

On Bloch's Conjecture

Yujiro Kawamata

Universität Mannheim, D-6800 Mannheim, Federal Republic of Germany Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo, Japan

In this paper everything is defined over C. Let A be an abelian variety, let X be a closed reduced irreducible subset of A and let $\alpha: X \to A$ be the inclusion. Let T be the space of 1-forms on A. We shall prove the following

Theorem 1. If X is an algebraic variety of general type of dimension n, then there exists a system $\{\omega_1, ..., \omega_{n+1}\}$ in T such that $\{\alpha^*(\omega_1 \wedge ... \wedge \omega_{i-1} \land \omega_{i+1} \land ... \land \omega_{n+1})\}_{i=1,...,n+1}$ are linearly independent.

T. Ochiai proved in [3] that from Theorem 1 we can deduce

Theorem 2 (Bloch's conjecture). Let X be a projective algebraic manifold of dimension n with irregularity >n. Then, any holomorphic curve $f: \mathbb{C} \to X$ is degenerate.

For some related topics see [1] and [2].

1. Proof of Theorem 1. We may assume that $\alpha^* \omega \neq 0$ for every $\omega \in T$. The dual space T^* can be considered as a universal cover of A. Let \overline{X} be the pull back of X in T^* . Put $N = \{\omega \in \bigwedge^n T; \alpha^* \omega = 0\}$. For each $H \in \operatorname{Gr}_{n+1}(T)$, put $d(H) = \dim(\bigwedge^n H \cap N)$. We should prove that $\min d(H) = 0$. Assume the contrary and put $\min_H d(H) = d > 0$.

 $U = \{H; d(H) \leq n\}$ and $U_d = \{H; d(H) = d\}$ are Zariski open dense subsets of $\operatorname{Gr}_{n+1}(T)$. Each $H \in U$ defines a projection $T^* \to T^*/H^{\perp}$ and the image of \overline{X} by this is a divisor $X_H \subset T^*/H^{\perp}$. Let $\{dx_1, \ldots, dx_{n+1}\}$ be a basis of H. We have d(H)-relations among

$$\omega_i = \alpha^* (dx_1 \wedge \ldots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \ldots \wedge dx_{n+1}) \quad \text{for } i = 1, \ldots, n+1.$$

After a suitable base change they are $\omega_1 = \ldots = \omega_{d(H)} = 0$. Since $\omega_{n+1} \neq 0$, $\{x_1, \ldots, x_n\}$ gives a local coordinate system of X_H near a certain smooth point p. The equation of X_H near p is such like $x_{n+1} = F(x_1, \ldots, x_n)$. Then $\frac{\partial F}{\partial x_1} = \ldots$ $= \frac{\partial F}{\partial x_{d(H)}} = 0$. Thus $\alpha^*(dx_{d(H)+1} \wedge \ldots \wedge dx_{n+1}) = 0$, which means that dim $\alpha^*(\wedge^{n-d(H)+1}H) = \binom{n+1}{n-d(H)+1} - 1$, for other relations among (n-d(H) + 1)-forms yield new relations among n-forms. Put I = I(H) $= \langle dx_{d(H)+1}, \ldots, dx_{n+1} \rangle$, where $\langle \rangle$ denotes a linear subspace generated by the elements inside. Put $N_d = \{\omega \in \bigwedge^{n-d+1} T; \alpha^* \omega = 0\}$. Then dim $(\bigwedge^{n-d+1} H \cap N_d)$ =1 for $H \in U_d$. Thus, $I \in \operatorname{Gr}_{n-d-1}(T)$ depends algebraically on $H \in U_d \subset \operatorname{Gr}_{n+1}(T)$. Fix an $H \in U_d$ and I = I(H).

Claim 1. For each $\theta \in T$ there is an element $\theta_H \in T$ such that $\theta - \theta_H \in H$ and $\alpha^* (\bigwedge^{n-d+1} \langle \theta_H, I \rangle) = 0.$

Proof. Let us choose a base $\{\omega_1, ..., \omega_{n+1}\}$ of H such that $I = \langle \omega_1, ..., \omega_{n-d+1} \rangle$. For $t \in \mathbb{C}$ near $0, H_t = \langle \omega_1 + t\theta, \omega_2, ..., \omega_{n+1} \rangle$ defines a 1-parameter family in U_d . Put

$$I_{t} = I(H_{t}) = \left\langle \omega_{1} + t\theta + \sum_{j=1}^{n+1} f_{1j}(t) \omega_{j}', \omega_{2} + \sum_{j=1}^{n+1} f_{2j}(t) \omega_{j}', \dots, \omega_{n-d+1} + \sum_{j=1}^{n+1} f_{n-d+1,j}(t) \omega_{j}' \right\rangle,$$

where $\omega'_j = \omega_1 + t\theta$ (for j=1) or ω_j (for $j \neq 1$). We know that $f_{ij}(t) = tg_{ij}(t)$ for some holomorphic functions g_{ij} for i=1, ..., n-d+1 and j=1, ..., n+1. Compare the coefficients of t in the equation $\alpha^*(\bigwedge^{n-d+1} I_t) = 0$, and we get

$$\alpha^* \left(\theta \wedge \omega_2 \wedge \dots \wedge \omega_{n-d+1} + \sum_{i=1}^{n-d+1} \sum_{j=n-d+2}^{n+1} a_{ij} \omega_j \wedge \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{n-d+1} \right) = 0,$$

where $a_{ij} = \pm g_{ij}(0)$. After a suitable coordinate change of H we get an equation

$$\alpha^* \left(\theta \wedge \omega_2 \wedge \dots \wedge \omega_{n-d+1} + a_{n-d+2} \,\omega_{n-d+2} \wedge \omega_2 \wedge \dots \wedge \omega_{n-d+1} \right) + \sum_{i=1}^{n-d+1} \sum_{j=n-d+3}^{n+1} b_{ij} \omega_j \wedge \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{n-d+1} \right) = 0.$$

Put $\theta' = \theta + a_{n-d+2}\omega_{n-d+2}$. Then we have (*) $\alpha^* \left(\theta' \wedge \omega_2 \wedge \dots \wedge \omega_{n-d+1} + \sum_{i=1}^{n-d+1} \sum_{j=n-d+3}^{n+1} b_{ij}\omega_j \wedge \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{n-d+1} \right)$ =0.

Since $\omega_2 \wedge \ldots \wedge \omega_{n+1} \neq 0$, there is an open dense subset X_{n-d+2} of X on which we can write

$$\alpha^* \omega_1 = \sum_{i=2}^{n+1} f_i(x) \alpha^* \omega_i$$
 and $\alpha^* \theta' = \sum_{i=2}^{n+1} g_i(x) \alpha^* \omega_i$,

where the f_i and the g_i are holomorphic functions on X_{n+d+2} . Since $\alpha^*(\omega_1 \wedge \ldots \wedge \omega_{n-d+1}) = 0$, we have $f_{n-d+2} = \ldots = f_{n+1} = 0$. Therefore, $g_{n-d+2} = 0$. Similarly, for each j $(n-d+2 \le j \le n+1)$, we can find a complex number a_j as

Bloch's Conjecture

above. Put $\theta_H = \theta' + \sum_{j=n-d+2}^{n+1} a_j \omega_j$. Then, we can write on $\bigcap_{j=n-d+2}^{n+1} X_j$, $\alpha^* \theta_H = \sum_{i=2}^{n-d+1} h_i(x) \alpha^* \omega_i$, where the h_i are holomorphic functions. Thus,

$$\alpha^*(\wedge^{n-d+1}\langle\theta_H,I\rangle)=0. \quad \text{Q.E.D}$$

Claim 2. Let L be the subspace of T generated by I and all the θ_H for $\theta \in T$. Then, $\alpha^*(\bigwedge^{n-d+1}L) = 0$.

Proof. We shall show $\alpha^*(\wedge^{n-d-k+1}I \wedge (\theta_1)_H \wedge \ldots \wedge (\theta_k)_H) = 0$ for $k = 1, \ldots, n-d+1$ by induction on k. The case k = 1 was already proved in claim 1. Suppose $k \ge 2$ and that the assertion is proved for k-1. Choose a base $\{\omega_1, \ldots, \omega_{n-d+1}\}$ of I and suppose $\alpha^*(\omega_1 \wedge \ldots \wedge \omega_{n-d-k+1} \wedge (\theta_1)_H \wedge \ldots \wedge (\theta_k)_H) \neq 0$. Then, there is an open dense subset X' of X on which

Then, there is an open dense subset X' of X on which $\{\alpha^*(\omega_1), \ldots, \alpha^*(\omega_{n-d-k+1}), \alpha^*((\theta_1)_H), \ldots, \alpha^*((\theta_k)_H)\}$ gives a part of a base of the sheaf of the 1-forms everywhere, with which we can write down any 1-forms on X' as a linear combination with coefficients of holomorphic functions on X'. Since

$$\alpha^*(\omega_1 \wedge \ldots \wedge \omega_{n-d-k+2} \wedge (\theta_1)_H \wedge \ldots \wedge (\theta_{i-1})_H \wedge (\theta_{i+1})_H \wedge \ldots \wedge (\theta_k)_H) = 0,$$

for $i = 1, \ldots, k$, we have

 $\alpha^{*}(\omega_{n-d-k+2}) = \sum_{i=1}^{n-d-k+1} f_{i}(x) \, \alpha^{*} \, \omega_{i},$

where the f_i are holomorphic functions on X'. Hence, $\alpha^*(\omega_1 \wedge ... \wedge \omega_{n-d-k+2}) = 0$, which is a contradiction. Q.E.D.

We have proved that the image of \bar{X} under the projection $T^* \to T^*/L^{\perp}$ is of dimension smaller than n-d+1. Since the codimension of L in T is not greater than d, this projection gives a fibering of \bar{X} with fibers of linear subspaces of dimension d, i.e., X is not of general type. Q.E.D.

2. As an easy consequence of Theorem 2 we get

Theorem 3. Let X be a closed reduced irreducible subset of an Abelian variety A and let $f: \mathbb{C} \to X$ be a holomorphic curve. Then the image $f(\mathbb{C})$ is contained in a translation of an abelian subvariety of A.

In connection with this we have

Theorem 4. Let X and A be as in Theorem 3. Let $Y = \bigcup \{Z; Z \text{ is a translation of an abelian subvariety of A and <math>Z \subset X\}$. If X is of general type, then Y is a closed algebraic subset of X such that $Y \neq X$.

Proof. Let \overline{A} be the universal cover of A and let \overline{X} be the pull back of X in \overline{A} . Let $M = \operatorname{Gr}_1(\overline{A}) = \mathbf{P}((\overline{A})^*)$ and $p; \overline{A} - \{0\} \to M$ be the canonical projection. We construct an analytic subset \overline{Y} of $\overline{A} \times M$ as follows: Let U be an arbitrary small open subset of M. For each section $s: U \to \overline{A}$ of p we define $s(\overline{X}) = \bigcup_{x \in U} (\overline{X})$ +s(x), x), which is an analytic subset of $\overline{A} \times U$. Put $\overline{Y}_U = \bigcap_s s(\overline{X})$. Then the \overline{Y}_U are compatible with the restrictions of open subsets and glue together to give \overline{Y} . For each $x \in M$ the fiber \overline{Y}_x is the sum of the lines \overline{C} contained in \overline{X} whose directions are x. Thus, the image of \overline{Y} by the projection to A is just Y. Let C be the image of \overline{C} in A. Then the algebraic closure of C is a translation of an abelian subvariety B of A. Let Y_x be the image of \overline{Y}_x in A. The set $N = \{x \in M; Y_x \neq \emptyset\}$ is an analytic subset of M, and hence an algebraic subset by GAGA. For each $x \in N$, Y_x is an analytic fiber bundle with a fiber $B = B_x$. Let D_x be the base space. Since $Y_x \neq X$, we have dim $B_x + \dim D_x < \dim X$. We know that the function dim B_x on N is lower semi-continuous. Let us stratify N as follows: N $= \sum_{i \in I} N_i$, where the N_i are irreducible locally closed algebraic subsets of M and on each N_i the function dim B_x is constant and I is a finite set. For $x, y \in N_i$, we have $B_x = B_y$, and hence $D_x = D_y$. Therefore $Y_x = Y_y$. Put $Y_i = Y_x$ for an $x \in Y$. Then $Y = \bigcup_i Y_i$. Q.E.D.

References

- 1. Noguchi, J.: Some surfaces of hyperbolic type and holomorphic curves. Hiroshima Math. J., in press (1980)
- 2. Noguchi, J.: Holomorphic curves in algebraic varieties. Hiroshima Math. J., in press (1979)
- 3. Ochiai, T.: On holomorphic curves in algebraic varieties with ample irregularity, Invent. Math., 43, 83-96 (1977)

Received April 12, 1979