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w I. Introduction 

The theory of regular splittings of matrices has been a useful tool in the 
analysis of iterative methods for solving large systems of linear equations (cf. 
Berman and Plemmons [1, p. 130], Ortega and Rheinboldt [5, p. 57], Varga 
[7, p. 88], and Young [9, p. 123]). Our basic purpose here is to derive new 
comparison theorems (Theorems 2 and 4) for regular splittings of matrices, 
which generalize the original results in 1960 of Varga [6] and the subsequent 
unpublished thesis results in 1973 of Wo~nicki [8]. A secondary objective of 
this work is to popularize here the useful but little known results of Wo~nicki 
[8]. 

In the remainder of this section, we give the older results and background 
for the regular splitting theory of matrices. In w our new results are stated 
along with supplementary discussions and examples, while in w 3, the proofs of 
our new results are given. 

For our theoretical background, let A, M, and N all be complex n x n 
matrices. Then, A = M - N  is said to be a regular splitting of A (cf. [6, 7]) if M 
is nonsingular and if M - 1  and N have all their entries nonnegative (written 
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M - l >  0 and N >  0). This concept  arises most  natural ly in the iterative solution 
of large linear systems of equations. Specifically, suppose we are given the 
following system of n linear equations in n unknowns:  

A x = k ,  (1.1) 

where A is a given n x n matrix, and where x and k are column vectors with n 
components ,  with k being given. If A = M - N  is a regular  splitting of A, then 
(1.1) can be expressed as 

x = M - t  N x  + M - l k ,  (1.2) 

which suggests the following iterative method:  

x(~ + l) = M -  1Nx(m) + M -  lk, (m=0 ,  1 . . . .  ), (1.3) 

where x ~~ is an arbitrari ly chosen initial column vector. That  this iterative 
me thod  is, when A - t  > 0 ,  necessarily convergent to the unique solution of (1.1), 
independent  of the initial choice of  x ~~ is contained in Theorem A below. For  
addit ional  notat ion,  we write C > 0  if all entries of an n x n matr ix  C are 
positive, and A > B and A > B if A - B__> 0 and if A - B > 0, respectively. Also, 
p(C) will denote the spectral radius of C. With these definitions and notat ions,  
the following results of Theorems  A and B are well-known. 

Theorem A ([6, 7]). Let  A = M - N  be a regular splitting of  A. I f  A -1 >0,  then 

p ( m -  l N ) =  P ( A - 1 N )  
I + p (A_I  N ) -1 .  (1.4) 

Conversely, i f  p ( M -  1 N) < 1, then A -  1 > O. 

Theorem B ([6, 7]). Let  A = M a - N I = M 2 - N  2 be two regular splittings of  A, 
where A -  x > O. I f  N 2 > N1, then 

p ( M ;  IN2)> p ( M ?  1NI). (1.5) 

In particular, i f  N 2 > N 1 with N 2 4: N1, and i f  A -  1 > O, then 

p(M21 N2 ) > p ( M ?  1N1). (1.6) 

Less well-known, but  nonetheless useful in applications, is the following 
thesis result of  Wo~nicki [8]. 

Theorem C ([8]). Let  A = M 1 - N 1 = M 2 - N 2 be two regular splitting of  A, where 
A - l - > 0 .  I f  M~X>=M~ 1, then 

p (M 2 ' N2) >= p(M 7 ' N1). (1.7) 

In particular, i f  M ~  1 > M21 ,  and i f  A -  1 > O, then 

p ( M ~  1 N2 ) > p ( M ;  1N1). (1.8) 
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w 2. Statements of New Results 

To motivate our  generalization of Theorems B and C on the comparison of 
regular splittings of a matrix, we state 

Proposition 1. Let A = M  1 - N  1 = M  2 - N  2 be two regular splittings of A, where 
A-1 >=0. Then, 

i) N 2 >= N 1 implies that M~ 1 > M21 ; 
ii) M ~ I >  M21 implies that A - 1 N 2 A - I >  A-aN1A-1; 

iii) A - I N 2 A - ~ > A - ~ N ~ A  -1 implies that (A-aN2)iA-~>=(A-IN1)iA -~, for 
each positive integers j > 1. 

Moreover, the reverse implication in i), ii), or iii) is not in general valid. 

We remark that assertions i) and ii) of Proposit ion 1 can be found in 
Wo~nicki [8, pp. 46, 47-1, as well as an example showing that the reverse 
implication of i) can fail (cf. [-8, p. 54-1). For  completeness however, Proposi- 
tion 1 will be established in its entirety in w 3. 

It is now evident from Proposit ion 1 that the key hypotheses of 
Theorems B and C (namely, that  N2>=N1, and that Mi-~>M21) are pro- 
gressively weaker hypotheses. As our generalization of Theorems B and C, we 
impose now a still weaker hypothesis (cf. (2.1)). 

Theorem 2. Let A = M  1 - N  1 = M  2 - N  2 be two regular splittings of A, where 
A-  1 ~ O. Assume that there exists a positive integer j for which 

(A- 1N2)JA-1 ~ (A- I N  a)jA - 1 (2.1) 

Then, 
1 > p ( M ;  1 N2 ) => p(M?l  N~). (2.2) 

That  Theorem 2 (to be proved in w generalizes the first parts of 
Theorems B and C is an immediate consequence of Proposi t ion 1. 

Continuing, let A = M~-Na = M  z - N  2 be two regular splittings of A, where 
it is also assumed that  A - 1 >  0. Then, we define the set S (which depends on 
the matrices A, Ma, N 1, M 2, and N2) as 

S. '= {positive integers j: (A- 1N2)JA- 1 >= (A- 1N1)JA- 1}. (2.3) 

With this definition, we further have 

Proposition 3. The set S is closed under addition. 

As a consequence of Proposi t ion 3, we of course have that if S is not 
empty, then S has infinitely many elements. In particular, if l eS, i.e., 
A-  ~ N 2 A-  1 > A -  1 N 1 A -  1, then S consists of all positive integers from Proposi- 
tion 3, which thus established iii) of Proposi t ion i. We further remark that if k 
and j in S are relatively prime, then S must contain all sufficiently large 
positive integers. 

It is natural  to ask if there are regular splittings A = M 1 - N ~  = M 2 - N  2 of a 
matrix A satisfying A - ~  0, for which 

(A- 1N2)J A -  1 > (A- 1Nt)J A -  1 
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for some positive integer j >  1, but for which A-1N2A-~  ~=A-1N1A -1. To this 
end, set 

2(S).'=min{j: j~S} (where 2(S).'= + ~ if S =O). (2.4) 

In terms of this notation, the question above simply asks if there are examples 
where 2(S)> 1. To affirmatively answer this question, consider the following 
(fixed) matrices 

A :=  [ _ ~  -12], so tha t  A - ' = � 8 9  ~], (2.5) 

M 1 . ' = [ _  ~ -12/2 ] ,  and NI:=[00 10/2 ] ,  (2.6) 

and the variable matrices 

[ [o Oo] MI(~).._ - 2 , and N 2 ( a ) : =  , where 0_<a_<l. (2.7) 
- - l+~t  

For each choice of ~ with 0_<a_<l, A = M 1 - N I = M I ( ~ ) - N 2 ( a  ) are regular 
splittings of A. It can be verified that k is the least positive integer for which 
(A-1N2(a))kA -1 > ( A-1N1)kA - ~ if and only if 

(2~)k-1<4, and (2~)k>4. (2.8) 

Considering the case of equality in the second part of (2.8), we set 

a(k):=41/k/2 for each positive integer k>2 ,  (2.9) 

so that 0 < a(k)= i. On further setting 

- -  1 + ~t(k) , and N~k):  = a(k) ' 

A/f (k) then, for the regular splittings A = M ~ -  N~ . . . .  ~ -N~  k), the associated set S of 
(2.3) satisfies (cf. (2.4)) 

2(S)=k, for each positive integer k__>2, (2.11) 

which shows that reverse implication of iii) in Proposition 1 can fail. 
For results which provide partial converses to Theorem 2, as suggested by 

the second parts of Theorems B and C, we next state 

Theorem 4. Let A = M 1 - N  1 = M 2 - N  2 be two regular splittings of A, where it is 
assumed that A -  1 > O. I f  

p(M2 ~ N2) > p(M 71N1), (2.12) 

there exists a positive integer Jo for which 

(A-IN2)JA -1 >(A-XN1)JA -1, for all J~Jo. (2.13) 

Consequently, if p(M21N2)> p(M~ l N1), then the set S of (2.3) is not empty, and, 
in fact, S contains all sufficiently large positive integers. Conversely, if there is a 
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positive integer j for which 

(A- ' N2)J A -  ~ > (A- 1U 1) jA-1 ,  (2.14) 

then (2.12) is valid. 
As a useful but immediate corollary of Theorem 4, corresponding t o  the 

case . ]= 1 of  (2.14), we have 

Corollary 5. Let A = M  1 - N  1 = M 2 - N  2 be two regular splittings of A, where it 
is assumed that A -  1 > O. I f  

A-1N2 A-1 > A-1N1A -1, (2.15) 

then p (m;  1N:) > p(M;  1 NO" 

The reason why this Corol lary 5 is interesting to us is that it generalizes the 
second parts of  both Theorems B and C. To see this, assume (as in Theorem B) 
that A = M 1 - N 1 = M 2 - N 2 are two regular splittings of A where A -  1 > 0, and 
where N 2 ~ N 1 with N 2 ::k: N 1 so that  

N2=NI+E,  where E > 0  with E ~ 0 .  (2.16) 

F rom the assumption that A-1  >0,  it readily follows that A - l E A - 1  >0,  so 
that from (2.16), we have A - 1 N z A - I > A - 1 N 1 A - 1  , the hypothesis of  (2.15), 
whence p(M;~Nz)>p(M;1NO from Corol lary S. Similarly, assume (as in 
Theorem C) that A = M  1 - N  x = M  2 - N  2 are two regular splittings of A where 
A - ~ >  0, and where M~-1> M2 1. A straightforward calculation (to be given in 
w shows again that A - 1 N z A - I > A - 1 N 1 A  -1, so that p(ME1N2)>p(M~INO 
follows once more  from Corol lary 5. 

Returning to Theorem 4, it is natural to try to weaken (2.12) of Theorem 4, 
to say 

p(A-  1Nz)=p(A- a Na) , (2.12') 

and to try to establish the weaker form of (2.13), namely 

(A- 1 N2)JA- 1 >= (A- 1N1)j A -  1, (2.13') 

for all sufficiently large positive integers j. 
To show that  this fails, consider the following 3 x 3 matrix 

and set 

[i -1 i] A : =  - 2 - , so that A - l = � 8 8  2 

- 1  [1 

4 >0,  

2 

[i 1j2 !] I! lj2 i] M I : =  - 2 - , N l : =  0 , and 

- 1  0 

(2.17) 

(2.18) 
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[ i ,  0] lion] M 2 : -  --  2 - 1 , N 2 : =  0 . 

- 1  7/3 0 1/3 
(2.19) 

As is easily verified, M~-1> 0 and M ; l >  0, so that A = M i - N  1 = M  2 --N 2 are 
two regular splittings of A. Furthermore, 

p(A- 1N1) = 1  = p(A-1 N2), 

so that (2.12') above is satisfied. On the other hand, as can be directly 
computed, we have 

(A-1N1)JA-1-4J+i 4 , 
2 

, [-1/3 2/3 3 /3]  
(A-1N2,JA -1 =~-7~3-/2/3 4/3 2 6~3 J 

"~ - [ 1  
(2.20) 

for each j>__ 1. But, the comparison of the matrices in (2.20) shows that (2.13') 
above fails and that (2.13') also fails with N 1 and N 2 interchanged, for each 
positive integer j. In this sense, the result of Theorem 4 may be viewed as being 
best possible. It is, however, an open question if, under the hypotheses of 
Theorem 4, the associated set S of (2.3) can have some initial gaps. 

To conclude this section, we remark that the results of Theorems B and C 
are very useful in comparing the spectral radii of associated iteration matrices, 
primarily because the conditions N 2 ~ N~ and/or M~-~> M 21 are relatively easy 
to check. We remark that our new condition, namely 
(A-1N2)JA-I>(A-1N1)JA -1, while weaker than the conditions N2>N 1 or 
M~ 1> M2 l, may be more cumbersome to apply in actual practice. 

w 3. Proofs 

In this section, we give the proofs of the new results stated in w We begin 
with the 

Proof of Proposition 3. Suppose that j and k are arbitrary (not necessarily 
distinct) elements of the set S of (2.3), so that 

(a -1N2)JA- 1 ~ (a-1N1)Ja- 1, (3.1) 
and 

(A - 1N2)kA-  1 ~ (A- 1N:)kA- 1. (3.2) 

Postmultiplying throughout in (3.1) by N2(A-tN2)k-1A-1 gives 

(A- 1N2)J+kA- 1 => (A- 1 N j ( A -  1N2)kA- 1, (3.3) 
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while premult iplying throughout  in (3.2) by ( A - i N J  gives 

(A - l Ni)~(A- ~ N2)kA-1 > (A-  i N 1)i + k A - 1 (3.4) 

Thus, combining (3.3) and (3.4) yields 

(A - 1N2)J + k a - 1 > (A - 1 Ni)J + k A - i, (3.5) 

so that (j+k)eS. [] 

Proof of Proposition 1. i) Assume that N 2 > N 1 (where A = M  1 - N  1 = M z - N  2 are 
two regular splittings of A with A -  1 > 0), so that  N 2 - N 1 _>__ 0. Since N~ = M i - A, 
then N z - N i = M 2 - M1 > 0, which can be factored as 

M 2 - M 1 = M i (M~- 1 _ M~- i )M 2 > 0. (3.6) 

Since, by hypothesis,  M~ -~ and M~ -~ are nonnegat ive matrices,  then pre- 
multiplying by M~- 1 and postmult iplying by M~- ~ in (3.6) gives 

M ? I - M ~ I > O ,  i.e., M ~ I > M ;  1, (3.7) 

the desired conclusions of i). 
ii) Assume that M{  1 > M f  1. Since M i = A + N~, then M i- 1 > M~- 1 implies 

that (A + NI)- 1 > (A + Nz)- 1, which can be represented as 

(I + A-1N1)-  I A -  I > A -  i(I + N2A-1) - i (3.8) 

Since the matr ices I + A - 1 N i  are nonnegative, then premult iplying by (I 
+A -1N 1)  and postmult iplying by (I + N2A-1) in (3.8) gives 

A - I  + A - 1 N 2 A - I >  A - I  + A - t N 1 A - 1 ,  

which reduces to 
A - 1 N 2 A - I > A - 1 N ~ A  -~, (3.9) 

the desired conclusion of ii). 
iii) Assume A - 1 N z A - I > A - 1 N i  A - i ,  so that  i t S  (cf. (2.3)). F r o m  Proposi-  

tion 3, it follows that  S contains all positive integers j, whence 

( A - 1 N j A - I > ( A - 1 N 1 ) J A  - i ,  for each positive integers j l ,  (3.10) 

the desired conclusion of iii). 
To complete the proof  of  Proposi t ion i, we give examples  where the reverse 

implication of i) or  ii) of Proposi t ion 1, fails. Set 

A : = � 8 9  s o t h a t  A - i = - ~ [ ~  ~ ] > 0 ,  

and set 

M1 :=�88 [_4 2 -25]' so that M l--i (312, 
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and 

M2:~ [10 0 1 ] ,  N 2 : : l [ ~  10], sothat M~-I=[10 ~], (3.13) 

M3:=�88 05] ,  N3:=�88 21], sothat M31=4151 05]. (3.14) 

With these definitions, it is evident that A=Mi-N z (i= 1,2, 3) are all regular 
splittings of A. Further, from the above equations, we see that 

and 
M?I>M21, but N2~:N 1 and NI~gN2, (3.15) 

A-aN3A-I=~[ 111013]>A-IN2A-I=~[ - 1 0 1 ~ ] ,  but 

M-1 M-I">M-1 M2-1~ 3 ,  and 3 ~: 2 ,  (3.16) 

showing that the reverse implications of i) and ii) of Proposition 1 can 
fail. [] 

Proof of Theorem 2. From (1.1) of Theorem A, it suffices to show that 
p(MZ 1N2)> p(M71N1). From the hypothesis, 

(A- 1N2)~A-a > (A- a NjA-1  ~ O, (3.17) 

for some integer j. Postmultiplying throughout in (3.17) by the nonnegative 
matrix Nz(A- 1N2)J- 1 gives 

(A- 1Nz)2j >= (A- 1Nj(A- 1Nz)j > 0, (3.18) 

while postmultiplying throughout in (3.17) by the nonnegative matrix 
NI(A- 1N1)~- 1 gives 

(A- 1N2)i(A- 1N1)J > (A- IN02i>= 0. (3.19) 

Clearly, from the Perron-Frobenius Theorem on nonnegative matrices, (3.18) 
and (3.19) respectively imply that 

and 
p 2 J(A -1  N 9  => pJ((A - 1 N1)(A - 1Ng)  

pJ((A- 1N2)( A -  1N1)) > p2~(A- 1N1). 

(3.20) 

(3.21) 

But, as it is well-known that p(EF)= p(FE) for any two complex n x n matrices, 
then (3.20) and (3.21) give that 

whence 
p2J(A- 1 N2 ) > p2J(A- 1N1), 

p(A-1N2)> p(A- I Na). 

(3.22/ 

(3.23) 
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Since from (1.1) we see that p(M-1N) is a strictly monotone  increasing func- 
tion of p(A- ' N), then (3.23) implies that 

p(M 21N2) >= p(M~ 1Na) , (3.24) 
the desired conclusion. []  

In order to prove Theorem 4, we need the following result of 

Lemma 6. Assume that the n x n matrices A and N satisfy A-~ > 0  and N>O. 
Then, the following are mutually exclusive and collectively exhaustive: 

i) N-O,  in which case A - I N - 0 ;  
ii) A - 1 N  $O and reducible, in which case there exists an n x n permutation 

matrix P such that 

P (A-1N)Pr= [O~-~; ,zJ '  where R1,2>0 and where R2,2>0;  (3.25) 

iii) A - 1 N  is irreducible, in which case A - 1 N  >O. 

Proof Set A - a N =  :B=[b~,~]. On writing A - I : = [ ~ , ~ ] ,  suppose that  some bl, i 
= 0, so that if N : =  [ni,j], then 

bi,j= ~ O~i,knk,j=O. (3.26) 
k=l 

As A-1 > 0  and as N > 0  by hypothesis, then evidently nk,j=O for all 1 < k <n.  
Hence, the j- th column of N must vanish, which implies the j-th column of 
A - ~ N  must also vanish. Thus, both N and A - ~ N  are reducible. Assume that 
A - ~ N  is reducible. Then (cf. E7, p. 46]), there is an n • n permutat ion matrix P 
such that 

the so-called canonical reduced form for A-1N,  where each /~j,j is square and 
irreducible, or a 1 x 1 null matrix. But, from the argument above, any column 
of the matrix on the right in (3.27) having a zero entry must vanish identically. 
Thus, the display in (3.27) reduces to 

P (A-  1N)P ~ = [ ~ ]  (3.28) 
t0 [  R2.2J' 

where R2. 2 is irreducible or a 1 • 1 null matrix. If R2, a is a 1 • 1 null matrix, 
then, by the above argument,  A - I N - O ,  so that N - 0 .  If R2, 2 is irreducible, 
the same argument  shows that R1 .2>0  and R2,2>0. Finally, if A - a N  is 
irreducible, then we similarly conclude that A- IN>O.  [] 

Proof of Theorem 4. Assume (2.12), which from Theorem A gives 
P(A-1Nz)>p(A- 'NO. Since p(A-1N2)>O, only cases ii) and iii) of Lemma 6 
are relevant. Assuming A-~N2 is reducible, we have (up to a permutat ion 
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transformation) that (cf. (3.25) of Lemma 6) 

A-  1N2 = [ 0 _ _ ~  ,2 ] [ 0 [ R 2 , 2 j ,  where R1,2>0 and where R2,2>0. (3.29) 

On setting p :=  p(A-~N2), it follows that 

(A-1N2/P)~= [~ R"2RJ2;)/Pi] (3.30) 
R J2 2/p ~ J' 

for all positive integers j. But as p=p(A-1N2)=P(R2,2) and as R2,2>0 from 
(3.29), it is known (cf. [1, p. 45]) that 

lim (R2'zy=,R z z>0,  (3.31) 
j ~ o o \  p / 

so that from (3.30), 

lim(A-'Nz/p)J= [2 t Rl'2R2'2/P] (3.32) 
j~oo R2,2 J" 

Further, partitioning A-~ conformally with respect to the partitioning in (3.29), 
we can write 

A - I  [DI ' I  I D1 2 , -= '-~ 2,1 D212] where D i,i > 0 for all 1 _-< i, j _-< 2, (3.33) 

and, similar to (3.32), we also deduce that 

[R,,2R2,2D2,1/P R1 2/~2 2D2 2/P] 
)im(A-'N2/p)'A-I=:E= I_ /~2,2D2,1 '/~2,2'D2,E'-j (3.34) 

so that all entries in the matrix E are positive. On the other hand, 
p(A-1N1)/p(A-~N2)< 1 implies (of. [7, p. 13]) that lim(A-iN1/P)~=O, so that 

j~oo 

lim (A- 1N1/p)JA- 1 = 0. (3.35) 
j ~  

Hence, there exists a positive integer Jo such that 

(A - 1 N2/p)~A- 1 > (A- 1 NI/p)JA - 1, for all j =>Jo, 
whence 

(A-1N2)JA -1 >(A-1N~)iA -x, for all J>Jo, (3.36) 

the desired result of (2.13) of Theorem 4. 
Continuing, assume (cf. (2.14)) there is a positive integer j such that 

(A-1N2)JA-1 > (a-1N1)JA- 1, 
which we express as 

(A-IN2)JA-t-(A-1N1)JA-I=:Fj, where F~>0. (3.37) 
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Postmultiplying (3.37) by Nz(A- 1N2y- 1 gives 

(A- 1N2)2~ = (A- 1N1)J(A- 1N2)J+FjN2(A- 1N2)J- 1, (3.38) 

while postmultiplying (3.37) by NI(A-1NI)J-1 similarly gives 

(A-  I N2)J(A- 1N1)J=(A- t N1)2J + F~NI (A- 1NlF-1 (3.39) 

First, it is evident from (3.37) that N250. Thus, in applying Lemma 6 to 
A -1 and N~, i=  1, 2, a number of different cases must be considered. If N 1-0 ,  
then either case ii) or iii) of Lemma 6, applied to A-~ and ?42, gives that 
p(A- ~ Na) > 0, whence 

p(A-1N2)>O=p(A-1N O. 

Thus, from (1.4) of Theorem A, p(M 21N2)> p(M~-1N1)= 0, the desired result of 
(2.12). 

Next, assume that A - t N  1 is irreducible, so that, from Lemma 6, A - I N  1 >0  
implies that no column of N 1 can vanish. Hence, as Fi>0, it follows that 

F2NI(A- 1N, y-  I >0. (3.40) 

Thus, from (3.39), (A-aNE)J(A - 1N1)~>(A-1N1)2J , and as (A-1N1) 2~ is a positive 
matrix and hence irreducible, we deduce from (3.39) that (cf. [5, p. 57]) 

pJ((A - 1 N2)( A - ~ N1)) > fl 2 i(A - ~ N1). (3.41) 

On the other hand, it is obvious from (3.38) that 

p2J(A-1Nz ) > pJ((A- 1N1)( A -1N2)) ' (3.42) 

so that (3.41) and (3.42) yield 

p (A - 1 N2 ) > p (A - 1 N1), (3.43) 

which, from (1.1) of Theorem A, gives p(M 21N2)> p(M~-1N1), the desired result 
of (2.12). 

In the final case that A-1N1 ~0 and reducible, we use the representation 
(3.25) for P(A-1NOP r, where R1,2>0 and where R2,2>0. In addition, it can 
be verified that 

r r0] $1. 2q 

where the partitioning in (3.44) is conformal with respect to the partitioning in 
(3.25). Moreover, $1,2>0, S2,2=___0 , and no column of ($1, 2, S2,2) T c a n  vanish. 
Dropping the (fixed) permutation matrix P now for convenience it easily 
follows (cf. 3.30)) that 

1 (3 
s:,2 R~7~ - 
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Thus, if Fj of (3.37) is conformally partitioned relative to (3.44), i.e., 

LT2,I T2,2J, where T/,k>0 for all 1 <i, k<2,  (3.46) 

then 

FjN~(A-1N1)J-I=[O0 Tl"'Sl'2RJ2"21+j-1 Tl'2S2'2RJ2'21]. . (3.47) 
T2,1S1,2R2,2 + T2,ES2,2RJ2.) 

Because no column of ($1,2, $2,2) r can vanish and because the T~, k and R~,21 
are all positive, the final diagonal block in (3.47) is evidently positive. This 
implies, from (3.39) and (3.45), that 

pJ((A-1N2)( A - 1N1)) > p2J(A - 1 N1), (3.48) 

while from (3.38) we have the obvious inequality 

p2J(A- 1N2)> pJ((A- 1N1)(A 1N2) ). (3.49) 

Thus, (3.48) and (3.49) together yield 

p(A- 1N2) > p(A- 1N1), (3.50) 

which, from (1.1) of Theorem A, gives p(M; 1N2)> p(M;-1N1), the desired result 
of (2.12). [] 

We remark that it is clear from our proof of Theorem 4 that, with the 
initial hypotheses of Theorem 4, if p(M; 1N2)>P(M { 1N1), then for any matrix 
B > 0, there exists a positive integer Jo for which 

(A-1N2)JB>(A-1NjB, for all J>Jo. (3.51) 

Finally, we show that Corollary 5 generalizes the second part of Wo~nicki's 
Theorem C. Let A = M  1 - N  1 = M  2 - N  2 be two regular splittings of A, where 
A - l > 0 ,  and assume M?I>M21.  Consider the matrix A-I(N2-N1)A -1, 
which is at least nonnegative from ii) of Proposition 1. Then, following Wo~- 
nicki [8, p. 48], 

A -  I (N 2 - NI)A- 1 = A -  I ( M  2 -- M1)A -1 = A-  1MI (M 1 1 _ M 2 1)M2A-  1 

= A -  I (A + N1)(M ? 1 - M~ I)(A + Nz)A -1 

=(I + A-1N,)(M{ 1 _ M  21)( I + N2A- 1), 

which can be expressed as 

A -  I ( N  2 - N1)A- 1 =(M~- 1 - M E  i)+ A-  1NI(M 11 _ M  21) 

+(MI1-M21)N2A- l+A-1Nl (M~- l -M21)N2 A-1. (3.52) 

Clearly, the first term on the right is a positive matrix by hypothesis and the 
remaining terms on the right are all nonnegative matrices, so that 
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A-I(N2-N1)A-I>O, or equivalently, A-1N2A-I>A-IN1A-i, (3.53) 

which is hypothesis (2.15) of Corollary 5, whence p(Ms p(M~lNi). 
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