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Summary. The paper is the second in the series of  three devoted to the detailed 
analysis of  the three basic versions of  the finite element method in one 
dimensional setting. The first part  [1] analyzed the p-version, the present one 
concentrates on the h and h-p versions. 
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1. Introduction 

This paper is the second part in the series of  three which address in detail the 
properties and performance of the h, p and h-p versions of  the finite element method 
in one dimensional setting. 

In general the h-version of  FEM has the degree of elements fixed and the 
convergence is achieved by the refinement of  the mesh. The p-version fixes the mesh 
and increases the degree of elements. The h-p version combines both approaches. In 
Part I [1] we have developed a basic tool for the error analysis and as an immediate 
application we studied the features of  the p-version. In this part we will investigate 
the h and h-p version. 

There is enormous literature devoted to the theory and practice of  the h-version 
while thep and h-p versions are a very new developments [1 ]. The commercial code 
PROBE based on p and h-p versions was introduced in 1985. For the theoretical 
foundation of  the h-p version in one dimensional setting we refer to [2, 3] where the 
approximation of the function x" by piecewise polynomials of  variable degrees and 
nodal points was studied. 

In this paper we consider the same model problem as in Part I namely 

- u "  = f  (1.1) 

u (0) = u (1) = 0 

* Supported by NSF Grant DMS-8315216 
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with the solution 

u(x)= x~-  x. 

To ensure u e H 1, we assume ~ > 1/2. We assume that ~ is not  an integer, so that the 
solution has a singularity of  the type x ~ at x = 0, which models the singularity 
caused by corners o f  the domain in two-dimensional problems. 

Let us(x ) be the finite element solution o f  (1.1), and let 

e (x) = u (x) - Us (x) 

be the error. We are interested in the relation between the magnitude o f  the error in 
energy norm, [Ie II~, and the number  N of  degrees o f  freedom of  the finite element 
space. 

We denote the finite element space by 

S -  S(X) c H ~ (0, 1) 

which is determined by the mesh-degree combinat ion 2; = (A,p), where 

-1} ,J: {O=xg<xf  <x~ <'"<x.~(~)-- 
A A A 

P: (Pl ,Pz,'",Pm(~)) 
in which PA is the polynomial  degree on the interval IA=(xA_I,XA), 
i = 1, 2 . . . . .  m (A). Furthermore,  we denote 

h i ~__- ] I  A [ = x A _ x g _  1 

h ( A ) =  max h A . 
l < i<m(A)  

The points x A will be called the nodal points, the intervals I A the elements. The 
restriction o f  S(Z) on 17 will also be called an element and PA the degree of  the 
element 17. For  the mesh A we will often write x~ e A or  17 ~ A, etc., which will not  
lead to any misunderstanding. The number  m (A) will be called the cardinality of  the 
mesh A. Obviously, we have 

re(A) 

N = d i m ( S ) =  Z P ~ -  1. 
i=1 

I f  there is no confusion we will drop the superscripts and writepi,  I~, x~, etc.; also we 
write m for re(A). 

It is well known that  in the case o f  our  model problem e(x~)= 0 and [[erl~ 
= I]e' ILL,. Therefore our  problem reduces to studying the approximat ion questions 
on every element separately. We denote the local error on a mesh interval I = [a, b], 
associated with polynomial  o f  degree p, by 

[[ e lie(,) -= Ep(I) - Ep [a, b]. 

F r o m  Part  I, we have the following theorem 

Theorem 1.1. Let Ep,(Ii) be the local error of  the finite element solution of  the model 
problem (1.1), 

_ V x , _ ,  
I ,=[x,_~,x ,] ,r ,  V ~ +  l / x , -~ '  
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then 

U 0 < r ~ < l - - -  

h a- 1/2 
,~ 1 Ep, (I1) ~ ~1~- ~ " 

1 
, i ~ 2, then 

Pi 

(1.2) 

- '  + (1 - r~)  ~ -  1/2 (1 .3 )  Ep'(Ii) "~ ~/1 -- r~ PC[ 

I f  l---=l <r~<l ,=  i>2= then 
Pi 

Ep,(Ii) ~h~-l/z  r~'+l-~ ( 1 ) p~- 1/2 ~ + (1 - rl2) ~- 1/z . (1.4) 

In the inequalities (1.2)-(1.4) the symbol ~ means that the ratio of  the left and the 
right hand side is bounded above and below by equivalency constants which merely 
depend on ~. 

Remark 1.1. I f  ri is not close to 1, then (1.3) may be written as 

(1 --r2"~ ~-1 r p' (1.5) 
Ep,(I~) ,~h~ -1/2 \2~-r~ ] p~" 

Also we quote the following theorem from Part I (which is translated into the 
energy norm [[ e II~): 

Theorem 1.2. Let x be given and x > 0, {I} be a family of  intervals containing x. Then 

lim Ep(I) _ C(~,p) 1 (1.6) 
m--,o [II v+1/2 x v+l-~ 

where 
~F(~)Js in~[  F ( p +  1 - ~ )  

c ( ~ , p )  - 
~/Tr 4 p }/2p + 1 F (p + 1/2) 

This limit is uniform with respect to x > e, e > 0. 
We will write 

1 
g , ( I )  ~ - C ( ~ , p )  III v+ l/z - -  

x P + l  -~ 

and denote 
by asymptotically equal. 

(x s I) 

2. The h Version o f  the Finite Element Method 

2.1. The Optimal Rate of  Convergence of the h Version 

The h version assumes that the polynomial degreep of  the elements is fixed; thus the 
number of  degrees of  freedom is 

N = m p - 1  
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where m is the number  o f  the elements. For  simplicity, we let 

N = m p .  (2.1) 

The rate of  convergence o f  the h extension is never better  than N-P.  We have 

Theorem 2.1. Let a > 1/2 be non-integer, then there is a constant C = C(~,p)  > 0 such 
that for any mesh A = { 0 = x  o < x  1 < ' " < x m =  1} 

]]ell~ >= CN -p. (2.2) 

Proof. Let hi = x i -  x i -1 .  By Theorem 1.1 we have for i >  2: 

Ep[Xi_l,Xi] ]~ 

h1-1/2 rf +1-~ 1 
C(e) ]/1 - r~ p 2 , - , / 2  0 < r/z =< 1 - p + l - -  

rf +1-~ 1 
C(~ -1/2 p2~-i 1 - p + l - - < =  r2 = < 1 

(2.3) 

where 
1 / x ,  - l /x ,_1 I 

I r , =  + ' 

Since r i = 

Thus  

hi > hi (2.3) gives 
( l /~  + l/Xi_l)2 = 4 '  

hp+ 1/2 
Ep [x i_ 1, xi] ~ C(~) 4p + 1 -~pZa-  ' / 2  = C(a,p) h~ + 1/2. (2.4) 

Hell >: 2 h: .+ ,  
i = 2  i = 2  

The r ight-hand side takes min imum if and only if h2 = h3 - - " "  = hm. Since one must  
have ha ~ 0 in order  to obta in  [le[lE ~ 0, we can assume that  hi < 1/2 and then 

1 
hi>=2rn, ( i >  2). 

It  follows that  

IlellE ~ C(~,P)m -v = C(~,p) N-P 

where C(~,p)  is a generic constant  only depending on, ~ and p. []  
In  the following, we first discuss the per formance  o f  th.e general graded mesh, 

then the special mesh graded by the grading function g(x) -2' x ' (/3 > 0) (which will 
be called radical mesh). The uni form mesh is a special case of  theradica l  mesh with 
/3=1 .  

2.2. The Graded Mesh 

g(x) is called a mesh grading function if the nodal  points  o f  the mesh are such that  

x i = g  i = 0 , 1 , 2  . . . . .  m. 
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We shall assume that the grading function satisfies the following conditions: 
(61)  g(0) = 0, g(1) = 1. 
(62)  g is continuous and strictly increasing. 

We will confine ourselves to the special case 
(G3) g e C l ( 0 , 1 ) ( 3 C ~  1]. 

The continuity o f  g leads to 

Lemma 2.1. Let A be given by the grading function g ( x ), satisfying (G1) ,-~ (63),  then 

lira max [ I f [ = 0  
m ~ o o  l<=i<=rn 

where m = re(A) is the number o f  intervals in A. [] 
Let % be the error function o f  the finite element solution with a mesh of  

cardinality m graded by the grading function g(x) and lie IIEt,,b) denotes the error in 
energy norm on [a, b] c_ I. 

Lemma 2.2. Let 0 < a < b < 1, then 

lim m p Ile,.ll~.,b)= C(e,p) [g'(t)] 2p+l [g(t)] -2(p+l -~)dt 
m ~ o o  

where 
~/ ' (~)  Isin~=] F ( p - ~ + l )  

C (e,p) = ]/~- 4 p ] / 2 p  + 1 F (p + 1/2)" 

Proof. Let m --+ 0% then by Theorem 1.2 for x > a one has 

Il e,, l l E (a, b) ~- Y', E p [ X i - l , X i ]  2 
[mg J (a)] <= i <= [mg- t (b)] 

_.~ C(o~,p)  2 x2(p+ l - e )  
[rag- ~ (a)] <-- i <= [rag- 1 (b)] 

= • [g' \ m /  m_[ 

[ r n g - ' ( a ) , ~ i ~ [ m g - ' ( b , ,  ( /)12(p+ 1-ct) 

{! 1 C(c~,p) [g'(t)l 2p+1 [g(t)] -2(p+x-~)dt 
~ m ~ 

Lemma 2.3. Suppose that 

(G4) 

and 

( 0 5 )  

1 
S [g'(t)] 2p+1 [g(t)] -2~p+1 -~)dt < oo 
0 

(1) 
g ( t ) = o  t ~-1/2 as t ~ 0  

(2.5) 

t/2 
[ ]  
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then 

l i m  m p Ilemll~ = C(c~,p) [g '( t)]  2p+1 Ix(t)] -2(p+~-~)dt )  . (2.6) 

Proof .  Under  condit ion (G4), it is clear that  

lim m p [leml!E(,,~)= C ( ~ , p )  [g '( t)]  Ep+~ [g ( t ) ] -2~P+~- ' )d t  

for  any  a > 0. Thus it suffices to show that  for  any e > 0, there is a > 0 such that  

lira m v Ilem[l~(o,,)<~. 
m ~ o o  

In fact, by Theorem 1.1 we have Ep Ix i_ 1, xi] < C1 (a,p)  h~ - 1/2 rf + 1 - ~, thus 

[rag- ~ (a)] + 1 
2 Ilemlle(O,a) < ~ E p [ x , - 1 , x i ]  2 

i = 1  

<= Cl  (o~,p) h~a-~-k - hZ~- l  x~_21(P +1-~) . 
i = 2  

Thus  by (G4),  (G5) we obtain 

l im ( m v  I1% [IEtO,a)) 2 
r n ~ o o  

< C 1 (ct, p)  lim m ~--i/2 �9 g -t- [g'(t)] 2p+1 [ g ( t ) ] - 2 t p + l - ~ ) d t  
I. rn ~ ~ 0 

a 

= C1 (a,p)  I [g'(t)] zp+a [g(t)] -2~ '+ x - ' ) d t .  
0 

By (G4)  we only need to choose a small enough and (2.6) follows. [ ]  

L e m m a  2.4. L e t  

with 

and  

1 

I [g] = S g (x) ~-"  g '  (x)" dx  
0 

a = 2 ~ - l  > O , n = 2 p +  l ,  

g ~  C1(0, 1) ~ C O [0,1] 

g(O) = o, g ( 1 )  = 1, 

g (x)  is strictly increasing. 
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Then the functional I[g] has a unique minimizer 

g(x) = x~ 

with 

Proof Let G = g~/". Then 

Thus 

n p + l / 2  

a a - l / 2  

G'=~-g"/"-~g ' (>__0) 
n 

= _  [g~-,(g,),]l/,. 
n 

I n n 

= I [6 ' (x ) ]"  dx. 
0 

Hence it suffices to consider the minimizer o f  the functional 

1 

s [6]  = I [6' (x)]" dx 
0 

with the condition 

G(0) = 0 ,  6 ( 1 ) =  1, 

G E C 1 (0, 1) ~ C O [0, 1], 

and G (x) is strictly increasing. 
By the s tandard variational method,  we have 

1 

~s [G]  = S ,  [G'(x)] "-~ ~ 6 ' d x .  
0 

This implies 

thus 

G '  (x) = const. 

G(x) = Cx + C1 

since G (0) = 0, G (1) = 1, we obtain 

G (x) = x.  

Hence 

g ( x )  = x "/~. 

619 

(2.7) 

(2.8) 
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It is easy to show that G(x) = x is actually a minimizer of  (2.7). 
This shows that g(x) = x "/~ is the unique minimizer of  I[g]. 5 

Remark 2.1. Lemma 2.4 gives immediately 

minI[g]=i(x"/~)~-~(nxc"/~-~)"dx 

\ ~  - 1/2,1 " [ ]  

(2.9) 

We now can state 

Theorem 2.2. Among all grading function g (t) satisfying (G 1) ~ (G 3) 

gop(X)--x ~ with f l - P +  1/2 - I/2 (2.10) 

is the optimal one. Precisely, with this grading function the limit 

( p +  l/2~ p+t/2 
lim m ~ lie.liE = C(cqp) \ a - Z ~  / (2.11) 

m ~ o o  

attains the minimum. 

Proof Obviously, if 

I[g]=S[g'(t)] 2~§ +oo or mPg ~ 0 ,  
0 

then the rate of  convergence for this mesh grading function g (x) is worse. Thus one 
needs only to consider the grading function which satisfies (G4) and (G5). In this 
case, Lemma 2.3 gives 

lim m p lie m lit = A (~,p) (I[g]) 1/2. 
m ~ o o  

Lemma 2.4 shows that the functional I [g] has a unique minimizer gop (x) defined by 
(2.10), and the theorem follows. [] 

Remark 2.2. As p ~ oo, we have 

( p_+ l /2 ]  v+1/2 ~F(~)lsinn~l l /2epP-'+~/z 
C(ct,p) \ ~ 1 - 7 2 , /  = 1//~- [4(ct-  1/2)] p+1/2 

and with N =  rap, (2.11) leads to 

(2.12) 

p2p-~+  1/2 

lie lie ~ C(~) [ 4 ( e -  1/2)N] p" (2.13) 

2.3. The Radical Mesh 

Let us consider now special graded mesh given by the grading function 

g(x) ---- x ~, (fl > 0). (2.14) 
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We have the following theorem: 

T h e o r e m  2.3. For the radical meshes given by the grading function (2.14): 

1) if l3> P - 1 /2 '  then 
C(ct, p) fl p+1/2 

lim mPlleml[E= , _ 
r n ~ o o  

P 
2) i f  fl - ~ _ 1/2 '  then 

lim 
m ~  

mp Ilemll~ 
l /In m 

] / / (2~ -  1)fi - 2p 
(2.15) 

- C(ct,p) tip + 1/z. (2.16) 

In 1) and 2) C(~,p)  is given by (2.5). 

3) t f  fl < P ~  then 
~ -  1/2' 

lim m/~a-I/2) ][emilE= Cl(~t, fl, p) 
m~ct~ 

where 0 < C 1 (~, fl,p) < oo (it has a more complicated expression than C(~,p)). 

Proof. Let g(x) = x ~, then 

G ( x ) =  [g'(x)] 2p+1 [g(x)] -2(p+1-~) 

/ ] 2 p +  I X ( 2 ~ t -  i )  ~ - ( 2 p +  1), 

(2.17) 

G e L1 (0, 1) if and only iffl > -PT~x,~, and in this case the conditions (G4), (G5) are 
a/z 

satisfied. Thus for fl > P we have by L e m m a  2.3: 
- 1/2 

lim m p I[eml[E = C ( ~ , p )  B 2v+l x(2p-1)#-(2p+I)dx 
m ~  oo 

C(~,p)  tiP+ 1/2 (2.18) 

1/(2~ - 1)fl - 2p 

In the case/~ < P we cannot  use the previous lemma. Instead,  we compute  the 
:~ - 1 / 2 '  

estimates of  the errors directly. Denot ing  by a,  (i) the coefficients o f  the Legendre 
expansion of  the solution on [xi- 1, xi], we have 

Ep[xi_a,x,]2 = ~ a,(i)2 2 
,=p 2n + 1 " 

I f  i =  1, then (cf. [1] Theorem 1) 

( ~ ) ~ - l / 2 ~ F ( c O 2 ' s i n n ~ ' F ( n - ~ + l ) ( 2 n + l )  2~_ 1 
l a . 0 ) l =  ~ r ( n + ~ +  l) " 

=(_~) r(n-~+l) 
~(~-1/2) Co(s) F ( n + ~ +  1) ( n +  1/2) 
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where 

Therefore 

where 

because 

Co (~) = 
1/2 ~r(~)  2 IsinTt~l 

e,[O,x~]=[m ) co<a) {o~ \-~_~: <.+ J 

O < A ~ 1 7 6 1 7 6  ,=,~ ( n + ~ +  l ) ]  

( r ~ " - ~ +  J)) ~ ~ +  1/2) 1 
F ( n + ~ +  l ) J  ~-n~---- f and 4 c ~ - 1 > 1 .  

If i > 2, we have by Theorem 1.1 

Ep [xi - l , xl] < C (~, p)  h~ -1/2 r(  + ~ -~ 

where 

and 

Hence 

h i = x~ - x i_ i = [i B - (i - 1) a ] 

:/2-(i-1)~/2 

where 

[ma(,-lj2, IJe I 12 ~ [E r [xi_1, x~]" m ~ -  ~/2>]2 = ~ b21 m E ( x ~ , l ) J  - - ~  

i = 2  i = 2  

Clearly, if fl < P ~  
< o0. Thus ~ -  1/2' 

b1 = b (~, fl, p, i) 

< C(ct,p) [i ~ - ( i -  1)t~] ~-1/2 r/'+I -~ 

< = C ( ~ , ~ , p ) ( 1 )  v + t / z - # ~ - t / 2 ,  

then p +  1 / 2 - f l ( ~ -  1/2)> 1/2 and Al,p(~,/~ ) -  ~ b~ 
i = 2  

lim m a~- lj2) Ile,~[[~ = {Ao,p(~) 2 + Al ,v (~ ,  [3)2} ~/z < oo. 
m ~ c ~  
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P . The  above  resul t  shows tha t  W e  n o w  cons ider  the case t = c~ - 1/2 

m/~(=-l/2) { ~]i=2 E p + 2 [ X i - l , X i ] 2 }  1/2' '+ A l , p + l  (0~, t )  < ~)  

as m -* oo. The terms ap(i) in the expression for Ep [x~_ 1, Xi] 2 are (cf. [1], Theorem 1) 

ap(i) 2 - -  

where  

Therefore  

where  

2 p +  1 

;2 , -1 /2  ~ F ( a ) ] s i n ~ [  F ( p - a + l )  r ( _ , +  1 ~p,~_t(r2) 2 p + 1  
- 1/7 ~ 2-~-, r (p+  1/2) 

= - -  C2(a ,p ) ( i r  

~ F ( ~ ) l s i n n ~ l  F ( p - ~ + l )  
C2 (~,P) = 

4 ~-1 ] / 7 ] / 2 p + 1  F ( p + l / 2 )  

~=2 ap(i) 2 p + 1  = C2(~ bl 
i = i=2 

By a calculus  l e m m a  

bl = (i ~ - (i - 1)t~) =- 1/2 r/ ,-~+ 1 ~p,=_ 1 (r~) 

~ - 1 / 2  i -1/2 as i--* oo. 

l im Y~" = l im y" - Y " - 1  
m~oo Z n m-,oo Zn- -Zn_  1 

(provided  y ,  1" 0% z, t oo a n d  the r i gh t -hand  side l imit  exists), we o b t a i n  

l im i=1 - l im mb 2 = { tip+ l/z )2  
m ~  ~ 1= , . - m  \ 4 P - ' + I J  

i=2 I 

Hence  we conc lude  

l im 
m~oo 

m P l l e m l l ~  

1/ V. m 
- l im ~ 

m~o9 

tip+l~2 
= C2(o~,p) ~ f =  C(oqp)[3 v+1/2. 

m 
b 2 

i ,12 ~ i/2 
i = I  Z X l , p + l ~  

/-~-m + TY~-m J 

[ ]  
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C o r o l l a r y  2.1. For uniform meshes: 
1) i f p  < c~ - 1/2, then 

lim m p [ lemllE-  
m~oo 

2) i f p  = ~ - 1/2, then 

3) i fp  > ~ - 1/2, then 

c (c~, p) 

]/2c~ - 1 - 2p 

W. Gui and I. Babuska 

(2.20) 

where C(~,p) is given as before by (2.5) and 0 < B(cqp) < co. 

Proof O n e  on ly  needs  to  no t i ce /~  = 1 in this  case. [ ]  

Remark 2.3. A l t h o u g h  there  is no  s imple  express ion  for  C1 (c~,p, ]3) in (2.17), we can  
o b t a i n  v a r i o u s  es t imates .  Because  for  i > 2, 

i #/2 - -  ( i -  1) #/2 2 p/2 - -  1 

rl = i 0/2 -}- ( i -  1)/~/2 ~ 2 a/2 "-k 1 

are  b o u n d e d  a w a y  f r o m  1 (fl f ixed),  we have  (see R e m a r k  1.1) 

( ~ ) ' - l / 2 ( l - - r ~ Y  - l r ~  ( p ~ o o )  e v [x,_,, x,] ~ c ,  (~) \-~- p~, 

~ F  (c~)isinn~] 
wi th  C1 (cr ]//~_ . Because  

hi = xl - x l -  1 = [i a - ( i -  1) p ] 

1 - r 2 2 [ i ( i -  1)] a/z 

2r i i ~ - ( i -  1) # ' 

we have  for  some  c o n s t a n t  C(~)  > 0, 

r:  
ma(~- 1/2) Ep [xl- 1, xi] < C(~) ]//i ~ - ( i -  1) p [i(i - 1)] ~/2 ~ -  1) P~ 

( this  i nequa l i t y  ho lds  fo r  a n y  m a n d  p ,  i). Thus  

C(~)  2 
[i t~ - ( i -  1) p] [ i ( i -  1)]#(~- 1) r 2v. {m#('-l/Z)Ev[xi-a'xi]}2 < ~ - -  i=2 

i = 2  

Let/ff  > 1, then  b y  us ing  i n eq u a l i t y  

( i  - x )  p __> 1 - / ~ x  

l im m " -  1/2 [Ie,, lie = B(cc, p) (2.22) 
m~cr 

m"lle.,llE 
l im ],//nmm --  C ( ~ , p )  (2.21) m ~  
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we have 

[i # - (i -- 1) #] [i(i-- 1)] #~'- ') r {v 

[1+(1- ~)'6>-I-2 (1, ~)/7/2}2p 
f l l p+ l  i#(2ot- 1)-(2p+ 1) _ - < ~  

I f l < f l <  P = = ct- 1t2 then 

thus 

i # (2a -  1) 

7 i#(2~-1)-(2p+1)~ x f l ( 2 r  : 

i=2  1 

m#(~-112) Ilemtl~ <---- {A~,. + 

2 p - f l ( 2 ~ -  1) '  

C(~) 2 U ~+* 1 "t ~i2 
p 2 :  4 2p 2 p -  fl (-2ct- 1) 

where Ao, p is the same as in (2.19) and 

1 1 ~1i2 1 
Ao,v<C(a) 4c~L 2 p4; -2  j = C ( ~ ) p 2 ~ - i  " 

Therefore  we obtain for 1 < fl < iv 
- 1/2 

fp l 1 flp§ m'~ mP~-ll2) He.,ll~<C(~)max 2;-1, ] f p - f l ( ~ - l / 2 )  4pp ~ J 

especially when fl = 1, p > ~z - 1/2, we have 

m~_,12 llemllE < C(~)max {~7=~ 1 1 }  
' 1 / / p _ ~ +  1/2 4P-p �9 

3. The h-p Version 

We shall discuss now the h-p version of  the finite element method.  
The h-p version increases the degree vec torp  simultaneously with the number  m 

o f  the elements. 
In  this section we will deal only with some special combinat ions  of  mesh and 

degree vector. The discussion o f  opt imal  rate o f  convergence for  general mesh- 
degree combinat ions  is pos tponed  to the next section. 
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3.1. The Geometric Mesh with Linear Degree Vector 

Suppose that the mesh A is 

A = { 0 = X o < X l < X 2 < . . . < x , , = l }  

with 

Xi~--q m-i, 0 < q < l ,  i = 1 , 2  . . . . .  m. 

We will hereafter call the mesh a geometric mesh with ratio q. In this case 

v'x,-, 1-v'q 
r,--  t/~.i + l//xi21 1 T l / q - r ,  for all i's. (3.1) 

Let 
P = (Pl ,P2 . . . . .  P,,) 

be the corresponding degree vector to the mesh. Then we have by Remark 1.1 

I[el[~ ~ LFq(m-t)(~-l/2)12:l-r2"]a(a-l)-p2"-x- " + \ ~ , ]  i=2~ [ - " , P~ r p' 

=q2,,,-1),,-1/2) { ~ + ( l _ q ) q , - 1  ~ q'Z'-l"l?i)r2p'~ 

,=2 p ?  J" 
Denote 

~ q(2a-1)(1-1)r2p' 
8(m,_p) = + (1 -- q)q~-i i=2 p2~. , (3.2) 

}lellE ~ r/(m,_p) - q~=-a/E)~m-~)8(m,_p)l/2. (3.3) 

Clearly, for each N>= 2, there is m _> 2 and a degree vector p~m) = ~'~:-~")~s~ = ~ with 

~, p}") = N such that i=1 

q (m' P(m)) = min { rl (k' p-)12 < k < N' I = I ~ p i = N ' p i > I } "  

Our first question is about the structure o fp  ~m) as N ~ ~ .  In order to simplify 
the problem we extend 8(m,p_) to the domain 

D,, = {p_ ~R'[p~ > 0, i = 1 , 2  . . . . .  m}. 

Let N > m, and 

For  each N > 2, consider the minimization problem: 
Find (raN, _p<"~)) with _p~"~) eD~,,N such that  

t/(m~, p~m~)) = min {t 1 (k,p_) 12 -< k _< N,p_ e D~, N }. 

W. Gui and I. Babuska 
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Since for each m, Din, N is a connected open set of  an  (m - 1)-dimensional hyper- 
plane of R m, and 

n(m,p)>O, Vp~D;n,N 

~l(m,p)--* oc, as p--*po ~OD~,,N 

it follows that for each 2 < m < N, one can find a minimizer p_ ("'N) of t/(m, .) and  
p_(m, ~) necessarily satisfies the following condit ions obtained by Legrange multiplier 
method:  

(3 ~ ( m , p  (re'N)) -- (4~ -- 2) 
0pl -- (p(1,,,u~)4~_ 3 t - 2 2 N = 0  (3.4) 

d ( m ' f f " u ) )  = 2 Cq -~2~ - 1)i r2PI"N'(P~ re'N) lnr - ct) 
- - - - ~ P i  x.ri(n(m'N)]2~+, 1 + 22 N = 0 (i = 2 . . . . .  m) (3,5) 

where C = (1 - q) q3~- 2. We find then mN which minimizes the error. 
We will call the sequence {P("~)}~=2 the sequence of the optimal degree 

distributions. Clearly, an  integer degree distr ibution p~m which satisfies pin > 1 and 
IP~--P}mN)I < I will give a good rate of convergence which will be close to the 
extended case. 

For  the (extended) optimal degree distr ibutions we have 

Theorem 3.1. As N ~ oo the optimal degree distribution tends to be linear with a slope 

lnq 
So = (ct - 1/2) In--;" 

This means, precisely, that for  each f i x ed  i = 1, 2 . . . . .  

lim [vt~N).-vt~) .  ~ ] = s  o. N ~  ~ m N - t  x m s - t -  

Proof. First we notice that as N ~ ~ it is possible to obta in  a rate of convergence 

e - c ~  for some C >  0. This will be proven in Theorem 3.2, F r o m  the expression 
ofq(m,_p), it is easy to see that if ms or max p~'~)is bounded  by some number ,  

l ~i~_rn N 
then we cannot  achieve a rate of convergence better than N -~ for some t~ > 0. 
Therefore, for the optimal degree distr ibution we must  have 

mN--. oo 

max p!"~) ~ oo 
l < i < m  N 

as N--* oo. In fact, we can obta in  an even stronger conclusion that for each 
i = 1,2, 3 . . . .  fixed: 

pimp) ~ oo (as N ~  oo), 
m/v --  t 

which follows from 

O ( ~  - 1 / 2 )  ( i  - 2 )  r2P~N~ > g-6 
__ I n ( r a N )  ~2~ 
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By (3.5) one  has  

C q - ( 2 ~ -  l )i 

for each N __> 2, i = 2, 3 . . . . .  m N. 

-- 2N 

Let  PN (x), 0 < x < oo be the func t i on  implici t ly  def ined  by the e q u a t i o n  

rZt',,~x) (pN(x) ln l + o~) 
Cq_(2a_ l) i r = "~N 

(pN (x))  2" + ~ 

Cons ide r  the r ange  o f  the func t i on  

gO,)  = A yZO: + 1 

for a n y  A > 0. Since l im g(y) = + ~ ,  l im g(y) = 0, g: (0, ~ )  --* (0, ~ )  is onto .  
y--*0 + y--r~ 

T h u s  for a n y  2N > 0 (3.6) is solvable,  a n d  by  impl ic i t  d i f fe ren t ia t ion  we f ind:  

In q 
p'N(x) = (~ - 1/2) 

+ 1 lq_~)  
1 PN (x) In r (PN (x) In r 

- 1  

(3.7) 

This  is well def ined  for all p (x) > 0. 
Observe  tha t  p } ( x ) > 0 ,  pN(i)=p! m,,) for all 2<_i<m N. We o b t a i n  tha t  if  

m N -  i - 1 _< x < rn N - i, t hen  

p(mm;) i_ l ~ pN (x)  ~ p(mm;)i . ( 3 . 8 )  

By m e a n  value  t heo rem  

p(m~) __ p(,n~)= p~(r  ) 
m N m~r 

for some  m N - i - 1 < ~N,i-<- m N -  i. Since for an y  i >  0 fixed by  (3.8) 

lira PN(~N,I) = + ~ ,  
N~oo 

it fol lows f rom (3.7) tha t  

N. ,~,,,  , l i m  (n<m,)_. __.(m~)rmNtl._.) = a 0 = (c~ - 1/2) ~nr'lnq [] 

W e  n o w  cons ider  the case w h e n  a geometr ic  mesh  a n d  l inear  degree vector  are 
adop ted .  By this we m e a n  

Xl = qm- i  

Pi = [1 + s ( i -  1)] (i = 1 ,2  . . . . .  m).  
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(The value s > 0 will be called the slope.) In this case we can let 

sm 2 
N -- (3.9) 

2 
We  have then 

Theorem 3.2. For the geometric mesh with ratio q combined with a linear degree 
vector o f  slope s, we have: 

1) i f  s > So, then 

2) i f s < s o ,  then 

3) i f  s = s o ,  then 

1[ e lie ~ C(e ,  q, s) q ( ' -  i/2) ~ ;  (3.10) 

II e II E ~ C(~ ,  q, s) rl/2~-~; (3.11) 

In this case 

In (3.10) ~ (3.14), 
respectively. 

Proof. W e  have  by (3.3) 

[lellE ,~q(m-1)(c~-l/2) {1 -I-(1 __q) q~-i  i=2 ~ q(2c~-l)(1-i)r2(l+s(i-1))~l/2(1 + ~ ) ~ -  J 

e(i- 1)(2s lnr- (2~-  1)lnq)~l[2 

j 
~ q(m--1)(~t--1/2) 1 + ( 1 - q )  q ~-1 

i=2 

If  2s lnr  - ( 2 e - 1 )  tnq < O, i.e., 

( ~ - l / 2 ) I n q  
s > -- s O 

lnr 

the sum in the bracket  converges  as m --* oe, thus 

IlellE ,~ C(~, q, s)q <"- 1)(~- l/z) 

= C q ~ , -  a/z) 2 V ~ .  

qop = (1/2  - 1) 2 (3.13) 
Sop = 2 ~ - 1 . 

Ilell ~ C(c0  [ ( I / 5  - 1)21 ~ = -  1/2)" (3 .14)  

the equivalence constants depend on (e,q,s) ,  (e,q) and c~ 

(3.15) 

lie lIE ~ C(cq q) e - V ~ I / ~ ,  (3.12) 

1 -  1/q lnq 
where r - = and s o = (a - 1 / 2 ) / ~ r  is the optimal slope in the sense that the 

l + 1 / q  
exponential rate attends max imum (with same q). 

Furthermore, the optimal geometric mesh and linear degree vector combination is 
given by 
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I f  s < s o, i.e., 2 s l n r -  ( 2 ~ -  1) lnq  > 0, the quant i ty  in the bracket  is o f  order  

e(m - 1 ) ( 2 s l n r - ( 2 a t -  1) Inq) = y 2 s ( m -  1) q - ( m  - 1)(2~t- 1) 

Ilell~ ~ C ( o ~ , q , s ) r  ~m-1) 

= Cr 2r 

I f  s = so, (3.15) gives 
[ 2 N l n r  

(~ - 1 / 2 )  X/i~x-_ 1 / -7~n  q 
[[ell ~ C(c~, q)q 

= C e -  r  r  

We now show that  s = So gives a bet ter  rate  of  convergence and  hence it is the 
op t imal  slope. Indeed,  we have:  i f  s > So, then 

q(~- t/2) V2--~- = e(~- t/2) t, q V2-~ > e(~- 1/2) t,~ V2~7~o = e -  (~V~zq- ~/z~- V~T~,q t,,,.; 

if  s < So, then 

r F ~  = et , ,  V ~  > etn r V2~oN = e -  ~ V2t~7~ 

Thus in either case, the rate  o f  convergence is not  bet ter  than  that  when s = s o. 
N o w  suppose  with each q we associa te  its op t imal  slope So. Then it can be seen 

readi ly  that  the op t imal  rate  o f  convergence (among those with geometr ic  mesh and 
l inear  degree combina t ion)  is achieved i f  the quan t i ty  

o/(q) = In q ln r = In q In 1 - ] / q  
1+ 1/q 

reaches its max imum.  By the l emma of  K. Scherer and  R. DeVore  [2, 3] stated 

below, the funct ion ~u (q) has  a unique m a x i m u m  at qo = ( l  f ~  - 1) 2, and  

qJ(qo) = 2 [ln( V ~  - 1)] z . 

that  the opt imal -geometr ic -mesh- l inear -degree  corn- Therefore  we conclude 
b ina t ion  is given by 

and  

thus 

q = qo = ( ] / ~  - 1) 2, 

( ~ -  1 / 2 ) l n q ~  2o~-  1 
S = S O - -  

in 1 -  ]/~oo 

1+ FTo 

= c(~)  [ ( 1 / 2 - 1 )  ~] 
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The impor tan t  l emma we quoted f rom [3] is 

Lemma3 .1 .  (K. Scherer and R. DeVore).  For x e ( O , ~ )  the function F(x)  

(1 - 6x~ x ln( ]/-2 - 1 ) , f o r  which = \ 1 ~ ]  ' (0 < 5 < 1) has a unique minimum at x = x o - ln6 
/n ( l / i -  1) 

F ( x o ) = ( ] / 2 -  1) z'6 . In particular, i f  f =  ] / /2 -  1, then F(x)>= ] / /2 -  1; the 
equality holds i f  and only i f  x = 1. 

Corollary 3.1. The function 

~,(x)=l, xln\l+ ~_ / O < x < l  

has a unique max imum at 

for  which 

x = Xo = ( V 2 - 1 )  2 

~, (Xo) = 2 [ l .  (1 /2  - 1)1: �9 

Proof. Let x = 6 2y with 6 = ] /2  - 1, we obtain 

( 1 - 6 r y  
W(x) = V*(fi 2y) = ln5 z In \ 1 - - 7 ~  /I " 

/ 1  - 6Y\  
Since ln62 < O, ~ )  has a unique min imum at y =  1 implies ~ (62y) h a s a  unique 

, -  , v / 

m a x i m u m  at y = 1, thus ~(x)  has a unique m a x i m u m  at x = Xo = 62. [] 

Remark  3.1. For  the opt imal  combinat ion  of  geometric mesh and linear degree 
vector, the estimate (3.14) can be writ ten as 

I l e l l ~  ~-~ e -  1"7626 l/(a~- 1/2) N (3.16) 

We will see in Section 4 that  this exponential  rate o f  convergence is the best possible 
one. Thus we may  say that  this mesh-degree h-p version is the near optimal one. 

An impor tan t  case is the bisected geometric mesh, i.e., q = 1/2. I f  we choose the 
opt imal  slope for this mesh, i.e., we choose 

ln l /2  ln2 
(~ - 1 / 2 )  - ( ~  - 1 / 2 )  

So - In 1 - 1 ~  2ln( l  + b/2) 

i + i I ~  

= O. 3932 (~ - 1/2) 

then we have 

I l e l l ~  ~ e - 1 "5632 (=lqlqlql/(77~2) N (3.17) 
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I f  for q = 1/2, we choose s = 1. Then 

{ e  -0'9803(~-1/2) V~, if ~ <  3.0432 

IIwlIE ~ e_2.49291/~ if 7 >  3.0432. 

(The above estimates have equivalence constants depending only on ~.) 

(3.18) 

3.2. The Geometric Mesh with Uniformly Distributed Degree Vector 

We now consider the case that the polynomial degree is p on every element. This is 
important in the higher dimensional case for it makes it easier to construct 
conforming basis functions and to deal with data management process. We will 
show that this mesh-degree combination can also give an exponential rate of  
convergence and has a similar feature as in the case of  the linear degree vector. 

Theorem 3.3. For the geometric mesh with ratio q combined with uniformaly 
distributed degree p, the relation between the optimal choice of p and the number of  
elements m in the mesh is asymptotically linear, i.e., 

p~-som (as m ~  ~ )  

with s o being the same as in Theorem 3.2. 

Proof We have by (3.3) 

,~ ~ q ( 2 a -  1)(m- 1) 

Ilell -[ + 
__ ~ q ( Z ~ - l ) ( m - 1 )  

(1 - q) q~-i ~ }1/2 
p2~ r2p q2(a-1/2)(m-i) 

i=2 

(1 -- q)q~-i (1 - -  q ( 2 ~ - l ) ( m - 1 ) )  r2p~1/2 

Clearly, to obtain ]lel[~--*0 as N ~ o o  it is necessary that p ~  + ~ ,  and an 
exponential rate of  convergence is achieved if and only if both m andp  tend to + ~ .  
The optimal rate of  convergence for a given q is obtained by minimizing the 
function 

q(2a- 1)m 
f ( m , p ) - -  p2a-2 + CrZP 

under the constraint m p =  N. 
By Lagrange multiplier method the necessary condition is 

q(2~- 1)m 
f~ fm=(2~-- l ) lnq  p2~-2 2 p = 0  

and 

Of 2 ~ - 2  q~2,- 1)m 
~- Cr2p 2ln r - ,~m = O . Op p p2~- 2 
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Therefore 

( 2 e - - 1 ) / n q  (2,-1}m 2 
pT~2q q = - 

2 ~ - 2 q ~ 2 ~ - 1 ) "  2Clnr 
m p2~-1 b m r2P' 

I (2c~-  1 ) n q + 2 C ~ - 2 1  q{2~-l)m 2Clnr - -  r2P, 
m ~ T  m 

o r  

(2a_  l )mlnq  + ln [ ( 2 ~  + 2 ~ -  21= 2plnr + lnp2~ 
2Clnr 

2) i fS<So ,  then 

where 

and 

rV~ 
Ile[l~ ~,C(~,q) ,__ ; 

V s N  ~ 

3) i f s  = s o, then one gets optimal rate of convergence for a given q 

e - ~  i,l/r;~q 
I[e[[ ~ C(~, q) (3.22) 

o 

(c~ - 1 / 2 ) l n q  1 - l ~  
So - In r , r = - - 1  + l / ~ ,  

a = min (2 c~ - 1, c 0 . 

The optimal combination is also given by 

q = qop = (1/~ - 1) 2" 

S=Sop= 2 ~ -  l .  

(3.21) 

Hence 

m I ( 2 ~ - 1 ) l n q + o ( l ~ ) l = p [ 2 l n r + o ( l ~ - ) l .  

As m,p ~ or, we have 

lnq 
p~--(~- l/2) l~r m=Som.  [~ 

Theorem 3.4. For the geometric mesh with ratio q and the uniformly distributed 
degree p related with the number of elements m by p = sm, we have 

1) if  S > So, then 

q{=- 1/2) r  
Ilel]~ ~C(c~,q) ] /~~z , -1  ; (3.20) 
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Similar to the linear degree vector case, for the optimal combination we have 

Helle ~ C(~)  [ (1/~ - 1)2](1/~s1/2)N/2 

In the above, the equivalence constants depend on (a, q), ~ respectively. 

Proof. Le t  p = sin, t hen  (3.19) b e c o m e s  

~q(2~-1)(m- x) r2V~1/2 
IlellE ~ (  ~ F- C ( , ,  q) p ~ j  

[ . 

I f  s > So, then  

thus  

I f  S < S o ,  then  

thus  

q(2 , -  1) NV-~ < q { 2 ~  - 1) l/N~-~o = e -  2 V(~- 1/2)Nlnrlnq 

= r 2 V ~  > r 2V~ 

rlellE ~ C ( ~ ,  q) 
q ~ -  1/2) NV~ 

r  2 a -  1 

q(2~- 1) u V ~  < q ( 2 ~ -  1) ~ = r 2 sl/~To N < r 2 V ~  

(3.23) 

r ~ 
[[e[IE "~ C(~, q) l / / ~  ~. 

In q 
Clea r ly  the  o p t i m a l  f ac to r  s is s = s o = (a - 1/2) ~ for  which  

e - ~  V ~  
[[e[l~,,~C(a,q) ] / s~  ~ 

with  a = ra in  (2 ~ - 1, a). 

By the c o r o l l a r y  o f  L e m m a  3.1 we see the  o p t i m a l  q is a l so  qo = ( ] / 2  - 1) 2 as in 
the  l inea r  degree  vec to r  case.  [ ]  

Remark 3.2. W e  have :  

F o r  q = qo = ( ] / 2  - 1) z, s = s o = 2~ - 1. 

1 e -  1 ,2464  [/(~ - 1/2)N (3.24) IPelJ  

= rain ( 2 a  - 1, ~) 
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F o r  q = 1/2, s =  s o = 0.3932 ( a -  1/2), 

f - 1 . 1 0 5 4  l/(~t - 1 / 2 ) N  

Ilell~ ~ 1 / ~  

a = min (2 a - 1, ~). 

F o r  q = 1 / 2 ,  s = 1 .  

(3.25) 

1 e_ 0.6931 (a_ 1/2) 1/~ ' i f  ~ < 3.0432 

IlellE ~ (3.26) 
i - 1 . 7 6 2 7  ] f N  

1 / ~  e , if  c( > 3.0432. 

One can see that  the exponent  is exactly 1/1/2 times the exponent  in the l inear  
degree vector  case. (The above  est imates have equivalence constants  depending on 

only.) 

3.3. The Uniform Mesh 

N o w  we consider  un i form mesh with a degree vector  selected arbi t rar i ly .  In this case 

xi = - - .  Since pl = N and Pi > 1, we have m =< N, p~ __< N. A very rough est imate 
m i = i  

shows that  

x~- 1/2 1 1 
IIe lie > Ep [Xo, x 1 ] ~ ~ = , , ~ -  1/2 r12~t_ 1 ~ N3 (0t- 1/2)" (3.27) 

F 1  H~  F 1  

Therefore  for un i form mesh the rate  o f  convergence is never bet ter  than  an 
a lgebraic  one regardless  of  the degree vector. 

3.4. The Optimal Rate of Convergence for Uniformly Distributed Degree Vector 

W e  know from Section 2.2 that  for a fixed degree p as the numb r o f  elements 
m ~ oo the op t imal  graded mesh is a radical  mesh with the grading function x p, 

/3 =P + 1/2 - 1 / 2 "  Therefore  the h-p version with uni formly  dis t r ibuted  degree the 

geometr ic  mesh is not  opt imal .  We  can expect that  using the op t imal  radical  mesh 
would  give a bet ter  rate  o f  convergence. We will s tudy therefore the envelope o f  the 
e r ror  curves o f  the op t imal  radical  meshes. 

Theorem 3.5. There is an h-p version with uniformly distributed degree which has the 
error estimate: 

1 1/2)N 1 -x.4715 (~V/~- 1/2) N (3.28) IlellE ~ e -4/e ~ --  e v ,-1,2 
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As  N-+  oo, the meshes tend to be geometric with a ratio q ~ e - 4 / e ~ = 0 . 5 8 2 0 ,  
and the relation between degree p and the number o f  elements m tends to be linear; 
p ~ 4/e 2 (~ - 1/2) m = 0.5413 (~ - 1/2) m. 

Proo f  By R e m a r k  2.4 the op t imal  radical  mesh has a rate o f  convergence 

p 2 p - e +  l/2 

[[elle ~ ( N =  rap). 
( 4 ( ~ -  1/2)N)  p 

Let  x = 4 (~ - 1/2) N, a = ~ - 1/2, we now seek the envelope o f  the family of  curves 

p2p-~  
f ( x , p )  - (3.29) 

x p 

where p is considered to be the parameter .  To this end we need to solve the 
s imul taneous  equat ions  

y = f ( x , p )  

U 
Up (x,p) = o 

where 

Thus 

c~p-- x p 2 1 n p + 2 -  - l n x  . 

a = In (fp)2 
p x 

Since x = 4 ( ~  - 1 / 2 )  N - - +  oo implies p --+ o% we see that  

(ep) z 

x 

thus 

and  

V x  ] /4  (~ - i /2)  N 
p ~ - (N--+ c~) 

e e 

Ilell~ ~ (/x/e)21/~-/e- '~ ~ I 
Xl/g/e ] / ~ -  tt2 

(with equivalence cons tant  depending  only on ~). 
Since N =  mp, we get 

e - 4/e g ~  

l/x =-4 (=-l/2)m 
e e 2 

p ~ (m --+ oo), 
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1 
Table 1. [le[[z ~ e  - ~  

1/N ~ 

Method q s ~ a 

lnq  ] / 2 1 n q l n r  0 G-mesh q (c~ - 1/2) l n r  
L-degree 

�89 0.3932 (c~- 1/2) 1.5632 0 

( ] / 2 - 1 )  2 2 ~ -  1 1.7627 0 

G-mesh 
U-degree 

q (ct-  1/2) ~ I/In q ln r  
i n  r 

�89 0.3932 (a - 1/2) 1.1054 

( ] / 2 - 1 )  z 2cr 1.2464 

min (~, 2c~ - 1) 

rain (~, 2 c~- 1) 

min (a, 2 c~ - 1) 

R-mesh 
U-degree 

q and s are 
asymptotic values 

e -4/e2 4/e 2 (e-- 1/2) 1.4715 e--  1/2 

and  for i = I, 2 . . . .  fixed 

5 X m _  i : 1 -- ~ ~ (e-4/~') i (m ~ ~ ) .  

Thus the mesh tends to be geometr ic  with a rat io  q = e-4/.~. [ ]  

R em ark  3.3. We can obta in  a more  precise asympto t ic  relat ion between p and m: 

4 e 2 1 
p = ~ (~ - (ct - 1/2) m + (ct - 1/2) + ~-  (c~ - 7/2) --m + " ' "  (3.30) 

R em ark  3.4. One sees that  the rate of  convergence given by (3.28) is bet ter  than 
using geometr ic  mesh. The mesh is a radical  one, which has a very s t rong ref inement  
in the ne ighborhood  o f  the singulari ty:  

In  summary,  for our  model  p rob lem the h-p version can achieve an exponent ia l  

rate  of  convergence. The ' geome t r i c  mesh with a ra t io  q = (1 /2  - 1) z combined  
with a l inear degree vector  with a slope s = 2c~ - 1 is near  opt imal .  The  same rat io  

q = (1 /2  - 1) 2 is also best  for the geometr ic  mesh with uni form degree vector. This 

op t imal  rat io  ( t / 2 -  1) 2 is independent  of  the strength o f  the singularity.  The 
fol lowing table gives a summary  o f  the var ious  h-p extensions. We express the rate  
a s  

[lel[E ~ l - ~ - - - e - ~ l / 2 ) N  
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and 

R-mesh 
G-mesh 
L-degree 
U-degree 
q 
s 

- the optimal radical mesh, 
- the geometric mesh, 
- the linear degree vector, 
- the uniform degree vector, 
- the ratio for a geometric mesh, 
- the slope for a linear degree vector or the factor in the 

relation p = sm for the uniform degree vector. 

4. The Optimal R a t e  o f  C o n v e r g e n c e  

f o r  A r b i t r a r y  M e s h - d e g r e e  C o m b i n a t i o n  

We now answer the equation what is the possible optimal rate of  convergence in all 
possible mesh-degree combinations. 

Let S =  (d,p_) be an arbitrary mesh-degree combination and 

(ratA) ) 1/2 

be the error in energy norm of  the finite element solution of  the model problem 
(1.1). 

Define for N > k 

if N < k, let EN, k = 00 (N be an integer). In what will follow we make the following 
convention: 

o0 " 0 = o 0 .  

Clearly, EN, k is the minimal error among the combinations having k elements with 
the number of  degrees of  freedom being N. 

Furthermore, we define 

E N = inf {EN, k}, (4.2) 
k_~l 

and E N is then the smallest error of  the errors related to the mesh-degree 
combinations having the same degree of  freedom N. 

For  simplicity we allow the degenerated case, i.e., xi_ ~ = x l ,  for some 1 =< i 
< re(A). Clearly, this will not change EN, k and E~. 

In Section 3 we already found an upper bound for EN: 

E N < C(e)qo tvi~--1/2)N (4.3) 

where q0 = (1/'2 - 1 )2. To obtain the lower bound o f E  N is more difficult. In [3], K. 
Scherer solved the problem for L~ approximation. Out of  his result we can easily 
obtain a lower bound for EN: 

E N > C(~)N-(2~+I)qVo(~-I/2)N 
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Therefore the upper bound (4.3) is optimal in the sense o f  the exponential decay 
factor. 

Using ideas o f  [3], we will give a direct p roof  of  an improved lower bound ofEN: 

1 qoi/~- 112)N E u _-> C(~) ] / ~ T 7 ~ -  " (4.4) 

The idea o f  the p roo f  is to study the operator  J -wh ich  transmits the sequence 
{Esv, k}j~ to {EN,k+t};= 1. F r o m  the monotonici ty  o f  this operator  one can 
construct a lower bound for Esv. 

For  our  model problem Ev[a,b ] ([a,b]eA) is the error o f  best L 2- 
approximation of  x ~-I  on [a,b] with polynomial degree p - 1 .  F rom this 
observation one can easily obtain 

Lemma 4.1. For 2 > 0 

Ep[2a, 2b]=2c'-al2 Ep[a,b]. [] (4.5) 

We now observe that g(A,p)  is a continuous function on a compact  set 

{(Xa,X2,.. . ,Xk_~; P~P2 . . . . .  Pk)[O < X <  1, 1 < p , < N }  

with the constraint 

O= xo < xl  < x2 < ' "  < xk = l 

k 
Zp,=N, l<_k<N. 

i=1 
We have 

Lemma 4.2. For any k, N given (k < N), there are mesh-degree combinations Z 
= (A,p) for  which EN, k, sEN are actually attained. [] 

Lemma 4.3. Let E,,k+ 1 (N > k + 1) is achieved with (A,p_) where 

A={0=Xo<Xl<'"<xk<xk+,=l} 
P = (Pl,P2 . . . . .  Pk,Pk+ 1) 

k + l  

m ( A ) = k + l ,  ~ , p i = N ,  
i=1 

then 

E L ~ + ,  = x~(: - ' /~> E~_.,+,,~ + E,,,+, [x~, 1] ~ . 

I f  E N is achieved with (A,p_) given above, then 

E~ = Xk 2 <'~ - i / 2 ) E  2_ p,+, + Ep,, [x k , 1]  2 . 

Proof  It is easy to see from Lemma 4.1 and Lemma4.2  that for 2 > 0 

ENI,~ <,, ,~b] = ~ , -  1/2 l~la, b] 
,k "L'N, k 

E~,~,,, ~b] = 2"-  'i2 E~"' bl 

(4.6) 

(4.7) 
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where E~-~ 1 and EtN "' bl are defined similarly as EN, k and E• but on  [a, b] _ [0, 1 ] 
instead o n  [0, 1]. 

Suppose  that E m k + 1 is achieved with (A,p),  then 

k 

EN.k+I = 2 E,,[xi-l ,xilZ + Ep~§ l] 2 
i = 1  

> [ ~ ' [ 0 ,  xk] "~2 ..t_ -~- \ ~ N - p  . . . .  k) ~ Ep~+~ [Xk, 1 ]  2 

2 (~- 1/2) E = x k  N_p~§ + Ep,~. [xk, 112 
k 

= 2 E p ' [ X ' I - I ' X ; I + E p , . I [ X k ' I ] 2  
i = 1  

> 2 
~ . g N ,  k+l  

k 
where {0 = Xo = x~ =<.-. =< X'k Xk} and {p~, . . .  ,Pk} with ~ p; = N - P k +  1 are the 

i = 1  

mesh and degree vector for which Et~162 k is achieved. 
Similarly, if  EN is achieved with (A , p)," then 

k 

E~= y~ E.,[x~_~,xd~ +E~.,[x~,l] ~ 
i = l  

_-> (E~~ ;:1+,) 2 + Ep,+, [XR, 112 
= x~ (~- ,/2) E2_,.+. + e,.§ [XR, 112 

k '  

= 2 E,: [x~_ 1, x~] 2 E,,., [Xk, 11 z 
i = 1  

- -  , >  , < .  < , where {0 Xo = x t  = "'= Xk, =Xk} and {pl . . . . .  Pk'} are the mesh  and degree 
vector for which ~--~o,~.] is achieved. It m a y  happen that k' + k, but still a"U--pk+, 

k' 

P~=N--pk+I" [] 
i = 1  

F r o m  this l emma we get immediate ly  

Lemma 4.4. For N >= 2, 

E 2 = inf {a z ' - '  2 mk+l E~_~,k+E~[a, 112 } (4.8) 
0NAN1 

l < v < N - I  

E ~ =  inf  {aZ~-~EZ._v+E.[a, 1] 2} (4.9) 
O<a_~l  

I~v~N-I 

and there are pairs (a, v) for which these infima are actually achieved. [] 
We n o w  define the operator  3 - a s  fol lows:  

e oo Definition4.1. Suppose  { N}N=,  = e  is a non-negative ,  non-increasing sequence 
(which m a y  also take the "value" oo). Let p = ~ - 1/2 ( >  0) be given. Def ine  

( J e ) l  = oo (4.10a) 
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(3-e )N= inf {(aueN_~)2 + E~[a, 1]2} 1/2, N >  2, (4.10b) 
0~a<21 

l < v < N - 1  

with the convention oo �9 0 = ~ ,  where (e)N = es is the N-th component  of  e. 
Clearly, the operator  J - h a s  the following properties: 

Lemma 4.5. 3" is well defined for  any non-negative, non-increasing sequence e 
= e ~ = { N}z~=l ,and foranyN>2,  thereexis t sapair(a ,v) forwhich(3-e)s  {(aaeN_~) 2 
+ E~ [a, 112}. []  

Lemma4.6 .  9"-maps non-negative, non-increasing sequence {es}ff= 1 to a non- 
negative, non-increasing sequence ~--{ e N } ~= i, and it is monotone, i.e., i f  el < e 2 , then 
J-el  < 3-e2. (The inequality is used in the componentwise sense, i.e., e 1 < e2 i f  and 
only i f  e~)<e~)  for all N, where e , =  {e~)}~= 1, i =  1,2). 

Proof  Let mu = (~--e)u, and suppose that there is a pair (al ,  vl) such that 

mn = {(aUeu_v,) z + E,, [al, 112} 1/2 

and suppose that for (a 2, v2) 

mN+l = {(a~ eu_~=+l) 2 + E,,[a2,112} 1/2. 

By definition we have 

(J-e)u +, = mN+l < {(a~' eu_vl+,) 2 + E~, [a t , 112} 1/2 

< {(a~eN-~O~+e~, [at, 112} 1/2 

= mu = ( J-e)N �9 

Suppose now e z < e2, and for some pairs (a i, vi), i = 1,2, 

m~ ) = {(a i e%)_~,) 2 + E~, [al, 112} 1/2 �9 

We then have 

. ( .  ~ ]2}1/2 ( J ' e l )  N = m ~ =  {(a I elv_~l ) + Ev, [al, 1 

< {(a~e~)_~) 2 + Ev~[a2,112} 1/2 

=< {(a~ ~N~2)- v2 + ev~ [a2,112} 1/2 

= m~ ) = ( Ye2)N �9 

Remark  4.1. By Lemma 4.6 the power o f  the operator  #- i s  also well defined: 

J - ~  e 

3 - , e =  ~--( ~y-~- 1 e)" 

Lemma 4.7. Let  E, ,  E~, k be defined as before. Then 

EN = inf { 9"-" {E~, ~ } ~= 1)N}, N > I .  (4.11) 
n - 0  

Proof  By Lemma 4.4, it is clear that  

(3-{E~, k} 7= x)N = EN, k+ 1, 

( k =  1,2 . . . .  ; X > 2 ) .  
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Thus 

E N =  inf  {EN, k} = inf  {(3"-~ {Ev, 1}~= I)N}, ( n >  1). 
n>l  n~'0 

The relation holds trivially for  N =  1. [] 
F r o m  the lemma,  we easily obta in  the following impor tan t  corollary which 

allows us to find a good lower bound for EN: 

L e m m a  4.8. I f e  = {eN)~=l is such 
1) ( 3"-e)N > eN 
2) eN<EN,,=EN[O, 1] 

then e N < E N for all N. 

Proof. By L e m m a  4.6, 1) implies 

eN < (~.~'e)N, for n > O , N > l  

and by 2) we obtain 

eu < ( ~ {E~,, } L 1 )N, (all n > 0). 

Therefore eN < inf {(3"" {E~, 1}v~176 1)N } -.~-.E N. []  
n>0 

We now are abou t  to find a fine lower bound  for EN. Recall Theorem 1.1 that  for 

[a, b] ~A, and r =  ] /~  - ] / a  

I 
1) i f 0 < r  e < l - -  then 

= p + l '  

Ep[a'b]>C(cO ~ p~ + ( 1  - r2) ~-1/2 

1 
2) i f 1 -  < r  2 < l , t h e n  

p + l  

Ep [a, b] > C(a)  (b - a) ~- 1/2 _ _  
rp+ l -~t 1 

a 
Let 2 = b '  then 

(b - a)u = bu(1 - 2)u = b~(1 + ]/2)2u \ l ~ J  >= b"r~" 

These inequalities may  be writ ten together  as 

rp+ 1/2 
Ep[a,b] >= C(a)bU - -  ( /z= ~ - 1/2) (4.12) p~ 

with z = max  {2a - 1, a}, and  if we know that  e _< r < 1 - e for some e > 0, we can 
obtain  z = a (in this case constant  depends also on e). 
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W e  are  in te res ted  in the special  case  o f  (4.12) when  b = 1" 

r v - 1 / 2  

E~ [a, 1 ] > Co (~) - -  r = m a x  (~, 2 ~ - 1), 
V T 

i f ~ - < r <  1 - ~ ,  then  
r ~ 0  - 1 / 2  

E~ [a, 1 ] > Co (~, ~) v ~ 

(4.13) 

(4.14) 

eN ~N3U/2qoV~--*O as N--* ~ ,  
Eu, a 

we can  f ind a c o n s t a n t  C1 (~r > 0 such tha t  e N > EN, 1 for  C < C1 (~), N > 1. 
I f  we can  show J - { e N } ; =  ~ > {eN};= a, then L e m m a  4.8 c la ims  t h a t  eN is a lower  

b o u n d  o f  EN. The re fo re  it n o w  suffices to show tha t  for  some  0 < C < C1 (~), 
( i n d e p e n d e n t  o f  N )  one  has:  

~-;qo"V~- <\-l/~__~_v qoV"(~-~) +E,[a,  1] 2. (4.16) 

This  m u s t  ho ld  for  all  0 _< a -< 1, 1 _< v -< N -  1. (4.16) is equ iva l en t  to  

/ N  2u a2, [ . -  q~(r 1]2>I. (4.17) 
" \ / n  - -  v 

F o r  s impl ic i ty  we deno te :  

then  0 < x <_ 1, a > 0, 0 < 6 < 1, ~ > Ca (~ ) -  2, we can  wr i te  (4.17) as 

( N )~32 (~ -VgR- ,+TN~6-2vg -NE~[xZ ,  112 O~(x,v) - x ~  

-2V~ 
= x  ~ ~ ~l/N ~+I~ +TNU6-21/~E~[x2,1]z>=I" (4.18) 

W e  m u s t  show (4.18) h o l d s  for  0 < x _ <  1, 1 < v < N -  1, N> 1. 

since 

where  r = r  (a) = 1 - ]//~ 
1 +  Via" 

W e  n o w  s ta te  o u r  m a i n  resul t :  

T heo r em  4.1. E N has a lower bound of the form 

qo e N = C(~)  - -  (4.15) 

with I~ = ~ - 1/2(> 0), qo = ( ] / 2  - 1) 2. 

Proof I t  suffices to  show tha t  there  is a cons t an t  C = C(cr such t ha t  {eN} ~ sat isf ies 
the  cond i t i ons  o f  L e m m a  4.8. 

N o t e  1 1 
EN, 1 = EN[O, 11 ~ y z - i - - -  N2"  
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First, we claim that  there exist e = e (a) > O, Yl = Y~ (~, e) > O, such that  

i f ] / N > e  -a  or  1 / N < ~  and '~-~?1' 
Y V 

then 

There are two cases: 

Case l. ]'/-N < e. 
Y 

~N (x, v) >_- 1. 

- 2  V T v  

I f  x , , 6 ~ +  v~ > 1, then ON(x,N)> 1, otherwise we have 
- 2  I/~v I/~V 

thus 
v 1 

x < 6  v-~ < 6  vT~ , (4.19) 

and if e ~ 0, then x ---, 0. 
Note  that  if  x is small enough, then 

( 1 -  x~l/" 1 
> -  

\1 + x]  9" 

Thus  there is el > 0, such that  for 0 < e < el and  ] / ~  < e we obtain  by using (4.18), 
(4.13) and (4.19): v 

~bN(X , v) __--> T N ~ 6  - 2  V-~- E,  [x 2, 1] 2 

> ,  Co (a) N ~ -  2, 6 -  21/~- ( ~ )  (2.+1'* 

,r 

> "~ Co (tx) N ,u -  2t t~ - 2  ~ 

v In 1/9 
- 2  ~-N+(2v+ 1)6 

= yCo(~z)NI,_2, 6 ~ tn6 

( v) 
- r  v 1 6 -- - 2 ~  1 + 

= ~] Co (g) N ~ -  2, ~ (~G-K 2 V T K )  

tn l /9  _ 
with x = ~ ~ O. 
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v 1 
Because > - -  o + ~ as e o O, we have  = 

+ 6 V T Y o O  as e o O .  

T h u s  there is e2 = e2 (a) > O, such tha t  for 0 < ~ < ~z a n d  

Therefore  

1 

1 / ~  < ~, x + 6 v ~  < _  
v 2" 

dPN(X,V) > 7C0 (~)NU-2z  6 - 2  i / ~ t l  - 1/2) 

= 7 Co (~)NU-2z r I~N.  

However ,  Nu-2~6 - V ; Y o  + oo as N o  + o0; hence  there is 71 = Yl (~) > 0, such 
tha t  for 7 > Yl 

7Co(~)N , -2~  6-  I /~-> 1. 

H e n c e  for 0 < e < m i n  (el ,  e2), 7 > 71, a n d  1 / ~  < e, we have qSu(x, v) > 1. 
v 

Case2. l / N >  e_l.  
v 

- 2  ]~v  

As before,  if  x ' D  NV~S-~+ V~ > 1, then  qSs(x, v) > 1, otherwise we have  

There fore  we can  a s sume  tha t  

v 

x < 6 V ~ -  

v 

1 - x > l  - 6  r 

a n d  o b t a i n  

qbN(X, V) >= 7 NU 6 - z VgN-E v [x 2, 1] 2 

(1 - x )  2~+1 
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In this case, one has ~ < e --* 0 as e ~ 0, and because 

lime~.o l n ( ~ - ~ )  = 0 '  

there is e 3 = e3 (~) > 0, such that  if  0 < e < e3 and t / ~  = > e -  1, then 
V 

(v -~+ In 1 
< - -  

ln6 = 2 "  

Hence (~N(x,v)>TCo(a)"-2~6 -Ugh-. Again,  we see that  if  7 > 7 1  with 0 < e  
< rain (el,  e2, e3) we get qSu(x, v) > 1. This proves our  claim. 

It  remains  to analyze the case e = - - = <  ] / ~  < e -  1 with e > 0 chosen above.  We claim 
v 

that  in this case there is ~)2 = ~2 (6) > 0 such that if  7 > ~2 then 4)N (x, v) > 1. 

- 2 1/-~ 

As before, if x" 6 r + r > 1, then q5 u (x, v) > 1. Otherwise we have 

v 

x < 6  v ~  <3 v~ =rh < l .  (4.20) 

On the other  hand,  if  we have 

7NU6-2 l/~-En [x2 ' / ]2 ~ 1, 

then we also get ~b n (x, v) > 1. Therefore  we can only consider the case 

( 1 - - X ~  2v+l 
1 > ~N",~ -2 V~-EN [xL 1] 2 >_-- rCo(~)N "-2~,~-2 V~ \ ~ J  

As was proved,  for  ~ > 7a we have  

7Co(a )NU-2~6-  V ~ >  1. 

Thus 

1 - - X ~  2v+l  t~(2v+ 1)/nt~ 

(The last inequality is obta ined by using L e m m a  3.1). Hence 

ln 6 ln 3 
] / ~ <  ( 2 v +  1) l ~ x < 3 V l n x  

and thus 
3 - - 8  

X > ~  ~ : t / 2 > O  . (4.21) 
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Therefore we can restrict ourselves to consider only the case 0 < ~/2 < x ~ r/1 < 1. 
This allows us to use estimate (4.14) in which z = ~. Consequently, we obtain:  

~,~ (x, v) __> x- a v~ + ~ Co (~, ~) ~ \ 1 ~ - ; /  a-= v ~  

v~-~ (1-rh~ 1 t~- 2 I/~- + 2v Inh 
>Xa6 1/N .~_YCo(~,g)g2, \l'~rl2// ~ l'nx 

Denote C(~,e) = Co(a,e) e 2~//1 -~1"}. Suppose that x" 
On(x, v) > 1), we find \1 + q z /  

y-- ~ - - ~ I n 3 - l n x > O .  

Using the inequality for x > 0: 

e -x > 1 -- 2x,  

eX> 1 + x, 

+ yC(cqe) ~ - -~e  

(4.22) gives 
V-g~ a l n x -  ln6 

(9~ (x, v) > e V~ 
, ( ) - 2  l / ' ~ N - 2 ~ n ~  Ill 6 

2 V ~ l n 6  
l In x =e-~r + ~C(~,e) ~ t 

1( 
> l - 2 a y + y C ( ~ , O ~  14  

2]/a-Nln6 ) 
lnx Y 

ln6 
Since ~ > O, it follows that there is 72 > O, if y >= 72, then 

2 ]/-aln6 
yC(a, e) - 2a > O. 

lntl2 

Choose y > max (y 1,72) = Y (a), we will conclude 

~N(x, v) >__ 1 

for all 0 < x < 1, 1 < v < N -  i, N > 1. This completes our  proof.  []  

Remark 4.2. In K. Scherer's theory (see [3]) the operator  ~ i s  defined differently. It  
is based on the fact that  the local errors are equilibrated in the best Lo~- 

(4.22) 

V~ < 1 (otherwise 

2l/7ln6 2a)y .  
> 1 + 7 C ( ~ , 0  lnrl2 
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approximation.  F r o m  this fact it was shown that the optimal mesh-degree 

combinat ion tends to be a geometric mesh with ratio qo = ( ] / 2 -  1) 2 associated 
with linear degree vector with slope s o = 2a - 1. More  precisely, as N--+ oo one has 

xm _ i --+ qio 

P m - i - - P m - i - I  --+ 2 ~ - -  1 

for i = 0 , 1 , 2  . . . . .  

5. The Numerical Performance of Various Versions of the FEM 

The problem as before we will consider 

- u "  = f  

u(O) = u ( 1 )  = o 

with solution 

(5.1) 

u(x)=x~-x. 

The relative error in the energy norm is denoted by alert. We are mainly 
concerned with the relation between Hi e H and N the number  o f  degrees o f  freedom. 
(In the graphs, N will always be the abscissa and ][ e 1i the ordinate, but with different 
scales.) 

5.1. The  h -Vers ion  (4 = O) 

(1) The h-version with uni form mesh 
Let 

1 
E,, = E ~ ( ~ , p )  - mUp2 ~-  1,  (P =t= ~ - 1/2), ~ > - 1/2 (5.2) 

(/.t = min (p, ~ - 1/2), p the polynomial  degree and m the number  o f  elements) be the 
estimate o f  the error as in Part  I. We denote 

Ilell C . =  E. 

the "numerical  constant"  o f  the estimate. By Corol lary 2.1, C~ converges to a limit 
C ( ~ , p )  as m--+ oo, and C ( ~ , p )  is bounded  above and below by constants ( >  0) 
which only depend on ~. It  possibly has another  limit when p --+ oo. 

Table 2 shows the results for ~ = 0.7 a n d p  = 1,4. Fig. 1 shows the graph in the 
log N -  log II e II scale for ~ = 2.9. Because N ~, m p  the error E m can also be written in 
the form 1 

Em = N ,  p2  ~_~_ 1. 

Since 2e - 1 - / ,  > a - 1/2 > 0, an increase o f  degree o f  element reduces the error. 
This is also dear ly  shown in Fig. 1. 

(2) The h version with radical mesh 
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Table 2. (c~ = 0.7) 

m p = l  ( / t=0.2)  p = 4  ~ = 0 . 2 )  

Ilell Cm Ilell Cm 

2 0.3742 0.4298 0.2168 0.4336 
4 0.3262 0.4304 0.1887 0.4335 
8 0.2840 0.4305 0.1643 0.4336 

16 0.2473 0.4306 0.1430 0.4335 
32 0.2153 0.4306 0.1245 0.4335 
64 0.1874 0.4305 0.1084 0.4336 

128 0.1632 0.4307 0.09435 0.4335 
256 0.1420 0.4305 0.08214 0.4335 
512 0.1237 0.4307 0.07151 0.4336 
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Let the mesh grading function (see Section 3.1) be 

then 

Let  

x,__.(/) 
g ( x )  = x # 

1 ,  

m" 
Era= E.(~,p) = l/ZV~m 

t ~ - ~ ,  
where/~ = min (p,/~ (e - 1/2)). 

i = 0 , 1 , 2  . . . .  ,m. 

if p e e B ( = - l / 2 )  

i f  p = ~ ( ~ - l / 2 )  

(5.3) 
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Table 3. (ct = 1.1, p = 2) 

m f l=2  (/z=l.2) flc=3.333 (u=2)  

Ilell C,, Ilel[ Cm 

2 0.1776 E-1 0.04080 0.1658 E-1 0.07966 
4 0.7859 E-2 0.04148 0.5570 E-2 0.07569 
8 0.3440 E-2 0.04171 0.1691 E-2 0.07505 

16 0.1500 E-2 0.04179 0.4869 E-3 0.07486 
32 0.6533 E-3 0.04181 0.1360 E-3 0.07481 
64 0.2844 E-3 0.04182 0.3721 E-4 0.07474 

128 0.1238 E-3 0.04182 0.1004 E-4 0.07468 
256 0.5390 E-4 0.04183 0.2684 E-5 0.07470 
512 0.2346 E-4 0.04183 0.7115 E-6 0.07468 

m flop=4.167 ~ = 2 )  f l=5  ~ = 2 )  

[[el[ C,. Ilelt C,. 

2 0.1998E-1 0.07792 0.2410E-1 0.0964 
4 0.6480 E-2 0.1037 0.7865 E-2 0.1258 
8 0.1822 E-2 0.1166 0.2162 E-2 0.1384 

16 0.4818E-3 0.1233 0.5585 E-3 0.1430 
32 0.1238 E-3 0.1268 0.1411 E-3 0.1445 
64 0.3137E-4 0.1285 0.3541 E-4 0.1450 

128 0.7894E-5 0.1293 0.8861 E-5 0.1452 
256 0.1980 E-5 0.1298 0.2216 E-5 0.1452 
512 0.4959E-6 0.1300 0.5540 E-6 0.1452 

A c c o r d i n g  to  T h e o r e m  2.3, t he  n u m e r i c a l  c o n s t a n t  

Ilell Cm=Em 

c o n v e r g e s  to  a l im i t  C(e, fl, p) as  m--*  oe. 

T h e  s a m e  t h e o r e m  s h o w s  t h a t  t he  o p t i m a l  r a t e  o f  c o n v e r g e n c e  m - p  o c c u r s  fo r  

/~> P 
- 1/-------2" W e  will  say  t i c -  P 

--  1/2 

is t he  critical ft. T h e  optimal [3 is g i v e n  b y  

p + a/2 
flop = ~ _ 1/2  

w h i c h  gives  t he  m i n i m u m  o f  t he  l im i t  C(~, fl, p). 
T a b l e  3 a n d  Fig.  2 s h o w  t he  a c c u r a c y  fo r  d i f f e r e n t  f l ' s  w h e n  ~ = 1.1 a n d p  = 2. 

F i g u r e  3 s h o w s  t he  a c c u r a c y  o b t a i n e d  by  d i f f e r e n t  p a n d  o p t i m a l  m e s h .  

T a b l e  4 s h o w s  t h e  m e s h  p a r a m e t e r  o f  the  o p t i m a l  r a d i c a l  m e s h e s  (m = 256).  

T a b l e  5 s h o w s  the  r a t i o  Ilell/llellop fo r  d i f f e r e n t  [3's w h e r e  Ilellop is t he  e r r o r  fo r  

[3 - -  [3o,. 
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We see that only for low accuracy it is good to use underrefined mesh. For an 
accuracy about 1% the use of higher elements with overrefined mesh is 
advantageous. However, for highly unsmooth solutions (ct is small) the refinement 
for both critical and optimal fl is so strong that there are difficulties with the 
implementation (see Table 4). 

5.2. h-p Version 

(1) Geometric mesh with linear distributed degree vector (G-L) 
In this case q denotes the ratio of geometric mesh and s the slope of  degree 

vector. For each q the optimal slope s is given by 

~ q  
s 0 = ( ~ - 1 / 2 )  I t - -  1 m 



652 

Table 4. Mesh parameters 

W. Gui and I. Babuska 

P tic /~o. fl = tic fl = flop 

IIImin I/Imax II[~n I/l~x 

0.7 1 5 7.5 9.09 E-13 1.94 E-2 8.67 E-19 2.89 E-2 
2 10 12.5 8.27E-25 3.84E-2 7.89E-31 4.77 E-2 
3 15 17.5 7.52E-37 5.70E-2 7.17E-43 6.62E-2 
4 20 22.5 6.84 E-49 7.53 E-2 6.53 E-55 8.43 E-2 
5 25 27.5 6.22 E-61 9.32 E-2 5.93 E-67 1.02 E-1 

1.1 1 1.667 2.5 9.69 E-5 6.50E-3 9.54E-7 9.74E-3 
2 3.333 4.167 9.39E-9 1.30E-2 9.24E-11 1.62E-2 
3 5 5.833 9.09E-13 1.94E-2 9.95E-15 2.26E-2 
4 6.667 7.5 8.81E-17 2.58 E-2 8.67 E-19 2.89 E-2 
5 8.333 9.167 8.45E-21 3.21E-2 8.40E-23 3.52E-2 

Table 5. Ilell/llellop Go = 2) 

m fl 

1 4 7 10 (c) 12.5 (~ 15 ][eltop 

0.7 2 0.94 0.67 0.71 0.97 1.00 1.03 0.6383 
4 1.45 0.69 0.61 0.75 1.00 1.13 0.3609 
8 3.41 1.07 0.68 0.74 1.00 1.17 0.1336 

16 10.82 2.09 0.91 0.80 1.00 1.16 0.0394 

m fl 

1 2 3.333 (c) 4.167 (~ 5 7 lie l[op 

1.1 8 6.15 1.89 0.93 1.00 1.19 1.87 0.1996E-1 
16 15.34 3.11 1.01 1.00 1.16 1.82 0.5278 E-2 
32 39.38 5.27 1.10 1.00 1.14 1.79 0.1356E-2 
64 102.6 9.07 1.19 1.00 1.12 1.77 0.3436E-3 

128 268.9 16.25 1.27 1.00 1.12 1.76 0.8647E-4 
256 705.3 27.15 1.35 1.00 1.12 1.75 0.2169E-4 

The rate of  convergence is then 

q~,- a/2) 2V~Tz i f  s > s o 

E N = E N ( a , q , s ) =  r V~~ i f  S<So (5.4) 

e - ~ ~  if S=So 

where x =  V'2lnqlnr and N stands for the number of  degrees o f  freedom of  
the finite element spaces. The optimal rate o f  convergence is achieved when 

q = ( ] / ~  - 1) 2 ~ 1 .7627.  (Cf .  T h e o r e m  3.2).  



The h, p and h-p Version of the Finite Element. Part II 

Table 6. (G-L, ct = 0.7) 
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q = 0 . 5  q = 0 . 3  
x = 1.5632 s = 0.07864 x = 1.7211 s = 0.1957 

N Ilell C~ N Ilell CN 

2 0.3742 2.024 2 0.3427 1.018 
5 0.2509 1.198 9 0.1120 1.127 

10 0.1357 1.238 15 0.5717E-1 1.127 
15 0.8525E-1 1.278 26 0.2299E-1 1.164 
20 0.6695E-1 1.526 36 0.1154E-1 1.169 

44 0.7184E-2 1.185 

qop = 0.1715 q = 0.1 
x=1 .7627  s = 0 . 4  x=1 .7366  s=0 .7032  

N Ilell C~ N Ilell CN 

2 0.3187 0.9718 2 0.3063 
11 0.7518E-1 1.027 10 0.7443E-1 
25 0.1962E-1 1.010 18 0.3149E-1 
46 0.4929E-2 1.035 35 0.8374E-2 
66 0.1736E-2 1.049 57 0.2244E-2 
81 0.8671E-3 1.046 75 0.9246E-2 

0.9187 
0.8677 
0.8496 
0.8287 
0.7898 
0.7709 

Io-I 
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~ . . q  =0.1715 
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a 0 7  " "  

= " 1 :O.3424 - - ~ x  

I I I [ 1 1 1 1 1  I I l l I I I 

I I0 5 0  100 

N 
Fig.4 

The numerical constant 

Ilell 
CN= EN 

is bounded above and below by constants which depends only on co, q and s. 
Table 6 shows the performance of the h-p version for various q and corre- 

sponding optimals s for ~ = 0.7. Figure 4 drawn in ] / N -  log Ilell scale shows 
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Table 7. (G-U, c~ = 0.7) 

q = 0 . 5  q = 0 . 3  
x '=1 .1054  s=0 .07864  x '=1 .2170  s=0 .1957 

N Hell C N N Ilell CN 

2 0.3742 0.9596 2 0.3427 0.9431 
5 0.2509 1.331 12 0.1002 1.575 

10 0.1357 1.450 33 0.2554E-1 1.980 
26 0.6246E-1 2.430 45 0.1063 E-1 1,552 
32 0.4153 E-1 2.289 64 0.6815 E-2 2,273 
40 0.2451 E-1 2.032 80 0.2798 E-2 1.687 

qop = 0.1715 q = 0.1 
x' = 1.2465 s = 0.4 ~' = 1.2280 s = 0.7032 

N Ilell C N N Ilell CN 

2 0.3187 0.8935 2 0.2130 0.5932 
15 0.6935 E-1 1.550 20 0.4110 E-1 1,367 
32 0.2160E-1 1,707 35 0.1530E-1 1.368 
55 0.6905 E-2 1,753 63 0,5131 E-2 1.710 
78 0.3140E-2 1.983 88 0.1964 E-2 1.626 

112 0.1031E-2 1,961 108 0.1166E-2 1.807 

the error behaviour o f  this case. Figure 5 shows the accuracy for various s, and 
optimal q and ~ = 0.7. In the used scale the error behaves linearly. The slope shown 
in the figure characterizes the theoretically best rate o f  convergence. 

(2) Geometr ic  mesh with uniformly distributed degree vector (G -U )  

In  this case the degree p is a multiple o f  the number  m o f  elements: 

p = s m .  (5.5) 
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The  rate  o f  convergence  is g iven by  

q(~- 1/2) 

r  - 1  S > S 0 

rV~- 
E N = E N (cz, q, s) = ] / / ~  s < s o 

l_~_ eK' (I/~2-1/2)N 
l / s m  a s = s o 

where  a = m i n  (~, 2~ - 1), K' = ] / / / n ~ ,  s o is the op t ima l  factor  in  (5.5) which  is the 
same  as the op t ima l  slope in  the ( G - L )  case: 
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I000 

s o = (~ - 1/2) lnq 1 -- ~/q 
1+r 

(Cf. Theorem 3.4.) 

Note the exponents in (5.6) are the same as in (5.4) but multiplied by 1/1/2. The 
optimal q and s of  the geometric mesh are 

q = ( ] / / 2 - 1 )  z and s = 2 ~ - l .  

Table 7 shows the accuracy and the values of  the numerical constant for ~ = 0.7, 
various q and corresponding optimal s. 

Figure 6 shows in the 1 ~  - tog It e If scale the behaviour of  the method. Figure 7 
shows the accuracy for various s when the q is optimal, the error behaviour linearly 
and the slope shown in the figure characterizes the maximally possible rate of  
convergence. 

In Section 3.4 it was shown that the curves for radical meshes (p fixed and 
m ~ oo) have an envelope p. I f  we let p be a parameter  which tends to oo, this 
envelope has slope 

4 I / a -  1/2/lnlO (~1.4950 for ~ =  1.1) 
e 

in the ] / N - l o g l l e l l  scale. Figure 8 shows the envelope of  the error curves for 
optimal radical meshes when p increases. The slope shown in the figure is the 
optimal rate of  the h-p version with uniform p. 
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