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Dehn’s Lemma for Certain 4-Manifolds

R.A.NORMANT *

Unless otherwise stated all manifolds and maps are smooth.

Let M be a 4-manifold and K a knot M (i.e. an embedded circle).
Suppose K is homotopic to zero in M. We wish to construct an embedded
2-disc in M with boundary K. We can map a 2-disc into M so that its
boundary is embedded as K and its interior is mapped into int M. We
can deform the map (rel. boundary) slightly into general position, when
it becomes an immersion whose self-intersections are at a finite number,
n say, of points where exactly two sheets cross transversely (we shall call
this an n-point immersion; a 0-point immersion is an embedding).

Lemma 1. Let D be an n-point immersed 2-disc in M{(n>0). Suppose
there exists in int M an embedded 2-sphere S* which intersects D trans-
versely and in a single point q. Then there exists in M an (n— 1)-point
immersed 2-disc with boundary 0D. If further S* has trivial normal bundle
then there exists in M an embedded 2-disc with boundary oD.

Proof. Let p be a self-intersection of D and let D, be a small 2-disc
neighbourhood of p in one sheet of D. Let D, be a small 2-disc neighbour-
hood of g in §2. Take an arcpgq in D disjoint from the other self-inter-
sections of D, and from D,\{p}. We can construct a thin tube D' x §*
(with its axis along pgq) joining 0D, to dD, with its interior disjoint
from D and S%. The (n— 1)-immersed disc is

(D\int D,)u (D! x SY)U(S?\int D,)

with the corners smoothed (see Fig. 1).

Fig. 1

If $? has trivial normal bundle we can use the above construction,
with a sequence of cross-sections as the 2-spheres, to eliminate all the
self-intersections.

* R.A.Norman died in an accident on the Welsh mountains in the spring of 1967.
This paper has been compiled from some of his resuits.
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It is well known (and, in fact, an easy consequence of Lemma 1) that
if the knot K contains points of int M then it does indeed bound a 2-disc
in M. We consider, then, the case where K < oM.

Theorem 2. Let the 4-manifold M be a connected sum N #(S? x §2).
Let K be any knot in OM. Suppose that K is homotopic to zero in M.
Then K bounds an embedded 2-disc in M.

Proof. Clearly K homotopic to zero in M implies K homotopic to
zeroin N. So K bounds in N an n-point immersed 2-disc, D say, for some n.
Choose a generator of the first factor of $% x §? and take the connected
sum of pairs (N, D) # (S x S2, generator). Now D # generator is an n-point
immersed 2-disc, and any generator of the second factor of $2 x §2 is a
sphere with trivial normal bundle. We can apply Lemma [ for the result.

Corollary 3. Any knot in S* bounds a 2-disc in M, where
M=(S?x §*)\intD* and S’=0oM.

Remark. Theorem 2 remains true with S2x 82 replaced by T, the
other 2-sphere bundle over 52 (see [2]). For take D 3 (cross-section) and
cancel its self-intersections with fibres.

If M is as in Corollary 3, and o and f§ are the obvious generators of
H,(M, 0M), then the embedded 2-disc constructed by the method of
Theorem 2 represents a+m f§ for some integer m. In fact it is not hard
to see that we can arrange for m=0. (Cf. the proof of Theorem 4 below.)
A natural question that arises is “Given a knot K in >, is there a manifold
M with oM =83, such that K bounds in M a disc which represents
0eH,(M,3M)?” The answer is in the affirmative. A suitable M is
rT\int D* (where rT denotes the connected sum of r copies of the
manifold T of the above remark, and the integer r depends on K).

Theorem 4. For any knot K in S3, there is an r such that K bounds a
2-disc D in M =r T\\int D* where S* = 0M, and D represents Oc H,(M,0M).

Proof. Consider any projection of K. It is well known that on changing
certain undercrossings of K to overcrossings the new knot K* obtained
is trivial. This implies that there is in S® x [0, 1] a properly embedded
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surface of genus 0 with part of its boundary, namely K, in S x {0}, and
the rest (in S> x {1}) consisting of K* together with some circles which
link K* once and each other not at all (see Fig. 2).

Moreover we may suppose that the same number, r say, of the circles
link K* left-handedly as link it right-handedly, for we may introduce new

ones at will (Fig. 3).

Fig. 3

In 5% x [1, 2] we properly embed another surface of genus 0 such that
its intersection with S*x {I} is K* and its linking circles, and with
S? x {2} is 2r links of the most elementary kind (Fig. 4).
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Fig. 4

Now attach to a 3-disc in S* x {2} containing exactly one such link
a copy of CP?\\int D* by a 3-disc in its boundary. The circles of the link
bound disjoint 2-discs in CP*\int D%, and (if CP? is suitably oriented)
the union of the 2 discs represents zero in the relative homology group.
Do this for each link. The boundary of §*x [0, 2] plus attachments is
$3x {0} together with another 3-sphere. Attach to the latter a final
4-disc and smooth all corners. The resulting manifold is rT\int D*
(see Lemmal of [2]), and the 2-disc bounding K which we have con-
structed in it has the required property.

Apy 3-dimensional 2-handlebody-boundary (using the notation of
Smale [1], any boundary of a manifold in # (4, k, 2)) is formed from S
by spherical modifications. That is to say, one removes from S> the
interiors of a set of disjoint embedded solid tori (D? x 8D?), and attaches
solid tori (0D? x D?); along the boundaries. We denote by S; the embedded
circle (0D* x 0); in the resulting 3-manifold.

Lemma 5. Let M be a 4-manifold with dM a 2-handlebody boundary.

If the circles S, in OM bound disjoint locally flatly embedded 2-discs in M,
then any PL knot in M bounds a PL embedded 2-disc in M.
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Proof. We may assume that the discs bounded by the circles S; are
properly embedded (i.e. with interiors in int M) for all i. We ambient
isotope the given knot off the handles (8D? x D?); to obtain a knot K
which in S possibly links the solid tori (D? x dD?),. We can decompose
K as the sum of a knot K* lying in a 3-disc D3 in S* disjoint from the solid
tori and a finite set of circles in S* each linking exactly one solid torus
exactly once (see Fig. 5).
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Fig. 5

These circles are essentially the §; above and thus bound 2-discs. If
exactly one circle links each solid torus then the discs can be chosen
disjoint by hypothesis. If several link the same torus, choosing cross-
sections of the normal bundle of the 2-disc bounded by the relevant S,
enables us to span all the circles with disjoint discs (in this case it may be
necessary to have the circles linked with one another in S, but this is
easy to arrange). Now we put a cone on K* (the cone is a PL 2-disc).
We can do this in a small neighbourhood of D? disjoint from the pre-
viously constructed 2-discs. Finally we join all the discs together to obtain
a PL disc bounded by K, and then ambient isotope K back to its original
position.

An immediate consequence of this Lemma is

Corollary 6. If Mes# (4,k,2) then any PL knot in M bounds a PL
embedded 2-disc in M.

Theorem 7. Let M be a 4-manifold with OM =(S" x S?)4 --- 4 (S" x §?).
Suppose that the inclusion 6M c M induces the zero map on fundamental
groups. Then every PL knot in 6M bounds a PL embedded 2-disc in M.

Proof. Let S; be a generator of the first factor of the i-th copy of
S x 8. Then §; is homotopic to zero in M by hypothesis. Hence it
bounds an n-point immersed 2-disc D, for some n. By isotoping a generator
of the second factor of S! x $2 into int M we construct a 2-sphere in int M
which intersects D, transversely and in a single point. This 2-sphere has
trivial normal bundle. By Lemma 1, then, we can assume that D, is an
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embedded disc. Moreover using the cancelling technique of the proof
of Lemma 1 we can ensure that D, and D; are disjoint for i+ j. Hence we
may apply Lemma S for the result.
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