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w 1. Introduction 
a) The Motivating Problem 

Let K be a number field. For  every prime number p one may define a 
tower of abelian extensions of K, called the cyclotomic F-extension of K 
associated to p: 

o o  

K = K o c K I  C''" c K n ~ ' " c K ~ = L =  U Kn 
n = O  

(cf. w 1 (c)) such that Gal (KJK) is cyclic of order pn. Set F = GaI(L/K). 

Let ,4 be an abelian variety over K which has good, ordinary reduction 
at all primes dividing p. The question motivating the theory presented in 
this paper is the following: Is the group of rational points A(L) finitely 
generated ? 

The classical Mordell-Weil theorem guarantees that A(Kn) is finitely 
generated for each n, but gives no indication of what to expect when one 
considers questions concerning asymptotic growth of the group of 
rational points as one varies the number field. 

Here is some reason for hoping that our question has an affirmative 
answer: Suppose that ,4 is the Jacobian of a curve C. Then ,4(L) is closely 
related to the N6ron-Severi group of the minimal regular arithmetic 
surface which is a model for C over the ring of integers in L. Consequently, 
Iwasawa's magnificent analogy between L and the rational function 
field of a curve over the:algebraic closure of a finite field might lead one 
to expect that A(L) has a structure similar to that of the N6ron-Severi 
group of a surface over the algebraic closure of a finite field; but the 
N6ron-Severi group of such a surface is finitely generated. 

I have found that the axiomatics of the above problem can be kept 
more clearly in focus if one works more generally with an abelian variety 
,4/K and any F-extension L/K satisfying the hypotheses of (6.1) below. 
We call such a pair (L/K, A) admissible. 

Much of the information expressing the asymptotic growth of A(Kn) 
and the p-primary component of the Shafarevitch-Tate group of ,4, 
p~///A(K~) is contained in a certain polynomial with p-adic coefficients 
that we define by means of an essential construction made in w This 
polynomial, which depends upon a choice of topological generator ~ F ,  
and which we denote f (L/K, ,4, ~ ; t) or f (L/ K, A; t), we call the charac- 
teristic polynomial of the admissible pair. In the case where L/K is the 
p-adic cyclotomic F-extension, it is reasonable to refer to it as fp(A/K; t), 
the p-adic characteristic polynomial of A/K. 

These polynomials, as defined, could be identically zero. We con- 
jecture that they are never identically zero. Moreover, one can show that 
if`4 is of dimension 1, or of CM-typr if fp (A/K; t) is not identically zero, 
A(L) is finitely generated (w 6). 
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A corollary of one of our main results assures us that f (L /K,  A; t) 
is not identically zero in the case where the two groups 

A(K), poollla(K ) 

are both finite. This answers our question affirmatively in a large number 
of cases. It is rather interesting to note that in the cases where we have 
thereby shown A(L) to be finitely generated, our  proof does not provide 
us with an effectively computable upper bound for the rank of A(L). 

Our theory is modeled after Iwasawa's, and we define f (L /K,  A; t) 
as the characteristic polynomial of a F-module, H=H(L/r,A ~ which we 
construct (6.4) for any admissible pair. 

The F-module HtL/r.a~ is defined cohomologically, and is somewhat 
reminiscent of the classical "Selmer group",  but it does differ from it. 
The structure of the F-module H provides us with information con- 
cerning the asymptotic growth of the Mordel-Weil and Shafarevitch- 
Tate groups, for we establish the sequence of exact sequences: 

(,) 0 -* A(Kn)| ff)p/7Zp --~ U rn ~ p~olIIA(Kn) --~ 0 (n > 0). 

These exist and are exact only modulo finite groups whose orders are 
bounded, independent of n. In the terminology of w 2 (b), they are exact 
sequences mod (~. Here the middle group is the fixed submodule under 
the action of F~ (6.5). 

Here are some consequences of (*): 

(a) The rank of A(L) is less than or equal to the number of zeroes of 
f (L /K,  A; t), counting multiplicities, where t runs through all p"-th roots 
of unity (all n). 

(b) I f  f (L /K ,  A; t) doesn't vanish on any p~-th root of unity, then 
from the classification theorem of Iwasawa, 

logp( # p J / / a  (K,)) = # p" + 2 n + c, 

where 2 is the degree o f f (L /K ,  A; t), It is Iwasawa' s It-invariant associated 
to H, and Icnl is bounded, independent of n. 

For  example, if K = • ,  A is the modular  curve X0( l l )  (w and 
p=5 ,  we find fp(A/Q; t)=p, and obtain that A(L) is in fact, finite, and 
modulo cg, the 5-primary component  of / / /a(K,)  is a vector space over IF 5 
of dimension 5 ". 

One can establish a functional equation for fp(A/K; t) of the type 
enjoyed by the classical L-series of A/K (w 7). The p-adic characteristic 
polynomial of A/K behaves as if it were a p-adic polynomial analogue 
of the classical L-series of A/K, and of Iwasawa's characteristic poly- 
nomials. Indeed, we hope that a close study of these characteristic 

13" 
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polynomials may provide some new perspective on the classical theory of 
cyclotomic fields and irregular primes. 

There are some interesting divergences from the classical theory and 
one of them is worth describing in detail: 

b) The Phenomenon of Anomalous Primes 

As in the work of Iwasawa, it is of some interest to consider the base 
fields K = Q ((p) where (p is a primitive p-th root of 1. Ignore the case 
p = 2. Fix A an elliptic curve defined over Q. Then the module H decom- 
poses into eigenspaces with respect to the action of the group A = 
Gal(K/~).  

All eigenspaces except for the fixed part of A behave like the classical 
theory of irregular primes (w 8(a)). The significant difference occurs 
when we examine the fixed part of A, or equivalently, when we consider 
the base field K -~ Q. If A/Q is an elliptic curve, say that a prime number p 
is anomalous for A if A has good reduction at p, and the trace of the 
Frobenius operator associated to Ap is congruent to 1 mod p. 

For the anomalous primes of A, we find that the F-module H is 
necessarily of infinite order. There is a much more precise result if p is 
odd, A(Q) is trivial, and the p-primary component of /Ha(Q) is also 
trivial. [The Shafarevitch-Tate conjecture would imply that these primes 
are of density �89 ifA has complex multiplication, and of density 1 otherwise.] 
We show that H is trivial (or equivalently, A(L) is finite, and///a(Kn) has 
finite p-primary component, of bounded order independent of n) if and 
only if p is not anomalous for A. If p is anomalous, then H is necessarily 
infinite, and we prove, further, that H is either an irreducible F-module, 
mod c~ or is an extension of one irreducible F-module by another irreduc- 
ible F-module. That is, fp is either irreducible over Zp or a product of 
exactly two irreducibles. 

The set of anomalous primes of an elliptic curves seems to be a rather 
rare set of primes. For  example, if A is the modular curve of level 11 the 
prime p = 5 is the only anomalous prime. However, for any finite set of 
primes, one can construct an elliptic curve with respect to which they 
are all anomalous. Can an elliptic curve possess an infinite number of 
anomalous primes ? 

An interesting example to consider is the family of curves 

A: y2=x3WD 

where D is a rational integer which is neither a square nor a cube in Q(~) 
where r is a primitive 3-rd root of 1. The curve A admits Q(~) as a field of 
complex multiplication, an automorphism of order 3 being given by 

(x, y) ~ (~ x, y). 



Rational Points of Abelian Varieties 187 

If A has good reduction at p, it is well known that these conditions 
are equivalent: 

(i) A has ordinary reduction at p. 

(ii) p -  1 mod 3. 

(iii) p splits in ~(4). 

Suppose that A has ordinary reduction at p. The Frobenius endo- 
morphism IF v then satisfies the equation x 2 - ap x + p = 0. But IFpE Z [4], 
and therefore: aE-4p=-3h 2 with hE7Z.. 

That is, p=(3 h 2-a2)/4. Moreover, if p is anomalous, av= l ,  and 
therefore p belongs to the quadratic progression 

3 h 2 - 1  
q(h)= 4 

Let p range through the primes of the quadratic progression q(h), 
and let 7r, ff denote, indiscriminately, the two solutions of the equation 
x 2 -  x + p = 0 in ~ [4]. Thus, for any p in the quadratic progression q (h), 
we have two decompositions of p in 7/. [4]: 

p=]Fp.Fp, p=lr~. 

After possible relabeling of rc and if, we can write: lFp = cop. rc where cop 
is a sixth root of 1. 

Consequently, p is anomalous if and only if p belongs to the quadratic 
progression q (h), and cop = 1. 

As Serre pointed out to me, Hardy and Littlewood [24] have con- 
jectured that Q (N), the number of primes less than N in the quadratic 
progression q (h) should have the following asymptotic shape: 

Q (N),-~ C ] / ~  as N ~ 
log N 

where C is a constant explicitly given as an infinite product. 

It is also tempting, following the analogue of Kummer's conjecture 
([12], w 20.6), to hope that the primes p belonging to q(h) for which 
cop = 1 represents, asymptotically, a nonzero fraction of the total number 
of primes in q (h) (~- is a natural guess, but one has hardly enough numerical 
evidence). 

We would then be led to conjecture that if A.P.D(N) denotes the 
number of primes less than N which are anomalous for the elliptic curve A, 
there is a positive constant C' such that 

A. P.D (N) ~ C' V ~  as N --* o~ 
log N 
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and in particular: there should exist an infinite number of anomalous 
primes for A. 

Calculation by computing machine shows that for N=I00000, 
Q (N) = 64 and 

A.P.D(N)= 13 for D = - 5  

A.P.D(N)= 11 for D= - 2 .  

The 13 anomalous primes for 7 2 = x 3 - 5  which are less than I00000 

are: 37 3 571 45757 
271 5419 50311 
919 12 097 87211 

1951 23497 
2437 25117. 

From the tables of Birch and Swinnerton-Dyer [7] one finds that 
the curve A: yZ = x 3 _ 5 has only a finite number of rational points over r 
In fact, A(Q) is trivial. Consequently the detailed calculations of w 8(c) 
apply to it. 

One is led to wonder about the "distribution" of zeroes of J~(A/ffL t) 
as p varies through the set of anomalous primes. How often is the non- 
triviality of fp due to the existence of an infinity of rational points of A 
in the p-cyclotomic F-extension? How often due to the unboundedness 
of the Shafaravetch-Tate groups? How often for the F-modules, H = H(p), 
is Iwasawa's ~-invariant nontrivial ? 

c) The Analytic Theory 
What is presented in this paper may be called the "algebraic theory'. 

Recently, for certain abelian varieties over I1~, Swinnerton-Dyer and I have 
succeeded in setting up the beginnings of a parallel theory, which might 
be called the "analytic theory" [42]. I shall describe this theory and 
point out its relationship with what is done here: 

Let Xo (N)/Q denote the modular curve associated to the subgroup 
F o (N) c PSL(2, Z). Let Jo (N)/II~ denote its Jacobian. Let p be any prime 
number with respect to which A has ordinary reduction. 

Then, dependent upon a f'Lxed choice of topological generator 
7eF, Swinnerton-Dyer and I associate to A/K a p-adic analytic power 
series Lp(A/K; t)t~)eZp[[t]]. If we make the substitution of variables 
t ~ ,  1-s we obtain a power series in s, Lp(A/K; s) which no longer 
depends upon 7, and which we call the p-adic L-series of A/K. 

This p-adic L-series is obtained by means of a construction which 
associates to any parabolic modular form o) (of weight 2 under F o(N) 
and an eigenvector for the Hecke operators) a p-adic power series: the 
p-adic Mellin transform of ~o [42]. 

The p-adic L-series of A/K satisfies a functional equation of the same 
type satisfied by the classical L-series. Also, if A/Q is an elliptic curve, 



Rational Points of Abelian Varieties 189 

its p-adic L-series vanishes at s = 1 if and only if the classical L-series 
vanishes at s = 1 [42]. 

If A/Q is an abelian variety as above, let gp(A/K; t) be the unique 
polynomial with p-adic integral coefficients, of smallest degree, such that 

Lp(A/K; O~=gp(A/K; t). Up(A/K; t) 
where: (a) Up(A/K; t) is a power series in Zp I-I-t]] whose constant term is a 
p-adic unit. 

(b) gp(A/K; t) is either identically 0, or its highest coefficient is a 
power of p. 

Call gp(A/K; t) the "analytically-defined" p-adic characteristic poly- 
nomial of A/K. 

The parallel between the "algebraic" and the "analytic" theory can 
be expressed by means of the conjecture that (p odd) the "analytically- 
defined" p-adic characteristic polynomial of A/K is equal to the p-adic 
characteristic polynomial of A/K, as defined in this paper. 

This conjecture has the air of being unattackable, at present. Never- 
theless, it suggests that one develop the "algebraic" and the "analytic" 
theories, side by side. So far as either of the theories has been developed, 
this can be done. In particular, we can establish, in the "analytic theory" 
the analogue of the detailed theory of anomalous primes given in w 8. 

A tremendous advantage of the "analytic theory" is that it is amenable 
to computing machine calculation. J. Davenport, N. Stephens, P. Swin- 
nerton-Dyer and I have studied gp(A/Q((p); t) for the modular curves 
A =X0(ll) ,  Xo(17), and all odd ordinary primes p<350. 

We compute the degree of gp in these cases (see [42] for complete 
tables) and we discover that except when p=5  and A=Xo( l l )  it is 
monic (i. e. the "analytic" #-invariant is zero). 

The pursuit of the parallelism between the two theories is hardly 
farfetched, in the light of recent work of Iwasawa and Leopold-Kubota 
[33], nor is it as special as it may sound, in the light of recent conjectures 
of Weil. 

d) Some Unresolved Issues 
1. (Supersingular Primes) 

Our theory leads us to make a rather detailed study of the norm 
mapping on the points of an abelian variety with values in a local field, 
and thence to a study of the fundamental group of certain pro-algebraic 
groups. Had we settled the questions that arise in this area, in complete 
generality, we would have been able to extend our theory to include the 
supersingular primes. 

There has been recently some progress in this direction (notably 
some unpublished work of Hazelwinkel concerning the norm mapping 
from F-extensions of one-parameter formal groups) which suggests that 
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the situation is remarkably different from the case of ordinary primes. 
The problems are, of course, much harder. 

If A is an elliptic Curve with bad reduction of multiplicative type 
at p, Nacybullin (see [37], 4.9) has settled these questions, using the 
theory of Tate. 

In the analytic theory, as well, we have not been able to treat super- 
singular primes, and we suspect that for p supersingular, if the p-adic 
L-series exists, it must have poles in the unit disc. 

2. (Higher dimensional analogues: p-adic arithmetic cohomology 
of varieties over number fields) 

We shall emphasize the fact that the theory presented in this paper 
is a one-dimensional theory by a change of notation and viewpoint: 

Let V be a proper smooth variety over a number field K and let A 
denote its Albanese variety. 

If (L/K, A) is admissible, set 

/-/LK, 
This terminology is meant to remind one that HtL/K, a) depends only 

upon the Galois module H~,(I," e, Qp/Zp), where K/K is an algebraic 
closure of K. 

It is tempting to hope that one can define, for any r > 0, a F-module 
H~t./x,v) which depends only upon the Galois module H~,(l/e, ~p/7~p) 
in a manner analogous to the definition of HtL/r, a). 

At first one should be content to define such a F-module just for 
F-extensions L/K which satisfy an r-dimensional analogue of the notion 
of "admissibility" with respect to E For r = 0  one should rediscover 
Iwasawa's theory for the F-extension L/K. If L/K is the p-cyclotomic 
F-extension, then the correct definition of H r above should be called 
the r-dimensional p-adic arithmetic cohomology of V/K. 

There is an analogous project in the "analytic theory" which also 
deserves to be done: Namely, to define the p-adic Mellin transform of 
parabolic modular forms under F o (N) of arbitrary weight k = 2 r, which 
are eigenvectors for the Hecke operators. 

e) Some Remarks on the Writing of this Paper 
What follows is a mildly revised and extended version of the mimeo- 

graphed notes [38]. A survey of its contents and an introduction to the 
cohomological techniques used here can be found in the notes to a 
course I gave at Orsay [39]. A very good expository treatment of the 
contents of [38] as well as other related things can be found in Manin's 
paper [37]. 
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Manin's exposition differs from mine in that he re-expresses my 
F-module H solely in terms of certain diagrams of Galois cohomology 
groups. This makes the main definitions of this paper accessible, in 
principle, to anyone with a knowledge of Galois cohomology. It is also 
important to give such a definition, for a theory whose complexities 
are decidedly number-theoretic should be as free from theoretical 
superstructure as possible. 

The reader may wonder, then, why, in the rewriting of the notes 
[38] I persist in defining H~L/K.A~ as the cohomology group of a sheaf 
for the fp  q f  topology. There are two minor advantages. The first is a 
technical one: the full cohomological panoply is at one's immediate 
disposal. Secondly, it is not ad hoc: one has a firmer sense, at the outset, 
that the definition is appropriate. 

I have attempted to give the full details, or references, to everything 
used in this paper. There is one exception worth signaling: In w 7 I make 
use of the "flat arithmetic duality theorem" proved by Artin and myself. 
This theorem is part of a long range project and has not yet appeared. 
I expect it to appear shortly, however, and certain results preparatory 
to it have already appeared [5, 40, 41]. 

In w (c), the theory of pro-algebraic groups is taken up from 
scratch. We redo all the basic definitions so as to be able to work with 
arbitrary formal groups over nonalgebraically closed residue fields. 

In w (e) we review the well known relationship between the 
structure of the formal completion of an ordinary abelian variety and 
its zeta-function. 

The work done in w is the key to our main results. There we 
calculate explicitly the cokernel Of the norm mapping from a F-extension 
on ordinary abelian varieties over a local field. 

In w we use the cohomological apparatus to refine the classical 
"technique of first descent" which enables one, in happy circumstances, 
to compute the group of rational points of an elliptic curve over Q, 
or over small number fields. The results of this section may be of interest, 
apart from their use in the present theory (expecially Table 1). 

I should like to thank K. Iwasawa and J.-P. Serre for generously allowing me the use 
of preliminary versions of their manuscripts; and P. Deligne, R. Rasala, P. Swinnerton- 
Dyer and J. Tate for their useful suggestions. 

w 2. F-Modules 

a) Classification 
In this paragraph we shall consider discrete p-abelian groups. If M 

is such, its Pontrjagin dual N may be regarded as a compact topological 
�9 p-module. We say M is of cofinite type if N is of finite type as a Zp- 
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module. M is of cofinite type if and only if its elements of order p, denoted 
pM, is a finite group. Such a group M has the property that its maximal 
p-divisible subgroup div(M) is of finite index, and is isomorphic to 
(Qr/Zp) a for some 2 < + ~ .  The integer 2 is an invariant of M, called 
its corank. 

If M is a discrete p-abelian group whose maximal p-divisible sub- 
group is of cofinite type (and hence isomorphic to (Qp/~Ep) x for some 
2< + ~), we shall say that M is of finite corank 2. For any such abelian 
group M, form V= N @zp Qp. Then V is a vector space over Qp whose 
dimension is 2. We refer to V as the if)p-space associated to M. 

Let F be a topological group isomorphic to 7Zp (as considered by 
Iwasawa [29]. We follow Iwasawa by not requiring that any isomor- 
phism be specified.) By a F-module, one means [29] a discrete p-abelian 
group M together with a continuous action of F on M as a group of 
antomorphisms. There are some useful equivalent ways of viewing the 
above structure.' Here is one: Define A to be the compact topological 
ring obtained as the projective limit of the group rings, 

A = ~ ~ [ r / r J  

where F~cF is the unique closed subgroup of index p~ in E To endow M 
with the structure of a F-module is the same as to endow the compact 
topological Zp-module N with a continuous (unitary, of course) A-module 
structure. The classification of F-modules, then, is equivalent to the 
classification of compact continuous A-modules. Since A is isomorphic 
to a power series ring Zp[[T]] (under an isomorphism which sends 
the image of a topological generator 7 of F to 1 + T: thus the isomor- 
phism is noncanonical), the classification of F-modules follows the 
pattern of the general classification theory of modules over a regular 
complete noetherian local ring of dimension two [52]. 

We shall say that M is F-cofinite, or of cofinite type as a F-module 
if M is of finite type as a A-module. It is equivalent to ask that M r be 
of cofinite type. If we let ~ stand for the full, thick ([19], 1.11) subcate- 
gory of the abelian category of F-modules, consisting in those F-modules 
of finite cardinality, Iwasawa gives [29, 30] a precise classification of 
F-modules M which are F-cofinite, modulo cg. 

We shall summarize this classification below, by describing both the 
discrete F-module M and the compact Pontrjagin dual module N 
regarded as a module over 7~p [[T]]. We will often pass from considera- 
tion of the discrete to that of the compact version. 

Classification List. The compact Zp[[T]]-module N (resp. its dis- 
crete Pontrjagin dual M), may be written mod r as a sum of three kinds 
of modules: 
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I. Compact. A free Zp [[T]]-module F of finite rank p. 

( Resp.) I*. Discrete. The Pontrjagin dual of F, 4, which we may refer 
to as a "coffee F-module of cofree-rank p". We have that 

4"--- (Q~/~)~.". 

II. Compact. A direct sum of ~p liT]I-modules of the form, 7Z/p"~ [[T]]  
where la t < 122 ~ " "  "~ ]1 s . 

(Resp.) II*. Discrete. The Pontrjagin dual B of the above, which has 
the structure: Br, = (~ (p-"~ Z/Z)p". 

J 

III. Compact. A Tip-module which is free of rank 2, given the structure 
of a 7Zp [IT]I-module, e.g., by stipulating a topologically unipotent action 
ofl+T. 

(Resp.) III*. Discrete. The Pontrjagin dual of the above would be a 
discrete group isomorphic to (Qp/7zp) x with a topologically unipotent 
action of Y, a topological generator ofF, specified. 

The data consisting in: {p, the set of llSs, 2, and the isomorphism class 
of the representation of F in GL(7Zp, 2) obtained from the module of 
type III} are determined by the F-module M considered mod c~, and, 
in turn, determine M up to isomorphism mod c~. We shall keep the termi- 
nology: p=cofree rank of M; #=#1 +#2 + "'" +#s the li-invariant of M. 

Lemma 2.1. I f  M is a F-cofinite F-module, 

(a) Its invariant p is zero if and only if the p-abelian group M is of 
finite corank. More generally, 

(b) corank(Mr")=pp"+c, for large n, where c is a constant, inde- 
pendent of n. 

(c) Suppose that M r is a p-divisible group, whose corank is equal to 
the invariant p of M. Then M is coffee of coffee-rank p. 

Proof. (a) and (b) follow immediately from the classification theorem 
quoted above. To see (c) pass to the Pontrjagin dual Zp [[T]]-module N, 
and use our hypotheses to find a free 7/p [[T]]-module F on p generators 
and a map F--~ N such that, 

F Oz~ttrl] ~p-~ N ~)z~ urn Zp 

is surjective. An application of Nakayama's lemma gives that F ~ N is 
surjective. If F-- ,  N were not injective, then N could not have a direct 
summand mod c~ whose cofree rank was p. Thus F - ~ N  is an isomor- 
phism. Q.E.D.  
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If M is of finite corank, # (M)=0  if and only if M is of cofinite type 
(as an abstract p-abelian group). 

Iwasawa defines a strictly F-fiinite module M to be one such that 
M r" is of finite order for all n, [30]. Letting pte.) denote its order, one has 
for sufficiently large n, 

e ,=2n+pp"+c  ([30], 1.4). 

To be consistent with our use of the prefix "co-", we shall refer to such 
a module as a strictly F-cofinite module. 

If 7 is a choice of topological generator of F, and M is of finite corank, 
let char(t; 7, M) denote the characteristic polynomial of the operator 7 
on the associated vector space V of M. We define: 

f(t; 7, M ) = P  u~M) char(t; 7, M) 

and we shall refer to f ( t )=f( t ;  7, M) as the characteristic polynomial 
of the F-module M. Set T= t - 1 .  Since T is topologically nilpotent, 
char(1 + T; 7, M) is a distinguished polynomial in T. That is, it has p-adic 
integral coefficients, and is congruent to the polynomial T ~ mod p. In 
the case where M is F-cofinite, but has a nonzero cofree rank, the con- 
sistent thing to do is to make the convention that f(t) be identically zero. 

b) Controlled Sequences and Considerations mod ~ and mod q( 

Consider the abelian category ~ of sequences of abelian groups, 
(E.; tp.).~o where ~p.: E.--~E,+ 1 are group homomorphisms. We take 
morphisms of ~ to be compatible systems of homomorphisms. We 
now consider two full subcategories of ~ .  The category ~ is generated 
by sequences (E.; ~o,) such that the groups E. are all finite groups whose 
orders admit an upper bound independent of n. The category ~ consists 
in sequences (E., ~p.) such that there is an integer m with the property 
that mE.=O for all n. Both ~ and ~ are thick subcategories of ~ (in 
the sense of [19], 1.11). We introduce the quotient categories d / ~  and 
~ / ~ .  We shall use the terminology: ~-trivial; ~-isomorphic; ~-exact; 
etc. to refer to the indicated notions mod ~ ,  and similarly mod ~. Most 
of the morphisms we shall consider will be actual morphisms in the 
category ~ ,  and when they are not, we shall signal that fact explicitly. 

A F-sequence will refer to a sequence (E.; ~0.) of d ,  such that each 
E. is endowed with an operation of the group F/F., and the morphisms 
qg. are compatible with the induced F-actions. 

If (E.; ~0.) is a F-sequence, form the direct limit, E=li_mmE. which is 
endowed with the structure of discrete abelian group together with a 
continuous action of the topological group E We have a new F-sequence 
(E r") and a morphism of ~r 

E.-~ E r" 
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and if the above morphism is a oK-isomorphism, we shall say that the 
F-sequence (En; q~,) is controlled. 

c) F-Extensions of Fields and of Schemes 
By a local field we shall mean a finite extension of ~p (the p-adic 

numbers) for some rational prime p. By a global field we shall mean a 
finite extension of Q. Our usage is more restrictive than the usual, in 
that we have excluded the function fields over finite fields, in the global 
case, and the power series field over finite fields in the local case. 

Fixing the prime p, we shall say that a field extension L/K is a 
F-extension (associated to p) if L/K is galois with group F (~  Zv). For 
each p there is a unique F-extension Q| with base field Q, associated 
to p. This may be described as follows: The extension of Q, Q((p~)/ff~, 
obtained by adjoining all pr-th roots of unity, for all r, has galois group 
canonically isomorphic to Up the topological group of p-adic units. 
In Up, let A denote the torsion subgroup. This group is, for p#:2, the 
cyclic group of order p - 1  consisting of (p-1)-st  roots of 1. For p = 2  
it is of order 2. Now let Qo~ denote the fixed field of A in Q((p~). 

If L/K is any F-extension and K'/K any finite field extension, then 
the base change E/K' is again a F-extension. For any number field K/Q 
we shall refer to the F-extension KQ~/K obtained by base change as 
the cyclotomic F-extension over K (associated to p). 

For L/K any F-extension let KncL  denote the fixed subfield of 
F, c E We have, then, a tower of fields, 

K = K o c K l c " ' = K n = ' " = L ,  L= ~) Kn. 
n = O  

Kn is a cyclic extension of K of degree pn. Conversely, any tower 
of such cyclic extensions Kn/K gives rise to a F-extension. 

If K is a local or global field, let 

D=DocD 1. . .Dn~. . .cE 

denote the rings of integers in the above fields, and 

X=Xo c--XI ~--...c--Xnc-...c- y 

their associated spectra. We shall refer to Y/X also as a F-extension. 

Recall from the theory of F-extensions [52] that the only primes 
of X that can possibly ramify in Y are those dividing p, and in the global 
case at least one such prime must ramify. Let F(q) denote the inertial 
subgroup associated to the ramified primes q. Then F(q)=F~, for 
some integer nq since the F(q)'s are all nontrivial subgroups in E Set 
N = max (nq) where the q's run through the ramified primes. 



196 B. Mazur: 

Say that  a F-extens ion is special if any pr ime q of X is either un- 
ramified, or  ramifies total ly in Y. This is the same as asking that  F(q)= F 
for all ramified q. Fo r  any  F-extension,  L/K N is a lways special, where N 
is the integer defined above.  Thus  by the modif ica t ion of the base  
K---~KN; X---~XN, we m a y  obta in  f rom any F-extension L/K a special 
F-extension.  The  cyclo tomic  F-extens ion over  any  base is special. 

d) Bilinear Forms on F-Modules 
I have tried to eliminate this exceptionally technical section, but I do not see how to 

obtain the functional equation of w 7 without proving (2.8) below. The technical compli- 
cation of it arises from the fact that we will be given a ~-nondegenerate pairing of the sort 
defined in (2.6) below, in our applications. This pairing can be dealt with easily if M is 
F-cofinite and M, = M r" has no divisible part (i.e., M is strictly F-cofinite, or equivalently: 
in the mod ~ decomposition of the Pontrjagin dual of M into direct sums, 

A/(~o~')E3 A/(~o~22)~ ... ~ A/(~o~'), 

with ~0j irreducible elements of A, none of the ~oj's are the irreducible polynomial of a 
p'-th root of unity). Indeed the sought-for functional equation ((2.9) below) comes in this 
case, immediately from ([20], 5.5). It is also unawkward to treat the case where those ~j 
which are the irreducible polynomial of a p'-th root of unity occur all with exponent e j= 1. 
The possibility of nonsemi-simplicity of the F-module M forces us into the complications 
of the step-wise process below. 

We  shall now deal with topological  Zp-modules .  In this section 
(and only this section) we shall have occas ion to work  with modules  of  
this sort  which are not necessarily discrete, or  compact .  Let  * stand for 
Hom~ont( ,  Qp/Zp). If M is a topological  Zp-module ,  we say that  M is 
Qp-finite if V = Q p |  ) (the Qp-vector  space associated to M) is 
finite dimensional .  If  M ~ N is a ~ - i s o m o r p h i s m ,  (w 2 (b)), ~0 induces 
an i s o m o r p h i s m  of  associa ted  Qp-vector  spaces. 

N o w  suppose  we are given a topological  Zp-module  M together  
with a cont inuous  F-act ion.  We  call such things topological  F-modules, 
and  we try to keep  to the t e rmino logy  of  1-29]. If  M is a ~p-f ini te  topo-  
logical F -module ,  let z (M)  denote  the set of  character is t ic  roots  of  M,  
count ing  multiplicit ies (as in [29]). Deno t e  by _x(M) the subset  of  x (M)  
ob ta ined  by deleting all pm-th roo ts  of  1, for all m. A F-ac t ion  will be 
called idempotent if it factors th rough  F/F~ for some n. If  A ~ B  is a 
m o r p h i s m  of  Qp-finite topological  F-modules ,  such that  the image of A 
is closed in B, we shall write A ~ B  if bo th  kernel  and cokernel  have  
idempoten t  F-act ions.  Deno t e  by  the same symbol  the equivalence 
re la t ion generated.  One  has  immedia te ly :  A ~ B implies X (A) =_Z (B). 

Let  M be a (discrete) F -module ,  supposed  Qp-finite and F-cofinite,  
in wha t  follows. 

Set M n =  M r-, Dn=  N pk M~. Thus  Dn is the max imal  divisible sub- 
k 

g roup  of  Mn. Since M is F-cofini te  MJD~ is finite. Let  D =  ~ D , c  M. 
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Since M is Qp-finite, one sees that the divisible groups D. must have 
bounded corank, which implies that the sequence is stationary, e.g., 
D=D.  for n>>0. Consequently, D is an idempotent F-module. If we 
form the exact sequence, 

(2.2) O---~ D--* M ~ M'---~ O, 

M ~ M', and M = M' if and only if M is strictly F-cofinite. By the additive 
formula for 2, M is not strictly F-cofinite, if and only if: 2(M')<2(M). 
Consequently if we defne M ( 0 ) = M  and M ( j +  1)=M(j)', we find that 
there must be an integer ,j such that the F-module ~ / =  M(j) is strictly 
F-cofinite. We have M ~ M. 

If M is a F-cofnite F-module, define M'=LiL~m M*, where the 
n 

sequence is defined by means of the trace maps v* ([29], w 1): n , m  

The above definition is exactly the definition of the adjoint given 
in [29], with the exception that we do not require M to be strictly 
F-cofinite. Thus M t is a topological F-module, not necessarily discrete. 
We do have, however, that M t is Qp-finite, since it satisfies the conditions 
of the following lemma: 

Lemma 2.3. Let W be a 7lp-module which is the union of submodules, 

(2.4) W . = W , + , = . . . c W ,  n>O. 

Suppose there are integers t~, and k such that for all n pU . I4". can be 
generated over Zp by no more than k elements. 

7hen W is Qp-finite. 

Proof By multiplying everything by pU, we can suppose #=0 .  We 
can also, by a sequence of pushouts suppose that the W,'s are all free 
Zp-modules. By ignoring a finite number of n's, we can suppose them 
all of the same rank k. Then the whole sequence (2.4) can be imbedded 
in Qk_.e Consequently, M c Q~ and since Qp is self-dual, M* is a quotient 
of Q~, which proves (2.3). 

We must now compare M t with M". Applying HI(F., ) to the exact 
sequence (2.2), one gets 

O--. D,.--~ M,.-.,M,,--~ HI(F.,D) 

and passing to the limit, 

Ht_+ M,t__~ Mt__. Dt_.~ O 

where H t = Lim H I (F., D)*. 
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Since both H t and D t are idempotent, we have: M ' ~ M  t, from 
which we deduce that/17P~M t. By ([29], 5.5), since/V/is strictly F-co- 
finite, we have that ;~ (N/)=X (~/'), yielding: 

Lemma 2.5. _z(M)=_x(Mt). 

Consider the torsion submodule of M t which we denote M~ors. We 
have: 

M~ors= Li_~n~(Mn/Dn)* 

and consequently, the exact sequence, 

O---~ M~o~ -~ Mt--~ Dt---~ O, 

which gives us that M~or~ ~ M  t. 

Let M and N be F-cofinite (discrete) F-modules. 

(2.6) A ~-bilinear pairing will mean a ~-morphism of sequences, 

M,/div (M,) x NJdiv (N~) --~ Q/Z 

(x, y) ~ (x, y)  

satisfying the compatibility relations, 

(i) (in,,. X, y )  ~- (X, •n,,. Y)  

(ii) (~ x, ~ y )  = (x, y)  

for xeM, ,  yeN,. 

for ~eF. 

In the above, if W is a group, div(W) refers to the maximal divisible 
subgroup of W. We sometimes write W/div for W/div(W). 

This is not a symmetric definition in M and N. We will say that the 
pairing is ~-nondegenerate if the left and right kernels are finite groups 
for all n, killed by multiplication by a number m independent of n. We 
may re-interpret a ~-bilinear pairing in terms of ~-morphisms of 
F-modules, after a definition. If M is a F-module, let M (-) denote the 
new F-module obtained by takifig the same underlying topological 
abelian group M and redefining the operation of F by letting a e F operate 
on M (-) as a - i  operating on M. Clearly x(M(-))=x(M) -1. In other 
words, the involution u ~  u -1 sends the characteristic roots (counting 
multiplicities) of M to the characteristic roots of M (-). It is immediate 
that a 9~-bilinear pairing between M and N gives us a ~-morphism of 
F-modules, 

M(-) ' .___~ Nttors. 

If the bilinear pairing is 9~-nondegenerate, the above map is a ~-iso- 
morphism. 
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Corollary 2.7. Let there be a ~-nondegenerate bilinear pairing between 
the F-cofinite, ~p-finite (discrete) F-modules, M and N. Then 

z (M)- t  =z(N) .  

Corollary 2.8. Suppose there is a ~-nondegenerate bilinear form 
( i. e., a bilinear self-pairing) on the F-cofinite, ~- f in i te  discrete F-module M. 
Then 

z(M) = ~((M) -1 . 

Proof. Ira pm-th root of unity, (, occurs in X (M), all algebraic conjugates 
of ( over Qp occur as well, and to the same multiplicity. But (-1 is in the 
conjugacy class. Thus we are reduced to showing z ( M ) = z ( M ) - I  whicb 
follows from the previous lemma. 

It follows, in the above situation, that one has the functional equation 
for the characteristic polynomial of M with respect to a topological 
generator 7 ~ F: 

(2.9) fM (t) = e tzfM (l/t) 

where 2 = 2 (M), and e = ( - 1) r, where r is the multiplicity of the eigenvalue 1. 

w 3. N6ron Models and Their Kummer Theory 

Let K be a local or global field, D its ring of integers X = Spec (D) and 
j: Spec ( K ) ~  X the inclusion. If A/r is an abelian variety defined over K, 
denote by A the N6ron model 1-473 of A/x. Thus A is a smooth com- 
mutative group scheme over X such that its generic fibre is isomorphic 
to A/x and A satisfies the "functorial property": 

If S is any smooth scheme over X, the restriction map: 

homx(S, A) -~ homx(S/x , AIr) 
is bijective. 

Equivalently, we may say that A = j .  (A/K) as sheaves for the smooth 
topology. (To use the language of N6ron [47], A is "faiblement ~-simple, 
~'-minimal" for all ~ of X. The existence of such N6ron models over 
local and global fields is given by Theorems 2, and 4 respectively of 
Chapter II of 1-47].) 

We shall refer to A as a N~ron model over X. Thus, a Nkron model A 
is a smooth commutative group scheme over X whose generic fibre is an 
abelian variety and which satisfies the formula: A ~ j . j *  A, when regarded 
as a sheaf for the smooth topology. 

Given a N6ron model A there is a natural open subgroup scheme of A 
to consider: 

14 Inventiones math., Vol. 18 



200 B. Mazur: 

For  each closed point x of X, the fibre A x is a smooth commutative 
group scheme over k(x). Denote by A ~ c A~ its connected component 
and Z~ c A~ its complement. Since A has nondegenerate reduction for 
almost all primes, Zx is nonempty for only a finite number of points x. 
Thus Z = U Zx is a closed subscheme of A. Denote by A ~ c A its open 
complement. It is easily seen that A ~ is stable under the group law, and 
thus is an open subgroup scheme of A. 

It is sometimes easy to find A ~ for elliptic curves, when to avoid a 
minor elaboration, we suppose them defined over D, a principal ideal 
domain. The procedure is as follows: we may try to express our elliptic 
curve over K by an equation of the form, 

y2 +al  x y+a3 y +  x 3 +a2 X2 +a4 x +a6 = 0  

with ajeD (a Weierstrass-model for the elliptic curve), where the zero- 
section of its group structure is the point at infinity. One then seeks such a 
Weierstrass model for which ord~(A) is a minimum for all primes 
of D. Such an equation exists and is called a global minimal Weierstrass 
model. Upon removal of the singular points of the scheme over D defined 
by a global minimal Weierstrass model, we obtain a quasi-projective 
scheme, smooth over D, which admits a unique group structure extending 
the group law on the fibre over K. There is a canonical isomorphism of 
this smooth group scheme over D with A ~ Having discovered A ~ one 
may go on to study A by means of the complete table of possibilities given 
on p. 123 of [47]. 

Remark. The subgroup scheme A ~ plays a crucial role in the duality 
theory for A. See [1]. 

Let F denote the quotient of A by A ~ regarded as sheaves for t h e f p  q f  
topology: 

(3.1) O :-~ A ~ --* A --~ F -* O . 

We have that F is a "skyscraper sheaf". It is zero outside of the finite 
set of x ~ X  such that A x is disconnected. Since A and A ~ are smooth 
group schemes, the cohomology of the above sequence remains the same 
if computed for t h e f p  q f smooth, or 6tale topologies. (GB III [App. 11.1].) 
Let us describe F completely, as a sheaf for the 6tale topology. We have: 

F=Oix . (Fx)  
X 

where the direct sum is taken over all x, or equivalently: that finite set 
of x such that A~ is disconnected. Fx is the finite galois module over 
k (x) given by Ax/A ~ Of course, if the Fx all have trivial Galois action, 
then the f p  q f  sheaf F is even representable as a group prescheme. 
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In any case, its cohomology for any of the three sites listed above is given 
by: 

H q (X, F) = + H q (k (x), AJA~  
x 

Suppose K is a global field. There is a close relation between the 
Shafarevitch-Tate group / / /= / / / (K,  A), (see [67, 68] or the Appendix 
below for a definition), and 27 = im {Hi(X, A ~ ~ H ~ (X, A)}. 

The proposition of the Appendix tells us that one has: 

H~ ~H~ ~ ~H~ ,HI (X ,F)  

\ /  
(3.2) 0 , / / /  , Z , Z/Ill ,0  

/ \  
0 0 

where S/Ill is a finite group of exponent two, dependent only upon the 
structure of the group of connected components of A(Kv) where v ranges 
through all real archimedean primes of K. Thus, the p-primary com- 
ponents of Z and / / J  are equal for odd primes p. 

We now consider the map A m, A given by multiplication by the 
integer m. Suppose that A ~ m ~ A o is an isogeny for all x. This boils 
down to the requirement that multiplication by m is an isogeny for all x 
such that the characteristic of k(x) divides m. Equivalently: m: A ~  A ~ 
is a surjection o f f p  q f  sheaves. Then the kernel of multiplication by m 
in A, m A ~A, is a flat, quasi-finite, group scheme. 

Consider the image, and cokernel, as sheaves for the f p  q f  topology, 
pictured below: 

0 ,mA ,n ' A  .... ~ F / m  ~0 

\ /  
m a 

/ \  
0 O. 

Now suppose m=p r. Fixing p, F/pr and consequently PTA both 
stabilize for large enough r. Denote those stable sheaves ff and .,t respec- 
tively. We have: 

14" 
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0 ~p~A >A ' A  ~0 

0 ~A ~A ~F ~0 

for all r > r o. Let A stand for the inductive limit of the system of quasi- 
finite group schemes: 

--~ p~A --> p~+~A --* .... 

Regard /1  as a sheaf for the f p  q f  topology. It is representable as an 
ind-quasi-finite group scheme! We have that 

H q (X,/1) = lim H q (X, prA). 
r 

We shall signal all cohomological  computat ions using the exact 
sequences (3.3) hy the catch-phrase: " the  K u m m e r  theory for A". One 
should note that the groupschemes prA are not necessarily smooth and 
therefore cohomology with those group schemes as coefficients means 
f p  q f  cohomology unless stated otherwise explicitly. 

Although we do not use it in this paper, the following remark has relevance to the 
discussion in w Let p be a prime such that A~ has good reduction for all xeX of 
characteristic p.Then the ind-quasi-finite group scheme A depends only upon the Gal (K,/K)- 
module, p~A. This makes use of the deep theorem of Tate [69] that a p-divisible group 
over a local field of characteristic zero and residual characteristic p is determined by its 
Galois module, together with the fact that away from characteristic p, A is 6tale, and 
determined by the N6ron property: ,4 =j .  j* A. 

Now fix a F-extension Y/X associated to the prime p. Suppose that 
the fibres A x of the NOron model A are abelian schemes ("A has non- 
degenerate reduction") for all x such that the characteristic of k (x) is p. 
Since X. /X  is unramified except at points x for which A has "non-  
degenerate reduction" it follows that A x x X.  is a N6ron model over X..  
The base change of both the exact sequence (3.1) and the K u m m e r  
theory (3.3) of A, to X,,  give the analogous exact sequence (3.1) and the 
K u m m e r  the_.....ory (3.3) of A x x X..  Similarly, the base change o f A ~  X, 
yields A • When it is convenient to denote A x x X. and A x x X, by 
the symbols A, and ,4 again, and unlikely to cause confusion, we will do so. 
(We shall do this principally when these occur as coefficients in cohomol- 
ogy groups.) 

Let X be global. Make the further hypothesis that any xESupp(F)  
splits finitely in the F-extension Y/X. This is automatically satisfied for 
the cyclotomic F-extension. 

Then H ~ (X., F) and H ~ (X,, F) are rg-trivial. Le t t ing / / / ,  denote the 
Shafarevitch-Tate group of A over X. ,  we obtain the following con- 
sequence from (3.2): The morphisms below are cg-isomorphisms. 
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HI(X,, A ~  A) 

\ /  
/ \  

0 0. 

Consequently either of the groups Ht(X,,,A~ HI(X.,A) represent, 
up to a bounded amount of error, the Shafarevitch-Tate groups/ / / . .  

w 4. The Local Norm Mapping for Commutative Group Schemes 

a) Here Is the General Problem 

Let L/K be a finite extension of local fields. Let A be a commutative 
group scheme over K. Determine the cokernel of the norm mapping, 

(4.1) A(L) NL/~' ' A(K). 

A full answer is given by local class field theory, when A is the 
multiplicative group, G,,. It would be very interesting to give a theory 
of similar precision for the general commutative group scheme A. We 
do the barest minimum in this direction, by providing a theory when A is 
an abelian variety with nondegenerate reduction and invertible Hasse 
matrix [25, 26]. To begin, let us note: 

Proposition 4.2. I f  L/K is galois, and A is an abelian variety, then Tale 
local duality [67], induces an isomorphism of H i (Gal (L/K), A'(L)) with 
the Pontrjagin dual of A(K)/NL/r A(L). 

Here A' denotes the dual abelian variety to A over K. 

Proof This comes from the commutative diagram, 

0 , H 1 (Gal (L/K), A' (L)) , H I(K,  A') , H 1 (L, A') 

0 , (A(K)/NL/KA(L))* , A(K)* ~NL/'~)Z~ A(L)* 

where * denotes Pontrjagin duality, and the right hand two vertical 
maps are the Tate local duality isomorphisms [67]. 

We next show that it is not too hard to analyze (4.1) when L/K is 
unramified, and A is an abelian variety over K. 
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Proposition 4.3. Let A be a N~ron model over Spec(D), where D is 
the ring of integers in K. Let L /K  be unramified, with residue extension l/k. 
Let F be the finite ~tale group scheme Ak/A ~ over k. Then the natural map, 

H l (Gal (L/K), A(L)) -* H 1 (Gal (l/k), F) 

is an isomorphism. 

Proof Let G = Gal (L/K)= Gal (l/k). Let E denote the ring of integers 
in L, with n c E its maximal ideal. We shall show that each of the natural 
maps below are isomorphisms, from which our proposition follows 

(a) H i (G, A (L)) --~ H 1 (G, A (/)) 
(b) HI(G, A(I))--~ Hi(G, F). 

We first give, briefly, the argument for (a). Consider the exact 
sequence of G-modules, 

0 ,D, , A ( E / . r + I )  ~r ,A(E/.r)  ,0 .  

The map n, is surjective because A is smooth. Its kernel D, is a 
finite dimensional vector space over l, on which G acts semi-linearly 
relative to the canonical action of G on I. Thus Dr is G-cohomologically 
trivial, and consequently we obtain that 

H 1 (G, a (E/nr)) ~ H i (G, A (1)) 

is an isomorphism for all r, by induction. Now since A(L)=A(E) we 
conclude (a) by a standard limit argument (CL, XIII, w 3, Lemma 3). 

To see (b), merely write 

O --~ A O ---~ A k ---~ F -_-, O 

and note that A ~ is a connected commutative algebraic group over a finite 
field, hence cohomologically trivial by Lang's theorem [35]. Q.E.D. 

We also have as in [18, 47], ([17], II, w 

Corollary 4.4. I f  A is an abelian variety with nondegenerate reduction 
over K, and L /K  is unramified, then NL/K of (4.1) is surjective. 

Proof Then its dual A' has good reduction. Consequently F' = A~(A'k) ~ 
is trivial. Thus by (4.3) HX(Gal(L/K), A'(L)) is trivial. We then have 
surjectivity of NL/K by (4.2). 

Now concentrate on the case where L/K  is totally ramified. Thus l = k. 
Let A be a commutative group scheme over Spec(D). In this section 

we shall let A denote its formal completion along its zero section 
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(SGAD, fasc. 2 (b)). We have the exact sequence, 

(4.5) 0 ~,4(D) -* A (D) ~ A(k) 

where the last arrow is surjective if A is smooth. 

Corollary4.6. Let A be a Ndron model over Spec(D), L/K totally 
ramified of degree d. We have the exact sequence, 

(D)/NL/x A(E) ~ A (K)/NL/K A (L) --~ A (k)/A (k) n --~ O. 

The effect of the above corollary is that it allows us to concentrate 
on the study of the cokernel of the norm mapping for formal Lie group 
schemes A = A over D. 

b) The Theory of Pro-Algebraic Groups 
We prepare to apply the general theory of pro-algebraic groups (Serre [55, 56, 57]; 

Greenberg [17]) to our problem. We shall deal with actual group schemes [49] rather 
than quasi-algebraic groups [57], so we redo some of the definitions. 

In this paragraph we suppose K an arbitrary complete characteristic 
zero discrete valued field, with ring of integers D, and residue field 
Dim = k perfect, of characteristic p. We have that W(k) (the Witt ring 
of k) imbeds naturally in D, making D a free W(k)-module of rank e, 
where e is the absolute ramification index of D (CL, II, w 5, Th. 4). 

Denote by ~W.() the functor associating to any ring R/k the ring 
of Witt vectors of length n with coefficients in R. We have the natural 
morphisms of functors (CL, II), ([44], App.) 

~v'( ) - .~V. ( ) - .  Ident. 

From the construction of ~W. it is clear that ~V. is represented by a 
ring scheme ([44], App.) whose underlying scheme is affine n-space. 

Let M be a module of finite length over ~V(k). Consider the functor T: 
Rings/k ..... ~sets defined by T(R)=M| ). This functor is not 
necessarily (covariantly) representable by a ring over k. We shall show 
that there is a universal representable quotient of T. That is, there is a 
morphism of functors T ~ ~IM where ~vl is covariantly representable, 
and such that u is universal with respect to morphisms of functors 
T-*Q with Q representable. In fact, if we write M ~  @. ~W.~(k), we may 

3 
take ~vi to be @~W,j and u to be the natural morphism. It suffices to show 
this for M=~V.(k). 

What has to be shown is that for any T v ~Q and all R, as above, 
the induced map W(R)-*T(R)-~Q(R)  depends only upon the first n 
entries of the Witt vectors in ~ ' (R).  Find a polynomial ring k [X] -~ R 
mapping surjectively to R, over k. Find an algebraically closed field f2 



206 B. Mazur :  

containing k [X]. One then has the diagram, 

W(R) ,Q(R) 

T 
W(k[X])  ,Q(k[X])  

+I +1 
w ( ~ )  , O (o) 

with the designated surjections and injections coming from the nature 
of W, on the one hand, and representability of Q on the other. Since f2 
is algebraically closed (hence a perfect ring, in the terminology of 
([CL], Ch. II, w 6)), the morphism, 

W(f2) ---, T(f2) = W(12)/p" W(12) =v~v, (f2) -+ Q (f2) 

clearly does depend only upon the first n entries of the Witt vectors 
in ~W(f2). In the light of the above inclusions and surjections, we have 
the same for W(R)- ,Q(R) .  I am thankful to R. Rasala for conveying 
to me this intrinsic description of the functor IM. (Cf. the structure of 
a "module-variety" imposed on M in [17].) 

Lemma 4.7. Let M 1 x M 2 x ... x M, ~-~ M be a W(k)-multilinear map 
of W(k)-modules. Then there is a unique Wg-multilinear morphism of the 
functors, 

I M  1 x IM 2 x . . .  x NI,--~+ NI  
such that �9 (k) = (p. 

Proof. The W(k)-multilinear map q~ induced a ~W-multilinear mor- 
phism of functors, 

T1 x T2 x .-- x T, : -~T 

where Tj(R)=Mj | and T(R)= M | This factors 
uniquely through the universal representable quotients, giving ~ above, 
and uniquely characterizing �9 as well. (Compare [55], w 1, Lemma 1.) 

Definition. Let 
M x M x . . . x M  *+,N 

(6 times) 

be a W(k)-multilinear map of W(k)-modules. We then say that the com- 
posite morphism of functors, 

N I - L , M  x N I  x ... x N I . . ~ . ,  IN 
((i times) 

is algebraic homogeneous (o f  degree 3). 
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Let M ~ N  be an arbitrary set-theoretic map between two W(k)- 
modules. An algebraic expression for q~ is an expression of the form, 

(4.8) q~ = ~ q~6" z 
6=0 

where q~6 are as above. 

Such an algebraic expression determines uniquely a morphism of 
functors, 

~r N 

--k such that ~(k)=q~; ~ 4~ 6. 
o 

Note. There may be more than one algebraic expression for q~. 

Now let V= Spf(D [[Tl . . . . .  TJ]) regarded as a formal scheme over 
D with a chosen section: Tj ~--~ 0 (for all j). Vis then a functor from formal 
schemes over I) to the category of pointed sets. Define the functors, 

(4.9) In: Rings/k .... *Sets n > 0  

by the prescription, 

V~ (R) = ker { V(D/p ~ | W~ (R)) -~, V(R)} 

where the arrow above is induced by the natural map, 

D/if' | W~(R ) --~ k | R ~- R. 

We have a natural identification of the set V~(R) with the s-fold 
product J. (R) s, where J. (R) is the ideal, 

0 -* J. (R) --+ D/p" | W. (R) ---* R. 

If we let ~z be a uniformizer of D, we may write 

n--1 
D/pn= ~9 ~i W~(k) 

0 

which is a direct sum decomposition as a W~(k)-module, and which 
gives rise to the following decomposition of the W(R)-module, Jn(R): 

J.(R)=rc ~ W._I (R) (~ nJ W.(R) 
( j = l  

where we have imbedded W~_ 1 (R) in W~ (R) by means of the (" d6calage") 
operator V: W~_I(R)~W~(R) (CL, p. 52). From this description it is 
clear that J, ( ) is isomorphic to the canonical functor NI associated to 
the ~W(k)-module M = J~ (k). Thus 
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Lemma 4.10. The functor V~ ( ) is isomorphic to the canonical functor V~ 
associated to the W(k)-module V~ (k). It is isomorphic to an abelian group 
scheme whose underlying space is affine space of dimension s(e n -  1). 

Remarks. 1) Although we started out with a set-valued functor, we 
have imposed canonically an abelian group structure on it. We may 
refer to this abelian group structure as the elementary group structure 
o n  V n . 

2) (Pro-objects). We refer to [49] for the category of pro-algebraic 
groups over k. For a general treatment of pro-objects, see [21] or [4]. 
Let ~ denote the category of pro-(schemes of finite type over k). 

The system (V,). described above represents an object V in the 
category ~. 

Now suppose we have a formal Lie group scheme A over D (SGAD, 
fasc. 2 b). 

By a coordihatization of A we shall mean an isomorphism of the 
formal schemes A ~ V= Spf(O l I T  1 . . . . .  T~]]) compatible with chosen 
sections. Given a coordinatized formal Lie group scheme A we may 
express multiplication and inversion by morphisms, 

V ~( V--~ V 
(4.11) 

V--~, V 

and these may be expressed in the usual way as formal power series 
with coefficients in D. Here we have used ~ to denote product in our 
category: V ~ V is the formal spectrum of the completed tensor product 
of D [[TJ]  with itself over D, 

V ;( V,~ SpT(D [[1 | T~, Tj| 1]]). 

Define the functors A.: Rings/k ..... �9 Groups by the formula, 

A, (R) = ker {A (D/p" | IV, (R)) --, a (R)}. 

Proposition 4.12. The functors A.  are representable by group schemes 
of finite type over k (commutative if the formal group A is). The system, 

A: . . . --~ A.--~ A._  I -* . . . 

represents an object in the category of pro-algebraic group schemes over k. 

Proof Given an explicit isomorphism A ~  V, we get isomorphisms 
A . ~  V~ for all n, and our proposition follows from (4.10). Being given 
such an isomorphism, one has two group structures on V., its elementary 
group structure, and the one induced by transport of structure from A., 
which may, of course, be different. 
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If M and N are free W(k)-modules of finite rank, and f :  M--*N a 
map of sets, we shall say that f is a power series map i f f  can be expressed 
as a power series with coefficients in W(k), convergent (and equal to f )  
on all of M. Note that such a power series representation in terms of 
W(k)-bases for M and N is unique (LG, 2.4). Consequently, from a 
power series map f one obtains, canonically, W(k)-multilinear maps, 

M x M x . . . x M ~ - T ~ j  N 
(j times) 

such that f = ~  (~j" I. Such multilinear morphisms induce morphisms 
J 

M/p" x M/p r x ... x M / p ' - w p  J N/p" 

and convergence of f implies that for each r there is a j(r) such that 
for j > j (r), the above morphism is zero. 

Now let K, K' be fields of the sort we are considering, with rings 
of integers D, D', and both with residue field k. Let 

V=Spf(D[[T~ . . . . .  T~]]) and V'=Spf(D'[[T~' , . . . ,  T~',]]). 

We have that 
V(D) = !im V,(k) 

V' (O') = !ira 11" (k) 

as W(k)-modules. Also, the above isomorphisms induced canonical 
surjections, 

V,,+ l (k) ~ V(D)/p"--* V.(k) 

Vd+ , (k) --* V' (D') / f  ---+ V: (k). 
o o  

Let f :  V'(D')-~V(D) be a power series map. If we write f = ~  q~jo t, 
0 

then the multilinear morphisms tpj induce W(k)-multilinear morphisms, 

(4.13) V~'+I (k) x V.'+ 1 (k) x . . .  x V,'+, (k) ~ V. (k) 

for each n, such that (4.13) is zero for j>j(n) .  

It follows from (4.7) and (4.13) that we may obtain a unique mor- 
phism of functors, 

f . :  V" +, --* V. 
j(n) 

for each n, whose algebraic expression (4.8) is given by ~ r i. These 
0 

morphisms are compatible with projections and therefore induce a 
morphism of pro-objects, f: V' ~ V. 

Examples. 1) If D'cD,  K ' c K ,  V the base change of V' to D and 
i: V (D ' )~  V(D) is the natural inclusion. In this case i is actually W(k)- 
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linear, and imbeds V(D') as W(k)-direct summand in V(D). The asso- 
ciated morphism on pro-objects, 

i: V'---,  V 

is a monomorphism for the category ~. 

2) Consider a formal group law (4.11) coming from a coordinatized 
formal Lie group over D. Then 

V ~< V(D) ~ V(D) 

is a power series map, and hence gives rise by our process to a morphism 
/, of pro-objects, making the following diagram commutative 

V • V,,~V ~ V - - - ~ V  

A x A mult. ~ A 

where the vertical maps come from our coordinatization. We have a 
similar diagram with inversion. 

3) (The norm mapping). Let L / K  be totally ramified, Galois with 
finite Galois group G. Let A be a commutative formal Lie group scheme 
over D. Let A' denote the base change of A to E, the ring of integers 
in L. The group G operates on A', on A', for each n, and on A. We seek 
a homomorphism of pro-algebraic groups NL/r making the diagram, 

A' , , A' x A' •  x A' (4# G factors) 

(4.14) NL/~:[ lmult. 
A i ,A' 

commutative. Since i is a categorical monomorphism, if such a homo- 
morphism exists it must be unique. The map �9 is the composite of the 
diagonal with the automorphism of A' • A' x ... x A' which consists in 
conjugation by g on the g-th factor for all g in G. 

To see that NL/K exists, first note that the fixed subgroup of A'(E) 
under the action of G may be identified with A (D) via the inclusion i. 
Consequently we have the commutative diagram, 

(4.15) 

A'(E) , , A'(E) x A'(E) x . . .  x A'(E) 

A (D) , , A' (E). 
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If we choose a coordinatization A ~ V and its base change to E, A' ~ V', 
(4.15) may be written, 

v'(E) ~ ,  V'(E) • V'(E) • • V'(E) 

,4 6, 1 
V ( D ) - - ,  , V'(E). 

The map z is W(k)-linear, and # is a power series map. Therefore # z 
is a power series map. Since i is a W(k)-linear identification of V(D) 
with a W(k)-direct summand in V'(E), we see that NL/r of (4.16) is a 
power series map. If we pass from the diagram (4.16) of power series 
maps to the category of pro-algebraic groups and then pass from V, V; 
to A, A' by means of our coordinatization, we obtain the sought- for 
diagram (4.14). 

From (4.14) one immediately has the well known formulae: 

(i) NL/K �9 i = (L: K). Ident. 

(ii) NL/K NF/L = NF/K where F/K is a galois extension containing L/K. 
How does the functor A- --*A behave under unramified base change? 

1) (Finite unramified extensions). Let L/K be a finite unramified 
extension of fields of the sort that we are considering, with rings of 
integer E/D, residue field extension Ilk. 

Write V~=Spf(E[[T1 ..... TJ]), and V~ T~]]). 

Lemma 4.17. Vf ,~ V f x Spec(k)Spec(/). 

Proof Use that E = D | W(l). 
2) (The maximal unramified extension). Let /~ur denote the com- 

pletion of the maximal unramified extension of K. Then bu,, the ring 
of integers in /~u, is the completion of Du, c K~r. The residue field of 
K~r a nd / ( , r  is/c, the algebraic closure of k. Let I7" denote the base change 
of V = V  ~ to b , , .  

Lemma 4.18. 17" ~ V, x Sper Spec(/c). 

Proof If m is the maximal ideal of D, then mD,, and rob, ,  are the 
" ~ ~ /). ,  and maximal ideals of D~r and b.~. Moreover, D.~/m O.~,,~D.~/m "A 

D.,=D | W(k), from which the above follows. 

3) (Commutation of NL/K with unramified base change). Let L/K 
be a finite unramified extension, and let L.,/R.r denote the completions 
of the maximal unramified extensions. If L/K is galois with group G, 
so is L.~/K.,. We have the diagram of rings of integers of our four fields, 
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Eur 

E ,4.19, 

D 

and let A be a commutative formal Lie group scheme over D and let 

A 

denote the base changes of A to the four rings of (4.19). We have the 
obvious assertion 

Lemma 4.20. 

is the base change to Spec(k) o f  the morphism 

A '  N,~/~ ~ A .  

P r o o f  This follows from checking through the isomorphism of (4.18) 
and comparing with our characterization of the norm (4.14). 

c )  Re la t ion  wi th  Group Schemes  o f  F in i te  Type 

Let G be a group scheme over D of finite type. It is a theorem of 
Greenberg [17, w that the functors 

G , ( R ) = G ( D / p " |  W.(R)); G.: Rings/k .... +Sets 

are representable. Thus they yield a pro-algebraic group G: 

. . . ---~ G ---~ G . _ I --. . . . 

and the definition (4.9) gives us an exact sequence of functors 

(4.21) ' O - - + ( ~ ) , - - ~ G , - - - , G / k - ~ O  n > 0  

if G is smooth. Here d denotes the formal completion of G at the zero- 
section, and G/k  denotes reduction to k. Thus we have an exact sequence 
of pro-algebraic groups, 

(4.22) 0 ~ 0, -~ G ~ G/k  ~ O. 
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Example. T a k e  G = ~ , , ,  o and  write U = ~ , , ,  o. Then  (4.22) reads, 

(4.23) 

Some terminological complication, If k is algebraically closed, and we pass to the slightly 
coarser category of pro-(quasi)-algebraic groups (denoted pro-algebraic groups in 1-55]), 
the above exact sequence (4.23) is written in Serre [55]: 

(4.24) 0 -~ U 1 ~ U~-, ~m ~ 0. 

Since we intend to make use of some of the results of [55], the reader should be warned 
of this shift of terminology. Especially that our U signifies Serre's U x . 

d) Formal Groups of Multiplicative Type 

Keeping  the t e rmino logy  of (b), (c) above,  let us consider  the formal  
comple t ion  of the mult ipl icat ive g roup  scheme U = ~J,, over  D. Then  U 
is a c o m m u t a t i v e  pro-a lgebra ic  group  over  k represented by  a project ive 
sys tem of  g roup  schemes whose  under lying schemes are i somorph ic  to 
affine space (4.12). If  we fo rm U• we obta in  (4.18) the 
pro-a lgebra ic  g roup  over  k, I~ where  U is the formal  comple t ion  of ~ , ,  
over  D = Du,. 

Let  L/K be a finite Galo is  total ly ramified extension of degree pr, 
p = c h a r  k - w i t h  no ta t ion  as in (b). Let  U' denote  the base  change of 
U t o E .  

Cons ider  the kernel,  
0--* T---~ U '  - - - - ~  U 

NL/K 

in the ca tegory  of p ro-a lgebra ic  groups  over  k. 

Proposi t ion 4.25. (i) NL/r is surjective in the category of pro-algebraic 
groups. 

(ii) The pro-algebraic group xo(T ) is isomorphic to the constant 
finite group G/[G, G] over Spec (O). (G = Ga l  (L/K).) 

Proof. By r~ o we mean  the functor  tha t  associates to an algebraic  
g roup  over  k its g roup  of connected  c o m p o n e n t s  over  k, regarded as a 
galois modu le  (or, equivalently,  as an 6tale group)  over  the field k. 
This  functor  x 0 then extends  to the ca tegory  of pro-a lgebra ic  groups,  
taking its values in the ca tegory  of pro-6tale  g roup  schemes over  k. 
It  is i m p o r t a n t  to us to no te  tha t  Xo factors th rough  the ca tegory  of pro-  
quasi -a lgebraic  groups,  and  tha t  regarded as a functor  on pro-quas i -  
a lgebraic  g roups  over  an algebraical ly  closed field k, it is exact ly the 
functor  re 0 of  [55]. 

T o  p rove  (i), since U is represented by a project ive system of  smoo th  
g roup  schemes,  it suffices to check tha t  the n o r m  map,  NL/~: U'(k-)-~ 
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U(/0 is surjective. But this map is just the norm map, NLur/~u r from the 
group of 1-units of E=E,~  to the group of 1-units of D. Switching to 
Serre's notation (4.24) we get the diagram of maps 

0 ~ u ~(Lur) , uLor - , s  , 0  

0 ' U l ( K u r )  ' U~u r ~'k* - q'O. 

Since the end map is an isomorphism, and the middle is surjective 
([55], Corollary to Proposition 1, w 2), we see that the left hand vertical 
map is surjective. 

To prove (ii) we first make the base change to/r Then pass to pro- 
quasi-algebraic groups, and consider the diagram, 

0 >T 

1 
0 ,U '  

0 0 0 

1 
~ S 

NL.r/[iur 

~0 

NL.~/fr 

) lpr,[ 

ffJ m, k 

0 , f :  ,0 .  

S i n c e  [~lprk is a nilpotent group scheme, it follows from the above 
that n o ( T ) - - n  o (S) is an isomorphism. But S is the pro-quasi-algebraic 
group that Serre calls VL and he proves ([55], 2.3, Corollary to Proposi- 
t ion3) that no(S)~G/[G,G],  and indeed the isomorphism is made 

p 
precise (cf. loc. cit. 2.2, Remark): 

One fixes a uniformizer n of L,r. To each a t  G one considers a(n)/n, 
regarded as an element of S(k). Denoting fl: S ( k ) ~ n o ( S )  the natural 
projection, our isomorphism p is induced by: a ~ fl [~ (n)/n]. 

This establishes (ii) once we check that the natural action of the 
galois group Gal (k/k) on no (S) is trivial. But that can be seen immediately 
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from our explicit description of p, provided we have chosen our uniform- 
izer n to lie in LcLu, .  This we could have done. Q.E.D. 

Now let A be a formal Lie group over D and let A denote its base 
change t o / )  =/Sur, and A its fibre over the geometric point k. 

Lemma 4.26. These are equivalent: 
(i) Definition. A is of multiplicative type. 

(ii) /1 is isomorphic to a finite product (jd of formal multiplicative 
group schemes, over if). 

(iii) /1 is isomorphic, over fr to a finite product ~d of formal multi- 
plicative group schemes. 

Proof To show (iii) implies (ii), note that if A satisfies (iii), then/1 is 
divisible in the sense of ([69], 2.2). That is, multiplication by p is an 
isogeny for/1. Thus we may pass (via the equivalence of the categories 
of formal divisible groups over D and p-divisible connected groups 
over / )  ([69], Proposition 1) to the p-divisible group/1(p). Let the super- 
script # denote duality in the category of p-divisible groups ([69], 2.3). 
Since the closed fibre of/1(p) is A(p) which is the constant 6tale p-divisible 
g r o u p  (([~p/~p)d by (iii), we learn that the p-divisible group/1(p)* is 6tale 
of height d. But the only 6tale group scheme of height d over /5  is the 
constant group scheme (~p/Ep)d. Thus /i(/9) must be the dual of this 
latter p-divisible group. This means that/1(/9)=/]~(p). Passing back to 
the category of formal group schemes by the inverse of the above natural 
equivalence gives us t h a t / 1 - - t ]  d, Q.E.D. 

For G a group scheme locally of finite type over D, we shall say that G 
is formally of multiplicative type over D if the formal completion G is of 
multiplicative type over D. 

If G is smooth over D, by Lemma 4.26 the question of whether G 
is formally of multiplicative type is dependent only upon the geometric 
fibre of G over the closed point of D. 

Lemma 4.27. I f  A is an abelian scheme of dimension d over D, these are 
equivalent: 

1) A is formally of multiplicative type. 
2) A/[r has invertible Hasse matrix [26]. 

d 3) There are exactly p points of order p in A(k). p = Char (k) as usual. 

4) Definition. A is an ordinary abelian scheme over D. 

The proof of the equivalence of these assertions is standard in the 
theory of abelian varieties. The implication 3) =~ 1) will be of use to us, 
and so we give a brief proof of it. Let, as above, ,4(p) denote the p-divisible 
group associated to A ([69], 2.2) over k. Assertion 3) tells us that the height 
15 Inventiones math., Vol, 18 
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of the 6tale part of .4(p), A(p) ~t is d. Since/l(p) is isogenous to its dual we 
therefore learn that A(p) ~ the connected part of A(p), must contain a 
group of multiplicative type of dimension d. But the p-divisible group 
A(p) ~ is of multiplicative type, and (4.26) gives 1). See [14] for a discussion 
of ordinary abelian varieties over finite fields. 

Given a formal Lie group A, of multiplicative type over D, of dimen- 
sion d we shall obtain an invariant, the twist of A over D, which completely 
determines A. This depends only upon A/k, and can be defined as follows: 
Consider the 6tale p-divisible group (A/k)(p) ~* which is of height d. 
Making the base change to k, we have A(p) ~ ~(Qp/~p)d, and choosing 
such an isomorphism, A(p) ~* determines an action of Gal(k/k) on 
(QJzp)  ~, unique up to equivalence of representations. We shall refer to 
this action as the twist of A. If k is finite, the action is determined by the 
conjugacy class of the image of Frob~Gal(k/k), which is thus a matrix 
ueGL(d,  7/p), up to conjugacy. We call u the twist matrix. 

Here is a possibly more direct description of u: Note that there is a 
natural isomorphism, Zp~hOmk(U, U)~hom~(U, U). Thus we have a 
natural isomorphism,_ GL(d, Zp)~autk(Ud, Ud)~aut~(Ud, Ud). Choose 
an isomorphism over k, j:  A = ~ ~d, and for X any scheme over k, let 
Frob: X---~X denote the Frobenius automorphism, 

1 x Frob: XXkf~-o'XXkk. 
Then consider the composition, 

U ~ , U  ~ ,A ,A , U  ~. 
Frob  - 1 j - 1 F r o b  j 

Sincej is a morphism over k, the above composition is an isomorphism 
over k, and hence by the natural identification signaled above, it deter- 
mines an element in GL(d, 7zp). A change in the isomorphism j changes 
this matrix only up to conjugacy. Its conjugacy class is none other than 
the twist matrix conjugacy class, u. 

Now suppose k is a finite field, A a formal Lie group over D, of 
dimension d, of multiplicative type with twist matrix u. Let L/K be a 
totally ramified finite Galois extension of degree a power of p =  char(k), 
and with Galois group G. Let A' denote the base change of A to E, the 
ring of integers in L, and consider the kernel, 

(4.28) 0 , T ,A' NL/K,A 

in the category of pro-algebraic groups over k. 

Prolmsition4.29. The morphism NL/r is surjective. The underlying 
abelian group of 1to(T) is isomorphic to G ab • G ab x ... x G ab (d times), 
which we may write as G"b | (Z J ,  and its galois module structure over k 
may be written, in terms of its latter description, as 1 | u = Frob. 
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Proof In fact one obtains a canonical isomorphism of galois modules 
over k, no(T).~ ,b d G | upon choosing an isomorphism z i ~ U  d, 
over k. This follows easily from (4.25)(ii). 

Corollary 4.30. Under the same hypotheses as (4.29), we have 

A (D)/NL/K A (E) ~ (Gab)d/(1 -- u)(Gab) d 

where G ab stands for G/[G,G]. 

Proof Let us first establish 

Lemma 4.31. Let X be a commutative pro-algebraic group scheme 
over the finite field k. Let X ~ c X denote its connected component [49]. 
Then X / X ~  no(X ) is a pro-object in the category of Otale group schemes 
over k. I f  we form Galois cohomology over k then: 

H q(k, X) ~ ,  H ~(k, no (X)). 

Proof If {X j} is a system of commutative group schemes representing 
the pro-object X, then the system of connected components {X ~ 
represents X ~ and the system of quotients {no(Xj)} represents no(X ). 

But Lang's [35] theorem gives us an isomor0hism, 

H q (k, Xi) "~, H q (k, n o (X j)) 

for each j, whence the lemma follows. 
Now apply Hq(k, ) to the short exact sequence (4.28) to get, using 

(4.29), 

(4.32) A ' ( k )  NL/K(k) ~' A(k)--~ Hl(k, T)---~ HI(k,A'). 

But A' is represented by connected group schemes, so (4.31) gives us that 
HI(k,A')=O, and combining (4.31), and (4.29) gives that HI(k ,T)= 
(G"b)d/(1--u)(Gab) n. Our corollary then follows from the observation 
that there are natural isomorphisms of pro-finite groups, 

A'(k) ~ A (k) 
NL/K 

A'~E~ ~ A (0) .  I NL/K 

Corollary 4.33. Let L /K  be a totally ramified F-extension associated 
to p. Let A be a formal Lie group of dimension d of multiplicative type, 

15" 
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with twist matrix u, over D. Suppose u has no eigenvalue equal to 1. Then 
NL/K A (E) is of finite index in A(D), and 

A (D)/NL/r A (E) ~ Fd/(1 -- u) r d. 

Proof. After our assumptions, the intermediate finite extensions 
Km/K of the tower L/K all satisfy the hypotheses of Corollary (4.30). 
Thus the cokernel of Nr,,/r is isomorphic to (F/Fm)d/(1-u)(F/Fm) d. By 
hypothesis, 1 - u  is nonsingular. Thus the order of these groups are 
constant for large m, and in fact isomorphic to Fd/(1-u)F d. Q.E.D. 

e) The Twist Matrix of Ordinary Abelian Varieties 

In this paragraph we consider abelian varieties over finite fields k. We show that the 
eigenvalues of the twist matrix of such an abelian variety which is formally of multiplicative 
type lie among  the eigenvalues of the Frobenius endomorphism of A. We shall prove this 
well known fact (in the more precise assertion of (4.34) and (4.37)) and then in (f) below 
derive the facts about the cokernel of the no rm of abelian schemes that we need for our 
later work. 

Lemma 4.34. Let A be an ordinary abelian variety of dimension d 
defined over a finite field k with twist matrix u. Then if g(t) is the charac- 
teristic polynomial of the Frobenius endomorphism, z~, we have 

g (t) = c tdf(q/t) �9 f ( t )  

where f ( t )  is the characteristic polynomial of the matrix u, q = card(k), 
and c a nonzero constant. 

Proof Milne, ([43], w 1) has shown that Weil's definition ([72], IX, 
w 67, p. 131, and Theorem 35) of the characteristic polynomial of an 
endomorphism of an abelian variety generalizes nicely to p-divisible 
groups. Explicitly, let G denote a p-divisible group, [62, 69] over k 
(which may be taken to be any perfect field). Let e denote an endomor- 
phism of G over k. One says that P(t) is the characteristic polynomial of e 
if it satisfies these conditions" 

(a) P is monic, has coefficients in 7zp, and is of degree h equal to the 
height of G. 

(b) I fe  I . . . . .  ah are the roots of P in some algebraic closure of Qp, then 

iOiF(oti) p = [degree F(e)[p 

for all polynomials F with coefficients in 2~. 
This polynomial is unique ([72], IX, w 68, Lemma 12) and Milne 

shows its existence by appealing to the theory of Dieudonn6 modules. 
From its definition it is clear that if A is an abelian variety over k, and e 
an endomorphism over k, then the characteristic polynomial of e, 
regarded as an endomorphism of A ([72], IX, w 67) is equal to the charac- 
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teristic polynomial of e regarded as an endomorphism of the p-divisible 
group G=A(p), associated to A ([69], 2.2). 

The following four observations are easily proven: 

1. ( Multiplicativity). I f  e is an endomorphism of a p-divisible group G 
which operates on an exact sequence of p-divisible groups, 

O --~ G1---~ G --~ G 2 ---~ O 

and f l ,  f, f2, denotes the characteristic polynomials of e on the groups 
G1, G, G2, respectively, then, 

f = A f 2 .  

2. I f  e is an endomorphism of a p-divisible group G, with characteristic 
polynomial f, then the dual endomorphism e* of the dual p-divisible group G * 
also has characteristic polynomial f. 

3. I r e  is an endomorphism of the constant p-divisible group (~p/Zp) d, 
then its characteristic polynomial is the characteristic polynomial of the 
associated (d • d)-matrix. 

4. Consider a diagram of p-divisible groups over k, where ~l is an 
isogeny: 

GI el ~ G1 

I 1 
G2 e2 > G2 

then the characteristic polynomial of the endomorphism el of G1 is equal 
to the characteristic polynomial of the endomorphism e 2 of G 2 . 

Consider an abelian variety A as in the hypothesis of (4.34) and let 

(4.35) O ---~ G~ ---~ G ---~ G~t--~ O 

be the decomposition of the p-divisible group G =A(p) into connected 
and 6tale parts ([69], 1.4), where p = char (k). Then G ~t is of height d and G O 
is isogeneous to the dual of G ~t. The Frobenius endomorphism n operates 
on the exact sequence of p-divisible groups, (4.35), over k. Let n v, and 
~t denote the induced endomorphisms on G ~ G ~t respectively. 

Let ~/: A ' -~A denote an isogeny between A' the dual of A, and A, 
defined over k ([45], Chapter 6, w 2). Then r/induces isogenies of p-divisible 

0 ' (G~t) * , G # , (GO) * , 0  

0 ~ G O ~ G ~ G ~t , 0. 

groups, 

(4.36) 
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The Frobenius endomorphism operates compatibly on the six 
members of (4.36), regarded as p-divisible groups over k. Consequently, 
if one denotes the operation of the Frobenius endomorphism on (G~t) ~ 
by n o , we may apply (4) to obtain that the characteristic polynomial 
of the endomorphism n o on (G~t) * is equal to gO, the characteristic 
polynomial of the endomorphism n o on G ~ 

Applying duality we find, using (2), that the characteristic polynomial 
of the endomorphism (~o). on G ~t is equal to gO, again. 

We now have two endomorphisms, (~o). and n ~t on G ~t, with charac- 
teristic polynomials gO and g~t. These endomorphism are easily seen to 
commute, and their composition is multiplication by q. (This can be 
seen from the definition of duality of p-divisible groups, together with 
the observation that the Frobenius endomorphism on ~m is multiplica- 
tion by q in ~m.) 

Now recall that if A, B are any two (d x d)-matrices over a field of 
characteristic zero, whose composition is q I (I is the identity), then 
their characteristic polynomials satisfy the relation: 

fA(t)-- c. t a . f~(q/t). 

Since G 6t is an 6tale p-divisible group, we may apply (3) to deduce the 
analogous relationship: 

g~t (t) = c . t a . gO (q/t). 

But one also gets, from the definition of the twist matrix, and (3), that 

g~t (t) = c. t d gO (q/t). 

Lemma 4.34 then follows from (1). 

Corollary 4.37. Let A be an ordinary abelian scheme over D, with 
twist u. Then the eigenvalues of  the Frobenius endomorphism of A is, 
counted with multiplicities, ~x, . . . .  an, q/cq . . . . .  q/~,, where ~1 . . . .  , ~, are 
the eigenvalues of u. 

Corollary 4.38. Let A be an ordinary abelian scheme over D with 
twist u. Then u -  1 has nonvanishing determinant. 

Proof The Frobenius endomorphism cannot have eigenvalue 1, for 
that would imply the existence of an infinite number of rational points 
of A over the finite,field k. 

f )  7he Norm Mapping with Respect to F-Extensions 
for Ordinary Abelian Schemes 

Proposition 4.39. Let A be an ordinary abelian scheme over D (whose 
residue field k is finite),  of  dimension d. Let L /K  be any F-extension. 
Then A(K)/NL/t~ A(L) is finite, and consequently so is Hi(F, A(L)). 
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I f  L/K is a totally ramified F-extension, then we have, more precisely, 
the short exact sequence, 

(4.40) F~/(1 ~ u) F d ~ A (K)/NL/r A (L) ~ p-part of A (k) -~ O. 

Proof If L/K is unramified, the proposition follows from (4.3) above. 
If L/K is ramified, we may find an intermediary subfield K' which is a 
finite extension of K such that L/K' is a totally ramified F-extension. 
By transitivity of norms, it suffices to prove the proposition for L/K'. 
We are thus reduced to the case where L/K is a totally ramified F-extension. 

Then the intermediary extensions Km/K satisfy the hypotheses of 
Proposition4.29. Evaluating the exact sequence (4.6) by means of 
Corollary 4.30 we get 

(4.41) (F/Fm)a/(1 - u)(r/rm) ~ ~ A(K)/Nrm/r A(Km) ~ A(k)/A(k) p"--~ O. 

But by (4.33) and (4.38) the above groups stabilize for large m, giving 
(4.39). 

Proposition 4.42. Suppose, in the situation of the preceding proposition, 
we have that the p-part of A(k) admits a lifting to A(K). That is, we have a 
dotted arrow making 

A(K) 

/ "  

p-part of A(k) c A(k) 

commutative, where the vertical arrow is the reduction map. Then if L/K 
is totally ramified, we may sharpen (4.41) to the (noncanonically) split 
exact sequence: 

(4.43) O---~ Fn/(1-u)Fd---~ A(K)/NL/K A(L)-* p-part of A(k)--~O. 

Proof We may regard (4.41) above as the exact sequence of 0-dimen- 
sional Tate cohomology groups of the finite group F/F~ with coefficients 
in the modules of the short exact sequence, 

(4.44) 0 ~.~(K,,)--~ A(K,,)-+ A(k) ~ O. 

But since F/Fm is a finite p-group, the Tate cohomology groups of 
F/F, with coefficients in the p-part of A(k) are isomorphic to the Tate 
cohomology groups with coefficients in A(k), and our newly hypothesized 
lifting then enables us to conclude that the boundary map 

H - ' ( r / r , ,  A(k)) -~ A(K)/Nr,./K A(Km) 

of the long exact sequence ofTate cohomology groups is trivial, hence the 
first arrow of(4.41) is an injection. Q.E.D. 
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w 5. Abelian Schemes over Local Bases 

For a brief exposition of Hensel rings, see (GT, Chapter III, Section 4). 
In this paragraph, let X be a Hensel arithmetic scheme. By this we mean 
the spectrum of D, the ring of integers in a field K, finite over the field of 
fractions of the Hensel-closure of the localization of Z at p. Let 2 denote 
the completion of X,/s the completion of K. Let Hr(X, ) denote cohomol- 
ogy with compact support (SGAA, Fasc. 1, Vol. 4.3), the cohomology 
being taken for the f p  q f  site (SGAD, IV, 6.3). 

The following lemma collects all the results we shall need con- 
cerning the relationship between cohomology groups over Hensel bases 
to cohomology groups over complete bases. 

Lemma 5.1. (i) (Galois cohomology). The natural map Gg--* Gr is an 
isomorphism, and consequently, the induced map on Galois cohomology, 

g ' (K/K;  ) -~H ' (k / / ( ;  ) 

is an isomorphism for any Galois module over K. 

(ii) (Cohomology over fraction fields). Let G be a commutative group 
scheme of finite type over K. Then 

H'(K,G) ~ ,H~(/(, G) if r>O. 

The above isomorphism is true for r ~ 0 if G is finite. 

(iii) (Smooth groups over X) .  Let G be smooth over X, of finite type. 
Let Gx be its reduction to the closed point of X and let G o denote the 
connected component containing the identity in G x. 

Then 
Hr(X, G)~nr (2 ,  G)~-nr(k(x), GJG ~ for r>=O. 

In particular, if Gx is connected, 

Hr(X, G)=tF(2 ,  G)=O for r>O. 

(iv) (Relative cohomology for r> 1). 

Let G be smooth over X, then 

H~.(X,G)=H~.(2, G) for r > l .  

(v) (Relative cohomology for r= 1). 

Suppose that G satisfies either of the following two conditions: 

(a) G is an affine finite fiat group scheme over X. 

(b) G is a smooth group over X satisfying the "N~ron property": 
G ~ j .  j* G as a sheaf for the smooth topology. 

Then H ~. (X, G) = H ~. (2,  G) = O. 
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(vi) (Summary of the above results for A a N~ron model over X) .  

Suppose that A is a N~ron model over X,  and that 

O___~ A O--~ A --~ F---~ O 
is as in (3.1). Then 

Hr(x ,  "~ , ~ , _ A ) = H  (X,A)~-H*(k(x),F) for r>_O 

H:(X, A)~H:(~', A) for r>= 1. 

Hi(X,  A)~-Ha.(f(, A)=0.  

Proof (i) What is meant in (i) is that one chooses an algebraic 
closure/~ of/s  and one takes K to be the algebraic closure of K in/~. 
We then get a natural G~ = Gal(/~//s --* GK = Gal (K/K) by restriction. 
It is an elementary fact that this map is an isomorphism: It is surjective 
because of the henselian property of the ring of integers of K. It is 
injective, as may be seen using Krasner's lemma ([29], p. 31, Propo- 
sition 4). 

(ii) The assertion for finite groups follows from (i). To prove (ii) 
proceed by induction on r >  1. Recall that r-dimensional Galois co- 
homology groups are torsion groups. For surjectivity, take heHr(i~, G) 
which is of order n. The diagram 

Hr(K, riG) , Hr(K, G) 

nr(~, .G) , Hr(I~, a) , n'(~,  G) 
implies that h is in the image of the vertical map. We have used the fact 
that .G is finite. 

Injectivity for r>__2 may be proved by taking heHr(K, G) which is 
of order n, and considering the diagram 

H"- ' (K,  G) , H~- '(K,  G) 

H ' - ' ( R ,  G) , Hr- ' (K ,  G) 

, Hr(K, nG) , Hr(K, G) 

, H"(K, nG) , FIr(K, G). 

The first two vertical maps are isomorphisms by the inductive hypo- 
thesis. The same diagram can be used to show injectivity for r =  1, but 
one needs an additional fact: 

Approximation Lemma. I f  n is a positive integer and c ~ G (K), there 
is a ~ G ( I ( )  and a d~G(i() such that 

c=5 .d" .  

Proof Reducing immediately to the case where G is a connected 
group, proceed in three steps: 
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a) When G Extends to a Group scheme G/X which Satisfies the "Neron 
Property": 

Then regard c as an element of G0?). Since G is smooth we may 
approximate c by a section ~eG(X) such that c--=g mod p" for any 
number r >  1 we choose. Thus if e=c/~, ee0(J? )  where ~ is the formal 
completion of G along the zero section. Since G(J?)" is an open subgroup 
of the p-adic analytic group G()?), if r is taken large enough, e~G(Jf)". 

b) Extensions by Unipotent Groups: 

Let 0 --, U --, G - ,  G' -~ 0 be an exact sequence of K-groups, where 
U is unipotent and the approximation lemma holds for G'. Then it 
holds for G. 

This follows because U is uniquely divisible for all n >  1; therefore 
the approximation lemma holds for U, and the maps G(K)---, G'(K), 
G(/~) ~ G'(/~) are surjective. 

c) 7he General Case: 

After (b) we may suppose that G has no unipotent part. But a recent 
theorem of Raynaud (ModUles de N~ron, Comptes Rendus Acad. Sci., 
Paris t. 262, pp. 345-347, ThGorGme 3.4) asserts that such a group scheme 
G/K extends to a group scheme G/X which satisfies the "NGron property". 
The Approximation lemma then follows from (a). 

(iii) Since G is smooth, we may apply (GB, III, App. 11.1) to replace 
the fp  q f  cohomology groups occurring in the statement of (5.1) (iii) by 
Stale cohomology groups. Now, since X, and )? are Hensel-closed, the 
argument of (4.3) (or, to cite a precise reference: Theorem 4.9, Chapter II 
of GT) applies, giving that 

H~t(x, G)=/4~,(2, G)=/-r(f,/k, G) (k=k(x)). 
Our assertion then follows from Lang's theorem [35], using that k 

is a finite field, and G o is connected. 

(iv) This comes directly from (ii) and (iii), by the five-lemma. 
(v) Consider the exact sequence, 

H ~ (X, G) ~ H ~ (Spec K, G)--~ H. 1 ~ H 1 (X, G) ~ H 1 (Spec K, G). 

In case (a), note that any section defined over K of G, or of a G-torseur 
extends over X. Therefore jo is surjective and jl is injective (we have 
used that every element of H 1 (X, G) is represented by a torseur since G 
is separated ([51], XI.3.1.1)). 

In case (b), since G satisfies the "NGron Property", jo is surjective 
(in fact, it is an isomorphism). Thus we must show that jl is injective. 
We may identify the last two groups with the corresponding 6tale Cech 
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cohomology groups, since G is smooth (GB III, App.) and we are con- 
sidering one-dimensional cohomology (GT, Chapter II, 3.6). Let c be 
a Cech 1-cocycle in ZI(X'/X, G) representing a class in Hi(X, G) which 
goes to zero under j l .  Let the subscript K denote the base change from 
X to K. We have that c r= fbx ,  for bK: X~--~Gx a section. By the "N6ron 
property", bx comes from a unique section, b: X'--,  G. Set c '=  c - 6  b. 
Then c': X' x xX ' -+G is a morphism such that ck=0.  

Since X ' x  x X' is smooth over X, and again, G satisfies the "N6ron 
property", c' must be zero. That means that our original c was co- 
homologous to zero. Q.E.D. 

Corollary 5.2. Let A be an abelian scheme over D. All the maps below 
are isomorphisms : 

H 2. (X, 47t) ~ v~oH 2. (X, A) ~ p=H' (K/K; A) 

l 
H z. (2, 4) ~ p=H 2. (2, A) ~ 7 ~  p~176 ( /~/ / (  ' A) ~ {A' (/()}* 

where { }*=homco.. (,Qp/Tlp) denotes Pontrjagin p-dual, z is the Tate 
local duality isomorphism [67], the map t I is the limit of the maps q, below, 
coming from the "Kummer theory" (3.3) of A, 

0 --~ H 1 (X, A)/p. -+ H 2. (X, p.A) ~ p.H 2. (X, A) -~ O. 

Proof It follows from (5.1)(vi) that r /and its counterpart, i ,  are iso- 
morphisms. Using the relative cohomological exact sequence (SGAA, 
Fasc. 1, Vol. 4.3) and (5.1)(v) we see that j and )" are isomorphisms. The 
vertical maps are isomorphisms again by (5.1)(v). 

Corollary 5.3. H 2 (X, A) is a discrete p-abelian group of cofinite type. 
Its maximal divisible subgroup has corank equal to [ / ( : Q p ] - d i m  A. 
Moreover, the quotient by its maximal divisible subgroup, H. 2 (X, A)/div 
is dual to p=A'(~;). 

Proof The above assertions are true for {A'(K)}*. Recall that the 
logarithm mapping (LG, 5.36, Cor. 4) ([69], p. 168) identifies a neigh- 
borhood of zero of the p-adic Lie group A'(/() with a neighborhood of 
zero of the linear p-adic Lie group D. aimtA). 

Corollary 5.4. Let L/K be a F-extension. We have the exact sequence, 

(5.5) 
0 ~ {A'(/()/norm A'(/(.)}*-+H2.(X, A)~-~-+H2.(X., 4) r 

-* [A(/()/norm A (/(,)] --. 0. 
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Proof The identification, H2.(X. ,4)~{A' (K)}  *, gives rise to the 
commutative square, 

H 2 (X, A) 

n.~ (X~, 4) 

, {A' (/()}* 

l (norm)* 

, { A ' ( g . ) } *  

from which it follows that the kernel of ~. is {A'(/()/norm A'(/s 
To analyze the cokernel of ~. we may identify H2.(X, 4) with 

p=Hl( //s A) by J r  of (5.2) and apply the Hochschild-Serre spectral 
sequence to the Galois extension/(.//(.  Since H2( //s A)=0, [67], we 
obtain that the cokernel of ~, is isomorphic to H2(F/I", A(K,))which 
is itself isomorphic to A(~) /normA(K. )  by periodicity of the Tate 
cohomology of the cyclic group F/I..  Q.E.D. 

Suppose, at this point, that the decreasing sequence of subgroups, 
Ng,/t~ A'(K,) is stationary for large n. Let N denote the intersection of 
these subgroups in A'(/(), for all n, (and hence N is Nt~./g A'(~;,) for 
large n, "the subgroup of universal norms"). If we pass to a direct limit 
as n goes to ~ with (5.5), we get: 

(5.6) 0 ~ { A (Fi)/ N } * ---~ H2. (X, 4) ---~ H2 ( y, 4)r--~ 0 

where the right-hand arrow is surjective because, the limit 

[A(g)/norm A(g,)] 

is taken via the corestriction maps (CL, p. 124) which are eventually 
zero since norm A(/s stabilizes for large n, and A(K,)/N is killed by a 
power of p. 

Corollary 5.7. Let L /K be a totally ramified F-extension. Let A be 
of  dimension g, and ordinary (at the closed point of X ), with twist matrix u. 
Suppose that the p-part of A(k) admits a lifting to A(K), (as in (4.42)). 
Then for every n we have the exact sequence, 

(5.8) O--~ E.---~ HZ(X,,  A)--* H2. (Y, 4)r"---~O 

where E. is a finite (p-abelian) group obtained as a (noncanonically 
split) extension, 

(5.9) 0 +-- {Fg/(1 - u) F*}* ~-- E n ,-- {A' (k)}* *-- 0. 

Proof It follows from (4.38) and (4.40) that Nt~./x A'(~;,) is stationary 
for large n. Note that if we replace X by X,, the residue field k doesn't 
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change. Hence the twist matrix of A over the base X, is again u. Now 
apply the previous corollary for the base X,, and evaluate A'(K,) /N 
by means of (4.42). The groups E, are seen to be all (noncanonically) 
isomorphic for varying n. Q.E.D. 

Corollary 5.10. Let L /K  be a totally ramified F-extension. Let A be 
an abelian scheme defined over D, where D is a complete valuation ring, 
finite and unramified over 7Z, p for p > 2. Suppose A' is of dimension g and 
ordinary and has twist matrix u. Then the conclusion of (5.7) is valid for A: 
One has the short exact sequence (5.8) and the noncanonically split exact 
sequence (5.9). 

Proof This follows from (5.7) and the following lemma: 

Lemma 5.11. Let A be an abelian scheme over X=Spec(D) where D 
is a complete discrete valuation ring, finite and unramified over Zp for 
p>2.  Then the reduction map, A(D)--,A(k) induces an isomorphism of 
p-torsion points. 

Proof Suppose not. Hence there is an element a~,A(D) which goes 
to zero under the reduction map. We regard a as a section over D of the 
finite flat group scheme pA. Then a generates a finite flat subgroup of pA. 
(By taking the Zariski closure of the 6tale subgroup of (pA • speed Spec K) 
generated by a.) Call this subgroup scheme G. G is of rank p, and is 
connected, since a goes to zero under reduction. The question to ask 
is this: What is the closed geometric fibre G~ of G ? Since G~ is a con- 
nected group scheme of rank p it can be only one of two group schemes: 
~, o r  I~p. (Note: In the case where A is ordinary, it couldn't be ap, but 
also in complete generality:) It cannot be ~p, for a simple calculation 
shows that ~p doesn't lift to any finite flat group scheme over any dis- 
crete valuation ring D, unramified over Z~. In fact, it doesn't lift to 
D/m 2, where m is the maximal ideal of D. (Example A, w 1 of [46].) (This 
latter fact also follows from the theorem of Oort-Tate [50] which 
classifies all finite flat group schemes of rank p over complete local 
noetherian rings.) Thus G~ must be It~p, from which it follows that the 
Cartier dual G of G is an 6tale group scheme over D. 

Thus G is isomorphic to the constant group scheme over D', some 
6tale extension of D. Thus, G, the Cartier dual of (~, is isomorphic to 
I#p over D'. But this is a contradiction because G has a nontrivial section 
over D' (namely: a), and yet the group scheme I/~p can have no nontrivial 
section over any unramified extension of Zp, provided p>2.  Q.E.D. 

Corollary 5.12. Let L /K  be totally ramified. Let A be an ordinary 
abelian scheme over X of dimension g. Suppose K is Qp, for p > 2. Then 
the Pontrjagin dual of H 2. (Y, ,4) is a free A-module on g generators. 
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Proof. Consider the commutative diagram, given to us by (5.10): 

0 

(5.13) 0 

{A'(k)}* {A'(Qp)}* 

, u?  (x ,  ~) , H.z (Y, A) r ,0  

0 

Applying Lemma 5.11 we see that the cokernel of {A'(k)}*---~ {A'(Qp)}* 
is a p-divisible group, whose rank, after (5.3), is g. From the above 
diagram we see that this cokernel maps onto H?(Y, ~)r  with finite 
kernel. Consequently H.Z(Y, ~)r  is also a p-divisible group of corank g. 
Since the coranks of H?(Y,A) r" are gp", (2.1)(c) applies to yield our 
corollary. 

We conclude this section with a calculation of the group E, when 
K = Qp and A is of dimension one. For A of dimension one, consider 
the characteristic equation of the Frobenius endomorphism acting 
on A~: h(x)=x2-apx+p. 

The integer ap is the trace of the Frobenius automorphism operating 
on one-dimensional (-adic r The Riemann hypothesis tells 
us that 

(R. H.) lap ] < 2 (p)�89 

The requirement that A be ordinary is equivalent to the requirement 
that a p ~ 0  mod p, which after (R.H.) above is equivalent (if p >  2) to 
the requirement that ap+ O. If A is ordinary, then the twist matrix u is 
just a unit of Zp, and u, p/u are the roots of the quadratic polynomial h(x). 
One has, also, that the order of the group A(k) is just h(1)= l+p-ap .  

Let ep=ordp(h(1)). Note that: 

ep = ordp (h (1)) = ordp (1 - u) (1 - p/u) = ordp (1 - u) 

the last equality coming from the fact that 1 - p / u  is a unit in Zp. 
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Lemma5.14. (i) I f  p>2 ,  then er=ordp(1-u)=ordp(h(1) )  is either 
one or zero. We have ep = 0 if and only if a p -  1 mod p. 

(ii) I f  p = 2, ep can take the values O, 1, or 2. 

(iii) I f  p> 5, ap~ 1 mod p if and only if ap= 1. 

Proof These are all immediate consequences of (R.H.). To see (i), 
for example it suffices to note that if p>3 ,  the following inequality is 
impossible by (R. H.): 

p2<lh(1)l. 

Corollary 5.15. Let K/Qp be a totally ramified finite extension. Let 
D c K  denote the ring of integers, and X=Spec(D).  Let Y / X  be a totally 
ramified F-extension. Let A be an ordinary abelian scheme of  dimension 
one, over Spec(7Zp). Denote by the same letter its base change to X. Then 
the groups E n of (5.8) may be computed as follows: 

(i) E n is trivial if ap ~ 1 mod p. 

(ii) En is isomorphic to ZIp G 7Zip if a v -  1 mod p. 

Remark. We shall use this corollary in two situations (cf. w (a) 
and (b)). Namely, when K = Qp, and K = Qp((p). 

Proof Under our hypotheses, the residue field k of D is the prime 
field. By (5.11) there is a lifting of the p-torsion points of A(k) to A(Qp), 
and hence to A(K). Thus Corollary 5.7 applies. Since h(1) is the order 
of A(k), pep is the order of {A(k)}*. By (5.14)0), ep is either 0 or 1. Thus 
{A(k)}* ~ Z/p ep. Also, r / ( 1  - u) r ~ Zip ep. 

This evaluates the split exact sequence (5.9). Q.E.D. 

Corollary 5.16. Let X=Spec(Zt ,  ), Y / X  a totally ramified F-extension 
and A an abelian variety of dimension one, ordinary over X. Then the exact 
sequence (5.8), 

O- .  E - .  H2. ( X , d ) - ~  H2. (Y,, d ) r - .  o 

may be evaluated as: 

(i) 0 ~ 0 -~ Qp/Zp-~ Qp/Zp-~ O, if ap @ 1 mod p 
(ii) O - - > Z / p ~ ) Z / p - ~ Z / p O Q J Z p - * Q J Z p - - ~ O ,  if a p - l m o d p .  

Proof This just comes from (5.10), (5.11) and (5.15).We shall need it 
explicitly for some calculations in w 8. 

w 6. N6ron Models over Global Bases 

For p a prime number, let Y / X  be a F-extension, associated to p, 
over a global base X, which we suppose to be "special". That means 
(w 1 (c)): any x s X  is either unramified for Y / X  or is totally ramified. 
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Let S denote the (finite) set of such ramified x. Consider a N6ron model 
(w 3) A over X satisfying the following property: 

(6.1) A x is an ordinary abelian variety over k(x) for all x~S. 

Also, for all x E X  such that Ax:~ A ~ (i.e. A~ is not connected) x splits 
only finitely in Y. 

If (Y/X,A) satisfy the above hypotheses, we will simply say that 
(Y/X, A) is admissible. 

Recall that if Y/X is the cyclotomic/"-extension, the second require- 
ment in (6.1) is automatic. 

If (Y/X,A) is admissible, the Kummer-theoretic discussion of w 
applies, yielding that 

(6.2) O ~  A(K.)| 

is (g-exact. 

Let T. c X. denote the set of points x of characteristic p. 

Proposition 6.3. Let (Y/X, A) be admissible. One has the exact sequence, 

O--~HI(X,,,4)--*HI(X, - T,,,4)-+ + H?(X.,x,A) 
x~Tn ~ 

| n (:;;., ;t) 
x~Tn 

where X., x is the henselization of X,  at x. 

Proof Consider the direct limit of long relative cohomological 
exact sequences for the f p  q f  cohomology of the pair (X,, X , - T . )  
with coefficients in ~,A ( r ~  ~). One has the vertical isomorphism by 
(5.2). To establish the left-hand zero, and therefore the proposition, we 
must show that HI.(X,,x, f A ) = 0  for x~ T.. This follows from (5.1)(v), 
for if x is of characteristic p, then prA is finite flat and affine, and so we are 
in case (a) of (5.1)(v). If x is not of characteristic p, then prA is an 6tale 
separated quasi-finite group scheme which enjoys the "N6ron property" 
(cf. 5.1) (since A does, and j . j*  is left exact). Therefore we are in case (b). 

Prolmsition6.4. Let (Y/X, A) be admissible. 
(i) The sequence HI(X.,  A) is controlled. 

(ii) The kernel and cokernel of the map, ~.: HI(X.,A)---~HI(Y,7t) r" 
are given by: 

ker (ct.) = ker (7.) 

cok (~.) = ker (6.)/im (7.) 

where ~., t$. are the maps of diagram (6.6) below. 
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(iii) Letting H = H{r/x,a ) denote the F-module H t (Y,/1), H is F-cofinite, 
and we have the following sequence (mod c~) which is exact (mod c~): 

(6.5) 0--~ A (K.) | ([~p/7~,p ~ H r. --~ p~llI(Kn)---+ O. 

Proof Let us establish the following commutative diagram, where all 
horizontal lines are exact: 

(6.6) 

0 

l 
/1(L)r. 

O---~ HI(X. , /1)  ,HI(X .  - T.,/1) 

o , H ~ ( ~ M o - - - , H ' ( Y  - r~,/1) ~o 

0 

~n 

0 

i 
' F I  (e.,~) 

' 1-I n?(x. ,~, / i )  , H ~(x.,/1) 
xe~~ 1 

' 1] H?(L,/1) ~ 
x~T~ 1 

O. 

To explain the terminology, T~ refers to the set of primes of Y 
dividing p. After our assumptions on Y/X,  the sets T~ and T, are in 
one to one correspondence. The two long horizontal lines come from 
(6.3). The bottom horizontal line has been obtained by passing, in (6.3), 
to a direct limit ( n ~ ) .  It remains left-exact after passing to fixed sub- 
groups under F,. 

The group / 1 ( L ) r = H a ( F , , H ~  the group of coinvariant 
elements under the action of F, on A(L). The middle vertical sequence 
of groups remain the same if computed with respect to the 6tale or 
the f p  q c sites because/1 is an (inductive system of) 6tale group schemes 
over X. - T.. 

If we consider the extensions Xr, - Tm/X. - T,, these are 6tale Galois 
extensions for all m > n, with group F,/F,~. If we form the Hochschild- 
Serre spectral sequences for these Galois extensions and for the coeffi- 
cient sheaf/1 (e. g., GT, III, 4.7), (for either the 6tale or f p  q f  sites), and 
pass to the limit as m goes to infinity, we get the "Hochschild-Serre 
spectral sequence" for the (pro-)6tale extension Y - T o o / X . - T , ,  with 
Galois group F.. 

The middle vertical sequence of groups in our diagram (6.6) is just 
the short exact sequence which can be deduced from that Hochschild- 

16 Inventiones math.,Vol. 18 
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Serre spectral sequence, where we have put the bottom zero in because 
F, is a group of cohomological dimension one. 

The right-hand vertical sequence of groups is just the product, for 
x~ T~ of the sequences (5.5). 

This establishes our diagram. 
To prove our proposition, the reader will check that (ii) follows 

immediately, by diagram-chasing. To see (i) we first note that the order 
of cok (ct~), by (ii), is bounded by the order of FI En, x and the groups E~, x 

x~Tn 
are all finite groups of order admitting an upper bound independent 
of n, after (5.5) and (4.40). Moreover, the order of ker(~) is bounded 
by the order of ,4(L)r ~, and thus, to finish the proof of (i) we must show 
this latter group is of finite, bounded order. 

Lemma 6.7. Let M be any discrete p-abelian group of finite corank 
on which F operates continuously. I f  M r is finite, then the natural map 
induces an isomorphism: 

Mr  ~ ' (M/div)r. 

Consequently, the order of  ~l(L)rn is bounded by that of  A(L)/div, 
which is a finite group. 

Proof. The first assertion is elementary: Consider the diagram: 

0 * div * M 

0 ~ div ~ M 

Mr 

0 

, M/div 

1-y 

, M/div 

' (M/div)r 

0 

~0 

~0 

where d i v c  M is, by our assumptions a p-divisible group of finite corank. 
Since, by our hypothesis the endomorphism 1 - 7  has finite kernel on 
div, it follows that it is a surjective endomorphism of div, whence our 
first assertion follows. Our second assertion then follows because 
A(L)r"=,4(Kn) is a finite group. This concludes the proof of part (i) 
of (6.4). 

To prove (iii) we need a (well-known) lemma. 
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Lemma 6.8 (the weak Mordell-Weil theorem). H 1 (X, A) is of cofinite 
type as an abelian group. 

Proof. Take S to be a finite set of primes of X containing T, and 
containing all primes of X at which A has bad reduction. Then since 
HI(X, f l ) cHI (X-S ,  fi), it suffices to prove that HI(X-S ,A)  is of 
cofinite type. But on X - S  we have the following exact sequence of 

sheaves: 0 ~ pA -*,4 ---~3 ---, 0 

and so it suffices to show that Hi(X-S ,  pA) is finite. Note that the 
sheaf pA is a finite 6tale group scheme over X - S .  The cohomology 
group H~(X-S, pA) remains the same when computed for either the 
6tale or the fp  q f  topology. Let Z / X -  S be a finite, connected, Galois 
extension, with Galois group G, such that the pullback of pA becomes 
a constant group scheme over Z. Let G(p)=G be a p-Sylow subgroup, 
associated to the intermediate extension W/X-S .  Then the canonical 
map H~(X-S, pA)~HI(W, pA) is injective. The reason for this is that 
one has a trace map, (SGAA, IX, w 5), 

H' (X - S, pA) --~ H' (W, ,A) r,, H' (X - S, pA) 

such that the indicated composition above is multiplication by the 
degree of W / X -  S, which is (G: G (p)). But multiplication by the integer 
(G: G(p)), which is prime to p, is an automorphism of the p-abelian 
group Ht(X-S ,  pA). Thus it suffices to show that Hx(W, pA) is finite. 
But pA is now a locally constant Z/p-vector space sheaf over W, which 
is trivialized by a Galois extension of degree ft. By the well-known 
fact (CL, Chapter IX, 1, Theorem 2) that every representation of a 
p-group on a nontrivial vector space of characteristic p contains the 
identity representation, we obtain that the sheaf pA over W admits a 
composition series all factors of which are the constant sheaf Z/p. Thus 
it suffices to show that H~(W, Z/p) is finite. But this latter group just 
classifies Galois p-extensions of the field of fractions of W which are 
unramified at all primes of W, and there are, to be sure, only a finite 
number of such extensions. 

Since H 1 (X, A) is of cofinite type,.we have that H I (Y,, A) r is of cofinite 
type, after (i). Thus H~(Y, A) is F-cofinite. To see the exact sequence 
asserted in (iii), we need only use (3.2), (6.2) and (i). Q.E.D. 

U sing the terminology of w 2 (a), let f(L/K, y ; t ) = f ( L / K ,  A;t) denote 
the characteristic polynomial of H=H~r/X,A ), and refer to it as the 
characteristic polynomial of the admissible pair (Y/X, A). 

When is H of finite corank? One might hope, ultimately, to show 
this to be true in some broad context. Nevertheless, we obtain from the 
above proposition and the theory of F-modules, the following corollary: 

16" 
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Corollary6.9. I f  both A(K) and the p-primary component of III (K) 
are fnite, then H is of finite corank. 

A necessary and sufficient condition for H to be of finite corank is 
that for some n, the rank of A(K,) equals the rank of A(Kn+I) and the 
corank of the p-primary component of III n equals the corank of I~+ 1 . 

Proof To check that H is of finite rank, it suffices to know that 
H r is finite. After Proposition 6.4(iii) this latter assertion is equivalent 
to our first hypotheses. To see the second assertion of the above corollary, 
one need only note: 

Corollary 6.10. H is of finite corank if and only if the rank of A(K,) 
and the corank of IlI, are bounded from above, independently of n. 

Proof Again, Proposition 6.4 and the Cs sequence (6.5). 

If the rank of A(Kn) is bounded it is natural to ask the sharper 
question: Are the groups A (K,) stationary, for large n ? Or, equivalently, 
is the group of rational points A(L) finitely generated ? 

Proposition 6.11. Suppose (Y/X, A) is admissible, and H is of finite 
corank. Then the group of rational points A(L) is finitely generated if 
and only if its torsion subgroup A(L)tors is finite. 

Proof One way is clear. Now suppose g=orde r  of A(L)tors. Let n 
be large enough so that 

rank (A (K,))= rank (A (K,)) 

{A(L)to~J = ~ {A( / ( . ) to r3  
for all m >_ n. 

Since we have the above equality of ranks, after our hypothesis and 
(6.10) for any m and any xeA(K~), there is an integer h (depending 
upon m) such that h x~A(K~). We shall show that we can always take 
h=g and this will prove our proposition. We know A(K~)=A(K~) rn. 
Fix V a topological generator of E Since V (h x) = h x, we have 7 (x) = x + e 
with h e=0.  Thus e is a torsion element of A(K~), so g e=0 ,  and hence 
7(gx)=gx. Q.E.D. 

When is A(L)tor s a finite group? Using the results of (i) Shimura- 
Taniyama [65] and (ii) Serre [60, 61] we have: 

Proposition 6.12. A (L)to~ s is finite if either: 
(i) A is an abelian variety with complex multiplication ([65, 63]), and 

L/K is the cyclotomic F-extension. 
(ii) A is an elliptic curve possessing no complex multiplication over ~. 

Proof of (i). As usual, if M = M e denotes the points of order a power 
o f f  in A(K), where ~ is a prime, we let 

Tt = limm r Vc(A) = V~= Tc|162 ~r 
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Then T e is a free 2ge-module of rank 2 g, and 

(6.13) M e , l i r a  Te/E'. 

We shall recall some of the theory of complex multiplication drawing 
much of our terminology from ([60]). If dim(A)=g,  and 

i: E---~ End KA |  

is an imbedding of a number field of degree 2g, we say that A has 
"complex multiplication by E".  

Let B denote the ring of integers in E, and set B ' = B n E n d  KA. We 
have that B' is of finite index in B. E = B' |  Q- Regard M e as a B'-module 
via the natural operation of End KA. Let the subscript ~ denote ten- 
soring with Z e. We obtain a natural B~-module structure on Me, and Te. 

Find a free Be-module of rank 1, Te+c lie which contains Te as a 
subgroup of finite index. This is possible, since V e is a free Ee-module 
of rank 1 ([63], Theorem 5 (i)) and Te is a Ze-sublattice in Ve. 

li_~m Z+/E ' and we have that there is a natural surjec- Define: Me + = e / , 

tive homomorphism of B~-modules, Me---,M2 with finite kernel. Also, 
Me+ ,.~ Ee/B e as a Be-module. 

Lemma 6.14. I f  ~ does not divide [B: B'] then B e = B e, and M e ~ Ee/Be, 
as Be-modules. 

Proof This follows from the fact that T e is torsion free over Be, 
which is a finite product of discrete valuation rings, and V e is free of 
rank one over Ee. 

The ring E e splits into a product of fields, and we have the corre- 
sponding splitting for Be: 

Ee= l- I Ee,~ 
(6.15) i 

Be = [ I  Be,' 
i 

where the Be, ~ are the rings of integers in the fields Ee, ~. 

The operation of the Galois group G x = Gal(K/K)  on M e is via a 
homomorphism, 

B* Pc: GK-*B'e*~B*=I-I  e.i 
i 

where B~* operates on Me through the B~-module space structure of Me. 
(This assertion is Corollary 2 of [63].) 

Consider Se=Pe(GL)cB*.  To prove case (i) of our proposition, we 
must show that the fixed subgroups (Me) se are finite for all primes ~, 
and trivial for almost all primes ~. The properties of Se which will assure 
this are given in the following lemma: 
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Lemma 6.16. Let S c B't*. Then, 

(a) (Me) s is trivial if E does not divide [B:B'] and S=B~.  

(b) (Me) s is finite if the projection S -*  B~,i is nontrivial for all i. 

Proof  To see (a), just use Lemma 6.14, and note that the assertion 
holds for the Be-module Ee/Bo 

To see (b), use the short exact sequence, 

O --~ C-+ M - .  M + -~ O 

where C is of finite cardinality, to note that (Me) s is finite if and only if 
(Ee/Be) s is finite. Letting S i denote the projection of S to Be, i, we have 

(Ee/Be)S = ]-[ (Ee, i/Bt ' ,)s,. 
i 

But, if there is an element si#: 1 in Si, then the i-th factor on the 
right is finite, for multiplication by s i -  1 has a finite kernel in Ee, i/Be, i. 

It remains, then, to show: 

Lemma 6.17. 

(a) S r-- B~ for all but a finite number of primes [. 

(b) St--* B~,i is nontrivial for all f and all i. 

Proof  Since it suffices to check this for K replaced by any larger 
field, we may suppose that K contains E (~p). Let D be the ring of integers 
in K. 

A fundamental fact due to Shimura-Taniyama [65] and para- 
phrased in [60] (II-27, Theorem 2) may be further paraphrased as follows: 

Consider the composition, 

tl: D~ a ~i/i  o r.~G~b Pr 

where I is the ideal class group of K and I ~ is its connected component. 
If we let ~t: D*-+I  denote the natural inclusion, the map a is given by 
a(x)=ct(x-1). The map r is the reciprocity map @K as given in ([12], 
p. 173). Then: 

(6.18) For all E there is a subgroup / )*~D* which is open of finite 
index such that r/: ,b*-~,B * is induced from the canonical norm map 
De-~ Bt. 

Moreover we may take ~ * - * D e - D e for all but a finite number of primes d. 

One obtains the above quite easily from ([60], II-27, Theorem 2) 
by taking b ~ = D * n U m ,  where m is the modulus guaranteed to exist 
by loc. cit., Theorem 1. 
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Now suppose ( ~ p .  Since F is a pro-p-group and De* has an open 
pro-g-subgroup of finite index, the map b below is trivial. Consequently 
the image of D e in GaK b actually lies in the image of G~b: 

G~ b 

(6.19) D* r. _~G~b 

E 

Consequently Se contains q (De*). But for those primes such that 

D e - D e, 

2. E / K  is unramified for all primes dividing f, 

3. f doesn't divide [B:B'],  

the map t/which is the semi-local norm map by (6.18) is surjective. 

Since all but a finite number of Cs satisfy 1), 2) and 3) above, we 
have established part (a) of our lemma. Whether or not g satisfies these 
conditions, ~(/)*) is an open subgroup of Be* of finite index, since the 
image of De* under the norm map is open of finite index. Consequently S e, 
which contains tl(D*) is open of finite index. It therefore satisfies the 
requirement of part (b) of our lemma. 

We must now consider g = p. Let us consider the diagram, 

0 0 0 

ker (b) , ker (c) , ker (d) 

(6.20) De* ra , G~b Pe ' B~ 

G a l ( Q ( ~ ) / ~ )  
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where we have identified Gal(Q((p~o)/Q) with 7z.* in the canonical 
manner. The map c of (6.20) is just the composition of the map c of (6.19) 
with the canonical inclusion of F = Gal (~ ((poo)/Q ((p)) in Gal (~ ((p=)/~). 
The map d is just the norm mapping. The only circuit in (6.20) whose 
commutativity is in question is the left-hand lower triangle. But its 
commutativity follows from the well-known fact that A ~Ve(A)~ Ve(~m), 
as Gal(K/K)-modules. From the above diagram we see that Se contains 
the image of ker(b) in B*. But also from the above diagram we see that 
the image of ker(b) is of finite index in ker(d), since the norm of D7 is 
of finite index in B*. Thus Se contains a group of finite index in ker(d). 
Since d is the norm mapping, one checks that ker (d) maps to a subgroup 
of infinite order in B~, i for each i. Thus Se satisfies the condition of 
part (b) of our lemma. Q.E.D. 

Proof of (ii). Now suppose A is an elliptic curve with no complex 
multiplications (over ~). We have the exact sequence of Galois groups: 

(6.21) 1 ~ GL-~ GK--~ F--~ 1. 

From ([61], see introduction) we have that f-adic representation 
induced by A is a homomorphism GK--~ GL(2, Ze) which is surjective 
for almost all E and whose image is open for all E. It follows that the 
image of GL is open for all f4 :p  since F is a pro-p-group and GL(2, Ze) 
is a pro-E-group. Consequently the E-torsion points e~A(L) are finite 
for every f:l:p. Our proposition will be concluded if we show (1) that 
eA(L)=O for almost all E and (2) that p~oA(L) is finite. To see (1), consider 
the exact sequence, 

1 ---~n--.Gr~ PGL(2, Z/f) 

where the second homomorphism is composition with the natural 
projection. Let N be the image of H in E We have: 

1 --~ GL/G L ~ n--,  GK/H - -~ F/N ~ 1. 

But for almost all f, GK/H=PGL(2, Z/f), which contains a simple 
subgroup of index 2 for f>=5 ([8], ChapterXX). This tells us that 
GL--~ PGL(2, Z/f) is surjective for almost all ~. 

To see (2), one need only count dimensions of Lie algebras. For 
by (6.21) above, the Lie algebra of the image of GL in GL(2, 7Zp) is at 
least 3. But if p~A(L) were infinite, its dimension could be no greater 
than 1. 

We might also have reasoned directly from ([611 4.4, Cor. 2). 

Corollary 6.22. Let (Y/X, A) be admissible. Suppose A is of dimension 
one, and either: Y/X is the cyclotomic extension, or A has no complex 
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multiplications. Suppose A has only a finite number of rational points 
over K and the p-primary component of its Shafarevitch-Tate group over 
K is finite. Then we have the following refinement of (6.9), (6.10): 

The group of rational points A(L) is finitely generated. 

w 7. Arithmetic Duality and the Functional Equation 

a) ~-Acyclicity 

Fix a F-extension: .... ~X,---}X,_t ~ . . . ~ X .  Say that a sheaf F over 
X is ~-acyclic if the sequence of p-primary components of HI(X,,  F) 
is ~-isomorphic to zero (w 1, (b)). We may define, similarly, the notions 
of ~-injectivity, ~-surjectivity, and ~-isomorphism, for a morphism 
of sheaves f :  E---~F. Such a morphism clearly induces a 9~-injection, 
~-surjection, or ~-isomorphism (resp.) on p-primary components of H 1. 
A sheaf F killed by multiplication by a nonzero integer n is clearly 
~-acyclic, and, for any sheaf, the map F , , F, given by multiplication 
by n is a ~-isomorphism. For example, turning to the exact sequences 
(3.3) for large r, we have that all maps in the central square below are 
~-isomorphisms. 

0 >p,A ,A- ~-A ' 0  

0 'A 'A-" , f f  ,0. 

Now let A be a N6ron model over X with nondegenerate reduction on 
X -  S. Thus A / X -  S is an abelian scheme. Consider the abelian scheme 
A ' / X - S  dual to A / X - S  (e.g. [45], p. 118). We may extend this to a 
N6ron model A' on all of X. Consider a polarization t/: A / X -  S ~ A ' / X -  S 
([45-1, Chapter 6, w 2). Since A is smooth over X, the functorial property 
of N6ron models (w 3) assures us that r/extends to a morphism t/: A ~ A ' ,  
over X. A second use of the functorial property shows that t/is a homo- 
morphism of groups schemes over X. We shall refer to t/as a polarization 
of A/X. 

Lemma 7.1. A polarization tl : A---~A' is a 9B-isomorphism. 

Proof. We may find a polarization ~: A'-->A such that both com- 
positions ~ t/ and r/~ are multiplication by an integer n on A and A' 
respectively. 

b) Arithmetic Duality 

Let Z be the spectrum of the ring of integers in a number field. 
M. Artin and I expect to publish, in the near future, a proof of the 
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Arithmetic flat duality theorem [5] 1. It has the following two theorems 
as corollaries: 

Proposition 7.2. Let G be a finite fiat commutative (affine) group 
scheme over Z, and let G' denote its Cartier dual. Then the cup-product 
pairing, defined by Yoneda product: 

H~(Z, G) • H~-'(Z, G' )~  Q/Tz 

is a nondegenerate pairing on the p-primary components of  the groups 
involved, for all r, and all odd primes p. I f  Z is totally complex, it is a non- 
degenerate pairing on 2-primary components as well. All the groups 
involved are finite. 

Proposition 7.3. Let A, A' be N~ron models over Z which are dual 
abelian varieties over the generic point of Z. Let p be a prime such that A 
(and hence A', "as well) has nondegenerate reduction at all q 6 Z  which 
divide p. Suppose either that p is odd, or Z totally complex. Then the 
natural cup-product pairing, 

I4"(pvA) • 1-13-'(pvA') ~ Q/~ 

is nondegenerate for all r, v. 

Remarks. 1. (7.3) is closly related (for r = 1) to the pairing introduced 
by Cassels [11], and to the pairing of [68]. 

2. The degeneracy of the above pairings, when p = 2 and Z is not 
totally complex, may be analyzed. Left and right kernels are cg-trivial 
sequences in v. 

Let us consider, now, N6ron models A, A' over Z = X, which satisfy 
the hypotheses of (7.3) for the prime p. 

We have the ~g-exact, Cg-sequences coming from (3.3): 

O--~H'-X(X.,A)|  h , H ' ( X . , . 4 ) - *  t,o~H'(X.,A)-*O 

(as sequences in n). 

If  q: A---,A' is a 'polarization,  we have the ~- i somorphism,  

~1: Hr(X.,.4)---' H ' ( X . , A ' ) .  

' This theorem is related to the Etale arithmetic duality theorem of Artin-Verdier [6], 
and to the local arithmetic duality theorem [40, 41]. In fact, these last two results are in- 
gredients of the proof of the duality theorem. 
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We may put this into a commutative diagram, of cohomology groups 
over X.: 

0 ,A(X. ) |  ~H'(ft) ,po~H'(A) ,0 

(7.4) HI(A ') 

lim H 2 (pvA)* ~ !i m (p~H 1 (A)/p~) * 

where d is the duality isomorphism coming from (7.3), and the bot tom 
horizontal arrow, h, is induced from the h of the ~f-exact short exact 
sequence above, for r =  2. It remains to justify the existence of a. Note 
that the right lower group is (p~H~(A)/div) * which is a finite group. 

By the top horizontal line, and the fact that A(X,)| is divisible, 
one sees that 

(7.5) H l(/i)/div - - ~  ~ H  1 (A)/div. 

Thus the composition h d~/factors mod ~ through p~oH ~ (A), giving the 
~-morphism a: 
(7.6) vooH' (X., A)/div o , (p~H 1 (X., A)/div)*. 

Since h is a ~-surjection, and ~/a ~-isomorphism, the morphism a 
of (7.6) is a ~-surjection. Since pooH 1 (X., A)/div is finite, a glance at (7.4) 
shows that (7.6) is also a ~-injection. Thus (7.6) is a ~-isomorphism, 
which yields, after (7.6), the ~-isomorphism, 

(7.7) U '  (X,, A)/div - - ~  (H' (X,,/])/div)*. 

That is, we have (2.4) a ~-nondegenerate self-pairing on H=Hr ~. 

Corollary7.8. I f  (Y/X, A) is admissible (and H=Hr ) is of finite 
corank) its characteristic polynomial satisfies a functional equation of 
the form 

f (t)=e . tx f (1/t). 
Proof After (7.7) we may apply (2.9). 

w 8. Calculation for General Primes 

a) Over Cyclotomic Bases 

Let A be an abelian variety of dimension one, over Q. Fix a rational 
odd prime p, and let K= Q((p), L = Q(~p~). Let L/K give rise to the 
global cyclotomic F-extension which we shall denote Y(p)/X(p). We 
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shall study the F-modules that arise, 

H = H(p) = H(y(p)/x(p)" A)" 

Recall [31] that there is a natural identification of A =GaI(K/(I}) 
with the (p-1)-st  roots of 1 in the ring 2~p obtained by sending gsA 
to the unique ( p -  1)-st root of 1 in •v, u, satisfying: 

One has a natural operation of A on H, which commutes with the 
F-module structure of H. Recall that any action of A on a p-abelian 
group M decomposes ([31], w 3) into a direct sum of eigenspaces, 

p--2 
M = • (J)M 

j = 0  

where the action of ueA onjM is given by multiplication by u j. 

We have 
p - 2  

(8.1) H= @ (J)H, 
j=o 

this being a direct sum decomposition of F-modules. The ~-non- 
degenerate bilinear pairing (7.8) on H puts JH in duality with (P-a-I)H. 

We may identify the eigenspace: j--0 in (8.1) with the F-module 
Ho,/x.a ) coming from the cyclotomic F-extension Q~o/~ associated to 
the prime p. Thus p-2 

H = H(r/x" a)~ 0 (J)H. 
i = 1  

Proposition 8.2. Suppose A is neither singular nor supersingular at p. 
The natural map, (J)H 1 (X(p), ,4)--~ [(2)H(p)]r 

is surjective if either: 
(i) j # 0 ,  

(ii) j = 0 ,  av~ 1 mod p (av= Tr(Frobp)). 

Proof This will follow by considering the j-eigenspaces of the groups 
occuring in the diagram (6.6), and noting that 

(8.3) (J)H2" (X (P)v, "71) --' (i)H'2 ( Y(P)v, A) 

is injective in each of the above cases, as may be seen by the following 
argument: A(K)-~A(k  ) admits a lifting of the p-part of A(k) because 
A((~)--,A(k) does (5.11), and there is no residue field extension at p. 
Therefore (5.7) applies, telling us that the kernel of 

H. 2 (X, A) ~ H. 2 (Y, ~)r (X = Spec (Z), Y/X  the cyclotomic F-extension), 
maps isomorphically onto the kernel of 

H. (X(p), - ,  H. (V(p), 
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by comparison of the explicit description of the two kernels given by 
(5.9) and (5.15). Thus if j4:0 it follows that (8.3) is injective and hence 
by (6.4)(ii) the map of our proposition is surjective. The remaining 
case (ii) of our proposition comes from (5.16)(i). 

The interest of our proposition is that in the two cases listed in (8.2) 
one has criteria for the vanishing of the j-eigenspace of H(p), (8.4) below, 
which are in close analogy to the classical criteria for the vanishing of 
the j-eigenspace of the F-modules of ideal class groups of cyclotomic 
fields, considered by Iwasawa. The curious difference occurs only when 
j = 0  (i.e., when we consider the F-extension Qo~/Q) and when we limit 
ourselves to the rather rare set of primes p such that ap=- 1 mod p. In 
fact, for such primes we shall show that H(p) is necessarily of infinite 
order! ((8.5) below.) 

Corollary 8.4. I f  U)Hl(X(p), .4)=0 in either of the cases (i), (ii) of (8.2), 
then U)H(p) = O. 

b) Over Q 

In this section we let Y/X denote the F-extension over X = Spec (~), 
associated to the prime p. Let H=H(p) stand for the F-module Ha(Y, 4). 

Proposition 8.5. Let A be any abelian variety of dimension one over Q, 
and p a rational odd prime such that A has good reduction at p, there is 
no nontrivial rational point in A(ff)) of order p, and a p -  = 1 modp.  'lhen 
the abelian group H(p) is of infinite order. That is, either A(Q~) is of 
infinite order, or p j11 (QJ  is. 

Proof If ap-~ 1 mod p, then A is ordinary at p. Suppose the con- 
clusion of (8.5) false. Since HI(X, , / I )  is controlled, it must then be 
~-trivial. Thus A(~,) is finite for all n, and p=H/(Q,) is cg-trivial. It 
follows from the Kummer theory of A that, for fixed n, HI(X,,  pvA) is 
a ~-trivial sequence, regarded as a sequence in v. 

Since A/Q is of dimension one, it is self-dual. Therefore, since p is 
odd, (7.3) tells us that HI(X,, pvA) and HZ(xn, p~A) are Pontrjagin duals 
of one another. Thus H z (Xn, pvA) is also ~-trivial, regarded as a sequence 
in v. 

Recall that if H is a discrete F-module and M its Pontrjagin dual, 
regarded as a A-module, and 7eF, a topological generator, the module 
M/(1-~,)M is the Pontrjagin dual of H r. For our calculation below, 
we adopt the terminology M = M / ( 1 - 7 ) M ,  and since all cohomology 
groups will have as coefficient sheaf/],  we drop the symbol A from our 
terminology. 

Denote the Pontrjagin dual of H I ( y - p j  by the letter N. Recall 
that (5.12) the Pontrjagin dual of H.2(Yp~) is a free A-module on one 
generator. Let us identify that module with A. Thus the Pontrjagin dual 
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of the exact sequence of F-modules, 

(8.6) O- .  H(p)-*  HX(Y-po~)-+ H2. (Yw) 

may be written: 

(8.7) 0 * - N / ~ o A * - N * - A  

where q~ is the image of 16A. 

The first thing that we shall claim about the structure of N is that 
it admits a homomorphism to A with finite cokernel, 

(8.8) N S ,A--+C--~O. 

There is, in fact, a natural map from N to a free A-module on one 
generator, as follows: If M is a A-module of finite type, let M- denote 
Homzp(M, A). Then M" is endowed naturally with the structure of a 
A-module. (It is.denoted M* in [52].) We have a natural map M I ,  M - ' .  
M - -  is easily seen to be a reflexive A-module ([52], 174-08) and ([52], 
Lemma 6, 174-09) all reflexive A-modules are free. It is shown in ([52], 
Lemma 5) that f has finite cokernel. In fact it has a section mod c~, 
and the kernel o f f  is the maximal A-torsion submodule of M. 

To establish (8.8), then, it suffices to show that the rank of M ' "  as 
a free A-module is exactly one. But this rank 2 can be detected as the 
unique integer to enjoy the property that 

(8.9) corank  ( n  I ( Y -  poo) r") - 2 p" 

is bounded. But if we rewrite the diagram (6.6) in our situation, 

0 0 

, E .  

(8.10) ,H2.(X.,v.) ,H2(X,)  

A(L)r, 

1 
, n ' ( x o  - p . )  

, H l ( y - p o ~ )  r" , H.2 (Yp~) r" 

o , H~(X~) 

0 , H i (Y )  r~ 

0 0 
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(i) 

(ii) 

(iii) 

Then: 
(a) 

and recall that the groups ,4(L)r . ,HI(X,) ,H2(X,) ,  are finite in our 
situation, and that we have already computed the corank of H? (X,. p.), 
(5.3), one gets; 

(8.11) corank (H 1 ( Y -  p~)r.) = p, 

which indeed tells us (8.8). 

Let us now consider the above diagram, for n=  1. In (8.12) below 
we rewrite the Pontrjagin dual of a portion of it. Recall that A(L)r has 
the same order as J(Q),  and is therefore trivial, since A(82) contains 
no element of order p. Also, the right hand vertical line may be written 
as case (ii) of (5.16), since a v -  1 mod p: 

N ,  ,, 7Z/p 0 7Z, p 

(8.12) =I 

N~ 7Zp. 

The right-hand vertical arrow can be taken to be the map sending 1 
to 0 |  1 (5.16)(ii), and from (8.12) we deduce that the image of ~o 
in K/is divisible by p. Consequently from (8.8) we get that ~o'=f((p) is 
divisible by p in A. Consequently r is a non-unit in A. From (8.8) we 
learn that 

(8.13) N/q) A ~ A/((p') 

has finite cokernel. But the quotient of A by any proper principal ideal 
has infinite order. Thus A/(q)') has infinite order, and after (8.13), N/q) 
has infinite order. Q.E.D. 

Of course, if A(82) is infinite, we haven't learned much from pro- 
position (8.5). However, if A(82) is finite, and we restrict attention to 
those primes p such that H I(X, .4) vanishes, we get a finer calculation: 

Proposition 8.14. Let A be a NOron model over Spec(Z) such that 
A(82) is finite. Let p be an odd prime satisfying these conditions: 

A has nondegenerate, ordinary reduction at p. 

p doesn't divide the order of A(82)tors. 

The p-primary component of llI (if2) vanishes. 

I f  ap$1  mod p, H(p) is trivial (actually, not just mod (g). 

(b) I f  a p -  1 mod p, 

the following facts are true about H(p): It is a group of infinite order, 
and of finite corank. Its Pontrjagin dual must be isomorphic, mod ~, to a 
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A-module of one of these types: 

1) A/(fl), 
2) A/(fl2), 

3) A/(fl) O A/(p) 
where fl and p are irreducible (nonunit) elements in A. 

Remarks. If we make a choice of a topological generator of F, we may 
identify A with 2~v[[T]], and then fl, p may be identified with power 
series. Since they are determined only up to units in this ring, let us 
agree to take them as Weierstrass-prepared polynomials. Since they are 
irreducible, this boils down to two possibilities: The constant poly- 
nomial p, or a monic Eisenstein polynomial in T= t - 1 .  We may, after 
these conventions, speak of them as unique polynomials. The charac- 
teristic polynomial fv(t) of H(p), with respect to the same choice of 
generator of F,, is just fl,//2, or fl p, and, of course, the last sentence in 
our propositio/a says that fv is either irreducible, or expressible as a 
product of two irreducibles. 

Since we already know that fp satisfies a functional equation, we 
have a further restriction on the kinds of fl and p that can occur. 

I wonder whether case 2) ever occurs, if fl+p. If it does occur, we would have that 
the representation of F on the associated Qe-vector space of H(p) would not be semi- 
simple. A particularly ugly situation would be if case 2) occurred with fl(t) equal to the 
irreducible polynomial of a pV-th root of one. It would be ugly because an analogue (in 
this p-adic realm) of certain conjectures of Birch and Swinnerton-Dyer, and of Tate, would 
then be false. Also, the sequence v~///(~,) would not be controlled. 

Proof of Proposition 8.14. Our hypotheses gives us (using 3.3) that 
H I ( x ,  p ~ A ) = 0  for all v. By self-duality of pvA, and (7.3), we get that 
H 2 (X, pvA) = 0 for all v. Consequently we have that 

n 1 (X, ,,]) = n 2 (X,  A) = 0,  

and the diagram (8.10) simplifies to give: 

0 , E , Hz(xp) - - *  H.2(Yv~) r ,0  

0 --*Hi(Y) r ,Ht(y-poo) r -~ H.2 (Yv~) r -  ,0. 

(8.15) 

Case (a). The hypotheses on p tell us that we are in Case (i) of (5.16), 
and so En=O. By (8.15), HI(y)r=o, giving that Hi(Y)=0.  This proves (a). 
We may also glean from (8.10) the further fact that 

.Jn(Q.)~A(L)r. 
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Case (b). This is a sharpening of the assertion of the previous pro- 
position. To show that the Pontrjagin dual of H(p), denoted N/~pA in 
(8.7) above has one of the three listed forms, we shall give a finer analysis 
of the structure of N. 

Lemma 8.16. Let N be a A-module which is not a A-torsion module, 
and such that N = 7l/p �9 7lp. Then there are three possibilities: 

(i) N ~ A �9 C, where C is finite. 

(ii) N ~ A �9 A/~, where ~ is an irreducible element in A. 

(iii) N is isomorphic to an ideal I c A such that (I, 1 - 7) is the maximal 
ideal, for any topological generator, 7~E 

Proof of Lemma 8.16. For any such N, N ~~ is a free A-module of 
rank one, and so we have the diagram (8.8). Consider, first, the case 
where f in (8.8) is surjective. Since A is free, we have N = A O R ,  and 
since N = A  G R, we get R =  ~/p. It follows that R is generated over A 
by one element, so we may write R = A/J where J is a nontrivial ideal. 
If J is not principal, then it is primary to the maximal ideal, and we have 
that R is finite, and therefore N is of the form described in (i) above. If 
J is principal, generated by ~, then R - - ~ / p  implies that ~9 is irreducible, 
giving us case (ii). 

We may suppose, therefore, that f is not surjective. The image of f 
is then a proper ideal I ~ A. Since A/I is finite, I is primary to the maximal 
ideal. If R is the kernel of f, we get an exact sequence, 

0-~K~-~i~0,  

since I is torsion-flee as a A-module. By our hypothesis, N is isomorphic 
to ~ / p O  Zp, and therefore I is a quotient of this latter group. J is of 
infinite order, since I is a nontrivial torsion-flee A-module. Moreover, 
[ cannot be 2~p, because then I would be a principle ideal, contradicting 
the fact that it is primary to the maximal ideal. This leaves only one last 
possibility: [ is isomorphic to 7l/p•Ep, and consequently, the map 
N ~ I is an isomorphism, and R =  0. But then R--0.  

Thus we have identified N with I. To conclude that I is of the form 
described in (iii), we must show that A/I is isomorphic with 7l/p. 

Consider the standard resolution of the A-module 7lv, 

0--*A 1-~ ~A--~Tlp---~0. 
Th~s yields, 

0 --~ To r ]  (7lp, A/I) -~ Al l  -~ A/I  --~ A-~--~ O, 

and since A/1 is finite, the orders of the two extreme groups above are 
equal. 

17 Inventiones math., Vol. 18 
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But we also have the exact sequence, 

0 ---, Tor~A (2~p, A/1) ~ [ ~  A ~ AT-- '  0 

which is evaluated as, 

0 -* Tor~ (7lp, Aft) --~ 7/,/p ~) ~ ,  -+ ~p - .  A-~-~ O. 

Since the two extreme g_roups in the above exact sequence have equal 
orders, it follows that A/I ~ 7//p. Q.E.D. 

Now we may get on with the proof of (b). From (5.16)(ii) and (8.15) 
we see that N is isomorphic to 7l/i v 03 7/p, and the image of q) may be 
taken to be 00)iv. Lemma (8.16) applies, and we have that M=N/q)  
give, in case (i), (ii) of the lemma, that M is isomorphic to A-modules 
of type 1), 3) in our proposition. If we are in case__(iii) of the lemma, 
then M is isomorphic mod (g to A/q)', and since A/I is 7lily, the image 
of q)' in/1 must be equal t o  iv 2 times a generator. Thus q)' is a product of 
two irreducibles in A, and we obtain either case 2) or 3) of our propo- 
sition. Q.E.D. 

Remark. In the course of the above we have given some information concerning the 
cohomology groups Ha(Y--p~,  ,4) as F-modules. To record it, Lemma 8.16 tells us: 

Corollary 8.17. Let X -- Spec Z, A an elliptic curve such that A (ff~) is finite. Let p be an 
odd prime number satisfying (i)-(iii) of  (8.14). 

Then the A-module N which is the Pontrjagin dual of  H a ( Y - p ~ ,  .4) is isomorphic to 
one of  three types: 

(i) A ~) C where C is finite. 

(ii) A ~) A/tfi where ~9 is an irreducible element in A. 

(iii) An ideal I in A such that (I, l - ),) is the maximal ideal, for any topological generator, 
~ F .  

I have no further information concerning the structure of H 1 (Y-p |  .4). Do all three 
types occur ? 

c) The Set of Anomalous Primes of an Elliptic Curve 

For A an abelian variety over Q of dimension one, let us define the 
set of anomalous primes iv of A, ,~(A), to be the set of primes p such 
that A has nondegenerate reduction at p, and ap-= 1 mod iv. 2; (A) depends 
only on the isogeny class of A over Q. We have already seen that for 
those primes of ~(A) not dividing the order of the torsion subgroup 
of A(Q), either A(Qo~) or p J / / (Q~)  is of infinite order. How many 
primes p are in 2;(A)? 

We first show, if A(Q) contains a nontrivial element of finite order, 
that 2; (A) is easily found, and somewhat uninteresting. 

Lemma 8.18. I f  A(Q) contains a nontrivial element of finite order 
then ~,(A) consists either of a single element, or none, or else is contained 
in the set {2, 3, 5}. 



Rational Points of Abelian Varieties 249 

Proof Let s denote an element in A(Q) of prime order, ~ = 1. Let p 
be a prime at which A has good reduction, and a p -  1 mod p. The Rie- 
mann hypothesis tells us that either ap = 1 or p = 2, 3, or 5 and a ,  = 1 - p. 
Thus if ap = 1 mod p, the number of rational points of A, mod p, is 
either p or 2p, and the latter possibility may occur only if p = 2, 3, or 5. 
If we denote again by A the N6ron model of A over Spec(2~), and let G 
denote the finite flat sub-group scheme of A generated by the section s, 
we have that G is a finite flat group scheme over Spec(7/) of order q, 
possessing a nontrivial section. But /~2,SpecZ is the only nonconstant 
such group scheme. Therefore we learn that s reduces to a nontrivial 
rational point of order q, modulo p, provided that either p or q differs 
from 2. 

Suppose q 4: p. Then the reduction of A modulo p possesses nontrivial 
rational solutions of order q, and of order p. Hence the number of 
rational solutions is divisible by q p, hence equal to 2p, and thus: q =2 ,  
p =  2, 3, or 5. Consequently, if p is different from 2, 3, or 5, then q=p. 
We have proven (i), and obtained the more precise information: If the 
torsion subgroup of A(Q) is of composite order, then Z(A) is empty, 
or consists in {3} or {5}. If it is of prime order q for q>5 ,  then Z(A) is 
{q} or is empty, depending upon whether A has nondegenerate reduc- 
tion at q. 

Lemma 8.19. Given any finite set of primes P, there is an abelian 
variety A of dimension one defined over ff~, such that S(A) contains P. 

Proof By results of Deuring, or more generally, [27, 70], one may 
find an elliptic curve over the prime field lFp which possesses exactly p 
rational points over IFp. Write out these curves as plane cubic curves, 
for every peP. One obtains thereby a finite number of homogeneous 
plane cubic forms with coefficients in the prime fields IFp for peP. Now 
find a homogeneous plane cubic form with integral coefficients, which 
reduces to each of the described forms modulo p for each peP. This 
gives us an elliptic curve whose Jacobian A has the desired property. 

Also, if P contains more than three primes, we have that A(Q) is a 
free abelian group, by (8.18), and therefore Proposition8.5 applies 
to them. 

w 9. Some Calculations in the Spirit 
of the Classical "First Majorization" 

It is worth reviewing the classical method of p-descent in terms of the theory of finite 
flat group schemes over Spec ~g, and the fpqf topology, for one often gets the finest results 
without having to work too hard at the "bad" primes. 

We shall concentrate on a tame case. Suppose that A is a N~ron 
model (of dimension 1) over Z, the spectrum of the ring of integers in 

17" 
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a number field K. Let p be a prime such that A has semi-stable reduction 
at all points of Z of residual characteristic p. 

Consider the quasi-finite flat subgroup-scheme pA which is the 
kernel of multiplication by p in A. For each closed point seZ, one has 

(/~)s~ p(A,) 
by associativity of fiber product. Drop the parenthesis and denote the 
fiber at s by pAs. After our hypothesis, pAs is a finite group scheme 
over s e S, and 

ord (pAs) < p2. 

Definition. The defect of pA at s is the integer q (0 < t s < 2) such that 

ord(pAs)=p ~2-ts). 

It is clear that one has ts = 0 if A has good reduction at s, and t~ ~ 1, 
if A has multiplicative reduction at s. In this latter case, t~ =0  if and 
only if p divides the number of components of As. This condition is 
also equivalent to requiring that p divides ordq A [48]. 

We will say that s is a defective point for pA if t s > 0. Let T be the set 
of defective points for pA. It is a finite set contained in the set of primes 
of bad reduction for A. By definition, the defect of pA is the integer 

t =  ~ t  s. 
s e T  

The following proposition follows from the above discussion: 

Proposition 9.1. pA is a finite (fiat) group scheme over Z if and only 
if its defect is O. I f  A is semi-stable, then the defect of pA consists in the 
number of primes q such that p does not divide ordq A. Consequently, 
if A is semi-stable, pA is a finite fiat group scheme over Z if and only if 
(A) is a p-th power. 

a) Divisibility by Zip and by I#~ 

Suppose that A(K) possesses a nontrivial point of order p. One 
obtains a monomorphism of K-groups: 

(Tl/p)x ~-"~A x . 

Since Zip is smooth over Z, the universal property of the N6ron 
model insures the existence of a morphism over Z, 

q~: 7Z/p---,pA. 

The image of ~o (i.e. the scheme-theoretic closure of (Z/p)x) is a 
finite flat subgroup G of pA. Here one is using that Z is the spectrum 
of a Dedekind domain. 
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Lemma. When Z = Spec ~,, 

c=Z/p if p+2 

G = Z / 2 ,  or I#z if p = 2 .  

Proof This is an elementary application of the theorem of Oort- 
Tate [50] which classifies finite flat groups of order p. One uses also the 
fact that G has a nontrivial section. 

It is reasonable, then, to consider the following two cases: (Divisi- 
bility by I#p) there is an injection: 

I#p ~--~pA. 

(Divisibility by Z/p) there is an injection 

Z/p ~ , A .  

Note that (if A has good reduction at the primes of characteristic p) 
the above cases are put in correspondence, one to another, by Cartier 
duality. 

Let j: Z - T ~ Z  be the natural immersion, and: 

(Z/p), = j, j* (Z/p) 

I#p; = j!  J* (l#p). 

Proposition 9.2. Let Z = Spec Z. In the cases of divisibility by I#p and 
by Z/p, one has, respectively, the exact sequences: 

0 -~ I#p --' pA -~ (Z/p)~ -~ 0 

O--* Z/P ~ r4  ~ I#p! ~ 0. 

Proof The quotient of pA by/#p (resp., by Z/p) is representable, for 
we are trying to divide by a finite flat subgroup over Z, and the orbit 
of every point under the action of this subgroup is contained in an open 
affine (cf. [39], th6or6me 1). Let M (resp., N) denote this quotient. By 
computing orders, we see that M (resp., N) is finite and flat over Z -  T, 
and Ms=N~=O, for all sET. 

Making use, again, of the classification theorem of Oort-Tate [50], 
we may deduce that if p:~2, or if { 2 } r  T: 

M /z_ r -~ (Z/p)/z_ T 
A 

N/z_ T-~ (Z/P)Iz- T and therefore N/z_ T =/#p, Z- T" 

In the remaining case where p = 2, and {2} is not a defective point, 
we must have, by our hypothesis, that A has semistable reduction at 2, 
and we can deduce the above equalities, as well. The proposition follows. 
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When is pA expressible as the direct sum 

pA ~ Z/p ~ I#e ? 

Proposition 9.3. Let Z = Spec Z, and A, p as above. Suppose that pA 
has zero defect. Suppose that either r4 is divisible by It~p and p 4: 2, or pA 
is divisible by Zip and p is a regular prime. Then 

~A ~- 7Z/p �9 I1~. 

Remark. The restriction that p be a regular prime is hardly a very 
restrictive one, for the only known instances of the phenomenon of 
"divisibility" are for p = 2, 3, 5, 7. 

Proof Suppose divisibility by /kip. Since the defect is zero, by the 
previous proposition we have that g4 is a finite flat group over Z which 
is an extension of Z/p by/P~. We shall show that Extz(Z/p,/~te)=0. For  
this, use the sequence: 

0 ~ n ~ (Z,/#v) ~ Extz (Z/p, II~p) ~ n 1 (Z, I~p) ~ 0 

and the fact that the two flanking groups are zero, if p >  2, and Z = Spec(Z). 

Now suppose divisibility by Z/p. Again we shall show that 

Extz (/#p, 7Z/p) = O. 

Let T denote the underlying scheme of//~p over Z. The natural map, 

Extz(/#p, 7lip) ~ H 1 (T, 71/p) 

is an inclusion, since /#p is connected (over Z) and Z/p is constant. 
Therefore it would suffice to show that Ha(T, Z/p) vanishes. Since T is 
the spectrum of 7/[x]/(x p -  1), it contains two closed subschemes To, T~, 
corresponding to the two projections 

To: Z. [x]/(x p - 1)--~ 71, 
xv--~ 1 

Z [x]/(x ~ -- 1) --, Z [ ~ ]  
T~: 

The fibre product of the T~ in T is isomorphic to Spec(Z/p) and the 
union of the T~'s is T. 

Since the constant group scheme Z/p is smooth, it suffices to compute 
cohomology for the 6tale topology. But Ha(To, Z / p ) = 0  because 7~ is a 
principal ideal domain, and H ~ (Tx, Z / p ) = 0  because p is a regular prime. 
It follows, after an elementary computation in 6tale cohomology that 
HX(T,Z/p)=O. Q.E.D. 
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b) The Calculations 

Fix Z = Spec Z, p a prime, A a N6ron model of dimension 1 over Z 
which has semi-stable reduction at p. Suppose we are either in the case 
of divisibility by Z/p  or by//~p. 

Let T be the set of defective points. Let F be the cokernel sheaf of 
p: A--~A. If V is a vector space over lFp, let [V] denote dimnvp V. All 
cohomology groups considered will be flat cohomology over Z. We will 
have use for the following symbols: 

t = the defect of ~A = card (T), 

t' = the number of points of T of character is t ic-  1 mod p, 

m = the number of points of Z where A has bad reduction, 

a = the number of points of Z where A has additive reduction, 
p = the  rank of A(~), 

5 = [pA (Q)], 

f ,  = [H  ~ (s, F)] = [H '  (s, F)], 

f = [H ~ (F)] = [H a (F)] = ~ f~, 

h = [H a (pA)]. 

Inequalities (9.4) 

(a) 6 < 2, and if  p > 2, then 6 < 1. 

(b) z < [pH i (A)] and equality holds if p >  2, and f = 0 .  

(c) t + f < a + m, and more precisely: 

(i) t ,+f~=0 if A has good reduction at s, 

(ii) t~ + f~ = 1 if  A has multiplicative reduction at s, 

(iii) t, + f~ < 2 if  A has additive reduction at s. 

Proofs of  the Inequalities. (a) The assertion 6 =  2 is equivalent to 
saying that all p2 points of order p in A are rational over Q. This can 
only happen if p = 2, because the Galois module of points of order p 
is self-dual under Cartier duality. 

(b) By the proposition of the appendix the odd primary components  
o f / / / a r e  given by the image of Ha(A ~ in H~(A). 

(c) Assertion (i) is clear. Thanks to the hypotheses made about A 
and p, one has: o o p As ~(As ) = O, giving us an exact sequence: 

O --, pA ~ --, ~,As --, i,,I,, ~ O . 
But 

pS,__< ~ (p~3 
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and 
o # (pAs) = p 

= 0  
Therefore 

if A has multiplicative reduction at s 

if A has additive reduction at s. 

# ( , , A s ) > _ _ g  "+'- , 

if A has multiplicative reduction at s which proves (c)(ii), and 

# (pAs) > pf~, 

if A has additive reduction at s, which proves (c)(iii). 

Proposition 9.5. We shall suppose divisibility by either Zip or Igp. In 
the case of divisibility by I~tp, 

(9.5 a) h -  6=  t -  1. 

In the case of divisibility by 77/p, 

(9.5 b) h - 6 =  t ' -  1 - ~ ,  

with e = O, except for p = 2. I f  p = 2, and if there exists a defective point s 
of residual characteristic not congruent to 1 mod 4, then e = 1. 

Proof To begin, I shall state without proof the values of the higher 
cohomology groups of 7Z/p and/~p over Spec 2~. For the calculations 
see [391. 

Hi(Z/p)=O 

n l(ll~p) = 0 

= Z / 2  

n 2 (/#p) = 0. 

for i = 1 , 2  

if p4:2 

if p =  2 (the nontrivial//~2-torseur being 
represented by Spec(Z [1/-s 1])) 

Proof of (9.5 a). From the exact sequence 

(Z/p), - ,  o 

and from the fact that H 2 (/~p) = 0, one obtains a six-term exact sequence: 

0 - *  H ~ (/#p) - *  H ~ (pA) --~ H ~  ( (z /p) t )  --~ H '  (/#p) --~ H ~ (pA) - , ,  H 1 ((Z/p),)  --,  0.  

From the results recalled above, we have: 

[H t (//~p)] - [H ~ (/#p)] = 0 
and therefore: 

(9.6) [ n  I (pA)] - I n  ~ (pA)] = [H l((Z/p)t)] - [H ~ ((Z/p),)]. 
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The left-hand side is precisely h - 6 .  To calculate the right-hand side, 
consider 

o ~ (Z/p),  -~  z / p  ~ (Z /p ) . - - ,  o 

where (Z /p ) .  is the skyscraper sheaf whose support is T. 

The long cohomological sequence gives: 

0 --) H ~ ((Z/p),)  --* H ~ (TZ/p) -~  H ~ ( (Z /p) . )  --* H 1 ((Z/p),) --~ 0 

from which one deduces that the right-hand side of (9.6) is t - 1. 

Proof of (9.5 b). From the exact sequence 

O o  7 'Z /p~vA o l#v, ~ O  

and the fact that H i ( Z / p ) =  0 for i=  1, 2, one obtains: 

0 ~ H ~ (Z /p )  -~  H ~ (pA) -~  H ~ (lt~v,) ~ 0 

U I(vA)  ~ , U l(lt~p!) 

giving: 

and consequently, 

6 = [H~  (/~p!)] + 1 

h = [H 1 (/#v!)] 

h -  6 = [H 1 (//zv~)] - [H ~ (//~v')] - 1. 

Consider the exact sequence 

O --~ l~v! --* l#v --* ll~v.---~ O 

where I~zv. is the skyscraper sheaf @/~v, s. 
s e T  

Notice that, in the case of divisibility by 7Z/p, the point s = {p} cannot 
be defective. For if it were, pA s would be isomorphic to (Z/p)s, which 
is impossible, because, since A has multiplicative reduction at s, vA ~ is 
isomorphic to II~v,~. Therefore, the morphism [IZp!-'--~lIIp is an open 
immersion, and/#p., regarded as an algebraic space over Z is 6tale. 

We shall begin by proving (9.5 b) if p 4: 2. Since H i (/~p)= 0 for i=  0, 1, 
the above short exact sequence gives 

H~ 

n ~  (ll~v.) ~ n l  (l~v!). 
But 

n ~ (lltv.) = O) n ~ (s, I#v, s) = (Z/p)"  
s e T  

because 
H ~ (s,/#v, s) = 0 if the characteristic of s is ~ 1 mod p 

= Z / p  otherwise. 
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Our result is then: 
[H  a ( / # p ! ) ]  = t' 

and we obtain (9.3 b) with e = 0. 

When p = 2, one must consider the exact sequence: 

0 --~ H ~ (/#2,) --~ H~ (/#2) -:" H~ (/#2 .) ~ H1 (/#2 :) --~ H1 (/#2) ~ H1(/#2 .) 

giving: 
[ H1 (/#2 :)] - [ H~ (/#2 :)] = ker ( 2 ) -  [H ~ (/#2)] + [ H~ (/#2 .)]. 

But [ker(2)] = 1 if there does not exist a defective point s such that 
the/#2-torseur Spec Z ( [ 1 / ~ l ] ) i  s nontrivial at s. Otherwise ker(2)=0.  
But, the/#2-torseur Spec(Z [ l / - 1 ] ) i s  nontrivial at s if and only if the 
characteristic of s is not congruent to 1 mod 4. 

This establishes (9.5 b). 

Proposition 9.7. Under the hypotheses of (9.5), 

p + 6 + z < = h + f  

(with equality, if p > 2, and f = 0). 

Proof. Break the Kummer  sequence, 

0---~ r -~ A P , A--~ F--~ O 

into two short exact sequences, 

O ---~ pA ---~ A P , .~ ---~ 0 

0--~ A--*A ,F--~ 0 

giving the following commutative diagram of cohomology groups: 

O__~HO(pA)__~HO(A) p_~HO(~) u ,HI(pA)___~HI(A) 

O--~H~ - )H~ ~ , H~ --~HI(A) 
Set 

and therefore: 

[Im/~] = h 1 , [ c o k / / ]  = h 2 

[Im v] = f l ,  [cok r] =f2  

(2) 

,H~(A)-~... 

h x + h 2 = [H 1 (pA)] = h 

A +f2 = [U~ =f. 

From the square labelled (1) we deduce: 6 + p = hi +f~. From the square 
labelled (2) we deduce: [pH 1 (A)] __< h2 +f2 .  
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From the inequality �9 < [pH 1 (A)], one obtains 

p + 6 + z < h + f .  

If f =  0, the F = 0, and A = A. Returning to the above exact sequences 
one may deduce: p + 6 + [pH 1 ( a ) ]  --- h. 

Moreover, if p > 2, then (appendix) z = [pH 1 (A)], giving 

p + f + z = h .  Q.E.D. 

Proposition 9.8. In the case of divisibility by I~p, 

(9.8a) p+ z < t  + f - 1 .  

In the case of divisibility by Z/p, 

(9.8b) p+ r<t '  + f - e - 1 ,  

where e is either 0 or 1, as defined in (9.3). 

Proof. Combine (9.5) and (9.7). 

Putting (9.4) and (9.8) together, one has the following useful estimate: 

Theorem 9.9. Under the hypotheses of (9.5), 

p + r < a + m - 1 .  

I f  one is in the case of divisibility by 71/2 and if there is a defective 
point for 2A of residual characteristic ~ 1 mod 4, then: 

p + z < a + m - 2 .  

Corollary 9.10. Suppose that A has prime conductor (i.e. a + m= 1). 
Suppose that we are in the case of divisibility by 7Z./p or by I~p. Then A(ff~) 
is finite and the p-primary component of Ill is zero. 

Corollary 9.11. In the case of divisibility by 7Z./2, suppose that there is 
a defective point s for 2 A, of residual characteristic ~ 1 mod 4. Suppose, 
further that a+m<2.  Then, again, A(Q) is finite, and the 2-primary 
component of Ill vanishes. 

c) Examples 

Our methods apply to a large number of the known curves of low 
conductor. For example, we may deduce that all the curves in the 
following table possess only a finite number of rational points (over Q), 
and the p-primary component of / / /vanishes:  
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Table i 

Con- Equation A p Divisibility f t t' e 
ductor 

11 y2+y=xa--x2 -11 5 Z/5 0 1 1 0 
11 y2+y=xa--x2-1Ox-20 -115 5 7Z/501#s 1 0 0 0 
11 y2+y=xa-x2--7820x-263580 -11 5 1#5 0 1 1 0 
14 y 2 + x y + y = x 3 + 4 x - 6  -2673 3 Z/3•llz a 1 0 0 0 
15 y2+xy+y=xa+x 2 --3.5 2 7l/2 0 2 2 1 
17 yZ+xy+y=xa--x2--x 17 2 7I/2 0 1 1 0 
19 y2+y=x3+x2-9x -15  --193 3 Z/3~11~3 1 0 0 0 
20 y2=x3+x2+4x+4 --28.52 3 Z/3 1 1 0 0 
21 y2+xy=x3+x -32 .7  2 Z/2 1 1 1 1 
26 y 2 + x y + y = x a - x 2 - 3 x + 3  --27. 13 7 Z/7 1 1 0 0 
26 y 2 + x y + y = x a - 5 x - 8  --23.33 3 Z/3 ~//z 3 1 0 0 0 
35 y2+y=xa+x2+9x+l  --35 a 3 71/301#3 1 0 0 0 
37 y2+y=xa+x2-23x-50  373 3 7s 1 0 0 0 

Remarks.  The  first three  entr ies  in the a b o v e  tab le  represen t  a com-  
plete i sogeny class over  Q. The  r ema in ing  entr ies  are  no t  i sogenous  
to one  another .  

M u c h  of  the i n fo rma t ion  of  the  tab le  has  been cul led f rom the lists 
of  curves  of  low c o n d u c t o r  c o m p i l e d  by Swinne r ton -Dyer .  These  are  
soon to be publ i shed .  See also 1-36]. In  the cases where  I assert  d ivis ibi l i ty  
by  7Z./p G//zp, I have  used (9.3). 

Conce rn ing  the on ly  nonsemi - s t ab le  curve in the table  ( N = 2 0 ) ,  
I used tha t  it has :  

(a) add i t ive  reduc t ion  of  type  C 6  at  p - -  2, giving f2 = 1, t 2 = 0 ,  

(b) mul t ip l i ca t ive  r educ t ion  of  type  B2  at  p = 5 ,  giving f s = 0 ,  t s = I, 
bu t  t} = 0 (cf. [363). 

w 10. Division by Z/p ~) IlZp 

A very in teres t ing  p h e n o m e n o n  occurs  when 

~,A ~ Z/p  (9 II.tt,. 

We shall  s ta te  the resul t  for N6ron  mode l s  of  a r b i t r a r y  d imens ion :  

Propos i t ion  10.1. I f  ( Y / X , A )  is admissible, and pA,,~(Z/p)g~)(llZp) g 
and we denote 

p,  = rank  (A(K,))  

- r .  = I- . / / /(K.)],  

then there is a constant c such that 

p,  + z,>=g((K:Q)/2) p " - c  
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for all n. Consequently, if H is of  cofinite rank, its 12-invariant (w is 
nonzero. In fact, 

p(H)>=g(K:q~)/2. 

Proof  Use (3.3) for r =  1 and the base Xn to obtain the following 
mod sequence of groups: 

0 ~ A (Kn)/A (Kn) p ~ H i (X n , pA) -~" pHI (Kn) --* O. 

Now use the exact sequence obtained by ordinary Kummer theory: 

0 --~ U(Kn) / C (Kn) p--~ H 1 (Xn, I~p) ---~ p Hi (Xn, ~J,n) ~ 0 

and the Dirichlet unit theorem for Kn to obtain the asserted lower bound. 

Example 1. Consider the family of curves 

Ca: x3 + y3 + z 3 = d x  y z 

for deZ.  Let Aa denote the N6ron model of Ca. 
We may calculate the points of order three (these are all rational 

over 7/[(]) by the following table: 

(0, - 1, i)  (0, - ~ ,  1) (0, _ ( 2 ,  1) 
(1,0, -1 )  (1,0, - 0  (1,0, _~2) 
(1, -1 ,0)  (1, - ( , 0 )  (1, --(2,0) 

The vertical left-hand column gives us a subgroup scheme of 3A 
over Z isomorphic to the constant group scheme 7/,/3 over Z. The top 
right row gives a subgroup scheme isomorphic to IP3 over Z. This can 
be seen by using the functorial property of N6ron schemes together with 
the fact that Z [~] is unramified at primes p[ 3. Thus 3A ~ 7/./3 � 9  

It follows that the defect of 3A vanishes, and therefore (9.8a) 
p + z < f -  1. If we choose d e Z such that d 3 - 3 3  is prime to 3 and square- 
free, one may show that f (as defined in w 9) is simply the number of 
prime factors of d3-33  which are congruent to 1 mod3.  [An easy 
excercise shows that, under our assumptions, any prime factor of the 
second term on the right in the formula 

d 3 -  3 3 = ( d -  3)(dZ + 3d + 9) 

must be congruent to one mod 3.] See [38] for the full details. 

Consequently, if we choose d such that f =  1, we obtain p = z =0,  
giving: 

Proposition 10.2. Choose an integer d such that d 3 -  3 3 is prime to 3, 
square-free and has only one prime factor congruent to 1 mod 3. 7hen 
An(~) is fni te ,  and the 3-primary component of  Hi (X ,  Aa) is trivial. I f  
L / ~  is the 3-adic F-extension, the theory of w 6 applies: HI(Xn,-4a) is 
controlled, H(r/x. a~) is of cofinite rank. 
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lwasawa's #-invariant is nontrivial for H(r/x. ad). The order of the 
3-primary component of/// , /Div goes to infinity with n. 

Remark. Here are some values for which the above proposition 
applies: d =  1, _+2, 4, - 7 ,  8, -14 .  (The values d =  1, _+2, 4 undoubtedly 
represent curves which are isomorphic to entries in Table 1.) The curve 
associated to d =  1 is discussed in [13]. See also [-9]. 

Example 2. Consider the curve 

y2 + y = x  3 _ x  2 _ 10 x -  20. 

It is the modular curve X0(l l  ), and the second entry in Table 1. 
It is easy to see that (0, 0) is a point of order 5. It then follows from (9.1) 
and (9.3) that sA = Z/5 x//~ 5 . 

One obtains from (9.10) that A(~) is finite and the 5-primary com- 
ponent of / / /vanishes .  It is a consequence of the conjectures of Birch 
and Swinnerton-Dyer that all of / / /vanishes  [66]. 

Knowing that A(Q) is finite and of order divisible by 5, one can 
easily see that it is of order 5: Since it has good reduction at 2, and 
since an elliptic curve over F 2 can have at most 5 rational points, the 
reduction of A(~) at p = 2  is of order 5. Since the kernel of reduction 
can contain only elements of order 2, it suffices to show that A(~) has 
no points of order 2, which is easy enough. 

From the proof of (8.18), and the fact that A(Q) is of order 5, we 
obtain that a v-= 1 mod p if and only if p =  5. Thus, the conjecture that 
/ / / ( ~ ) = 0  (and the observation that 2 is supersingular implies (8.14a)): 

(10.3) n ( p ) = 0  

for all ordinary primes p such that p ~= 5 (and, of course, p ~: 11). 

The prime p =  5 is then a quite special prime for A, and we shall 
give a complete computation of our theory for this prime, independent 
of any conjectures. 

From the fact that A = -  115 we may deduce the structure of the 
N6ron fibre at 11: It is an extension of a finite 6tale group of order 5 
by a group of multiplicative type. 

Thus, the Kummer sequence looks like this: 

0 ~  Z/5 x/# s > A ,A ~ >0 

(10.4) l 

0 ,A ~ > A , F--+ 0 

where F has support at the point of characteristic 11. 



Rational Points of Abelian Varieties 261 

The Kummer theory (3.3) for A then yields the exact sequences, 

(10.5) 

0 --, 2U5 

, H~176 H~ 

, H~ -- - ,H~ ~ 

,Z/5 ,H'(A ~ , H'(A) 

, 0 ~ H~(A) --- .H~(A~ 

where cohomology is taken over the base X=Spec(Z),  and we have 
used the facts H" (I#5)= H" (Z/5)=O for r= 1, 2. 

From (10.5) we immediately obtain the following facts. 

Proposition 10.6. H ~ (A ~ = 0; A(O) ~ 7Z/5; H I (A ~ - . / / / (Q)  - .  H l (A) 
are isomorphisms; the 5-primary component of HI (ff~) vanishes. 

Corollary 10.7. H 1 (X, ,4) = O, where 

,4 = lim 5rA. 
5 r 

Proof. From the exact sequence (10.4), we get that 

H ~ (A ~ --~ H 1 (5~A) --~ H 1 (A) 

is exact. But the two flanking groups are zero, by (10.6). Q.E.D. 

Proposition 10.8. Let H=Htr/x,A ) denote the F-module associated to 
the unique F-extension Y /X  associated to p= 5, and our N&on model A 
of  X o (11). Then the Pontrjagin dual of  H is isomorphic to the A-module Alp. 
It  follows that A(Q~) is finite, the sequence pfllI(Q,) is controlled, 

H ~ lim , f l / / (O,) ,  

and pJ I l (~ , )  is isomorphic (mod ~) to a vector space over 7Zip of dimen- 
sion p'. 7he characteristic polynomial of H is simply: fp=p.  

Proof. Since 5A~-Z/SxI#5 ,  we learn from (9.1) that Iwasawa's 
#-invariant is nonzero for the F-module H. Everything will then follow 
if we show that the order of H r is less than or equal to p. For  then it 
cannot be zero, hence must be p. Hence the Pontrjagin dual of H is a 
singly generated, irreducible F-module whose tt-invariant is nonzero. 
It must then be isomorphic with Alp. 

To show # (H r) < p we need only appeal to the diagram (6.6), noting 
that, since A contains points of order 5, a s = 1, and hence we are in 
Case (ii) of (5.16). Using that HI(X, .4)=0,  and that A(Q)~Z/5,  the 
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diagram, (6.6) looks like: 

0 ~ 0  

0 

Z/5 , ~ /5  | z / 5  

1 
-~ ~.~ (xx, A) , H x ( X  - T, A )  

l 
, n ~ ( Y -  r~ ,  A) r 

0 

0 ,H r ,H?(Yx, A) r 

0 

from which our sought estimate is clear. Q.E.D. 

Appendix 

The Shafarevitch-Tate Group. We shall compare the group/ / /def ined  
in [-67, 68] with the groups H 1 (X, A) and H I(X, A~ 

Let A be an abelian variety over a global field K. Denote by Kv the 
completion of K with respect to the valuation v. Consider the maps, 

wv: H x (Spec (K), A/K ) ~ H 1 (Spec (Kv), a/~v) 

and form the two subgroups of H 1 (Spec (K), A/K), 

2; = 0 ker (w,) nonarchimedean v 

/ / / =  (-] ker (w~) all v. 

Clearly there is the exact sequence, 

0 ---,III---,2;--. • HI(K,/K~; A(K,v)) 

the sum on the right being taken over all real archimedean valuations v. 
Those v for which the topological group A(K,) is connected give no 
contribution to the right hand summation (Theorem 2.3 of [-67]). Thus 
one sees t h a t / / / = 2 ;  if A(K,) is connected for all real valuations v of K, 
and in any case, the quotient of 2; b y / / / i s  a group of exponent 2, of 
order bounded by the nature of Am, for the real valuations v of K. 
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Let D be the ring of integers of K, X=Spec(D),  j:  Spec(K)-+X the 
inclusion, and A/specto)=A the N6ron model of Air. Let O~A~ 0 
be as in w 3. Since A,~j ,  j*A and X is normal, one sees by the remark 
following the proof  of (5.1)(v) that Hi(X, A)--z-*HI(Spec(K), A/r) is an 
inclusion. 

Proposition. The inclusion i sends the image of Hi(X, A ~ ---~H 1 (X, A) 
isomorphically to Z. 

Proof Let I denote the image of Ha(X,A ~ in HI(X,A). To show 
that I c Z, we must show that I ~ H I ( X , A )  goes to zero under the 
diagonal map of the diagram below, where v is any nonarchimedean 
valuation 

H 1 (X~,, F) ,  

1 
H l(x ,  F), 

H 1 (X,,, A) ' H 1 (Kv, A) 

H~(X,A) ,It'(K, A). 

But this follows from the indicated isomorphism (which comes from 
Lang's theorem, [35]) and the fact that I goes to zero in Hi(X, F). 

To see that 2~cI, take an element y~2;. Then there is a finite set of 
primes S c X containing all primes of bad reduction for A such that 
y ~ H x (X - S, A). Consider the diagram, 

G H 2. (Xp, A) 
p~S 

H~(X,A) - 

a l 
' �9 HI(Xp, A) - 
peS 

H 1 (X, F) 

, H ~ ( X -  S, A) 

, | H 1 (Kp, A) 
p~S 

0 -~ • HE ()(v, A) 
p~S 

where the horizontal lines are the relative cohomology exact sequence; 
the zeroes on the left come from (5.1)(v), as does the right-hand vertical 
isomorphism. The lower left-hand isomorphism comes from (5.1)(v), 
Lang's theorem [35], and the fact that F has trivial support on X =  S. 

Since b(y)=0, y comes from an element in H 1 (X, A) which goes to 
zero in H 1 (X, F). Q.E.D. 

Remark. We might have made a mild, natural  modification of the f p q f  site X to take 
into account the archimedean primes. Then we would have had an equality between the 
image of Hi(X, A ~ ~ Hi(X, A) (computed for the modified site X) and the Shafarevitch- 
Tate group. 

18 Inventiones math., Vol. 18 
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