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Classification Problems in Differential Topology. V 

On Certain 6-Manifolds 

C. T. C. WALL (Liverpool) 

The object of this paper is, first to give the classification up to diffeo- 
morphism of closed, smooth, simply-connected 6-manifolds; and then 
to use this to study other classifications and related questions. Most of 
our results are valid only for manifolds which satisfy the additional 
hypothesis. 

(H) The homology of M 6 is torsion-free, and w2(M ) =0. 

Since, by smoothing theory, it is known that any piecewise-linear 
6-manifold admits a differential structure, unique up to concordance, it 
follows that our classifications apply equally to this case. 

The problem was suggested to the author by P. E. NEWSTEAD, as one 
of the manifolds above arises in his classification of holomorphic vector 
bundles of rank 2 and degree 1 over a Riemann surface of genus 2. There 
is no dependence on the previous papers in the series - most of the 
problems investigated in them belonged to the "metastable" or quadratic 
range: here for the first time we consider cubic forms. 

1. Splitting Theorem 

Theorem 1. Let M be a closed, smooth, I-connected 6-manifold. Then 
we can write M as a connected sum M 1 ~ M2, where H a (Ml)  is finite and 
M2 is a connected sum of copies of  S 3 x S 3. 

Proof. Write H ~ ( M )  for the quotient of H a (M) by its torsion sub- 
group. Then H ~ ( M )  is a finitely generated free abelian group, and 
intersection numbers induce a skew-symmetric integer-valued bilinear 
form on it which, by the Poincar6 duality theorem, is nonsingular. It  
follows by a standard result that H ~ ( M )  admits a symplectic basis 
(ei ,  e~: 1 <= i < r},  so that 

eic~ej=e~c~ej=O, eic~ej=6ij. 

Now Ha (M) maps onto H f ( M ) .  Also, since M is simply-connected, 
the Hurewicz theorem implies that n3(M ) maps onto H3(M ). Choose 
elements of n3(M) with weak homology classes el, e ' ,  and represent 
them by m a p s f i , f ;  :Sa-*M. Since M is simply-connected, a theorem of 
HAEFLIGER [3] shows that these maps can be taken to be embeddings. 
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Also we may suppose (by a general position argument) that the image 
spheres meet each other transversely in a finite set of points, none of 
which lies on more than two of the spheres. 

The above-quoted result of HAEFLIGER depends on an argument of 
WHITNEY [23] which shows how to remove a pair of intersections of 
opposite sign. Using this argument (which applies here since M is simply- 
connected and our spheres have codimension 3) we find that we can 
remove all intersections except those forced on us: i.e. for each i a single 
transverse intersection off~ and f / .  

Let  �9 be a base point in $3: we may suppose our intersections are 
f~( , )=f[( , ) .  Also, since the intersection is transversal, we can find a 
neighbourhood D 3 x D 3 of * x �9 in S 3 x S 3 to which 

(f~ x *) U (* X f [ ) :  (S  3 x *) u (* x S 3) --~ M 

extends as an embedding. Now the normal bundle of each sphere in M 
is trivial, as n2(S03) vanishes, so we can extend our imbedding to a 
(closed) neighbourhood N of ( S 3 x * ) u ( *  x S 3) in S3x  S 3. We may 
suppose N chosen so that the closure of its complement is a disc D 6, and 
small enough for us to have embeddings (for each i) Ft: N ~ M ,  which 
are disjoint. 

If we remove from M the interior of each F~(N) and attach in its 
place the disc D 6, we obtain a closed manifold M1. It is clear from the 
construction that M is diffeomorphic to the connected sum of M1 and 
of a number of copies of S 3 x S 3 - say of M2. Also the original choice of 
the e~ and e~ shows that the map 

//3 (M2) "-" H3(M) --> H'~(M) 

is an isomorphism. Thus/-/3 (M1) is finite. 

We observe that since the fundamental group of a connected sum 
(in dimension > 2) is a free product, Ml is simply-connected. 

2. A Normal Form 

The proof below could replace that of Theorem 1 in our case, but 
does not appear to generalise usefully. 

Theorem 2. Let M satisfy (H) and H 3 (M) =0.  Then M can be obtained 
from S 6 by surgery on a disjoint set of embeddings g~:S3 • D 3 ~ S  6. 

Proof. By duality, H2 (M) is a free abelian group: choose a free basis 
{el}. By the Hurewicz theorem, we can represent the e t by maps~:  S 2--*M; 
by a general position argument, these may be supposed disjoint embed- 
dings. Now ~I(S04)~-Z 2 classifies SO4-bundles over S 2, and is detected 
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by the second Stiefel class w2. Since w2(M)=0, the f i ( s  2) have trivial 
normal bundles, and J~ extends to an embedding ft :  $2 x D a--,M. 

Form W' from M•  I by using thef~ to attach copies of D3x D a to 
M x  1. Since, by construction, the map Ha(W',M)--',.H2(M ) is an 
isomorphism, W' is 3-connected. tf V is the component other than 
M • 0 of d W', we see by duality that H~(W', It')~ H 7-i(W, ' M) vanishes 
for i4:4, and for i=4  is the isomorphic image of Ha(W')~Ha(M). 
Since V is clearly simply-connected, it is a homotopy 6-sphere. Accor- 
ding to SMALE [17], V is diffeomorphic to S 6. 

l~.eversing the construction above, we see that M can be obtained 
from $6~_ V by surgery as stated. We also observe that we can attach 
D 7 to W' along V, to give a manifold W with boundary M. And W is a 
handlebody, formed by attaching handles h A to D ~. We shall use W later 
on to construct embeddings of M. 

3. Invariants of Torsion~Free 6-Manifolds 

We now consider closed, smooth, simply-connected 6-manifolds 
M with torsion-free homology. By Theorem 1, we may restrict attention 
to manifolds with H3(M)=0.  Then the only nonvanishing homology 
(or cohomology) groups are in dimensions 0, 2, 4 and 6. We orient M, 
so the groups in dimensions 0 and 6 have given isomorphisms with Z. 
Write H for the free abelian group H2(M)~Ha(M), and/1 for its dual 

/ t  = Horn z (H, Z)'~ H 2 (M) ~ HA(M), 

the isomorphisms being natural given the orientation, and induced by 
cup and cap products. 

There is also the cup product H 2 ( M ) x  H2(M)---,Ha(M), or in the 
above notation H x H--rH. To give this is equivalent to giving the 
iterated product # : H x  H x  H--,Z. Then # is symmetric; H and g deter- 
mine the entire homology and eohomology structure. As to cohomology 
operations, # already determines the 4-type of M, and the only operation 
from H A to H 6 is Sq 2 (with rood 2 coefficients). 

We next come to characteristic classes. Modulo 2 we have the Wu 
2 2, class 1 +vz determining the Stiefel classes w z =t, 2, w4=v 2 =w2, other w~ 

vanish. And v 2 is determined as dual to 

Sq2: H4(M; Zz)--,H6(M; Z2)~Z  2. 

Apart from the Euler class, which is determined by~ the homology, the 
only integral characteristic class is p~ e l l a (M;  Z )~  H. 
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There are no relations between these invariants over the integers, 
but certain congruence relations hold. Certainly w22 is the rood 2 reduc- 
tion of Pl- We also obtain a relation mod 2 by considering Sq 2 on 
decomposable elements xy (x ,  y e H ) .  For by the Cartan formula, 

Sq2 (x  y ) = S q  2 x .  y + Sq 1 x .  Sq  I y - l - x .  Sq  2 y 

= x 2 y + O + x y  2 (mod 2). 

But, modulo 2 again, S q 2 ( x y ) = v z x y = w 2 x y .  An analogous argument 
provides also 

X3=--Hl(X)=---pl �9 X (mod 3). 

Finally, results of Wu [24] lead to a congruence rood 4. 
To sum up, we have 

Theorem 3. The invariants of  a closed, smooth, simply-connected 
6-manifold M with torsion-free homology can be described as: 

Two free abelian groups H = H 2 (M), G = H a (M). 

A symmetric trilinear map p: H x H x H~7s 

A homomorphism p~ : H ~ Z .  

An element w 2 s H |  Z 2 , the image say of W2eH.  

These satisfy the relations: 

For x, y e H ,  

For x ~ H, 
# ( x , y , x + y + W 2 ) = O  (mod 2). 

pl(x)--'t~(x, W2, W2) (rood 4), 

p l ( x ) = # ( x , x , x )  (mod 3). 

We observe that the reintroduction of H3(M)  does not affect the 
remaining invariants. 

We conjecture that the above invariants determine M up to diffeo- 
morphism. We shall prove this below in the case when M satisfies ( H ) -  
which amounts here to the extra hypothesis w2 (M)= 0. After Theorem 1, 
it will be sufficient to consider only the case when H3(M)=0;  and by 
Theorem 2, M is then obtainable by surgery on a framed link of 3-spheres 
in S 6. 

4. The Classification of Framed Links of S 3 in S 6 

First consider the case when we have only a single S 3, so we have 
just a framed knot. Fortunately, HA~FLmER gives a detailed discussion 
at the end of w 5 of [7] of precisely the case which interests us. Write 
FC~ for the group of isotopy classes of embeddings g : S  3 • D 3 ~ S  6, C 
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for the group of isotopy classes of embeddings g:S3""~S6o There is a 
�9 3 ~ 3 natural homomorphism q~.FC3 C3, obtained by taking ~, as the 

restriction of g to S 3 x O. From [7] (or we can easily see directly) there is a 
short exact sequence 

O--~n3(S03)-Z*F C~ ~ C ]  ---*0, 

where z is the map which twists the tubular neighbourhood g of ~. Also, 
rt3 (S03) is infinite cyclic. Finally, C~ is also infinite cyclic (so the sequence 
splits), and a generator is given by the explicit embedding gl :S  3--*S 6 of 
([5], p. 463). 

We note in passing that the gap in [6] for k = 1 - where HAEFLIGER 
would like to perform surgery on a simply-connected framed manifold V 
with boundary S 3 and signature zero - can be filled by using a result 
of [20] which implies that by taking a connected sum of V with many 
copies of SZx S 2 we obtain a connected sum of D* with copies of the 
same. This observation is due to B. STEER. 

Next we consider the classification of framed links, i.e. of embeddings 
in S 6 of a disjoint union of copies of S3x  D 3. The group of such links 
was studied in [6]: we shall use the final theorem of that paper. Although 
the case d = 2  is excluded by the statement of the theorem, the obser- 
vation above (also a more recent argument by HAEFLIGER) justifies our 
repairing the omission. (The cases d=3 ,  7 are more truly exceptional, 
owing to the existence of maps of Hopf invariant one). 

Proposition. The class of a link as above is determined by the knot 
class of each component and the linking elements ),~, ~k .  These are sub- 
ject to the sole relations S;t~=S2~, and that ~ is symmetric in i , j  and k. 

Here ) ~ n  3 (S 2) is the homotopy class of the composite of the embed- 
ding g, of S 3 in S6-gj(S3),  and a homotopy equivalence of the latter 
with S 2, chosen using an embedded copy of S 2 whose linking number 
with gj(S 3) is + 1 (to fix signs). Write now S/3 =g,(S3). 

More complicated is 2~'k: the complement of S 3 ~3 S~ has the homotopy 
type of S 2 v S 2, and S~ maps into this. But, using the easiest case of the 
Hilton-Milnor theorem (or the Blakers-Massey theorem), 

~3 (S 2 v S 2) _~ ~3 (S 2) @ ~3 (S 2) @ ~3 (S3), 

the third summand being injected by the Whitehead product of the 
inclusion maps of the two copies of S 2. Write ~k6n3 (S 3) for the projec- 
tion on this summand of the class of S 3. 

Since n 3 (S 2) and n3 (S 3) are infinite cyclic, our links can be charac- 
terised by a set of integers. To fix these, we choose generators: the Hopf  
map for rc 3 (S 2) and the identity map for z~ 3 ($3). We must also choose a 
left inverse to z. Now if g: S 3 x D 3 ~ S  6 is an embedding; we can use it to 
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attach a 4-handle to D 7, and the stable tangent bundle of the result 
determines an element of r~ 3 (SO), which can be shown to be an even 
multiple of the generator, and hence to lie in the (monomorphic) image 
of n3(SO3). (In fact it suffices to check this with some framing of g~). 
Thus we have defined a map ff:FC~.-*rc3(S03) which gives stably 
B:FC~--*r~3(SO). As /3~ is clearly induced by suspension, /~'~ is the 
identity. 

To sum up, our framed link is determined by a set of integers, which 
we can write as/3~, r ,~, 2}k; which are subject to the sole relations 
that 2}k be symmetric and that 2~=2~ (mod 2). 

5. Identification of the Invariants 

Suppose g~: S3x D 3 o S  6 a disjoint set of embeddings. Use them to 
attach 4-handles to D 7 to obtain W; set M=O IV. The handles have 
homology classes in H4(IV, DT)"-H4(IV)-"zH4(M)-~.H2(M); denote 
these classes in H2(M) by e~. The two previous sections are now tied 
together by 

Theorem 4. We have, for  i < j < k ,  

Iz(ei, e j ,  ek) = ~.~ k # (ei, ei, e j) = ~'.[ 

#(el, ei, ei) = 6 q~i + ~ Pl (el) = 4 ~ .  

Proof. Form X from S 6 by deleting the interiors of the images of the g~. 
Then X has the homotopy type of a wedge of copies of S 2 (plus various 
5-cells), and we can choose S~ to link S? once and the other S~ not at all. 
M is formed by attaching copies of D4x S 2 to X; hence by attaching 
4-cells and 6-cells. The attaching maps of the 4-cells are null-homologous 
in X so they represent homology classes in M; in fact the classes corre- 
sponding to e i. The above choice of linking numbers shows that the S 2 
represent the dual base of / /2  (M). 

We now see that (up to homotopy) M is obtained from VS~ 2 by 
attaching 4-cells D~ and a 6-cell. We calculate the attaching maps of the 
D~. By the Hilton-Milnor theorem again, 

Thus the class of OD~ is determined by integers, which in turn determine 
products in cohomology. Also, by definition, the component of this class 
in 7z3(S~) for i4,k is ;t~ and in ~3(S.3,j) for k4: i , j  is 2~j. 

Now the isomorphism of za(S~) with g is defined by the Hopf 
invariant, which is a functional square. Hence the value on the homology 
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class of D~ of the square of e~ (the dual base to S~) is 2~. As this homology 
class is dual to ek, we have 2 k e~ ek=2~. Also, the functional product takes 
the value 1 on a Whitehead product element, so e~e i has value 2~j on the 
class of D~, and e~ejek =,lf~. 

The remaining two equations are related only to our classification of 
framed knots. By definition, the restriction to D~ of the stable tangent 
bundle of W (hence also of M) gives 2fl~ times the generator of n3 (SO). 
Thus the Pontrjagin class takes the value 4/1~, on this homology class, so 
p1(ek) =4fl~,. Finally, e~ is (as above) determined by a class in n3($2), 
thus we must evaluate the map FC~---~7~ 3 ($2). On the subgroup n3 (SO3) 
it is easy to see that the map is induced by the fibre projection SOn ~ S  2, 
hence is an isomorphism. Also, HAEFLIGER has shown ([7], end of w 5) 
that the framed knot g~ determines 6 times the generator of n 3 ($2). It 
can now be checked without difficulty that the signs in the stated result 
are correct. 

It is now a simple matter to prove our main result. 

Theorem 5. Diffeomorphism classes of oriented manifolds satisfying 
(H) correspond bijectively to isomorphism classes of systems of invariants: 

two free abelian groups H, G, 

a symmetric trilinear map # : H x  H x  H-*•, 

a homomorphism Pl: H ~ Z  

subject to: for x, y e H, 

t t (x ,x ,y ) - ia(x ,y ,y )  (mod 2), 

for xeH,  
p l ( x ) - 4 # ( x , x , x )  (mod 24). 

Proof. By Theorem 3, these are indeed invariants of diffeomorphism 
class. To demonstrate existence and uniqueness of a manifold with given 
invariants, it suffices (by Theorem 1) to consider only the case G=0. 
Choose a base {e~} for H. By Theorem 2, there exists a framed link of 
3-spheres in S 6 on which surgery can be performed to give M, with the 
given base {e~} for H 2 (M). By the Proposition and Theorem 4,/a and p~ 
determine the framed link, and satisfy the given congruence relation. 
Hence they also determine M. To prove existence of M with the given 
invariants, we only have to choose a framed link as specified by Theo- 
rem 4 and perform surgery. 

We note that the final congruence condition is stronger than that 
obtained in Theorem 3. A direct proof can be given by applying ADEM'S 
secondary cohomology operation to the Thorn class of the tangent (or 
normal) bundle of M. 
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6. Homeomorphism and Homotopy Classifications 

Since cup products are certainly homotopy type invariants, it is 
only necessary to investigate the Pontrjagin class p~. Now NovIKov has 
shown [16] that the image of pl in rational cohomology is a topological 
invariant of M [parts of his original proof are unclear, but see Izvestia 
Akad. Nauk SSSR. 30 (1966) 208-246]. Thus we have 

Theorem 6. Two manifolds satisfying (H) are homeomorphie if and 
only if they are cliffeomorphic. 

We leave unsolved the problem whether a topological 6-manifold 
satisfying (H) is homeomorphic to a smooth manifold. (For homotopy 
spheres this has recently been shown by M.H.A.  Newman). We next 
come to homotopy classification. 

Theorem 7. Two manifolds satisfying (H) admit an orientation-preser- 
ving homotopy equivalence if and only if the corresponding groups G have 
the same rank, and there is an isomorphism between the groups H which 
preserves p, and pl (rood 48). 

Only the final condition calls for comment: invarianee of Pl (mod 24) 
was previously known, but follows trivially in our case by the relation 
with p. In fact, after Theorem 4, if # is given we know Pl (rood 24): to 
determine Pl (rood 48) is equivalent to determining the numbers ~0 i 
(rood 2). 

Proof. We first give an indirect proof of the rood 48 invariance of p~, 
which indicates a reason for the fact; then we give a computational 
proof which will establish also the sufficiency clause. 

We follow MILNOR and KERVAmE [10]. Since w2(M)=0, the tangent 
bundle of M is trivial on the 3-skeleton; if 0 is the obstruction to trivial- 
i sing on the 4-skeleton we have pl = 2 0. Now extend the structure monoid 
from S06 to SG 6 (= self-maps of degree 1 of $5). The resulting fibration 
is (at least stably) a homotopy type invariant of M, by a result of SPIVAK 
(Princeton thesis, 1964). Hence so is the image of 0 under 

H 4 (M; Z) ,,~ H4(M; 7~ 3 ( S O 6 ) )  -...4H4(M; 7[ 3 ( S G 6 ) )  . 

But we can identify ~a (SG6) with n 9 ($6), and the coefficient map with 
the J-homomorphism, which reduces mod 24. Hence 0 is a homotopy 
invariant mod 24, hence also 20 =Pl  mod 48. 

Our second proof is valid only when G = 0 ;  by Theorem 1, we only 
need prove the sufficiency clause in this case. Choose a base {e~} of 
H2(M) giving rise by duality to bases of H2(M ) and of H4(M). Since M 
is 1-connected and H ,  (M) is torsion-free, M is (homotopy equivalent to) 
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a cell complex whose cells determine these basis elements for homology: 
this follows from arguments of SMALE [17] up to homeomorphism -- a 
simpler argument of MILNOR (see [21]) provides homotopy equivalence. 
We have already mentioned that functional cup products detect the 
third homotopy group of a wedge K z of 2-spheres, so the homotopy type 
of the 4-skeleton K 4 of M is determined by p. Now the sequence 

zca (K2) ~n5  (K4) ~n5  (K 4, K 2) 

is exact, and a simple computation shows that n5 (K 4, K 2) is detected by 
functional cup-product and functional Sq 2, hence in our case the image 
of the attaching map of the 6-cell of M in ns(K 4, K 2) is well-determined. 
Unfortunately, ns (K2) is exceedingly large (if n is the rank of H, it has 
rank (~)) and most of its summands map injectively to n5 (K4). But the 
class in ns(K 4) of the attaching map is not a homotopy invariant of M, as 
K 4 has many setf-homotopy equivalences homologous to the identity. 

We must thus argue differently. Now consider M as obtained from S 6 
by surgery on a framed link, and take the piecewise linear point of view. 
In this sense, S 3 unknots in S 6. If M1 and M2 have corresponding forms/1, 
the two framed links must arise from the same unframed link; also we 
may suppose the regular neighbourhoods which are the images of the 
gi :S3 • D3--+S 6 are identical: only the actual maps differ. To form M~ 
we delete the interior of the image of g~ and attach D 4 x S 2: a 4-cell and a 
6-cell. Only the attaching maps distinguish M1 from M2. 

The 4-cell is attached by a map S 3 ~ S  3 x S 2: on the first component, 
the degree is 1 ; on the second, if we use the standard framing, the Hopf 
invariant is p(e~, ei, ei) (c.f. proof of Theorem 4). Thus its homotopy 
class is uniquely determined. Twist S 3 x S 2 by the corresponding element 
of ~3(S03)~,n3($2). Then the attaching map becomes the class of 
S 3 x *. Adding the 4-cell to S 3 x S 2 now changes its homotopy type to 
that of S 5 v S 2. 

I t  remains, for each i, to attach a 6-cell to S 5 v S 2 by a map of degree 1 
on S 5. But we have 

n~ (S 5 v S 2) ~ n5 (S 5) �9 n5 (S2), 

so only the class in n5($2),~.2 remains to be considered. That  it is 
equivalent to 9i (mod 2) is now clear from the first argument, but we 
may see it directly as follows. 

The fibration 02 S 2 ~SG3 ~ S  2 (here SG3 is the space of self-maps of 
S 2 of degree 1, and the projection is the natural one) induces a short exact 
sequence 

O-~n 5 $2---~n3 S G 3---~ 3 S2 0--~ 
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which necessarily splits. As ha(G, SO)=0, the exact sequence of HAEF- 
LIGER [7, 5. 11] shows that FC~ maps onto n3(SG3). We thus have 

0--,~3(s03)-~ F C] ~ C] - ,0 

0 4  ns(S 2) ---*~3(SG3) ,z3(S2)--,0 

and the composite n3 (SO3)~n3 (S 2) is evidently the isomorphism induced 
by the natural projection. This splits the second sequence, and our split 
of the first induces a surjection C3a~ns(S2), so that the class in zts(S 2) 
is just the class q~i in Ca a reduced mod 2. 

Finally, the image of gieFCaa in n a (SG3) induces up to homotopy an 
automorphism of the fibration S 3 x $2---~S a :  this is the attaching map for 
D 4 • S 2 to obtain M. Perform the automorphism in two stages: first by 
lra(S2)~Tza(SOa) as  a bundle automorphism. What remains is just the 
element of n5 ($2) needed above. 

Theorem 8. Let X be a simply-connected CW-complex, with H 3 (X; Z2) 
zero, satisfying Poincard duality with a fundamental class ze  H 6 (X). Then 
X is homotopy equivalent to a closed smooth manifold. 

Proof. By SPIVAK'S thesis, for N large there is a unique (up to homo- 
topy) fibration with base X, with fibre homotopy equivalent to S N, 
the fundamental homology class of whose Thorn space is spherical. 
By a result of STASHEFF [18], this is classified by a map X~BG.  The 
obstructions to factorising this map through BSO lie in the groups 
Ht(X; hi-I(G, SO)). Now the homotopy group vanishes for i=2, 4, 6; 
the cohomology group vanishes for i=  1, 5 since X is simply-connected 
and satisfies duality, and for i=3 by hypothesis. Thus the map can be 
factorised through BSO; we see that a homotopy equivalent fibration 
is a bundle with group SON + 1. 

We now apply the technique of surgery (due to NOVlKOV and BROW- 
DER [0] for this situation) as follows: let T be the Thorn space,f: S N+ 6 o T  
the map of degree 1. We identify X with the zero cross-section = T, 
let M = f -  t (X), and use a transversality argument to make M a manifold, 
and then surgery to make the m a p f  [ M : M ~ X  a homotopy equivalence. 
The only obstruction (at the last step of the argument) is an Arf invariant, 
but since any 3-sphere in M has trivial normal bundle (n 2 (SO3)=0), we 
can still do surgery, provided we are willing to change the bundle defined 
by the map X ~ B S O .  This proves the result. 

If the hypothesis H3(X; Z2)=0 be dropped, then there is an obstruc- 
tion in this group to the first step in the argument. This is the "exotic 
characteristic class" computed by GITLER and STASHEFF [2]. 
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7. Almost Complex Structures 

Since our problem arose by considering a complex manifold, it is now 
natural to turn to the question of complex structures. The obstructions 
to reducing the group of the tangent bundle from S06 to U3 (i.e. to fin- 
ding an almost complex structure) lie in the groups Hi(M; n i_ ~ (S06,  U3)). 
Now we have 

Lemma. ff2(SO6, U3)'~'~Z. For i=0,  1, 3, 4, 5, 6: rot(SO 6, U3)=0. 
For i<6 ,  these are given by MASSEY [14]: the case i = 6  follows by a 
similar elementary computation. (In fact, S06/U3 = P3 (~).) We thus have 

Theorem 9. Let M be a smooth oriented 6-manifold. Then M has an 
almost complex structure if and only if  W3(M)=0. When this is so, 
there is just one (homotopy class of) almost complex structure for each 
ci e H 2 (M) whose mod 2 reduction is W 2 (M). 

The other Chern classes are determined by the usual relations: 
Pl = c 2 - 2 c 2  and cs is the Euler class (when H2(M ) has 2-torsion, more 
care is necessary with c2). 

When we wish to consider complex structures we meet the disturbing 
fact that there is no known necessary condition for a homotopy class of 
almost complex structures to contain a complex structure: also no 
known sufficient condition (except by listing manifolds). We must leave 
these problems open. 

However, it is well known (see. e.g. [25]) that a necessary condition 
for M to admit a Kfihler complex structure is that there exist 09 e H 2 (M;IR), 
with to3 +0,  cup product with which induces an isomorphism 

H2(M; IR) ~ H4(M; IR). 

Moreover, if the structure is projective algebraic, then to comes from a 
well defined integral class (which we also denote by to), which is (up to 
sign) dual to the homology class of a hyperplane section. We now rewrite 
this result in the notation introduced in w 3. 

Prolmsition. Let M be a closed oriented 6-manifoM satisfying (H). 
Suppose M homeomorphic to a nonsingular projective algebraic variety. 
Then for some toe H we have # (co, to, to):~ O, and the quadratic form of the 
symmetric bilinear map H x  H--*Z defined by (x, y)~t t ( to ,  x, y) is non- 
degenerate. 

We observe finally that the manifold of NF.WSTEAD (which is projective 
algebraic) has the following invariants: 

G has rank 4; 
H has rank 1, generator e (say): let ~ be the dual generator of H;  

e 2 =4~, cl =2e,  c2 =12d, so Pl = - 8 L  
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8. Immersions 

We next determine the least dimensions of Euclidean spaces into 
which our manifolds can be immersed. We first consider smooth immer- 
sions. 

Theorem 10. Let M satisfy (H). Then for  smooth immersions we have 

(i) M does not immerse in IR 6. 

(ii) M immerses in ]RT,e:~pl (M) =0.  

(iii) M immerses in I R s ~  for some X e 2 H ,  p l ( M ) +  X 2 =0.  

(iv) M immerses in IR 9. 

Proof. Since M = M  6 is closed, it cannot immerse in IR 6. For  q > 0 ,  
there is by [9] an obstruction theory for immersing M in IR 6+q, with 
obstruction groups 

n (M; 1(SO, SOq)). 
If q =  1, the nonzero groups are those with i = 2  or 4: the first obstruction 
is easily identified with w2(M)=0 .  The second maps to pt  under the 
map of coefficient groups 

z3 (SO, SO 1) = 7z 3 (SO) ~- ~4 (BSO) ---) H 4 (BSO) ~ 2~ 

and hence vanishes if and only if p~ does. 

If q = 2, the nonzero groups have i = 3 or 4. The first gives the obstruc- 
tion W 3 ( M ) = 0 .  When we come to evaluate the second, we have already 
made a choice of immersion, hence of normal 2-plane bundle V, over the 
3-skeleton. Let X be the Euler class of ?. Then X 2 is the Pontrjagin class 
of the extension of V over the 4-skeleton K (which exists and is unique: 
n3(BSO2) and n4(BSO2) vanish). Since we wish this extension to be 
inverse to the tangent bundle, we need X 2 +p~ (M) =0.  As n3 (SO, S02)_~ 
n 3 (SO) is infinite cyclic, it is clear that conversely, this condition suffices 
for our obstruction to vanish. I t  remains only to note that X defines ~, 
and ~ is in fact inverse to the tangent bundle (on the 3-skeleton) ~ w z (M)  + 
Wz(V)=0, i.e. 0=w2(~,), the mod 2 reduction of X. 

Finally consider q = 3 :  here the nonzero groups are for i = 4  and 6. 
The first obstruction is w4(M),  which is zero as we saw in w 3. For  the 
final obstruction, the coefficient group is 

r:5 (SO, SO3) ~- ~4 (S03) .  

We can interpret the obstruction as follows. M can be obtained from a 
4-complex by attaching a 6-ceU: call the attaching map a: S S ~ K .  We 
have already immersed a neighbourhood of the 4-complex, and so defined 
a normal  bundle ~ over K. The obstruction is the same as that  to tri- 
vialising a*(?). But w2(~, ) =0 ,  so ~ is trivial on the 3-skeleton of K, and is 
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induced by a map fl of K to a wedge of 4-spheres. But fl o ~ is detected 
by the functional cohomology operation Sq 2, i.e. by Sq 2 in M, which is 
zero. Thus flo c~ is nullhomotopic and e*y  trivial, so our obstruction 
vanishes and we obtain the required immersion. 

We next consider piecewise linear and topological immersions, 
restricted as follows. A map f : M ~ V  of topological manifolds is a 
(locally flat) embedding if each P e f ( M )  has a coordinate neighbourhood 
~0: U - , N  v in V with ~0(U n f ( M ) ) = l R  m. It is a (locally flat) immersion 
if each point of M has a neighbourhood embedded (locally flat) by f .  

Theorem 11. Let M satisfy (H). Then for topological immersions, 

(i) M does not immerse in ~6. 

(ii) M immerses in IR7 c:.pl (M) =0.  

(iii) I f  M immerses in ~ s  with a normal (micro-) bundle; in particular, 
if there is a (locally flat) PL-immersion, we have an X ~2H with 
pt(M)+X2=O. 

(iv) M immerses in IR 9. 

We have not succeeded in deriving the condition pt (M)+X2=O 
without the extra hypothesis in (iii). 

Proof. (i) The image of such an immersion would be open (by invari- 
ance of domain) and compact, hence closed; contradicting connectedness 
of R 6. 

(iv) and the other sufficiency statements follow from theorem 10. 

(ii) By a result of HAEFLIGER and POENARU ([8], Proposition 1), such 
an immersion induces a "neighbourhood" N of M. Cut N along M: the 
local flatness shows that we obtain a manifold with boundary. By a 
theorem of BROWN [1], the boundary has a collar neighbourhood. 
Hence M has a normal line bundle: let E be the total space. Since E 7 
immerses in R 7, it has trivial tangent bundle; in particular p l ( E ) = 0 .  
But E -  ~ M, and its tangent bundle is that of M plus a trivial line bundle. 
Hence Pi (M) =0. 

(iii) First note that by the main result of [22], any locally fiat PL 
embedding (hence, as above, also immersion) with codimension 2 has a 
normal PL-bundle. Also, by [12] microbundles are equivalent to bundles. 
So we assume M immersed in R 8 with a topological normal bundle 7, 
with total space E: E has trivial tangent bundle. 

By a result of MILNOR [15], the tangent bundle of E is the sum of the 
tangent bundle of M and the normal bundle of M in E - i.e. y itself. 
Now the structure group of y is the group orientation-preserving homeo- 
morphisms of 1R 2 leaving the origin fixed. But by [13] this is homotopy 

25 Invent. math., Bd. 1 
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equivalent to S02. Thus we can give 7 the structure of a vector bundle. 
Then, as before, y has Euler class X, and X2=pl (7) ,  X2+pl (M)= 
P l (E )=0 ,  and X reduces rood 2 to w2 (7)= w2 ( M ) = 0 .  

9. Embeddings 
Now we consider the more difficult problem of embeddings: we first 

give necessary conditions. 

Theorem 12. Let M satisfy (H). Necessary conditions for topological 
embeddings of M are: 

(i) M embeds in I R T ~ p l ( M ) = 0 ,  #=0r  is a connected sum of 
copies of S 2 x S 4 and S 3 x S 3. 

(ii) If M embeds in IR 8 with a normal (micro-) bundle; in particular, 
if there is a (locally flat) PL-embedding, we have Pl (M) =0. 

(iii) M embeds in ]R9:~ for some Xe2H,  p l (M)+ X2==-O (mod 8). 

Proof. (i) By Alexander duality, M separates IR 7 ; let B be the closure 
of the bounded complementary component, A of the unbounded. The 
Mayer-Vietoris exact sequence of the triad (IR 7 ; A, B) yields isomorphisms 

H=H2(M),.~H2(A) ~ H2(B)=H~ ~ n2 ,  
say 

I4 =H4 (M)~ H'(A)  • H" (B). 

And by Alexander duality, H 4 (A) ~ Hz (B) = H2- The inclusion i: A c M 
is compatible with the cup product, so if x~H, yell2 we have 0 = / * y ,  
hence O=i*(xy), so for zeH2,0=l l (x ,y , z ) .  Hence p vanishes on 
Hi x H z x H 2 and on H2 x Hz x t12, and similarly with Hi  and //2 
interchanged. Since # is symmetric, and HI + H2 = H, # vanishes identi- 
cally. The conclusion Pl (M) =0  follows from Theorem I I (ii). The final 
equivalence follows at once from Theorem 5. 

(ii) Follows by combining (ii) of Theorem 11 with a standard argu- 
ment which shows that the Euler class of the normal bundle of an embed- 
ding always vanishes. 

(iii) I f f : M ~ , ,  9 is continuous and injective, then (x, y)--*f(x)- f (y)  
defines a map M x  M--~]R 9 in which the inverse image of the origin is 
the diagonal AM. Removing this, and retracting ]Rg -0  radially (by r) 
onto S 8 we have a map F : M x  M - A M ~ S  s which is equivariant for the 
Z2-actions by interchange of factors on the left, and by the antipodal 
map on the right. We will show that our condition is necessary for the 
existence of such a map F; it will follow from our arguments that the 
condition is also sufficient. 
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Form the manifold M 0 from M by deleting the interior of an embedded 
disc. Then Mo is a smooth regular neighbourhood of the 4-skeleton K 4 
for a suitable C.W.-structure on 3/. By a theorem of HAEFLIOER [4] 
to the map F I(MoxMo-AMo) corresponds a smooth embedding 
fo :Mo~IR 9, unique up to isotopy, with F equivariantly homotopic to 
ro(fo Xfo ). Form M~ from M o by removing a collar neighbourhood of 
dMo (or equivalently, from M by removing a larger concentric disc). 
Then M1 - K ,  and ~Mo~S 5 is embedded in ~ 9 - - M  t =C, say. We assert 
that the inclusion map j :  S s - C  is nullhomotopic. 

To prove this, note that ]Px 9 may be replaced by S 9 in the above. 
Then C is S-dual to K. Since dim K=4 ,  C is 3-connected, and so it is 
sufficient to prove j stably nuUhomotopic. But Map (M1, S s) is also 
S-dual to K, and j corresponds to F [ (S 5 x M1): S 5 x M 1 ~ S  a, or rather 
to its adjoint S 5--,Map (M~, $8). This is nullhomotopic, and j i s  stably so. 

The obstruction to finding a cross-section of the normal bundle ~ of 
fo(M1) is an element 

qen4(M1 ; 7c3(S2))~,H4(M; Z ) = h .  

(The first obstruction is zero, as we see easily that ? is trivial on the 
3-skeleton). We first compute q. The cross-section can first be chosen 
on the 2-skeleton, and will than split ~, = e @ ~o, where e is a trivial line 
bundle and 7o a plane bundte. The Euler class X(To) can be anything 
reducing mod 2 to w 2 (~), hence X~2H. Now X determines a bundle ~ 
over M1, and the desired obstruction is that to extending the isomor- 
phism y ~ e @  y~ from the 2-skeleton to the 4-skeleton. Now p l ( y ) =  
- P l  (M) and p~(e~)),~)=X2; also, the generator of n3(S03) (which is 
isomorphic by projection to z~3($2)) has Pontrjagin ctass4. Hence 
4q =p~ ( M ) +  X 2 (up to sign). It thus remains to show that j - 0  implies 
q =0 (rood 2); in fact we will see that these two conditions are equivalent. 

Since C is connected, and the only nonzero reduced homology groups 
are H4(C)~ H~'(K)~ffI, Hs(C).~ H3(K)~G, and H6(C),~, H2(K)=H, 
we see that C has the homotopy type of a C.W. complex with only 
4-cells, 5-cells and 6-cells, and the attaching maps all homologically 
trivial. The attaching maps of the 6-cells are determined by Sq 2 in C, 
hence (by S-duality) by Sq 2 in K, which amounts to cup square H ~ / 1 ,  
reduced mod2.  Then as ns(S4)gZ2,  we have g5(C)zH4(C; Z 2 ) $  
H a (C), modulo the attaching maps of the 6-cells, i.e. 

n5(C)~H4(M; ~2)/Sq 2 H2 (Jld, Z2) ~) H3(M). 

Note that if q=�88 y2 (for Y~H) is reduced rood 2, we find 

q (mod 2) = �88 p~ (mod 2) + Sq 2 H2 (M; Z2) 

25" 
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determines an element of the first summand. With this identification, we 
assert that q (mod 2) is the homotopy class of j. 

First let q =0.  Then we can find a nonzero section a of 7, and hence 
an embedding go of Mo disjoint fromfo except on ~ Mo (where they agree). 
The image by go of the 2-skeleton L of Mo is nullhomotopic in C, so j 
extends to a map Mo/L -.*C. But SS~Mo ~Mo/L  is stably nullhomotopic, 
hence so is j ,  and thus iN0 .  For MolL is homotopy equivalent to the 
4-skeleton of M modulo the 2-skeleton, and hence to a wedge of 3-spheres 
and 4-spheres, and n s (Mo/L) splits correspondingly as a direct sum. We 
have zero in the component involving the 4-spheres, since 

Sq 2: H4(M; ~2) "-~ H6 (M; ~2) 

vanishes. In the other, by Theorem 1, we have the attaching map of the 
top cell for a connected sum of copies of S 3 x S a. But this is a sum of 
Whitehead products, so its suspension is nullhomotopic. 

In the general case, we construct a section which is nonzero on the 
3-skeleton of K, and such that the intersection invariant of the resulting 
go(Mo) with a 4-cell E of K can be identified with q(E) (rood 2). The 
intersection invariant is that of [19]: the reduction rood 2 comes about 
since the map (E, dE)-*(D 3, $2 )~ (S  3, ,), defining it has homotopy class 
err~S a the suspension of q(E)erc3(S2). By adding a suitable tangential 
component at the zeroes, we can ensure (since dim K = 4 )  that go(K) is 
disjoint f romfo (K); and hence also (since M1 is a regular neighbourhood 
of K in Int M0) that go(M1) is disjoint f romfo(M1).  It then follows as 
above that go(~M1) is nullhomotopic in C. Now let A = M o - I n t  MI.  
Then go I A gives an isotopy of j to go I a M 1 , which is nullhomotopic, so 
the linking of j and fo(K) is measured by the intersection of A with 

fo (K) and hence, by the above, by q (rood 2), as asserted. 
We now come to sufficient conditions: here our object is to obtain 

smooth embeddings, and so prove that topological embeddability 
implies smooth embeddability. 

Theorem 13. (i) A connected sum of copies of S 2 x S 4 and S a x S 3 
embeds smoothly in lR 7. 

Let M satisfy (H). Sufficient conditions for smooth embeddability are: 
(ii) I f  pl (M) =0,  M embeds in IR 8. 

(iii) M embeds in ]Rl~ 

Proof. (i) is trivial, since embeddability of two manifolds easily 
implies that of their connected sum. In fact by Theorem 1 we can restrict 
ourselves throughout to manifolds M with H 3 (M)=0 .  

By Theorem 2, and the remark at the end of w 2, we can now write 
M = a I4f, w i th /4 / a  handlebody. 
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(ii) Now W x I (with corners rounded) is again a handlebody, given 
by a framed link of 3-spheres in S 7, the suspension of the earlier link. 
Since all the 3-spheres lie in the equator S 6, they are in fact all unlinked. 
The framing is given by an element of rc 3 (S04) which determines the 
Pontrjagin classes of 14, and of M. Sincepl (M) =0,  we have the standard 
framing. Hence c.f. [19] W x  I is the standard handlebody, diffeomorphic 
to a boundary-connected sum of copies of S4x  D 4. Hence Wx I embeds 
in IR 8; so does M = 3 W. 

(iii) We again use W, but now construct a bundle E with fibre D 3 over 
14I. The choice of basis of M gave an expression of W as a wedge of 
4-spheres: we choose that bundle such that the characteristic class on the 
i th sphere is given by -//~elt3(SO3). By the definition of//~, it follows 
that E has trivial tangent bundle. But E (with corners rounded) is again a 
handlebody; since we are now in the stable range, E is a sum of copies of 
S4x  D 6. So E embeds in ]RI~ so do the zero cross-section IV, and 
M = 3 W .  

Finally, we must consider embeddings in IR 9. These seem to be 
considerably more difficult to study. The cleanest result we can give 
concerns "almost smooth embeddings" - i.e. embeddings which are 
smooth except on a disc, where they are piecewise smooth. Here we have 

Theorem 14. A necessary and sufficient condition for  the existence of 
an almost smooth embedding M 6 --*JR 9 is that there exist a class X s 2 H  
with X 2 +Pl (M)  =0. 

It follows at once that our condition is necessary for smooth embed- 
dings and sufficient for piecewise smooth, hence for piecewise linear ones. 
We conjecture that it is also necessary for a P L  embedding. 

Proof. Necessity. Let M o be the closure of the complement of the 
bad disc. Take a tubular neighbourhood of M o and extend to a smooth 
regular neighbourhood A of M. Extend the projection of the normal 
bundle of Mo to the natural collapsing map of the neighbourhood onto 
M. The fibre over each point is collapsible, and meets OA in a homology 
2-sphere. We have a spectral sequence 

HP(M; Hq(S2)) ~ H' (0A) .  

The sequence restricted to Mo is that of the fibration, and so is induced 
from the universal example, the sequence of the fibration S2--,BSO~--* 
BSO 3. Work with rational coefficients: then this sequence is trivial; 
E2 =E~o is the tensor product of the exterior algebra on the generator s of 
H2($2;  ;E) in E ~ and the polynomial algebra on the universal Pontr- 
jagin class p1~E~ '~ But H*(BS02)  is the polynomial algebra on the 
universal Euler class X; we have X 2 =p~, and the restriction of ,Y to the 
fibre S 2 gives the Euler class of the tangent bundle of S 2, i.e. 2s. 
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We deduce in our spectral sequence, since there is no torsion, that the 
differentials vanish (only d a was in doubt), and that we can identify 
H* (aA) with H* ( M ) |  H*(S  2) as groups, with ring structure given by 
(2s) ~ =Pl  (M). 

Now let B be the closure of the other complementary component of 
dA in S 9. The inclusions cgA~A and aA~B induce ring homomorphisms 
H*(M)~H*(A)--~H*(aA) and H*(B)~H*(aA): in dimensions other 
than 0, 8, we know by duality that H~(dA)~Hi(M)@H~(B). The rest 
of the proof is now purely algebraic. 

Let el . . . . .  en be a base of H2(M), z of HS(M), and el . . . .  , ~n the 
dual base of Ha(M). Using the dummy suffix convention, write 

s2=�88 eiej=2,jkdk 

as before. We only look at even dimensions; suppose bases of (the images 
of) the Hi(B) are: 

s + a~ el (dimension 2) 

s ei + bi j ~j (dimension 4) 

s ei + ci z (dimension 6). 

We now write down the conditions for these to define a subring. Products 
which lie in dimension 8 must vanish: this yields a~ + c~ =0  and b~j + bj ~ =0.  
Writing down the conditions for the product of s+a~e~ by itself, resp. 
by H4(B), to lie in H4(B), resp. H6(B) we find 

2 a t b i j = f l ) q - a ~ a k 2 i j k ;  b i j c j q - 2 i j k c j a k = f l ~ q - b i j a j  

from which we deduce bij a~=0 and 2 u k a j a k = - - f l ~ .  Thus if Y=a~el, 
we have 

y 2  = 2~ j k aj a k el = - -  f l i  e~ -~ - -  s 2 .  

So we set 2 Y=X e2H, and X 2 = - - 4 S  2 =  --Pl  (M), as required. 

Sufficiency 
By Theorem 10, M immerses smoothly in 1R 9. Let v be the normal 

bundle, A the total space of the corresponding disc bundle. Obtain Mo 
as usual from M by removing the interior of a smoothly embedded disc D 6. 
Let A o be the sub-bundle with base Mo. We identify M with the zero 
cross-section in A. Our plan is to attach handles to A o along Ao n OA to 
make it contractible, and hence a 9-disc. It will then follow that we can 
embed Mo smoothly in D 9, meeting S s in O Mo. We can change this by a 
piecewise smooth isotopy near 0 Mo to make it PL on 0 Mo. The embed- 
ding can then be completed by attaching a cone on OMo in the comple- 
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mentary disc to D 9 in S9o As in the previous theorem, we can assume 
H3(M) =0. 

Note that any closed subset of OA not meeting the fibre S 2 over the 
central point of D 6 can be isotoped to lie in Ao n 0 A :  hence this is so for 
a subset of dimension < 5. 

We will first attach 3-cells to kill H 2 (.4): we must select elements of 
n2(OA)~-H2(OA ). We choose a basis of the subgroup of H2(OA ) 
annihilated by the cohomology class s+  Y, where X = 2  Y and s are as in 
the first part of the proof. Represent the chosen elements by disjointly 
embedded spheres, and perform framed surgery ([11], p. 520): note 
that by construction A is framed. Write Co for Ao with the handles 
attached, and C = C o  u A. Then, up to homotopy, Co is a wedge of 
4-spheres, and C is obtained from it by attaching a 6-cell (by a trivial 
map: the functional Sq 2 vanishes since Sq 2:H4(M, Z2)-~H 6(M; 7.2) 
does). 

Now 0 C is simply-connected, a n d / / 2  (0 C) is free, H a (0 C) vanishes. 
We assert that from these facts follows that an element of H , ( d C )  is 
spherical if and only if it is annihilated by the cup product of any two 
elements of H 2 (0 C). It suffices to prove this for a C IS" complex K with 
only 2-cells and 4-cells. Then tea(K, K2)~-Hg(K) ,  and we have an exact 
sequence 

~4 K ~ zr,(K, K 2) --+ 7r3(K 2) 

and can identify x3(K 2) with the subgroup of symmetric elements of 
H2 (K) | H 2 (K), and the boundary map as the dual of the cup product 
H 2 (K) | H 2 ( K ) - ~ H g ( K ) .  Our assertion follows. 

Now H2(C) is generated by a class which we will call s +  Y, and 
( s+ Y ) 2 = 2 s Y .  Thus if hi ,  . . . ,  h2n is the base of H4(63C ) dual to the 
base el . . . . .  en, se t  . . . .  , se  n of H 4 ( 8 C ) ,  h i ,  . . . ,  hn are spherical. They 
are dual to the cohomology classes se l  . . . . .  sex,  any two of which have 
product zero. Thus we can represent them by 4-spheres with intersection 
numbers zero; by an argument of [11] we can make all the 4-spheres 
disjointly embedded, with trivial normal bundles. These can be pushed 
into Co n 8 C. Attaching corresponding handles to Co makes it contrac- 
tible; we verify easily that the boundary of the result is simply-connected. 
By a result of SMALE [17], we have a disc. This completes the proof. 

The insufficiency of the condition of Theorem 12 (iii) is of interest. 
The obvious way of obtaining an embedding would be to embed Mo by 
a general position argument, use that condition to obtain a nullhomo- 
topy of a M  o in the complement C of M~, and then apply a general 
theorem. But the general theorem (Hudson, unpublished) gives an 
obstruction in H4 ( C ) g / ~  to further progress. Our work suggests that the 
obstruction is in fact ~(Pl + X2) �9 
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