Dehn's Lemma for Certain 4-Manifolds

 $R. A. NORMAN t *$

Unless otherwise stated all manifolds and maps are smooth.

Let M be a 4-manifold and K a knot M (i.e. an embedded circle). Suppose K is homotopic to zero in M. We wish to construct an embedded 2-disc in M with boundary K. We can map a 2-disc into M so that its boundary is embedded as K and its interior is mapped into int M . We can deform the map (rel. boundary) slightly into general position, when it becomes an immersion whose self-intersections are at a finite number, n say, of points where exactly two sheets cross transversely (we shall call this an *n-point immersion;* a 0-point immersion is an embedding).

Lemma 1. *Let D be an n-point immersed 2-disc in* M(n>0). *Suppose there exists in int M an embedded 2-sphere* S^2 which intersects D trans*versely and in a single point q. Then there exists in M an (n-1)-point immersed 2-disc with boundary* ∂D *. If further* S^2 has trivial normal bundle *then there exists in M an embedded 2-disc with boundary OD.*

Proof. Let p be a self-intersection of D and let D_1 be a small 2-disc neighbourhood of p in one sheet of D. Let D_2 be a small 2-disc neighbourhood of q in S^2 . Take an arc pq in D disjoint from the other self-intersections of *D*, and from $D_1\setminus\{p\}$. We can construct a thin tube $D^1\times S^1$ (with its axis along pq) joining ∂D_1 to ∂D_2 with its interior disjoint from D and S^2 . The $(n-1)$ -immersed disc is

 $(D\int D_1) \cup (D^1 \times S^1) \cup (S^2 \int D_2)$

with the corners smoothed (see Fig. 1).

If $S²$ has trivial normal bundle we can use the above construction, with a sequence of cross-sections as the 2-spheres, to eliminate all the self-intersections.

^{*} R. A. Norman died in an accident on the Welsh mountains in the spring of 1967. This paper has been compiled from some of his results.

144 R.A. Norman †:

It is well known (and, in fact, an easy consequence of Lemma 1) that if the knot K contains points of int M then it does indeed bound a 2-disc in M. We consider, then, the case where $K = \partial M$.

Theorem 2. Let the 4-manifold M be a connected sum $N + (S^2 \times S^2)$. Let K be any knot in ∂M . Suppose that K is homotopic to zero in M. *Then K bounds an embedded 2-disc in M.*

Proof. Clearly K homotopic to zero in M implies K homotopic to zero in N. So K bounds in N an *n*-point immersed 2-disc, D say, for some n. Choose a generator of the first factor of $S^2 \times S^2$ and take the connected sum of pairs (N, D) # $(S^2 \times S^2$, generator). Now D # generator is an *n*-point immersed 2-disc, and any generator of the second factor of $S^2 \times S^2$ is a sphere with trivial normal bundle. We can apply Lemma 1 for the result.

Corollary 3. *Any knot in* $S³$ *bounds a 2-disc in M, where*

$$
M = (S^2 \times S^2) \setminus \text{int } D^4
$$
 and $S^3 = \partial M$.

Remark. Theorem 2 remains true with $S^2 \times S^2$ replaced by T, the other 2-sphere bundle over S^2 (see [2]). For take D + (cross-section) and cancel its self-intersections with fibres.

If M is as in Corollary 3, and α and β are the obvious generators of $H₂(M, \partial M)$, then the embedded 2-disc constructed by the method of Theorem 2 represents $\alpha + m \beta$ for some integer m. In fact it is not hard to see that we can arrange for $m=0$. (Cf. the proof of Theorem 4 below.) A natural question that arises is "Given a knot K in $S³$, is there a manifold M with $\partial M = S^3$, such that K bounds in M a disc which represents $O \in H_2(M, \partial M)$?" The answer is in the affirmative. A suitable M is $rT\$ int D^4 (where rT denotes the connected sum of r copies of the manifold T of the above remark, and the integer r depends on K).

Theorem 4. For any knot K in S^3 , there is an r such that K bounds a *2-disc D in M = r T* \ int *D⁴*, where $S^3 = \partial M$, and *D represents* $0 \in H_2(M, \partial M)$.

Proof. Consider any projection of K. It is well known that on changing certain undercrossings of K to overcrossings the new knot K^* obtained is trivial. This implies that there is in $S^3 \times [0, 1]$ a properly embedded

Fig. 2

surface of genus 0 with part of its boundary, namely K, in $S^3 \times \{0\}$, and the rest (in $S^3 \times \{1\}$) consisting of K^* together with some circles which link K^* once and each other not at all (see Fig. 2).

Moreover we may suppose that the same number, r say, of the circles link K^* left-handedly as link it right-handedly, for we may introduce new ones at will (Fig. 3).

Fig. 3

In $S^3 \times [1, 2]$ we properly embed another surface of genus 0 such that its intersection with $S^3 \times \{1\}$ is K^* and its linking circles, and with $S³ \times \{2\}$ is 2r links of the most elementary kind (Fig. 4).

Now attach to a 3-disc in $S^3 \times \{2\}$ containing exactly one such link a copy of $\mathbb{CP}^2\setminus \text{int } D^4$ by a 3-disc in its boundary. The circles of the link bound disjoint 2-discs in $\mathbb{CP}^2\setminus \text{int } D^4$, and (if \mathbb{CP}^2 is suitably oriented) the union of the 2 discs represents zero in the relative homology group. Do this for each link. The boundary of $S^3 \times [0, 2]$ plus attachments is $S^3 \times \{0\}$ together with another 3-sphere. Attach to the latter a final 4-disc and smooth all corners. The resulting manifold is $rT\int$ int D^4 (see Lemma 1 of [2]), and the 2-disc bounding K which we have constructed in it has the required property.

Any 3-dimensional 2-handlebody-boundary (using the notation of Smale [1], any boundary of a manifold in $\mathcal{H}(4, k, 2)$) is formed from S^3 by spherical modifications. That is to say, one removes from $S³$ the interiors of a set of disjoint embedded solid tori $(D^2 \times \partial D^2)$ and attaches solid tori $(\partial D^2 \times D^2)$, along the boundaries. We denote by S_i the embedded circle $(\partial D^2 \times 0)_i$ in the resulting 3-manifold.

Lemma 5. Let M be a 4-manifold with ∂M a 2-handlebody boundary. *If the circles S_i in* ∂M *bound disjoint locally flatly embedded 2-discs in M, then any PL knot in OM bounds a PL embedded 2-disc in M.*

Proof. We may assume that the discs bounded by the circles S_i are properly embedded (i.e. with interiors in $\text{int } M$) for all i. We ambient isotope the given knot off the handles $(\partial D^2 \times D^2)$ to obtain a knot K which in S^3 possibly links the solid tori $(D^2 \times \partial D^2)_i$. We can decompose K as the sum of a knot K^* lying in a 3-disc D^3 in S^3 disjoint from the solid tori and a finite set of circles in $S³$ each linking exactly one solid torus exactly once (see Fig. 5).

Fig. 5

These circles are essentially the S_i above and thus bound 2-discs. If exactly one circle links each solid torus then the discs can be chosen disjoint by hypothesis. If several link the same torus, choosing crosssections of the normal bundle of the 2-disc bounded by the relevant S_i enables us to span all the circles with disjoint discs (in this case it may be necessary to have the circles linked with one another in $S³$, but this is easy to arrange). Now we put a cone on K^* (the cone is a PL 2-disc). We can do this in a small neighbourhood of $D³$ disjoint from the previously constructed 2-discs. Finally we join all the discs together to obtain *a PL* disc bounded by K, and then ambient isotope K back to its original position.

An immediate consequence of this Lemma is

Corollary 6. If $M \in \mathcal{H}(4, k, 2)$ then any PL knot in ∂M bounds a PL *embedded 2-disc in M.*

Theorem 7. Let M be a 4-manifold with $\partial M = (S^1 \times S^2) + \cdots + (S^1 \times S^2)$. *Suppose that the inclusion* $\partial M \subset M$ *induces the zero map on fundamental groups. Then every PL knot in OM bounds a PL embedded 2-disc in M.*

Proof. Let S_i be a generator of the first factor of the *i*-th copy of $S^1 \times S^2$. Then S_i is homotopic to zero in M by hypothesis. Hence it bounds an *n*-point immersed 2-disc D_i for some *n*. By isotoping a generator of the second factor of $S^1 \times S^2$ into int M we construct a 2-sphere in int M which intersects D_i transversely and in a single point. This 2-sphere has trivial normal bundle. By Lemma 1, then, we can assume that D_i is an

embedded disc. Moreover using the cancelling technique of the proof of Lemma 1 we can ensure that D_i and D_j are disjoint for $i \neq j$. Hence we may apply Lemma 5 for the result.

References

- 1. Smale, S.: Generalized Poincaré's conjecture in dimensions greater than 4. Annals of Math. 74, 391 - 406 (1961).
- 2. Wall, C. T. C.: Diffeomorphisms of 4-manifolds. Journal London Math. Soc. 39, 131- 140 (1964).

M. C. Irwin The University of Liverpool Department of Pure Mathematics Liverpool 3, England

(Received January 22, 1969)