) d(F~)=Z~, if e = d*,/ 

(cf. (2.7)). Each triple {/~;, E=, E_s} spans a copy of M(2, IR) in g, which centralizes 

(6.24) 

The inner automorphism 

(6.25) 

{Xeal<~, X>=O}. 

i7~ 
e~ = Ad exp ~ -  (E, + E ~) 

of gr acts as the identity on the subspace (6.24) of a, and it maps F~ to iE~+ iE~; 
e~ is a type of Cayley transform. In particular, 

(6.26) {x e at <~, x>  = 0} |  (E. - E_.) 

is a Cartan subalgebra of g, with complexification e~(ae). For any given root 
7e~b(G, H), I let % denote the Cartan subalgebra (6.26), with e=d*7.  The cor- 
responding Cartan subgroup will be referred to as A s. I define d~ = d o e~- 1, with 
e = d* 7; then 

(6.27) dr: a ~ b  ~. 
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It may seem strange that I have enumerated the Cartan subalgebras % in terms 
of roots of (G, H), rather than roots of (G, A); however, this enumeration will 
turn out to be convenient. 

The toroidal direction in % is spanned by d~l(Z~). Hence, in the notation 
of (2.21), 

�9 (a~)_ = { d ~ l ~ e  4,(G, H), ~ • ~,}. 

By restriction, t/, determines a system of positive roots in 

{c~e 4~(G, H)t~ • ~1. 

I let fix, -.., ft,-1 be the resulting set of simple roots. In analogy to (6.12), I set 

(6.28) Cr= {ae A~ 1, l <_i < n -  1}. 

According to Lemma (6.13), for suitably chosen integers n~(w), 

(6.29) O( q~, 2)lc~ = (l-Le~e (e~/Z--e-a*'~/2)) -1" ~,~,~wr ny(w), e a*','~'a . 

For each yeg,(G, H), sye We shall denote the reflection about the root y. 

(6.30) Lemma. l f  ?e ~(G, H) is simple, relative to the system of positive roots tp, then 

n(w) - n(s~ w ) =  n4w)  - n~(s,, w),  

for all we We. 

The identity stated in the lemma follows from general results of Harish- 
Chandra about invariant eigendistributions [11] (see also Theorem 1 of [20]). 
However, in the case at hand, the temma can be proven by essentially combin- 
atorial arguments. Since such arguments are more in the spirit of this paper, 
I shall give a direct proof oflemma. The proof, which depends on some sublemmas, 
will be postponed to the end of this section. I now continue with the main arguments, 
assuming the statement of the lemma. 

Because of (6.18), the integers n~(w) do not depend on the particular choice 
of the ~ ,  which were used to construct O(~ u, 2). Since the reflections about the 
simple roots generate all of We, the lemma implies the following: 

(6.31) Corollary. For any two elements Wl, w 2 of We, the difference n(wl)-n(w2) 
does not depend on the particular choice of the ~ .  

Two definitions are needed for the statement of the next lemma: 

A(~)={2eAI(2,  c0=0 for all :r 
(6.32) 

R ( ~ ) =  {we Wr a*~ is bounded on C, for all 2eA(tP)} 

(cf. (6.20)). 

(6.33) Lemma. There exists an integer n, such that n=n(w) whenever wCR(~). 

Proofl 6. Let {~ . . . .  , c~,} be the set of simple roots in ~(G, H), relative to the 
system of positive roots ~, and let {21 . . . . .  2,} be the set of fundamental highest 
weights. Thus 2~ is the unique element of A such that 2(2, cq)= (cq, ~), and (2~, c~)--0 
if i+j. Apparently A(7 j) consists precisely of the integral linear combinations, 

~6 The argument below is similar to Harish-Chandra's proof of the uniqueness of the @x, in [12]. 
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with nonnegative coefficients, of 21 . . . . .  2,. Similarly, for any given 2eA, e a*~ is 
bounded on C if and only if2 is a linear combination, with nonpositive coefficients, 
of ~1, -.., ~, ; equivalently, if and only if (2, 21) < 0, 1 < i < n. Hence 

(6.34) we We belongs to R(q') if and only if(w2i, 2j)<O, for 1 < i , j<n .  

To simplify the notation, I shall write si for the reflection about the root ~,  rather 
than s , .  I now claim 

(6.35) if (w2i, 2j)> 0 for some integers i,L then n(SkW)= n(w) whenever k +j.  

To prove the claim, I let w, i,j be given, so that (w2~, 2j)> 0, and I let k be an integer 
between 1 and n, k+j.  It is then possible to pick an admissible 2eA(TJ), which 
satisfies (w2, 2~)> 0. The invariant eigendistribution O (T, 2) satisfies the tempered- 
nes condition on A,~, as follows from (6.t8). By restriction, T determines a system 
of positive roots in 

{~e r H)I~ • ~k}- 

I enumerate the set of simple roots in this root system as fit , . .-,  fin-l- One can 
express w2 as a linear combination of these, plus ek: 

(6.36) W2=Zibifli-l-CO~k, hi, celR. 

Each fli lies in qJ; hence 

(6.37) f l i=~tmi,  lcq, with mi, l>O 

Combining these identities, one finds 

w 2 = Z,*k (Zibimi, ,) o~, + C'ak, 

for some c'elR. The inequality (w2, 2j)>0 implies 

~ibimi, j > O. 

In view of (6.37), not all of the coefficients b~ in (6.36) can be negative. Thus, for 
7 = ~tk, e d~ "~ does not remain bounded on Cy. On the other hand, ~9 (7 j, 2) is known 
to satisfy the temperedness condition on A,k. Hence n,k(w)= 0. Similarly, one may 
conclude n~(skw)=O, because Sk acts as the identity on ill, "-',tin-1" The state- 
ment (6.35) now follows from Lemma (6.30). 

To complete the proof of the lemma, I shall show that n(w)=n(1), whenever 
we Wc does not belong to R(T). It will simplify matters to use the specific prop- 
erties of the root system ~b(G, H), which is of type C,. If an orthogonal basis 
{el , . . . ,  e,} of ib* is suitably chosen, 

oti=ei--ei+l~ l _< i_< n --1; C~n=2e.; 
(6.38a) 

2 i = e l + e 2 + . . . + e i ,  l<i<_n. 

Moreover, 

(6.38b) We is the group generated by the permutations of the el, and the re- 
flections about the e~. 

I now suppose that wq~R(7'). According to (6.34), there exist integers i,j, 
such that (w2~, 2j)> 0; I choose j minimal with respect to this property. In view of 
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(6.38), 

(6.39) W2i=~,kakek, with ak = + 1 or 0. 

Because of the choice of j, aj = 1. Let W~ be the subgroup of We generated by all 
the reflections about the simple roots, except for the reflection sj. As can be checked, 
W~ keeps 2 i fixed. Hence, and because of (6.35), n(w'w)=n(w), for any w'~Wj. 
Thus, without loss of generality, I may replace w by w' w, for some convenient 
w'e Wj. By doing so, one can arrange that, for some integer l>j, 

(6.40) a l = l ;  ak=l  i f j < k < l ;  ak=O if k>/ .  

In this situation, (w2i,21)>0. Now the very same argument can be repeated, 
with j replaced by 1; the condition (6.40) then becomes equivalent to the identity 
w2i=2~. This is possible only if we I =ek, for some k<i.  Hence (w21, 2/)>0, and 
the entire argument can be repeated, with 1 taking the place of the integer i. 
Arguing as before, I may assume w21 =21; moreover, n(w'w)=n(w), whenever 
w'el/V~. As can be checked, w21 =21 implies w~Vr Hence n(w)=n(1), for any 
we W c which lies outside of R(TJ). The lemma follows. 

(6.41) Lemma. I f  2 satisfies (2,~)>_0, for all c~Pncb" ,  the invariant eigen- 
distribution O(tP, 2) is tempered. 

Proof According to (6.18), 0 ( ~ , 2 )  satisfies the temperedness condition on 
every Cartan subgroup which is not split, as well as on every component of A 
outside of A ~ Z(G). Since O(71, 2) is known to have the property (4.15 b), only the 
temperedness on A ~ needs to be checked. Because of (6.33), it suffices to show that 
n(1)=0; I shall do so by induction on the length m of the chain ~o . . . . .  ~,,. If m=0,  
7J= qJo has the property (3.1), and O(~,2) is explicitly given by (3.11). As was 
remarked in w 3, 0 ( ~ ,  2) is then tempered, provided 2 satisfies the condition (**). 
Now let m be arbitrary. There exists a simple, noncompact root fie 71, such that 

(6.42) 7Jm- 1 = sp ~U 

(sa~ W e is the reflection about fl). According to (6.7), 

O(71, 2) = O,, - O (~u,,_ x, 2), where 
(6.43) 

m--1 10/"  O(t/s.,_~, 2 )= ( -1 )  " - '  O(t/So, 2)+~=~ ( -1 )  "-~- 

As follows from the induction hypothesis, 

(6.44) O (7~,._ 1,2) is tempered, provided (2, e)> 0 for all e e kg,._ 1- 

With suitably chosen integers n'(w), n'(w), one can express the restrictions of O,, 
and of O(~,,_1,2) to C as follows: 

(6.45) 
Om[c=(l~e,e(ed'~'/2--e-d*~12)) - '  . Ewewen'(w)e a'w:~ 

X)lc = - e -  - '  n " ( w )  e 

I shall show that n'(1)=n"(1)=0, except when n=  1. The case of Sp(1, IR) is well 
understood, and may be excluded. 
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Let 2 e i b* be admissible, and such that (2, c~) > 0, for every ~ e 7". Then, according 
to (6.42), (so2, ~)>0 whenever ee  7",._ 1. In view of (6.44), this implies the tempered- 
ness of 0(7",._ 1, sa2). As follows from formula (6.45), n"(wsa)=O unless weR(7"). 
It was assumed that n4= 1; hence there exist simple roots (relative to 7") other 
than /3. I consider the fundamental highest weight corresponding to one of the 
other simple roots, say #. The reflection about/3 preserves ~; this is a consequence 
of the definition of the fundamental highest weights. Thus ( sp# ,#)=(~ , /0>0,  
and hence sr cannot belong to R(7"); cf. (6.34). For the reasons which were given a 
above, one may conclude that n"(1)=0. 

It remains to be shown that n'(1)=0. The induced invariant eigendistribution 
O,, is equal to O, as defined in (4.15c). I shall use the notation established here. 
Let 2e i [*  be admissible, and such that (2, c0>0, for all c~eT'. The restriction 
# of 2 to ba,+ then satisfies (y, e)>0,  for all e e l .  According to the inductive 
hypotheses stated at the beginning of this section, Theorem (4.15) holds for the 
group M~. Thus, subject to the assumption about 2, 

(6.46) 4)o is tempered. 

I set X =  Ya+ Y a. The argument which preceeds (5.43) shows that geG can be 
chosen, such that 

(6.47) Ad g(X) = d-  1 (Zp). 

In particular, Adg-X(A) is then a Cartan subgroup of Mp.Ba_.  Let 71,-.., 7,-~ 
be the set of simple roots, relative to the system of positive roots which 7' cuts out 
in the root system 

(6.48) {~e q~(G, H)I~ 3_ ~q}. 

I define 
C'= {ae A~ t, 1 <--i <n-- 1}; 

then C'c~Adg(M~) plays the same role with respect to the groups Adg(M~) and 
A~ which C plays with respect to G and A ~ Let ~ be defined by (5.1), 
and let W~ be the subgroup of W e generated by the reflections about the roots of 
the root system (6.48). If one applies Lemma (6.13) to qS0, one obtains a formula 

(6.49) O ~ Adg -11c, = ( 1 - L ~ , , , •  ~*'/2 - e - e " /2 ) )  -1" ~w~w~:m(w)" ed*Wx, 

for suitable integers m(w), we W~;here one must take into account (6.47). More- 
over, as follows from (6.46), 

(6.50) m(1)=0.  

I now use (5.2), with A taking the place of B. Since A is split, in the notation 
of (5.2), one has n = 1. For every element u of W(G, A) = d- 1 o We o d, there exists a 
unique u 'ed- lo  W~zod, such that uCcC ' .  Hence, in (5.2), instead of summing 
over W(G, A), one may sum over the set 

(6.51) {ue W(G, A)lu C c C'}. 
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Via d, the set (6.51) corresponds to the set 

{we W~:I w- i c~e ~P whenever ~e tp, ~ l [:~}, 

whose members I enumerate as w 1 . . . . .  w N. Lemma (5.2), as reformulated above, 
coupled with (6.45) and (6.49), allows one to compute the integers n'(w) in terms 
of the re(w). For this purpose, I extend the definition of the integers re(w) to all 
of W e, by setting re(w)= 0, ifwCW~:. Then, for every weWc, 

n' (w) = ~ui= 1 ai " m(wi w), 

with a i=  -+-a. Of the w~ 1, only the identity belongs to W~. Hence n ' (1)=m(1)-0;  
cf. (6.50). As was pointed out before, the equality n(1)=0, which has now been 
verified, implies the statement of the lemma. 

In particular, Lemma(6.41) implies the identity n(1)=0. Therefore, and 
because of(6.31), the integers n(w) do not depend on the particular choice of the ~. 
The restriction of O(q', 2) to any non-split Cartan subgroup, and to any component 
of A outside of A ~ Z(G), is already known to be independent of the choice of 
the ~.  Thus, 

(6.52) Corollary. The invariant eigendistribution 6)(7 j, 2) does not depend on the 
particular choice qf the ~.  

The proofs of Theorems (4.15), (4.21), and (4.22) are now almost complete. 
I drop the assumption that G=Sp(n,  IR). I define the invariant eigendistribution 
O(~P, 2) by the prescription (6.7). In all possible cases, the definition does not 
depend on arbitrary choices and is therefore meaningful; cf. (6.17), (6.18), and 
(6.52). If the system of positive roots ~u has the property (3.1), in the definition of 
6)(7 j, 2), one may set ~ =  %, m=0. Thus (4.15 a) is automatic. The transformation 
rule (4.15b) has already been verified in (6.11). As a direct consequence of their 
construction, the invariant eigendistributions 6)(7/,2) satisfy (4.15c). The De- 
finition (6.7) is forced by (4.15 c); hence the uniqueness of the O(q', 2). The identity 

O(wq', w ,~)=o(7", 2), 

for we W(G, H), is compatible with (4.15 a-c). Thus the uniqueness implies (4.15 d). 
According to (6.11), the 6)(7t, 2) satisfy (4.15e). In the various possible cases, 
(4.150 follows from (6.17), (6.18), and (6.41). Finally, Theorems (4.21) and (4.22) 
hold, thanks to Lemma (6.11). 

At this point, only Lemma (6.30) remains to be proven. In the statement of 
the lemma, the choice of the system of positive roots 71 enters in various ways, 
at least implicitly: in the definitions of C and of C~, in determining the notion 
of a simple root, in fixing the signs of the denominator in formulas (6.21) and 
(6.29), as well as in the original definition of O(q', 2). I claim that the choice of the 
system of positive roots is really irrelevant, as long as the same one is used to define 
C, C~,, the notion of a simple root, and the signs of the denominators. Indeed, 
any two systems of positive roots are related by some we W e. Under d, w corre- 
sponds to an element of W(G, A), which can be represented by Adg, for some geG. 
Ifg is suitably chosen, Adg maps A~ onto C,,y, it maps C~., defined relative to 7 s, 
onto Cw~, defined relative to w 7/, and similarly for C. These facts imply what was 
claimed above. 
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The identity asserted by Lemma (6.30) is linear. It therefore suffices to verify 
it individually for O(~P0, 2) and the Oi. 

(6.53) Lemma. The invariant eigendistributions 0 (~ ,  2) of Theorem (3.11) satisfy 
the statement of Lemma (6.30). 

Proof Let 7 s be a system of positive roots with the property (3.1). Because of 
the remarks above, in verifying (6.30) for the 0 ( 7  j, 2) of Theorem (3.11), I may 
use ~u to define C, C~, etc. In ~(G, H), there exists a unique strongly orthogonal 
spanning set S, all of whose members lie in ~. As follows from (3.11), on the set 

(6.54) {aeA~ 1 for all ceeS}, 

O(~ u, 2) is given by the formula 

(-  - - 1 e 

If w 0 is the unique element of W e which maps ~ to - 7 ~, and if the automorphism 
d -1 owod of o is represented by Adg, with g6G, then Adg maps C into the set 
(6.54). Since 0 (7  j, 2) is invariant under Adg, one finds that n(w)=(-1)qe(w) if 
WoWeW(G, H), and that n(w)=0 if WowCW(G, H). With slight modifications, the 
same argument can be used to compute the integers nv(w): it turns out that 
n~(w) = n(w), for all we W e. The lemma follows. 

As far as the assertion of Lemma (6.30) for the Oi is concerned, the specific 
situation does not simplify the argument. I therefore consider a more general 
setting. Let G be a connected, linear, semisimple Lie group, which contains both a 
compact Cartan subgroup H and a split Caftan subgroup A. One can then choose 
an inner automorphism d of ge, which can be expressed as the composition of an 
inner automorphism of g and the inverse of a Cayley transform, such that 
d: a e ~ ,b e. I keep fixed a particular system of positive roots ~Uc~(G,H). In 
this situation, d~, A~, C, C~ can be defined exactly as before. 

Now let /?ecb(G, H) be a noncompact root. As follows from the argument 
above (5.43), for a suitably chosen g~G, 

(6.55) Adg(Y~ + Y_a)=d-~ Z a- 

Since Yr + Y p spans be. _, Ad g- ~ (A) is a Caftan subgroup of Me- B e . .  If7 e ~(G, H) 
is perpendicular to /~, the inner automorphism e, of (6.25), with e=d*7,  acts as 
the identity on d- a Zr Hence, 

(6.56) if ? _I_/~, Adg(Y~+Y_~)=d;1Za. 

In particular, Adg-~(Av) is a Cartan subgroup of Ma. Ba,_, whenever ?A_/3. In 
the root system {c~ �9 (b(G, H)[ c~ A_/3}, 

which can be naturally identified with ~(M~, o Bo, +), ~ cuts out a system of positive 
roots. I enumerate the corresponding simple roots as {?~}, and I define 

(6.57) C'= {a�9176 1, for all i}. 

With respect to Adg(Ma) and A n Adg(Ma), the intersection of C' with Adg(M~) 
plays the same role which C plays with respect to G and A. For any given ?,�9 q~(G, H), 
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with ~ • fl, I now let {qi} be the simple roots in 

{~(b(G, H)I~• fl, ~ 2  ~}, 

relative to the system of positive roots induced by T. In analogy to C~, I set 

(6.58) C; = {a~A~ 1, for all i}. 

I consider an invariant eigendistribution q50 on M~, and a character ~ of F~, 
subject to (4.7). Moreover, a linear functional veb~,_ shall be given. As described 
in w 4, the data fl, qSo, ~, v can be used to construct an induced invariant eigen- 
distribution 6). I define ~9 as in (5.1). Now the crucial hypothesis: I suppose that 
there exists a 2ei13", and constants n'(w), n'~(w), such that 

(6.59) ~ o A d g  -11c,=(l-Leq,, ,•  - 1 .  ~ w s w r  e a*wa 

(W c = Weyl group of q~(G, H)), and, for every 7 e (b(G, H) which is perpendicular to fl, 

(6.60) ~o Adg-lic~=([L~v,~• -1 " Zw~wen'~(w)" e d*w~ . 

Finally, if~ is simple with respect to the system of positive roots determined by T in 

(6.61) {cxc r H)[~ • fl}, 

the identity 

(6.62) n' ( w ) -  n' (sy w) = n'~(w)- n'~(s~ w) 

is to hold; here s~e W e denotes the reflection about 7. 

(6.63) Remark. If 61 is one of the eigendistributions O~ of (6.7), these hypotheses 
are satisfied. 

Indeed, an application of Lemma (6.13) to 4, 0, plus the formula which defines ~, 
assure that the restrictions of 0 o Adg-~ to C' and C'~ can be expressed in the 
manner of (6.59) and (6.60). Actually, in both cases, one only needs to sum over 
the subgroup of We generated by the reflections about the roots in the root system 
(6.61). By induction on the dimension of G, one may assume that the analogue of 
Lemma (6.30) holds for the group M~. The identity (6.62) is then a direct con- 
sequence. This verifies the remark. 

Back to the general situation! For suitably chosen constants n(w), n;.(w), 

0 [c = (I-L~(ea,:/2 _ e-a*,/2)) - ~. Ew~wen(w).  e a*~, 
(6.64) 

Oleo, = ([-[~ve ( ea~ ~/2 _ e -  a~ ~/2))-,. E ~  we n~ (w) e a~ ~z; 

this can be shown just as in the proof of Lemma (6.13). 

(6.65) Lemma. Let u~, ..., u s be an enumeration of the set 

{weWelw -1 a c t  ifa~ T, a •  fl}, 

then n(w)= @ M~/M~ . ET=x n'(u~w). 

Proof  I use Lemma (5.2), with A playing the role of B. Since A is split, in the 
notation of (5.2), one has n = 1. The automorphism d induces an isomorphism 

(6.66) W(G, A)~- We. 
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Under this isomorphism, the group 

(6.67) {woW(G,  A ) l w o A d g ( Y ~ +  Y ~)=Adg(Y~+ Y_~)} 

corresponds to {weWelw/3=f l }=subgrou  p of W C generated by the reflections 
about  the roots in the root system (6.61). 

For every y e W ( G ,  A), there exists a unique element v' of the group (6.67), 
such that v C c v' C'. Hence, in (5.2), instead of summing over W(G, A), one may 
sum over the set 

(6.68) {yeW(G,  A) lvC c C'} , 

provided the factor 1/q is dropped. The isomorphism (6.66) maps the set (6.68) 
onto the set {uil 1 < i=< N}. If an element v of the set (6.68) corresponds to ui, 

- e - o v 

= [L~,.,• , ,/2 _ _  e-d*,c ,,/2) 

= I]=eq*,= • Uc'/~( d - a / 2  - -  e - d ' a / 2 ) ,  

because u~- 1 ~e T whenever a e  T, ~ _1_/3. With v and u~ as above, 

Hc~e'fJ,(cl, u~- ' e)* O( ed*al2 --  e-d*al2) 

is positive on C, and hence agrees on C with 

I . , > . o  (e  - -  o v I 

(cf. (6.55)). As a consequence of these remarks, 

6) lc=a " ( l -L~ ' (d* ' /e -e-d* ' /2) )  -~ " E~=~ E ~ w c n ' ( w )  d*"c '~a  

According to (2.58), a = # Mp/MJ. The lemma follows. 

It will be necessary to have an analogous formula for the %(w). Instead of 
expressing the n~(w) in terms of the n'~(w), it is easier to work with certain inter- 
mediate quantities n~(w), which I shall now describe. For any root 7eq>(G, H), 
d~ identifies W(G, A~.) with a subgroup of W e. I distinguish two possible cases: 

d;  1 o syo d~e W (G, As) , (6.69a) 

and 

(6.69b) d~ 1 o sy o d~r W(G, A~.) 

(s~e W e is the reflection about 7)- I now suppose that 7 L/3. In terms of the constants 
n'~(w) of (6.60), I define 

t t  l ! t 
(6.70) n~(w)=n'~(w)in the situation (6.69a), and n~(w)=~(%(w) -%(syw) ) in  the 
situation (6.69 b). 

(6.71) Lemma. Let  7 ~ T be a simple root, let u a . . . .  , UM be an enumeration of the set 

{we Wr Z /3; w -1 ~ T whenever ~ T,  ~ _L /3} , 
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and let y~=uiy. Then, Jor every w~We, 

n~(w) = ~ M~/M~ . ~,iM=, n~, (u i w). 

Proo/~ The group {w~Wr operates  on the set of roots which are 
perpendicular  to fi and We-conjugate to y. I choose a complete  set of representatives 
r/~ . . . .  , r/k of the orbits. For  each r/i, there exists a unique w~6 W e such that  

(6.72) wiY =rh, and wic~ ~ whenever  ~ 7 j, ~z L 7. 

Indeed, the Weyl g roup  of the root  system 

{a60(G,  H) la  A_ "/}, 

namely the isotropy subgroup  of W e at 7, operates  simply transitively on the set 
of Weyl chambers  of this root system. Hence the existence and uniqueness of w~. 

Every Car tan  subgroup  of G, with one dimensional  toroidal  part,  is conjugate  
to one of the form A,, for some t /cO(G, H). Two  such Car tan  subgroups  A,, 
Ar are conjugate  precisely when q and ( lie in the same We-orbit. These s ta tements  
follow directly from Kos tan t ' s  and Sugiura 's  classification [24, 38]. The analogous  
assert ion about  M~.BB._ is also correct.  Each q~ is perpendicular  to fl, so that  
A d g  - I  (A,,) lies in M~. B~_ (cf. (6.56); g~G has the same meaning as in (6.55)). 
Thus:  every Car tan  subgroup  of M~- B~,_ which is G-conjugate to A~, is Me-con- 
jugate  to exactly one among  the Adg-~(A, , ) ,  1 <_iNk. In the notat ion of (5.2), 
with B = A~,, the integer n is now equal  to k. 

Via d, w~e W e corresponds  to an element of W(G, A), which can be represented 
as Ad h~, for some h~e G. If hi is suitably chosen, 

Adhi:  A~ - ~  A~. 

On %,  one then obtains  the identity 

(6.73) d,, o Ad h~ = w i o dy. 

Because of the condit ions (6.72), 

(6.74) Adh~-~(C'~,)={a~A~ i f ~ t I ' , ~ 1 7 , ~ L w ~ f l } .  

In L e m m a  (5.2), with A~ playing the role of B, I may set g~=hT~g, with g as in 
w,7 ~ cte 7 ~ whenever c~e 71, 

o Ad (tl,- 1 g ) -  i lAd h, - l  (C~,) 

(6.75) = ( [ L ~ , . ,  • ~ , , , I .  o sgn~v(w/- ' c0) 

�9 t,( - I  n; , (w w) 

here, as before, s g n ~ =  1 or - 1 ,  depending on whether  u~ 7 j or  - ~ e  ~. Under  
d~, the Weyl group  W(G, A~) corresponds  to a subgroup  of W e. Since 

0(%)_ = {d*~]~O(G, H), c~ L 7} 

(cf. (2.21)), 

(6.55). According to (6.60) and (6.72), and because 
ct • r/i, 
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d ro W ( G ,  Ar) od~ -~ = {wG WelwT=7} 
(6.76) 

d r o W(G,  A r ) o d  ; '  = {wG Wclw~,L +-7}, 

depending on whether  (6.69a) or (6.69b) holds. 
For  every w e  W(G,  At), there exists a unique element w' of the group  

(6.77) {d;  1 o v o dr]vG We, VT=y, v w~- l f l= w~- : fl} , 

such that w C  r :  w' o Ad h/- ~ (C',,); moreover,  the restriction of ff o Ad (g- ~ hi) to 
A r is invariant under the group (6.77). Hence, in (5.2), instead of summing over 
W(G,  At), one may sum over the set 

(6.78) { w e  W(G,  At) [wC r = Ad h F 1(C~.)}, 

provided one multiplies the sum by the order  of the group (6.77). 
For  each q~, I enumerate  the elements of the set 

{we We[wv = 7; w -1 ~e 7' i f a e  7", ~ k ";, a5_ wF 1 fl} 

as {v~,jl l < . j < N i } .  Via d r, the set (6.78) corresponds to a subset of  W e, namely 

{v~,~[ 1 < j < N i }  in the situation (6.69a), and 

{vi,j, srv~,~[ 1 < j <  N~} in the situation (6.69b); 

this follows from (6.74) and (6.76). For  every aG~b(G, H), the two roots d*a and 
d*sra in ~b(G, A) are complex conjugates. Also, since 7 is simple, a and sra have 
the same sign with respect to 7", unless a =  _+y. Hence, if w e  W(G,  At)  is equal to 
d~ 1 o vi,; o d r or d~-: o srvi, ~ o d~, 

[ H = ~ @ ( G ,  Ay,), (cx, Ad(hUlg)(Yl~+Y-13)>>O (e=/2--e-'/2) ~ w] Ic~ 

(note: 7-1- wTXfl!). Again if w = d ;  1 o vi, j o dr, 

d* -- * 

= (I-I=~e, ,• w.-, e, r r,* 0 sgn~(vZJ cO)- FI,~,e. =*oc~ wr, a ( e~=/2 - -  e-a~'=/2) 

(note: vg~ ~ e 7" if ~ E 7", c~ • wF 1 fl, c~ • 7)- Because 7 is simple, if w = d~,- ~ o s r vi, j o dr, 
the formula remains correct,  except for a change in sign. In view of (6.76), the order  
of  the group  

{ w G W ( G ,  A r ) l w o A d ( h ( * g ) ( Y a +  Y _ a ) = A d ( h i - l g ) ( Y a +  Y-a)} 

is equal to the order  of the group (6.77), or to twice the order  of this group, depending 
on whether (6.69a) or (6.69b) holds. According to (6.75) and the preceeding re- 
marks, an application of (5.2) shows that 

n r(w) = ~ M a / M  ~ �9 E,.  ,(I-I~,~'., • a, ,~,, ,~,,* o sgn~,(w/- ~)) 
(6.79) 

- 1  
�9 (]-L~',  =l ~c' ~, (-, r)* 0 sgn~,(vi,; ~)). n',,(wivi, ~w), 

provided (6.69a) holds. In the situation (6.69b), the last factor n',,(...) must be 
replaced by 

�89 (,,'., (w,~,.~w)- .'., (w~sr~,.~w))= .~, (w,<.~w) 
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(wisy ws 1 = s,,; also, since A s and A,, are conjugate,  if (6.69b) holds, the analogous  
s ta tement  holds for A~,). Thus, if n',. is replaced by n~', (6.79) becomes correct in 
both  situations. 

The  two products  of the sign factors in (6.79) can be combined  into 

(6.80) 1-[~e. ~ • ~, (~, ~,), o sgn~, (v~  w/-1 ~). 

I shall now assume, as I may, that  the r/i have been chosen subject to the condit ion 

(6.81) each r/~ is simple, relative to the positive root  system which ~u induces in 
{~e ~b(G, H)[o~ • fl}. 

In this situation, s,, establishes a bijection between the two sets 

{~e 7'1c~ • (c~, rt;) < 0}, 
and 

Moreover ,  for any a in the first of these two sets, 

sgn~,(v~} w71 -1 -1 -1 s,, c~) = sgn~,(s~ vi, j wi c~) = sgn~(vi, j wi- 1 ~), 

because y is simple. Hence the product  (6.80) is equal to one. For  1 < i <  k, 1 < j  < N~, 
I set 

Wi, j ~  Wil)i, j .  

Then, as follows f rom the preceeding remarks ,  

k Nz (6.82) ny(w) = # Mp/M~ . ~i=1 ~,4=x n~,(wi,~w). 

Now let t/, ~ be two conjugate  roots  in {c~eq~(G, H ) I a  2_ fl} which are simple 
with respect to the system of positive roots  cut out by ku. There exists a unique 

~e {we W,:lw~=[~}, 

such that  v q = ~ ,  and such that  vc~e7 j whenever a e 7  j, c~L [3, a_Lr I. Via d, v cor-  
r e s p o n d s t o  an element of W(G, A), which can be realized as A d h ,  with heG. 
For  a suitable choice of  h, one can ar range that  

A d h :  A , ~  Ar 
and that  

(6.83) d, o Ad h = v o d~. 

Because of the part icular  choice of v, Ad h maps  C', to C~. As can be read off from 
(6.60) and (6.83), 

(6.84) n; (w) = (1-[~ ~'. �9 • ~. (~. o* o sgn~,(v- 1)). n~(v w). 

The same a rgument  which shows that  the expression (6.80) equals one can be 
applied to the product  appear ing  in (6.84). Thus  n~(w)= n~(vw), which implies the 
identity 

(6.85) n~' (w) = n~' (v w). 
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To complete the proof  of the lemma, I shall construct  a bijective mapping 

(6.86) r:  {w,.jl 1 <=i<k, 1 ~j<=Ni} -~ {utI I <_I<_M}, 

such that n~,(ulw)=n~,(wi.jw), whenever ut=r(wi,j). The lemma will then follow 
directly from (6.82). I consider a particular wi, j. For  reasons which have been 
explained before, there exists a unique ~i . je  We, such that 

(6.87) r fl, and (v~i.jwi.fl-l~e7, w h e n e v e r ~ e 7 , , ~ •  

I claim that Cvi.~wi,j is one of the u~. Indeed, because t h •  and # i4 f l= f l ,  

~Vi, jWi, j~=  ~gi,jWil)i,j~= ~gi, jqi • [~ ; 

also, (r maps {~e t/'l~ • fl} into 7,. Hence ~vi,jwi.j= u l, for some l, 1 -< l_< M. 
I define 

(6.88) ~(wi, fl = ut. 

Because of the defining properties of ut, 7t = uz7 is a simple root, relative to the 
system of positive roots which 7' determines in 

{cce @(G, H)I~ • fl}. 

According to (6.81), r/i is simple in the same sense. I want to show that ~i.i can be 
used as v in (6.85), with q = r  h and ff=Tz. First of all, 

~'Vi,jqi = ~4~i, j W i .  j 7  ~- Ul~) = Tl" 

Secondly, if ~e 7/, ~ L fl, ~ • rh, one must have ~i , j~e  7", for otherwise 

=*. - -  v ~ i w i- l ot e T" , w g i o~ i W :~ l f l ,  W g i O~ • "/ 

which is a contradict ion.  The first implication holds because of (6.87), the second 
because of the definition of wi, i, the third because of the properties of v~,j, and the 
fourth because of  the propert ies of  w~. This proves:  

(6.89) n~,(UlW)=n~,(wi, jw), if ul='~(Wc~). 

It remains to be shown that z is bijective. If u~ = z(wi, i), rh is conjugate to 7~ under 

(6.90) {we Wr w fi = fl}. 

Hence r(w~,;) uniquely determines the index i. On the other  hand, if u~=z(wi, fl, 
w-1 maps fl to uF~fi, rh to 7, and 

l , J  

into 7", as follows from the properties of w i and vi. j. These condit ions describe 
wi,j uniquely. In other  words, ~ is injective. Now let u~ be given. Under  the action 
of the group (6.90), y~ is conjugate to qi for some i. Hence there exists # e  We, 
such that 

r v~r/i = yt ; v'0ae 7, if (Ze 7,, (xLf l ,  ~ ]-/~i" 
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In terms of ~ and the index i, I define 

v=w~-l~,-lut" 

Then v~/= 7. Because of the properties of u~, #, and wi, v-~c~e~ whenever ~e~ u, 
c~Ly, ~•  thus v is one of the vi.j. Since uz=fvwi.j, one checks easily that 
# = #i. ~, and that u~ = T (w~. ~). Hence r is bijective. The assert ion of the lemma now 
follows from (6.82) and (6.89). 

(6.91) Lemma.  U'7~eb(G, H) is simple with respect to tp, the constants n(w) and 
n~(w) of (6.64) satisfy the identity 

n(w)- n(s,w)= n,Aw ) -  n,(s,w). 
Proq[2 I enumerate  the elements of the set 

{we Wel w-  ~ cce ~P if cce 7 j, c~ 2_ fl} 

as u~, ..., uN, in a manner  such that 

uiyLf i  if and only if l<=i<M, 

for some M < N .  The notat ion is then consistent with that  of (6.65) and (6.67). 
Since y is simple, ifui7 is not perpendicular  to fi, u~s~ is again one 0fthe ui. Hence 

(6.92) ui~--~u~ L, establishes a bijection of {u~IM<i<N}. 

As follows from the defining proper ty  of the u~, if i__< M, 7 i=uy  is simple with 
respect to the system of positive roots  which 7 j induces in 

{c~e ~ (a ,  H)l~z A_ fi}. 

Hence, according to the hypothesis  (6.62), 

n'(w)  - n' (s~, w)  = ~',, (w)  - ,,;, (s~, w).  
t t  In view of the definition of the n~,, this implies 

t !  (6.93) n' (w) - n' (s~,w)= n~, (w)-  n~, (s~,w), 

provided i _<M. Hence 

n(w)-n(s~w) 

= # MB/M]" Z~=~ (n'(u~w)- n'(uisyw)) (by (6.65)) 

= # Mp/M~. Z ~ t  (n'(uiw)- n'(u,s~w)) (by (6.92)) 

= # M t j M  ~ " ~M (n'(u,w)-- n'(s,,uiw)) (U,7 = 7i) 

= # M~/M~. ~M (n;(u~w)--n~,(S,U~W)) (by (6.93)) 

= # M o / M  ~ . ZiM=I (n;~(b!iw)--n;'(UiSeW)) (bli~)~-~i) 

=ne(w)-nr(srw) (by (6.71)). 

This is the desired identity. 
In view of (6.53), (6.63), and (6.91), Lemma (6.30) has been proven. This now 

completes the proofs of the main theorems. 
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w 7. Blattner's Conjecture 

With the help of the results stated in w it becomes a relatively simple matter 
to prove Blattner's conjecture for those linear, semisimple Lie groups, whose 
quotient by a maximal compact subgroup has a Hermitian symmetric structure. 
I begin with some general comments about the conjecture. 

I consider a connected, semisimple Lie group G, with maximal compact 
subgroup K, such that K has the same rank as G. The set of equivalence classes 
of finite dimensional, irreducible K-modules will be denoted by /(. To each 
.je/s one can associate the character Zj. Now let 7r be an irreducible, unitary 
representation of G. It is known that the restriction of ~ to K breaks up discretely, 
with finite multiplicities; moreover, the multiplicity of any given j e / (  is bounded 
by the degree o f j  [7]. I set 

nj(g) = multiplicity of j .  

Each Xj can be viewed as a distribution on K,via integration against Haar measure. 
As follows from the bound on the nj(~), the series 

(7.1) ~ = ~ r  nj(~) Zi 

converges to a distribution on K [-10]. I shall call ~ the K-character of ~z. Harish- 
Chandra has also shown that z~, on K intersected with the regular set in G, is a 
real analytic function. Moreover, on this subset of K, v,, viewed as a function, 
agrees with the global character of ~ [-10]. 

Because of the assumptions on the ranks, K contains a compact Cartan 
subgroup H of G. According to Harish-Chandra's enumeration of the representa- 
tions of the discrete series, corresponding to each admissible 26ib* (cf. (4.11)), 
such that (2, ~)+0 for all ~6 q~ = (b(G, H), there exists a unique tempered, invariant 
eigendistribution Ox on G, whose restriction to H, intersected with the regular 
set in G, is given by 

(7.2) Oxln =(  - X)q(~L~.,~.x,>o(e'/Z-e-'/2)) -~ ~,~w,~.me(w)e wx 

(q =�89 dim G/K;e(w)= sign of w). Moreover, Ox is the character of a discrete series 
representation, and every discrete series character arises in this fashion [13]. In 
terms of 2, one can define a system of positive roots 7ix in q~: 

(7.3) 7tx = {ee~b(G, H)[(2, e)>0}.  

As in w 2, I let ~0 ~ and (b" denote the sets of, respectively, compact and noncompact 
roots in q~. I enumerate the roots in q~" c~ 7~ as/~ . . . . .  /~q. 

(7.4) Blattner's Conjecture. Let rc be a discrete series, representation, with character 
0~, as in (7.2). Then 

v~=E0=< ........ , < ~ ( l - I , ~ v , ( e ' / Z - e - ' / z ) )  - '  

�9 Z ~  w,~,m e(w) exp [w (2 + Z~=~ (n~ + �89 fl,)] 
is the K-character of zt. 

Remark�9 The formula is merely symbolic, in the following sense: formally, 
each summand is defined only on H; however, in view of Weyl's character formula, 
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the summands extend to class functions on all of K, and it is these class functions 
on K which must be summed. 

On the intersection of K with the regular set in G, the K-character which the 
conjecture predicts can be summed explicitly, and it agrees there with 04, as it 
must. This observation originally motivated the conjecture. In a formal sense, 
the conjecture is analogous to Kostant's formula for the multiplicity of a weight 
[-25]. In order to see this, one should consider the partition function Q on ib*, 
which is defined as follows: for each #eiD*, Q(#) is the number of distinct ways 
in which # can be expresses as a sum 

p= n 1 f l l  + n2 fl2 + " " + nq f lq,  

with nonnegative, integral coefficients n~. Since ~f spans a cone in i1", lying 
entirely in a half space, Q(#) is well defined. I set 

1 

the conjecture (7.4) then becomes equivalent to 

(7.4') Blattner's Conjecture. Let #e/D* be a weight for K, which is dominant with 
respect to the system of positive roots cbc n ~a in c# ~, and let n be a discrete series 
representation with character O k. In n]~, the irreducible K-module of highest weight 
# occurs with multiplicity 

Zw~ w~, ,~ ~(w) Q(w(# + p~) - , t  - {(fl, +.-- + flq)). 

The conjecture is usually stated as in (7.4'), although (7.4) seems more suggestive. 
One feature of the conjecture deserves special mention. According to (7.4'), the 
irreducible K-module with highest weight 

fli-pc 

occurs with multiplicity one in nix, and no irreducible consituent of ~l~ has 
highest weight # - f l i ,  l < i < q .  If 2 is "sufficiently nonsingular", this property 
characterizes the discrete series representation n up to infinitesimal equivalence, 
among all irreducible, quasisimple representations of G (cf. Theorem 2 of [36] 
and Theorem II of [22]). It seems likely that the preceding statement holds for 
any nonsingular 2. It would then be a formal analogue of the "theorem of the 
highest weight" for finite dimensional representations. 

The following theorem constitutes the main result of the present section: 

(7.5) Theorem. Blattner's conjecture holds for all connected, semisimple matrix 
groups G, whose quotient by a maximal compact subgroup admits a Hermitian 
symmetric structure. 

The previous status of Blattner's conjecture was already discussed in the 
introduction. In order to apply the results of w to the proof of (7.5), one must 
define K-multiplicities for all of the invariant eigendistributions O(ku, 2) occurring 
in Theorem (4.15). Actually, one can do so even for an arbitrary invariant eigen- 
distribution, but this degree of generality is unnecessary. For the remainder of the 
present section, the phrase "irreducible representation" shall always refer to a 
quasi-simple, irreducible representation on a Hilbert space; two irreducible 
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representations will be identified if they are infinitesimally equivalent. By a virtual 
representation, I shall mean a finite, formal linear combination of irreducible 
representations, with integral coefficients. In the obvious manner, each virtual 
representation of G has a global character and a K-character�9 Because the global 
characters of distinct irreducible representations are linearly independent [7], 
a virtual representation is fully determined by its global character. 

(7.6) Lemma. The invariant eigendistributions O(7J, 2) of Theorem(4.15) are 
characters of virtual representations. 

Proof Every system of positive roots 7 ~ can be connected to a 7J0 with the 
property (3.1), by means of a chain %, ~ . . . .  ,7s,,= ~ u, such that each ~+i  is 
obtained from ~ by reflection about a simple, noncompact root. It therefore 
suffices to show that the 0(7% 2) of Theorem (3.11), as well as the induced invariant 
eigendistributions O of (4.15c), are characters of virtual representations. The 
character of a quasi-simple, but not necessarily irreducible, representation on a 
Hitbert space is also the character of a virtual representation, namely of the sum 
of the irreducible quotients in a composition series. By construction, the O(7', 2) 
of Theorem (3.11) are characters of quasi-simple representations, which can be 
realized, up to infinitesimal equivalence, on a Hilbert space [9, 16]. If one induces 
an irreducible representation from a parabolic subgroup, one obtains a quasi- 
simple representation. Hence, by induction on the dimension of G, one finds that 
the O's occurring in (4.15 c) are characters of virtual representations. This completes 
the proof. 

In view of the lemma, it makes sense to talk of the K-multiplicities for each 
of the O(~,  2). In the obvious manner, one can extend Blattner's conjecture to 
cover all of the 0 ( 7 , 2 ) .  I shall prove this extended version of the conjecture, 
which then clearly implies Theorem (7.5). Thus let G be a group satisfying the 
hypotheses of Theorem (4.15), 7 ~ a system of positive roots in q~, and 2cib* an 
admissible linear functional, such that condition (,) in (4.15) is satisfied. According 
to the preceding lemma, 0 ( 7 , 2 )  is the character of a virtual representation ~, 
whose K-character I denote by r~. Let ill, ..., flq be the roots in 7 s c~ 4,". 

(7.7) Proposition. Under the hypotheses stated above, 

. . . . . . . .  q< e -  - 1  

�9 Z~w,~ .m e,(w) exp [w(2 + Z~=I (n~ + �89 

The remark below (7.4) also applies to the statement (7.7)�9 The proof of the 
proposition, which proceeds by induction on the dimension of G, depends on two 
lemmas. 

(7.8) Lemma. The statement of Proposition (7.7) holds, provided the system of 
positive roots ~ has the property (3.1). 

Proof When 7 ~ satisfies condition (3.1), the Weyl group W(G, 14) permutes the 
positive, noncompact roots among each other. In this situation, the formula for r~ 
in (7.7) can be rewritten as follows: 

= - - 1 .  e + o . ,  

�9 Zo~ ........ .<~ exp(Z~= , n, fl,) 



On the Characters of the Discrete Series. The Hermitian Symmetric Case 125 

(p,= one half of the sum of the positive, noncompact roots). The product of the 
first two factors is the character of the irreducible K-module V,, with highest weight 

# = 2 - p c + p ,  

(cf. (3.7)), whereas the final factor is the (formal) character of the symmetric algebra 
of p+ (cf. (3.2)). The assertion of the lemma is therefore equivalent to saying that 
the Frech6t G-module F~, which was described in w 3, breaks up under K like the 
irreducible K-module V,, tensored with the symmetric algebra of p+. This fact is 
proven in Harish-Chandra's original construction of the "holomorphic discrete 
series" [9]. I shall briefly sketch the argument. Via the Harish-Chandra embedding, 
G/K can be realized as a bounded domain in p .  Let S be the Shilov boundary 
of G/K in p_, and H2(S) the space of square integrable functions on S, which are 
boundary values of holomorphic functions on G/K. As is shown in [16], Fx is 
infinitesimally equivalent to a representation on the Hilbert space Vu| 
in such a manner that the natural actions of K on the various spaces are preserved. 
The polynomial functions are dense in H2(S). Hence Hz(S) breaks up under the 
action of K in the same way as the algebra of polynomial functions on p .  Since p+ 
and p_ are mutually dual, the polynomial algebra is K-isomorphic to the sym- 
metric algebra of p+. This implies the formula for ~ .  

The next lemma states that Proposition (7.7) is compatible with (4.15 c). To be 
more precise, I consider a particular system of positive roots t/, in 4, = 4~(G, H), 
and a noncompact root fl, which is simple with respect to ~u. I make the following 
inductive hypothesis: Proposition (7.7) is correct for the group M~. An admissible 
2 e i [ *  shall be given, subject to condition (.) of (4.15). In terms of ~u, fl, and )~, 
I define the invariant eigendistribution O, exactly as in (4.15c). According to the 
arguments in the proof of Lemma (7.6), O is the character of a virtual representa- 
tion 7~. Finally, let ill,..., flq be an enumeration of the noncompact roots in ~, 
such that fl = fix- 

(7.9) Lemma. In the situation which was.just described, the K-character qf Tr is 
given by 

. . . . . .  . . . . . . . . . .  - 2 ) )  

�9 ~w~wca,m r,(w) exp [w(2 + E~=~ (n~ + �89 fi~)] ; 

this .formula should be interpreted in the light of the remark below (7.4). 

Proof According to a standard integration formula, for any integrable func- 
tion f on K, 

~rf (k) dk 

= (~ W(G, H))-' ~n ~K I I-L~e ~ c,q,( e~/2 - -  e- ~ 2)(h)lZf(k h k-l)  dk dh 

=(4+ W(G, n ) ) - i  ~n~K{1-[,~,~,(e~.2_e--~ 2)(e-a, 2 _e~,Z)(h)}f(khk-1)dkdh 

(note: W(G, H) is also the Weyl group of H in K); the Haar measures dh and dk 
are normalized to have total mass one. The denominator of Weyl's character 
formula for K, 

1-L ~ ~,~ ~,v( e'j2 - e- '/2), 
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is W(G, H)-alternating. Hence, in (7.9), if the denominator is pulled inside the 
summation over W(G, H) and composed with w, the factor e(w) must be dropped. 
Also, for f e  Coo(K), the function 

h~--~SKf(khk-1)dk 

on H is W(G, H)-symmetric. These observations allow one to rewrite the formula 
for the distribution ~ ,  which appears in the statement of the lemma, as follows: 
for f ~  C ~ (K), 

z , d f )  = ~ = - Oo ~ o  <_ ........ q< o0 SK ~H(1--L~r ~ ~,(1 -- e ~) (h)) 
(7.10) 

-exp(2 + p - ~ , ~ ,  a + Z~= , n, f l , ) ( h ) f ( k h k - ' ) d h d k .  

The invariant eigendistribution q~o on M~, which enters the construction of O, 
is the character of a virtual representation ~o of M~. Since the Cartan involution 
preserves M~, K c~ M~ is maximal compact in M~. I denote the K c~ M~-character 
of ~0 by ao, it is a distribution on K n M~. According to (2.56), the group Ft~ is 
either trivial or of order two and is contained in H. I let d denote the nontrivial 
element of Fp, if there is one; otherwise, I set d = 1. The virtual representation ~0 
can be extended to a virtual representation ~ of M J, by "letting d operate as 
multiplication by ~z(d)". The character of n 1 is then ~ox, as defined in (4.8). Since 
K c~ M~ consists of the union o fK  n M~ and its translate by d, the K c~ MJ-character 
a~ of ~ can be easily computed in terms of ao: 

(7.11) a l ( f ) = � 8 9  Old[r~MO)), f~Coo(Kc~M~);  

here ld denotes left translation by d. The factor �89 insures that K c~ M~ is still 
assigned total Haar measure one. The passage from ~o~ to ~o in (4.9) corresponds to 
inducing the virtual representation ~ from MJ up to M~. By extending the virtual 
representation in the appropriate manner to the parabolic subgroup (4.2), with 
S=  {fl}, and inducing up to G, one obtains the virtual representation n, whose 
character is O. Inducing a representation from the parabolic subgroup (4.2) to G 
and restricting it to K, amounts to first restricting the representation to K, inter- 
sected with the group (4.2), and then inducing it to K. As these remarks imply, 

(7.12) z~(f) = ~K al ( f  o Ad klK ~, M~) dk,  

for every f e  Coo (K). 

The root system ~(M~, o Bp,+) can be naturally identified with 

In ~a, ~ induces the system of positive roots 

It should be recalled that a root ae~ba may be compact with respect to G, and 
noncompact with respect to M~, or vice versa; cf. (2.61). I enumerate the compact 
(relative to M~) roots in ~ as y~,. . . ,  y~, and the noncompact  ones as q~,.. . ,  t/~. 
In the language of Theorem (4.15), the invariant eigendistribution q~o on M~ 
corresponds to ~ and the restriction of 2 to b~, +; this restriction is admissible 
with respect to M~. The induction hypothesis implies an explicit formula for the 
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distribution a 0 on K c~ M~. If one applies the same reasoning which leads to 
(7.10), one finds that 

a0 (g) = Zo  _-< . . . . . . . . . . .  ~ ~ M3 fn~.+ (l-I~=, (1 - e")(b)) 
(7.13) 

"exp ( 2 - � 8 9  Yi+�89 q j + ~ = l  mjq~)(b)g(mbm-1) dbdm, 

for every ge C~(K c~ M~). Here e a +  is viewed as a function on B~, +, by restric- 
tion. 

The triple Yt~, Y-a, Za of (2.7) spans a subalgebra of ge, which is the complexi- 
fication of a copy of ~ I(2, IR) in g. This copy of s I(2, IR) intersects b in 

t is the Lie algebra of a one dimensional  subtorus T c H .  Since b is the direct 
sum of b~, + and t, 

H=B~,+ �9 T. 

Let db and dt be the Haar  measures on B~, + and T, respectively, normalized to 
have total mass one. Then, whether  or not T and B~, + have a trivial intersection, 

(7.14) ~ng(h)dh=~BL+~rg(bt)dtdb, for all ge  C~(H).  

I define 6 = 0  or 6=�89 so that 

~=~,{=,~)> 0(~ ' fl)(fl, fl)-I = 2 6  mod  2 

1 (note: ~ ~ = ~ ,  {~, t~)> o(~, fl) is the inner product  of fl with the half-sum of the positive 
roots, relative to a suitably chosen system of positive roots). Since 2 is admissible, 
the restriction of 2 - 6 / / t o  t exponentiates to a well-defined character  of T. To  
keep the nota t ion simple, I shall refer to this character  simply as e a-a~. As can 
be checked, the generator  d of F e lies in T. Hence, and in view of the definition 
of ffa, 

(7.15) (~(d)= ea-aa(d). 

I now claim that  

(7.16) �89 -~ ~n ea+~"-~)a(t)g(ht) dr, 

for all gE C~ and hEH. 
In order  to verify (7.16), I distinguish the two cases d =  1 and d4: 1. In the first 

case, e a generates T,, the group of characters of T. Also, because of  (7.15), e ~-oa is 
an integral power of e a, so that e a+~"-~)a runs over T,, as n runs over 7/. I f d  fails 
to be the identity, it must be the unique element of order  two in T. In this situation, 
e a is the square of  a generator  of T. In view of (7.15), depending on whether ~z(d)= 1 
or (a(d)= - 1 ,  e a+~"-*)a ranges over all even powers or over all odd powers of a 
generator  of T. In all cases, the identity (7.16) comes down to a simple identity 
about  Four ier  series in one variable. 

I now combine (7.11), (7.12), (7.13), and (7.16). In (7.13), if g is the restriction 
to K c~ M~ of an Ad K-invariant  function, the integration over K ~ M~ becomes 
superfluous. In view of (7.14), the integrations over T and B~. + can be written 
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as a single integration over H. The characters e ~' and e "j of H restrict trivially 
to T, whereas e ~ restricts trivially to B~, +. It should also be remembered that d 
commutes with M~. Hence, for any f e  C| 

Eo . . . . . . . . . . . .  - t l - 
(7.17) 

�9 exp(X-�89 7 ~ + � 8 9  q S + 3 f l + Z } : ,  mstlS+nfl)(h)f( khk 1) dhdk. 

It remains to be shown that Eqs. (7.10) and (7.17) define the same distribution 
z~. I shall reduce this problem to the verification of three statements. First of all, 

(7.18) for every g~ C~(H), the two series 

E ~ :  - ~o Z o  ~ . . . . . . . .  q< ~ Sn exp (E, n, fli)(h) g ( h )  dh 
and 

•o =<,,, . . . . . . . . .  Z~= co Sn exp (n fl + ~ j  m s r/s ) (h) g(h) dh 
converge absolutely. 

In particular, then, the series appearing in (7.10) and (7.17) can be rearranged 
at will. Secondly, 

(7.19) there exists an integer l, such that 

Finally, let Z [/4] be the character ring of H, and M the Z-module of all formal, 
possibly infinite, integral linear combinations of characters of H. In a natural 
manner, M becomes a 77 [/)]-module. Then 

(7.20) in M, one has the identity 

= 1-[~= ~ (1 - e ~') Zo ~ . . . . . . . . . . .  Z~= -- ~ exp (n fl + Z mj rls ). 

Clearly (7.18-7.20) imply the equality of the two distributions defined by Eqs. 
(7.10) and (7.17). 

Both 7 /and  sf 7 j (sp = reflection about fl) are systems of positive roots in O. 
It follows that the number of ways in which any given #cA can be expressed as 
a sum 

!.t--~,inifli, with n~e77 and n2 ... .  ,nq>0,  

is bounded by some polynomial function of It~N. By standard arguments in 
Fourier analysis on a torus, the first of the two series in (7.18) converges absolutely. 
The second series is treated similarly. This verifies (7.18). 

If ~eO has a positive inner product with fl, then so does - sp  c~, and a - s a a  is 
proportional to ft. Consequently, 

1 

is an integral multiple of fl (recall the definition of 30. This fact makes (7.19) 
equivalent to 

(7.21) Z,,~*"~'e ~ c~+ Z~=l ~ i - - ~ = l  qS-Z~,~a,,~,,~)> o a 

is an even integral multiple of ft. 
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In order  to demons t ra te  (7.21), I again consider the various fl-ladders, i.e. the 
var ious maximal  strings 

in q' w {0}. As was pointed out in the p roof  of  (5.30), with the exception of {0, + fl}, 
every fl-ladder lies either wholly inside or  wholly outside of  7'. The  exceptional  
/Lladder {0, +fl} contr ibutes  zero to the sum occurr ing in (7.21). Now let L be a 
//-ladder in 7", of even length. Then L contains none of the 7~ or q~, and the con- 
t r ibut ion of L u ( -  L) to the sum 

is fl or  4/3, depending on whether  L has length two or length four ~7. Since the 
roots in L are compac t  and n o n c o m p a c t  in an al ternat ing fashion, 

Z ~ C n L  O~-- Zc~ecp. c~ L (X 

equals _+fl or + 2 # ,  again depending on whether  L has length two or four. In 
any event, every fl-ladder of  even length accounts  for an even mult iple  of/~ in the 
sum appear ing  in (7.21). If the fl-ladder L c  7 j consists of a single root  ct, then the 
notions of compactness  and noncompac tness  for ~ with respect to G and with 
respect to M~ coincide (cf. (2.61)); also ~Lfl. It follows that  L u ( - L )  does not 
contr ibute  to the sum in (7.21). The  only possible remaining case is that of  a 
/ /- ladder L in 7" of  length three, say 

L={~,~_+B}. 
According  to (2.61), ~ is one of the qj or one of the y~, depending on whether  ct is 
compac t  or not. It is now easy to check that  the contr ibut ion of L u ( -  L) to the 
sum in (7.21) vanishes. This completes  the demons t ra t ion  of (7.21), and thus of  
(7.19). 

The assertion (7.20) still remains to be verified. The Ieft hand side of  the desired 
identity can be formally factored as follows: 

1-L~o, ~,v(1 - -e  ~) 

(7.22) 
= ( Z - <  

Similarly, the right hand 

1-I~: t(1-~')Zo 
(7.23) 

=(Z 
n =  

Z2~ . . . .  Zoo ,2  ...... ~ exp (E, n, fl,) 

side has a formal  factorizat ion 

=< . . . . . . . . . . .  Z~'= - ~ exp (n fl + Z. /mi  qi) 

In both cases, the formal  products  do make  sense, and they can be rearranged at 
will. As the reader can check, this is so because fl is simple for 7", and because all 
of the other  roots which appear  are positive, but  distinct from ft. 

~7 Since G/K is Hermitian symmetric, a fl-ladder of length four cannot occur. However, since the 
Hermitian symmetric structure of G/K is really irrelevant for the proof of Lemma (7.9), I do not want 
to use it at all. 
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Let L t , . . . , L u  be an enumeration of all those /3-ladders which 
make up, ~ -{ f l } .  Rearranging the right hand side of (7.22), one finds 

(7.24) 

Similarly, 

lie in, and 

1-Is= 1 (1 --  e '2~) ~ 0  5- . . . . . . . . . . .  ~-~ff= - o* exp (n fl + ~g mj t/j) 
(7.25) 

In order to establish (7.20), it now suffices to show that 

(7.26) 
= ( Z : = - ~  e " ' ) [L ,~L(1 -  e ~') 1-[% ~L(2~= o ek'), 

for every/Madder  L ~ ~' - {fl}. 
I fL has length one, say L = {a}, then a is one of the y~ or one of the t 5, depending 

on whether ~ is compact or noncompact. In this case, the identity (7.26) holds 
term-by-term. Next, I suppose L has length two, so that L = { a , ~ + f l } ,  or 
L =  {ct, a - f l } ,  for some positive, compact root a. The products on the right hand 
side of (7.6) are then trivial, whereas the left hand side can be rewritten as 

( ~ =  co e "t~) ( ~ = 0  ek (~ +- ~))(1 - e ~) 

= (Z,~= __ ~ e"P)(Z~- o ek')(1 -- e ~) 

Thus, for any L of length two, (7.26) holds. The cases of fl-ladders of lengths three 
and four can be treated analogously. This completes the verification of (7.20). As 
was pointed out already, (7.18-7.20) together imply the lemma. 

According to Lemma (7.8), the statement of Proposition (7.7) is correct 
whenever ~ has the property (3.1). On the other hand, Lemma (7,9) asserts that 
the proposition is compatible with (4_15c). Conclusion: Proposition (7.7), and 
hence Theorem (7.5), have been proven. 

w 8. Explicit Realization of the Discrete Series 

Of the various attempts to give an explicit realization of the discrete series, 
Parthasarathy's construction involving the Dirac operator [32] is probably the 
simplest and most satisfactory. In this section, I shall demonstrate that Blattner's 
conjecture, in the case of any group for which it is known to hold, implies the 
precise version of Parthasarathy's theorem, giving all of the discrete series, not 
just "mos t "  of it, as in [32]. I shall also use this opportunity to show how Partha- 
sarathy's arguments can be simplified, by using some of the ideas of [35, 36]. 

I consider a connected, semisimple Lie group G, containing a maximal compact 
subgroup K, of the same rank as G. It will not be necessary to insist that G is a 
linear group. I shall use the notation of w 2; in particular H denotes a compact 
Cartan subgroup of G, which lies inside K. For the remainder of this section, 
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I fix an admissible (cf. (4.11)) 2eib*,  such that 

(2, ~)40,  for all c~eq~ c 

(q~C=set of compact roots in ~=r One can then choose a system of 
positive roots 7/in r subject to the conditions 

(2, ~)>0  if c~e 7" r~ q~ c 
(8.1) 

(2, ct)>0 if ~e 7" n q'". 

If 2 is nonsingular, i.e. (2, ~)+ 0 for all ~ e r these conditions determine 7' uniquely. 

As in w 3, I set Pc and p, equal to one half the sum of all compact, resp. non- 
compact, roots in 7/, and 

(8.2) p = p c + p  = ~  v, . 

Since 2 is admissible, and since 

2(p, ~)(cr ct) -1 ~Z, 2(pc, ~)(~, ~) l e  ~7 

for all eeq ,  c, the linear functional 

(8.3) ~ '=;~-Pc 

satisfies 2(#, ~)(cr cr ~e2E, for all ~eep c, and 

(8.4) (# ,~)>0 whenever ~eT 'n~P c. 

Consequently, there exists an irreducible representation 

(8.5) ~: 1~" ~ End (Vu), 

whose highest weight, relative to the system of positive roots 7" n g,c, is p. Via ad, 
fr operates on pC. When pC is endowed with the Killing form, this action becomes 
skew-symmetric: 

(8.6) ad: fr ~ ~ o(p~). 

Because K has the same rank as G, pC is even-dimensional. One can thus consider 
the two half-spin modules of _~o(pr which shall be referred to as S+, S . By 
composing the actions of ~o(p r on S+ and S with the homomorphism (8.6), 
one obtains representations 

(8.7) a+" fr --* End (S+) 
cr_ : fr -~ End (S _ ). 

In order to pin down the labelling of S+, S ,  it should be remarked that p, is a 
weight of multiplicity one in S+ |  Hence S+ and S are completely deter- 
mined by requiring that p, be a weight of the fr S+. 

When the half-spin modules of 5o(p r are constructed in terms of the Clifford 
algebra, as for example in [1], one obtains (nontrivial) _~o(pe)-maps 

(8.8) S + | p r  S , S_ | p r  
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which are unique up to constant multiples. It is convenient to denote these map- 
pings as follows: 

(8.9) s |  X e p  r seS+_ ; 

thus c(X), f o r X E p  r is a linear map from S+ to S and from S to S+. If the 
mappings (8.8) are appropriately normalized, 

(8.10) c(X) 2 = - B(X, X) .  1, 

for all X e p  r (B= Killing form). 
As another consequence of the usual constructions of the half-spin modules, 

one finds 

the set of weights of the [e-module S+ (resp. of S ) is {P, - f l l  . . . . .  fit}, 
(8.11) with fll . . . . .  fl~ ranging over all l-tuples of distinct, positive, noncompact 

roots, and with I even (resp. I odd). 

In particular, all weights of V, @ S+ and of V, | S lift to characters of the torus H. 
Consequently, 

(8.12) z |  and z@a lift to representations of K. 

To keep the notation simple, I shall refer to the resulting representations of K by 
the same symbols. 

Like any finite-dimensional K-module, the K-modules V,| and V , |  
associate homogeneous vector bundles ~ |  and Y/ft,| ~ to the principal 
bundle 

K ~ G  ~ G / K .  

I let p denote the projection G--, G/K, and for each open set U c G/K, I set 
Fv(...)=space of C ~ sections of ... over U. One then obtains a canonical iso- 
morphism 

(8.13) Fv(~@,~+)~-{FeC~176174 V,| ] r |174  for all k~K} 

(r(k)=right translation by k). Via infinitesimal right translation, the Lie algebra 
gr operates on C~(G), and more generally, on the space of C ~ functions on any 
open subset of G. For X ~ gr r(X) shall denote infinitesimal right translation by X. 
Now let {Xi] 1 <= i<=2q} be a basis of pc, which is orthonormal with respect to the 
Killing form of gr The operator 

(8.14) ~,,r(X,)| 1 | C~(p-~(u))@ V~ | S• ~ C~176174 V , |  

is clearly independent of the particular choice of the basis {Xi}. Moreover, as can 
be verified by a simple direct computation, it maps the subspace of r | z | a• (K)- 
invariant elements to the subspace of r |  z | a~_ (K)-invariants. Thus, composing 
the operators (8.14) with the isomorphism (8.13), one obtains homogeneous, first 
order differential operators 

(8.15) D_+ : F.(~//~u | 5P+)--* F. (~Uu | 5P:,~). 

These are the Dirac operators. 
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The fibres of ~,, | J+ and of ~,, @ Y at the identity coset can be naturally 
identified with V u | S+ and V u | S , respectively. Similarly, the tangent space 
of G/K at the identity coset is canonically isomorphic to p. The Killing form in- 
duces an isomorphism between p and its dual space; thus the cotangent space of 
G/K at the identity coset also becomes isomorphic to p. When these identifications 
are made, the symbol at the identity coset of D+, respectively D , evaluated on 
an X ~ p, becomes 

1 |  V, QS+-~V, |  

Because the Killing form is positive definite on p, and in view of(8.10), this mapping 
is injective whenever X e p is nonzero. The injectivity, coupled with the homogene- 
ous nature of D+ and D ,  implies that the Dirac operators are elliptic. 

As irreducible Spin(p)-modules, S+ and S_ carry essentially unique Hermitian 
structures, such that the action of Spin(p) becomes unitary. With proper normal- 
ization of the inner products on S+, 

(8.16) - c (X)  is the adjoint of c(X), 

for any X ~ p~ (.~ = complex conjugate of X, relative to the real form g ~ g~). Also, 
V u has an essentially unique inner product, which makes the action of fr skew- 
Hermitian. The resulting K-invariant inner products on V~ | S+ determine homo- 
geneous, Hermitian structures on the vector bundles ~' |177 With respect to 
these Hermitian structures, 

(8.17) D is the formal adjoint o lD+,  and vice versa, 

as follows from (8.16). Now let L2(~/~ | Y• be the Hilbert spaces of LZ-sections of 
U, | 5P+. By translation, G acts on these spaces unitarily. Because of the ellipticity 
and the homogeneity of the Dirac operations, 

Ha,+ = L2(~ | 5~+)n Ker {D+ : F(Uu | 5f+) ~ F('//~ | 5f__)}, 
(8.18) 

Ha, _ = L2(7/u | ~5 p ) ~ Ker {D_ : F('//~ | ~_) --, F(7/~ | 5P+ )} 

are G-invariant Hilbert subspaces of L2(y/~ | 5P_+). Here, as always in this section, 
2 and/ ,  are related by (8.3). 

(8.19) Lemma (Parthasarathy). Under the isomorphisms (8.13), the operators 
D+ D_ and D D+ can be identified with 

-r((2)@ 1 @ 1 + (2+p ,  2 - p ) -  1 

(~ = Casimir operator of G). 

This is proposition (3.1) of [32]. The proof comes down to the computation 
of the square of the operator (8.14). The basic algebraic fact is the identity 

~ ( r )=�88 y,,,~ B( r, [X,, Xj]) e(X,)c(Xj), 

which holds for any Yef r and which is stated as Lemma 2.1 of [32]. 

In complete analogy to (8.13), there are natural isomorphisms 

(8.20) Lz(~,|177174 Vu|177 for all k6K}. 
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These isomorphisms provide embeddings of Ha, + in LZ(G)|174 and of 
H~,_ inL2(G)QVu@S : 

(8.21) H~,+~-~{F~L2(G)|174 is r |174177 

If a section of ~ | Y+ is annihilated by D+, it must certainly lie in the kernel of 
D_ D+ ; similarly H~, _ is contained in the kernel of D+ D . Hence, and because 
of (8.19), on the right hand side of (8.21), L2(G) can be replaced by the 0-+P, 2 - p ) -  
eigenspace of O, acting on L2(G). 

According to Harish-Chandra's work on the Plancherel formula [15], the 
set of classes in the dual (~, outside of the discrete series, on which the Casimir 
operator f2 acts as multiplication by any particular constant, has Plancherel 
measure zero. By (~d, I shall denote the discrete series, and by (~a(2), the subset 
consisting of those i~(~a whose infinitesimal character assumes the value 
(2+p,  2 - p )  on O. For any iet~d, I choose a particular representation ni on a 
Hilbert space Hi, which realizes the class i. Let n* be the contragredient represen- 
tation, on the dual space H*. To keep the notation simple, I shall refer to the com- 
pleted tensor product of Hi and H* as Hi | H*. When the natural Hilbert space 
structure of this tensor product is suitably renormalized, 

@i~e~HiQH* 
becomes the contribution of the discrete series to the Plancherel decomposition 
of L2(G), and 

@ i~8a(,t)Hi @ H* 

becomes isomorphic to the (2 + p, 2 -  p)-eigenspace of O on LZ(G). In this manner, 
(8.21) leads to injections 

(8.22) H ~, + ~-~(~)i ~ a, (~) Hi | (H* | V u | S + )K, 

with (H* | V~ | S _+ )K = space of K-invariants in H* | V u | S_+. Via the injection 
(8.22), the action of G on Ha, • corresponds to the direct sum over i of hi, tensored 
with the trivial action on (H* | Vu|177 K. 

Using (8.17), one can actually show that (8.22) is an isomorphism. When 
Blattner's conjecture is available for all discrete series representations in (~a(2), 
by means of this isomorphism, it is possible to identify H~, + and H~,_ directly; 
the argument comes down to a slight variant of the proof of Proposition (8.34) 
below. Instead of using this approach, I shall sketch an alternating sum argument, 
which is similar in spirit to Parthasarathy's argument, and which gives some 
information even if Blattner's conjecture is not known. 

As follows from Harish-Chandra's enumeration of the discrete series represen- 
tations [13], (~n(2) is a finite set. Moreover, because V, | S• are finite-dimensional 
K-modules, 

dim (H* | V, | S• oe, for every ieGa. 

In view of (8.22), these two remarks imply: 

(8.23) Hx, + and Hx,_ are finite direct sums of discrete series representations, 
each occurring with finite multiplicity. 

Consequently, both HA, + and HA,_ have well-defined characters. 
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Let H* be the subspace of K-finite vectors in the irreducible, unitary G- ~, oo 

module H*. Every ve i l*  ~o is then an analytic vector. When Hi | H* is embedded 
in L2(G) in the usual manner, every element of H i | H* ~o maps to a real-analytic, 
and hence C ~~ function. Under the resulting injection 

Hi | H*~--~ L2(G)c~ C~ 

the action of any given X~9 r considered as a vector field by infinitesimal right 
translation, corresponds to the action of 1 | n*(X) on Hi @ H* ~,:. Since V. @ S• 
are finite-dimensional K-modules, 

(H* | V. | S• g =(H* co | G | S+) K" 

In view of the preceding remarks, (8.22) and the description of the Dirac operators 
in terms of the operators (8.t4) lead to isomorphisms 

H,, • | Ker {~;  7r*(X;)| 1 | c(Xi): 

(H*,,~, | V, | S• | V,| S~)~}. 

The two linear transformations 

~ ;  ~* (X~) | t | c(Xj): (H* ,~, | V, | S • )K --, (H* ~ | V, | S ~)~, 

corresponding to the two possible choices of sign, are adjoint to each other 
(cf. (8.16); also, gr acts on H~',,~ in a skew-Hermitian manner). The kernel of one 
is therefore isomorphic to the cokernel of the other. Consequently, the difference 
of the dimensions of the kernels of the two linear transformations equals the 
difference of the dimensions of the two finite-dimensional vector spaces in question. 
This proves: 

multiplicity of i in Hx, + - multiplicity of i in Hx, 
(8.24) 

=dim(H*i ,~ |  V,| * ~, | V~, | S--) K, 

for every ie(~d(2). 
The next lemma makes it possible to read off this difference of dimensions from 

Harish-Chandra's character formula. For the pupose of stating the lemma, I 
consider an irreducible unitary representation ~ of G, By z~, I shall denote the 
K-character of ~, i.e. the distribution 

r~: f~-~ trace ~Kf(k)rc(k)dk, feC~(K). 

Equivalently, z~ is the sum, in the sense of distributions, of the characters of the 
K-irreducible constituents of 7r, each taken with the appropriate multiplicity. 
In a more or less obvious manner, ~ can be pulled back to any finite covering of K. 
The infinitesimal representations a+ and o_ of 1 on S+ and S determine global 
representations of some finite covering of K. On this covering, 

(8.25) trace a+ - trace a 

is then a well-defined, smooth class function. The product of r , ,  or rather of its 
pullback to the appropriate finite covering of K, with the function (8.25), can thus 
be defined; it is a distribution. 
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(8.26) Lemma. The product z~(trace a+ -trace a )  is actually a function. 

Proof Let H be the representation space of n, and Ho~ the subspace of K-finite 
vectors. As before, I choose an orthonormal basis {Xi} of pc. The operators 

(8.27) d+ = ~i g(Xi) | c(Xi): H~o | S+ -~ H~ | ST 

do not depend on the particular choice of the basis {Xi}, they commute with the 
actions of fr via n |  and they are mutually adjoint, relative to the natural 
structures of Ho~ | S+ as pre-Hilbert spaces. By a computation, which is formally 
identical to the proof of Lemma (8.19), one finds that 

(8.28) d d+ = (n | a+)(OK)- n(O) | 1 - [(p, p ) -  (Pc, Pc)]" 1 

(Q= Casimir operator of G, OK = Casimir operator of K); d+ d is given by the 
analogous formula. Since Hoo is the algebraic direct sum of irreducible re-modules, 
each occurring with finite multiplicity, the tensor product Ho~ | S+ must also 
have this property. In particular, for a suitable algebraic basis of H~ | S+, d d+ 
becomes diagonal, with eigenvalues tending to + m. The kernel of d+ is therefore 
finite-dimensional, as is the kernel of d_,  and thus also the cokernet of d+. Be- 
cause d+ commutes with the action of re, the kernel and the cokernel of d+ are 
finite-dimensional re-module; I shall denote their characters by Z+ and Z - 
For purely formal reasons, 

z~ (trace a+ - trace a__) = ~+ - ~_, 
which proves the lemma. 

In order to compute the integer appearing in (8.24), I consider a particular 
class ie(~n(2), whose K-character shall be denoted by zi. I set Z, = character of 
the K-module V,. Then 

dim (H* o~ | V, | S+ )K = dim (Hi, o~ | Vu* | S* )K = dim HomK(V, | S+, Hi, 0o) 

= zi (~:." trace a*)  

(2u=complex conjugate of X.)- Subtracting the analogous identity for the di- 
l l* mension of ( i. o~ | V. | S_ )~, one finds 

dim H* oo H* ~ V u | S_ )*: (trace a* - trace ( ~, | 1 7 4  i, | =zi(2." a_*)). 

As follows from (8.11), 

(8.29) (trace a+ - trace a_)[H = l--[~.~ ~- (e ~/2 -- e -~/2); 

strictly speaking, both quantities may be well-defined only on a suitable finite 
covering of H. In any event, the difference of the characters of S+ and S is real 
or purely imaginary, depending on whether there is an even or an odd number of 
positive, noncompact roots. Thus 

trace a* - trace a* = ( - 1)q (trace a + - trace a ), 

with q=�89 dim~G/K, and hence 

dim ( ~,oo |  V. | S + )r _ dim (H* ~ | V. | S _ )K 
(8.30) 

= ( -  1)q~i((trace a+ - t r a c e  a ) ~.). 
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Because of Lemma (8.26), the product zi(trace a + - t r a c e  a _) is completely 
determined by its restriction to the intersection of K with the regular set in G. 
According to a theorem of Harish-Chandra [10], on this intersection, ri is a real- 
analytic function, which coincides there with the restriction of the global character 
O; of 7r i. In view of Harish-Chandra's character formula [13], plus the identity 
(8.29), 

(8.31) ( -  1)qOi[K �9 (trace cr+ - t r a c e  a ) 

is, up to sign, the character of an irreducible [e-module 18. As can be deduced 
from the preceding remarks, the integer 

dim (Hi* ~ | V, | S + )K _ dim (H* ~ | V, | S__ )K 

equals one (respectively minus one), if the expression (8.31) agrees with Z, (re- 
spectively, with -Z , ) ,  and it equals zero otherwise. When )~, is written out ex- 
plicitly, in terms of Weyl's character formula, this assertion can be rephrased as 
follows: 

dim (H;* ~ | V~, | S +)K _ dim (H* ~ | V~, | S_)K 

(8.32) = _+ 1 if Oitn= ++(-- 1) q H~,v(e~/Z_e__,/2) 
0 otherwise 

(recall the relationship (8.3) between 2 and/~ !). 

If 2 is nonsingular, let Oa be the discrete series character defined by Harish- 
Chandra in [13]. For any irreducible representation ~ with character Ox,~((2) 
acts as multiplication by (2 + p, 2 - p ) .  Thus Oa is the character of a class in Ga(2). 
At this point, Harish-Chandra's enumeration of the discrete series characters [ 13], 
coupled with (8.24) and (8.32), implies the following statement, which appears 
as theorem 1 in [32]: 

(8.33) Theorem (Parthasarathy). Both Ha. + and Ha, _ are finite direct sums of 
discrete series representations. The character of H~. +, minus the character of Ha, , 
equals 6) a if2 is nonsingular, and it equals zero if2 is singular. 

Thus, as soon as Ha, is known to vanish, for any given nonsingular 2, H~, + 
must be an irreducible, unitary, square-integrable G-module, with character Oa. 
In order to obtain explicit realizations of all of the discrete series representations 
of G, it suffices to show that H~, __ = 0, whenever 2 is nonsingular. 

(8.34) Proposition. Suppose Blattner's conjecture holds, for all classes in Ga()O. 
Then Ha, + =Ha,  _ = 0 / f 2  is singular, and Ha, = 0 / f 2  is nonsingular. 

Remark. In order to prove the proposition, one need not assume the full 
conjecture. Rather, it suffices to know that the actual multiplicities are less than 
or equal to the predicted multiplicities. 

Proof Because of (8.33), even if2 is singular, it suffices to show that Ha. =0.  
If Ha,_ 4:0, there exists some i~(~a(2), such that 

(8.35) (H* | V~, | S_ )~ 4:0. 

t8 Again, the quantity in question may make sense only on a suitable finite covering of K. 
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In Harish-Chandra's notation, the class i has character O?, for some nonsingular i .  
I can and shall pick i subject to the condition 

(8.36) q~cc~=q~cc~q j, where q~={eeq~l(e, 1)>0}. 

Since i belongs to (~d(2), (i  +/5, i - ~) = (2 + p, 2 -  p), or equivalently, 

(8.37) (i, i)  = (2, 2). 

In a tensor product of two irreducible representations of t~ ~, the highest weight of 
any irreducible subspace can be expressed as the sum of the highest weight of the 
first factor and some weight of the second factor. For every irreducible constituent 
of V, | S_,  the highest weight, relative to the system of positive roots q~cc~ 7 ~, 
is therefore of the form 

(8.38) # + P , - h  . . . . .  7,, Tie 4~" c~ ~b 

(/5, = one half of the sum of the roots in q~" n kg). 

According to Blattner's conjecture, the highest weight of any given irreducible 
[<submodule of Hi can be written as 

(8.39) w(i+~,+fl l  +...+fl~)-pc, fliecb"n ~, weW(K,H).  

Because of (8.35), some irreducible summand of V, | S_ does occur in H~. Hence, 
for suitable choices of the/3i, ~,j, and w, the weights (8.38) and (8.39) agree. The 
relationship (8.3) between 2 and/~ now gives the identity 

(8.40) i-]-/~n~-/~1 4-"'"-t- J~s= W-- 1(~ nL JOn-- ~i . . . . .  "~t)- 

Being a highest weight, the weight (8.38) must be dominant with respect to ~ n 4) ~, 
as is Pc- Thus 2 + / 5 , -  h . . . . .  7t is dominant. For every weight v which is dominant 
with respect to ~ n q~, and for every we W(K, H), v -  w ~ v can be expressed as a 
sum of positive, compact roots. Hence there exist roots c q e ~ n  ~u, such that 

(8.41) w- -~(2+P, -  7~ . . . . .  7 t ) = 2 + ~ , - h  . . . . .  y t - ~  . . . . .  ~,. 

Putting together (8.40) with (8.41), one obtains an identity 

(8.42) 2 = i + tt; 

here 1/is a sum of positive roots, relative to ~. In particular, 

(8.43) (i, q) >0 .  

In view of (8.37), one finds i - -2 ,  q~= 7 ~, t=0 .  But then (8.38) occurs as a highest 
weight in V,@S+, not V , @ S .  Contradiction! 

For the sake of completeness, I shall briefly discuss Parthasarathy's vanishing 
theorem (Theorem 2 of [32]). By a slight modification of Parthasarathy's argument, 
it is possible to avoid the assumption that G is a linear group, which was made in 
[32]. 

(8.44) Proposition. (Parthasarathy). Suppose 2 satisfies the conditions ( 2 - p ,  ~)>0, 
for all c~e ~ c n  7 ~, and ( 2 - p ,  c~)>Ofor all ~ecI)"c~ ~P. Then H~,_ =0.  
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Proof by contradiction. As in the proof of (8.34), if H~, =t=0, there exists some 
ie(~a(2), such that 

(8.45) ~,.*| v, | s )"4=0. 

By assumption, 2 - p  is dominant;  I let V x p be an irreducible 1F-module with 
highest weight 2 - p .  Since an irreducible summand of S+ has highest weight p,,  
and since 2 - p  + p, = p, there is a tr injection 

(8.46) V , |  ~ V  a p | 1 7 4  . 

It will be necessary to have a description of the highest weights, relative to the 
system of positive roots q~Cn 7 j, which occur in S+ |  . For this purpose, I 
enumerate those wEW(g e, b e) which preserve 4~cn 7 ~ as w,, ..., wu: 

(8.47) {wl . . . .  , wu} = {we W(g e, br c n ~P)= 4) c n ~}. 

The set (8.47) is a complete set of representatives for the coset space 

W(K, H ) \  W(g r be). 

By standard arguments, one thus finds 

(trace a+ - trace a )In = f l / / e r  ep/2 - -  e ///2) 

(8.48) =(1-L~.~,.r ,(1-Le~(ea/2_e ~/2)) 
= ( [ - [ ~ q , ~ ( e ~ / 2 _ e  ~/2)) i (~2~w~ w ,.q{r, ~)e)~(w)eWV ) 

= 2 5 ,  e(wJ){(1-L~*~( e~/2 - e "/2))-' (Ew~ w(K, me(w) e~w~ o)}. 

In the difference trace a + - t r a c e  a_ ,  there can be no cancellation. Indeed, the 
It-modules S+ and S have no weights in common. This is implied by (8.11), 
plus the following observation: if some aE 4)" is expressed as a linear combination 
of simple roots, the sum of the coefficients of the noncompact simple roots must 
be odd. For I < j < N ,  wjp is dominant with respect to 4~Cn ~u and nonsingular. 
Hence the term in curly parentheses appearing in (8.48) is the character of an irre- 
ducible ~r with highest weight w j p - p c .  Thus: 

(8.49) every tO-irreducible summand of S+ (respectively, of S_) has highest 
weight w ; p - p c ,  with 1 < j <  N and ~,(w~)= + 1 (respectively, e(w;)= -1 ) .  

The preceding statement and the argument leading up to it appear as Lemma 2.2 
in [32]. 

Because of (8.45) and (8.46), one can find an irreducible [C-module V~,, with 
highest weight v, such that 

(8.50) (H* | Vv | S + )K + 0, and (V,* | V~ ~, | S )K =i = 0. 

I now consider the positive semidefinite operator 

d d + : H * , , |  ~H.* |  1, 1, c o  , 

which was constructed in the proof of Lemma (8.26), with ~* playing the role of ~. 
Because of (8.50), V* can be [r embedded in H* ~ | S+. Let v be 
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a nonzero vector in the image. Then 

~* | a+ ((2K) v =(v+2pc ,  v)v. 

Since is(~e(2), 7t*(O) acts as multiplication by (2+p, 2 -p ) .  Applying d d+ to 
v, taking into account the identity (8.28), as well as the fact that d d+ >0, one 
arrives at the inequality 

(8.51) (2, 2)<(v+ Pc, v+ Pc)- 

According to (8.49) and (8.50), for some j, 1 < j  < N, with e(wj) = - 1, there exists 
a te-equivariant injection 

(Vwj 0_ pc is an irreducible re-module with highest weight wjp-Pc). On the tensor 
product of two irreducible re-modules, with highest weight #~ and/~2, the Casimir 
operator acts with eigenvalues not exceeding [t#a + ~tz + Poll z_  I] P~[I 2; this assertion 
follows, for example, from lemma 5.8 of [26]. Hence 

(8.52) (v + p~, v + p~)<(2- p + wjp, 2 -  p + wip ). 

In order to complete the proof, it suffices to derive a contradiction from the 
inequalities (8.51) and (8.52). Putting the inequalities together, one finds 

O<=(2-p+ w~p,2-p  + wjp)-(2 ,2)  

=(p - wjp, p - w j p ) -  2(2, p -  wjp) 

= -2(p ,  wjp)+2(p ,p) -2(2 ,  p - w j p ) ,  

so that ( 2 -  p, p -  wjp)< O. Since wj preserves the set ~b~c~ ~u, and since wj 4: l(~(wj) 
=- - 1 !), p - wjp is a nonempty sum of positive, noncompact roots. As was assumed, 
every such root has a strictly positive inner product with 2 -  p. But then the inner 
product of 2 - p  and p - w j p  must be strictly positive. Contradiction! 

w 9. Some Postscripts 

Most of the arguments of w 5 and w 6 work for an arbitrary semisimple matrix 
group G with a non-empty discrete series. The Hermitian symmetric structure of 
G/K was used mainly in order to provide the basic repertoire of characters of the 
"holomorphic discrete series"; the other discrete series characters were then built 
up from these. In this final section, I shall suggest that there always exists a di- 
stinguished class of discrete series representations, which can take the place of the 
"holomorphic discrete series" when the latter fails to exist. I shall also show, 
using results of Harish-Chandra, that the relationship between the various dis- 
crete series characters, which is implicit in (4.15c), holds whether or not G/K 
carries a Hermitian symmetric structure. 

Let G be a connected, noncompact, simple matrix group, with a compact 
Cartan subgroup H. According to Borel-de Siebenthal [3], one can pick a system 
of positive roots in ~b, such that 

(9.1) there exists a unique noncompact, simple root, and its multiplicity in the 
highest root is at most two. 



On the Characters of the Discrete Series. The Hermitian Symmetric Case 141 

The case of multiplicity one occurs precisely when G/K admits a Hermitian- 
symmetric structure. Now suppose that G is semisimple, rather than necessarily 
simple. A system of positive roots 7. in q~ will be called special if its restriction to 
every noncompact simple factor has the property (9.1). I choose one such special 
positive root system t/,, and I consider the discrete series characters O~ param- 
etrized by those 2's which are dominant with respect to 7'. For  a number of reasons, 
I believe that these discrete series characters can be expressed by a fairly simple, 
explicit, global formula. The formula presumably can be conjectured if it is worked 
out for some low dimensional groups, such as S0(3, 4) and S0(4, 4), which present 
essentially new features. A sufficiently explicit conjecture could then be verified, 
by checking that the formula in question satisfies the differential equations of an 
invariant eigendistribution (cf. Theorem 1 of [19]). 

Once the invariant eigendistributions O(7., 2), corresponding to every special 
system of positive roots 7', are known explicitly, it will be possible to use them to 
construct all of the discrete series characters, for every semisimple matrix group. 
One would have to show that these particular invariant eigendistributions have the 
properties ~9 described by the statements (4.21), (4.22), (6.13), and (6.30). From this 
point on, the arguments ofw 5 and w 6 apply, with only minor changes 2o. 

The proof of Blattner's conjecture in w 7 may not generalize as easily. How- 
ever, there are some suggestive facts which should be mentioned in this connection. 
Again let 7* be a special system of positive roots, and let n~ be a discrete series 
representation, with character O~, such that 2 is dominant with respect to 7*. 
According to Proposition l of [36], Blattner's conjecture holds for n~, provided 
2 is "sufficiently nonsingular ' ,  i.e. provided (2, c0>c whenever c~e ~, for a certain 
positive constant c. It is at least conceivable that the methods of [34] and [36] 
can be pushed, to give Blattner's conjecture for all discrete series representations 
corresponding to every special system of positive roots. Unfortunately, to make 
the arguments of w 7 go through, one would need Blattner's conjecture for all 
invariant eigendistributions O(7.,2) corresponding to a special positive root 
system 7., and not just for those which arise as discrete series characters. 

As a final observation, I shall show that the relationship between the various 
discrete series characters, which is implicit in statement (4.15c), follows from the 
arguments ofw 5 and w 6, even if G/K fails to have a Hermitian symmetric structure. 
Let 7 'cqJ  be a particular system of positive roots. As a consequence of Harish- 
Chandra's construction of the discrete series characters [12], the characters O~, 
with 2 ranging over the set 

(9.2) {2eib*12 is admissible, and (2, c0>0 for all ~e ~},  

satisfy the statement of Lemma(6.13). Hence, in the resulting description of O~., 
one can let 2 wander over the larger set 

(9.3) {2 ~ i b* 12 is admissible, and (2, c0 > 0 for all ~ e q~c n 7*} ; 

in this fashion one obtains a family of invariant eigendistributions O(~,2) ,  
parameterized by the set (9.3), such that O(7., 2 )=Oa whenever 2 lies in the set 

19 AS they must, in view of Harish-Chandra's results on the discrete series. 
20 Cf. the discussion following Theorem (9.4) below. 
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(9.2), and such that the O(71, 2) depend coherently on 2, in the sense of Lemma 
(6.13). The preceding remarks of course apply to any system of positive roots 7 j 
in O. 

I now consider a system of positive roots 7 j C  O, and a noncompact root /~ 
which is simple for ~P. Let sac W(g r b ~) be the reflection about/?. For every 2 
in the set (9.3), the definition of the induced invariant eigendistribution O given 
in (4.15c) makes sense, whether or not G/K admits a Hermitian symmetric struc- 
ture. 

(9.4) Theorem. Under the hypotheses stated above, 

o(7,, 2)+ O(s~ q', 2)= o.  

Proof. In view of the definition of O, the difference O - O ( ~ , 2 )  must be an 
invariant eigendistribution. On any Cartan subgroup of G, the formula for this 
difference depends coherently on 2; this follows from the proof of Lemma(6.13). 
It therefore suffices to show that 

(9.5) O-O(7s ,  2)=O~, provided (c~,2)>0 if c~st~TJ. 

Since O was induced from a proper parabolic subgroup, it vanishes on the elliptic 
set. On the other hand, if (c~, 2)>0 for c~esp 7 s, - O x  and O(7/, 2) have the same 
restriction to the elliptic set. Hence (9.5) becomes equivalent to 

(9.6) 0 - 0 ( 7  j, 2) is tempered, provided (~, 2)>0 if c~esr tp. 

Like any invariant eigendistribution, O(~,2)  satisfies the statement of Lemma 
(6.30) [11]. From Harish-Chandra's construction of the discrete series characters, 
one can deduce that the Oa, and hence also the O(~u, 2), have the properties 
described by Theorems (4.21) and (4.22). According to Propositions (5.30), (5.69), 
and the proof of Lemma(6.30), O - O ( ~  u, 2) must also have the properties de- 
scribed by Theorems (4.21) and (4.22), as well as by Lemma (6.30). Just as in the 
case of a group G with Hermitian symmetric quotient, an inductive argument 
allows one to assume that G has a split Cartan subgroup A, and that O -  O(~u, 2) 
satisfies the temperedness property, except possibly on the identity component 
A ~ provided (2,~)>0 for all c ~ s t ~ .  Up to covering, Sp(n,N), SO(2n, 2n), 
SO(n, n+ 1), E7tv ), Est8), F4t4), and Gzt2) are the only simple groups containing 
both a compact and a split Cartan subgroup. For the classical groups among 
these, the proofs of(6.33) and (6.41) go through essentially unchanged. In the other 
cases, minor modifications are necessary; however, I shall not go into details. 
These considerations imply (9.6), and hence the theorem. 

Added in Proof The derivation of Theroem 2 in [-37] contains two minor errors. The two quantities 
appearing above formula (33) are added incorrectly, and the right hand side of (33) should read 
�89 l )+ �89  l)+sn+t. This change affects the signs which occur in (36) and in Theorem 2. Also, 
the factor 2 ', which was computed in (32), should appear both in (36) and in Theorem 2. 
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