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Dehn's Lemma for Certain 4-Manifolds 

R. A. NORMAN ~" * 

Unless otherwise stated all manifolds and maps are smooth.  

Let M be a 4-manifold and K a knot  M (i.e. an embedded circle). 
Suppose K is homotop i c  to zero in M. We wish to construct  an embedded 
2-disc in M with boundary  K. We can m a p  a 2-disc into M so that its 
boundary  is embedded as K and its interior is mapped into int M. We 
can deform the m a p  (rel. boundary)  slightly into general position, when 
it becomes an immersion whose self-intersections are at a finite number,  
n say, of  points where exactly two sheets cross transversely (we shall call 
this an n-point immersion; a 0-point immersion is an embedding). 

L e m m a  1. Let D be an n-point immersed 2-disc in M(n>0) .  Suppose 
there exists in int M an embedded 2-sphere S 2 which intersects D trans- 
versely and in a single point q. Then there exists in M an (n-1)-point  
immersed 2-disc with boundary OD. I f  further S 2 has trivial normal bundle 
then there exists in M an embedded 2-disc with boundary OD. 

Proof. Let p be a self-intersection of  D and let D 1 be a small 2-disc 
ne ighbourhood  o fp  in one sheet of  D. Let D 2 be a small 2-disc neighbour-  
hood  of  q in S 2. Take  an arc p q in D disjoint from the other self-inter- 
sections of  D, and from D1\{p }. We can construct  a thin tube D 1 • S 1 
(with its axis a long p q) joining t?D 1 to ~D 2 with its interior disjoint 
f rom D and S 2. The ( n -  1)-immersed disc is 

(D \ in t  D 0 u (D 1 x S 1) u (S2\ int  D2) 

with the corners smoothed  (see Fig. 1). 

Fig. 1 

If  S 2 has trivial normal  bundle we can use the above construction,  
with a sequence of  cross-sections as the 2-spheres, to eliminate all the 
self-intersections. 

* R. A. Norman died in an accident on the Welsh mountains in the spring of 1967. 
This paper has been compiled from some of his results. 
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It is well known (and, in fact, an easy consequence of Lemma 1) that 
if the knot  K contains points of int M then it does indeed bound a 2-disc 
in M. We consider, then, the case where K ~ aM. 

Theorem 2. Let the 4-manifold M be a connected sum N~(S2  x $2). 
Let K be any knot in OM. Suppose that K is homotopic to zero in M. 
Then K bounds an embedded 2-disc in M. 

Proof Clearly K homotopic  to zero in M implies K homotopic  to 
zero in N. So K bounds in N an n-point immersed 2-disc, D say, for some n. 
Choose a generator of the first factor of S 2 x S 2 and take the connected 
sum of pairs (N, D) # (S 2 x S 2, generator). Now D @ generator is an n-point 
immersed 2-disc, and any generator of the second factor of S 2 x S z is a 
sphere with trivial normal  bundle. We can apply Lemma 1 for the result. 

Corollary 3. Any knot in S 3 bounds a 2-disc in M, where 

M = (5 2 X SZ)\int D'* and S 3 = aM. 

Remark. Theorem 2 remains true with SZx S 2 replaced by T, the 
other 2-sphere bundle over S 2 (see [2]). For  take D 4u (cross-section) and 
cancel its self-intersections with fibres. 

If M is as in Corollary 3, and c~ and j~ are the obvious generators of 
Hz(M, OM), then the embedded 2-disc constructed by the method of 
Theorem 2 represents e + m  ~ for some integer m. In fact it is not hard 
to see that we can arrange for m = 0. (Cf. the proof  of Theorem 4 below.) 
A natural  question that arises is ~ Given a knot  K in S 3, is there a manifold 
M with c3M= S 3, such that K bounds in M a disc which represents 
OeH2(M, OM)?" The answer is in the affirmative. A suitable M is 
r T \ i n t  D 4 (where r T denotes the connected sum of r copies of the 
manifold T of the above remark, and the integer r depends on K). 

Theorem 4. For any knot K in S 3, there is an r such that K bounds a 
2-disc D in M = r T \ i n t  D 4, where S 3 = OM, and D represents 0 e H 2 (M, aM). 

Proof. Consider any projection of K. It is well known that on changing 
certain undercrossings of K to overcrossings the new knot K* obtained 
is trivial. This implies that there is in S 3 x [0, 1] a properly embedded 

C,.o 
Fig. 2 



Dehn's Lemma for Certain 4-Manifolds 145 

surface of genus 0 with part of its boundary, namely K, in S 3 • {0}, and 
the rest (in S 3 x { 1 }) consisting of K* together with some circles which 
link K* once and each other not at all (see Fig. 2). 

Moreover we may suppose that the same number, r say, of the circles 
link K* left-handedly as link it right-handedly, for we may introduce new 
ones at will (Fig. 3). 

Fig. 3 

In S 3 x [1, 2] we properly embed another surface of genus 0 such that 
its intersection with S3x {1} is K* and its linking circles, and with 
S 3 x {2} is 2r links of the most elementary kind (Fig. 4). 

Fig. 4 

Now attach to a 3-disc in S 3 x {2} containing exactly one such link 
a copy of CpE\ in t  D 4 by a 3-disc in its boundary. The circles of the link 
bound disjoint 2-discs in Cp2\ in t  D 4, and (if CP z is suitably oriented) 
the union of the 2 discs represents zero in the relative homology group. 
Do this for each link. The boundary of S 3 x [0, 2] plus attachments is 
s a x  {0} together with another 3-sphere. Attach to the latter a final 
4-disc and smooth all corners. The resulting manifold is r T \ i n t  D 4 
(see Lemma 1 of [2]), and the 2-disc bounding K which we have con- 
structed in it has the required property. 

Any 3-dimensional 2-handlebody-boundary (using the notation of 
Smale [1], any boundary of a manifold in ~ ( 4 ,  k, 2)) is formed from S 3 
by spherical modifications. That is to say, one removes from S 3 the 
interiors of a set of disjoint embedded solid tori (D z x 0D2)i and attaches 
solid tori (0D 2 x D2)i along the boundaries. We denote by Si the embedded 
circle (dD 2 x 0)i in the resulting 3-manifold. 

Lemma 5. Let M be a 4-manifold with c3M a 2-handlebody boundary. 
I f  the circles S t in OM bound disjoint locally flatly embedded 2-discs in M, 
then any PL  knot in OM bounds a PL embedded 2-disc in M. 
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Proof We may assume that the discs bounded by the circles S~ are 
properly embedded (i.e. with interiors in int M) for all i. We ambient 
isotope the given knot off the handles (OD 2 x D2)~ to obtain a knot K 
which in S 3 possibly links the solid tori (D 2 • OD2)~. We can decompose 
K as the sum of a knot K* lying in a 3-disc D 3 in S 3 disjoint from the solid 
tori and a finite set of circles in S 3 each linking exactly one solid torus 
exactly once (see Fig. 5). 

\ / 

Fig. 5 

These circles are essentially the S~ above and thus bound 2-discs. If 
exactly one circle links each solid torus then the discs can be chosen 
disjoint by hypothesis. If several link the same torus, choosing cross- 
sections of the normal bundle of the 2-disc bounded by the relevant S~ 
enables us to span all the circles with disjoint discs (in this case it may be 
necessary to have the circles linked with one another in S a, but this is 
easy to arrahge). Now we put a cone on K* (the cone is a PL 2-disc). 
We can do this in a small neighbourhood of 0 3 disjoint from the pre- 
viously constructed 2-discs. Finally we join all the discs together to obtain 
a PL  disc bounded by K, and then ambient isotope K back to its original 
position. 

An immediate consequence of this Lemma is 

Corollary 6. I f  MeJg(4 ,  k, 2) then any PL knot in OM bounds a PL 
embedded 2-disc in M. 

Theorem 7. Let M be a 4-manifold with OM =(S I x $2)~--.  ~(S 1 x $2). 
Suppose that the inclusion ~M c M induces the zero map on fundamental 
groups. Then every PL knot in OM bounds a PL embedded 2-disc in M. 

Proof Let S i be a generator of the first factor of the i-th copy of 
S i x  S 2. Then S i is homotopic to zero in M by hypothesis. Hence it 
bounds an n-point immersed 2-disc Di for some n. By isotoping a generator 
of the second factor o fS  1 x S 2 into int M we construct a 2-sphere in int M 
which intersects D~ transversely and in a single point. This 2-sphere has 
trivial normal bundle. By Lemma 1, then, we can assume that D~ is an 
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embedded  disc. Moreover  using the cancell ing technique of the proof  
of Lemma  i we can ensure that  D i and  Dj are disjoint for i4:j .  Hence we 
may apply Lemma 5 for the result. 
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