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The h, p and h-p Versions
of the Finite Element Method in 1 Dimension

Part I1. The Error Analysis of the 4- and A-p Versions

W. Gui* and I. BabuSka**
Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA

Summary. The paper is the second in the series of three devoted to the detailed
analysis of the three basic versions of the finite element method in one
dimensional setting. The first part [1] analyzed the p-version, the present one
concentrates on the 4 and A-p versions.

Subject Classifications: AMS(MOS): 65N30; CR: G18.

1. Introduction

This paper is the second part in the series of three which address in detail the
properties and performance of the 4, p and 4-p versions of the finite element method
in one dimensional setting.

In general the A-version of FEM has the degree of elements fixed and the
convergence is achieved by the refinement of the mesh. The p-version fixes the mesh
and increases the degree of elements. The 4-p version combines both approaches. In
Part1 [1] we have developed a basic tool for the error analysis and as an immediate
application we studied the features of the p-version. In this part we will investigate
the 4 and A-p version.

There is enormous literature devoted to the theory and practice of the A-version
while the p and h-p versions are a very new developments [1]. The commercial code
PR OBE based on p and k-p versions was introduced in 1985. For the theoretical
foundation of the A-p version in one dimensional setting we refer to [2, 3] where the
approximation of the function x* by piecewise polynomials of variable degrees and
nodal points was studied.

In this paper we consider the same model problem as in Partl namely

—u'=f 1.1)
u(@=u(1)=0
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with the solution
u(x)=x*—x.

To ensure u € H', we assume o > 1/2. We assume that « is not an integer, so that the
solution has a singularity of the type x* at x =0, which models the singularity
caused by corners of the domain in two-dimensional problems.

Let u,(x) be the finite element solution of (1.1), and let

e(x) = u(x) — u,(x)

be the error. We are interested in the relation between the magnitude of the error in
energy norm, |le||z, and the number N of degrees of freedom of the finite element
space.

We denote the finite element space by

S=S8(Z)c H*' (0,1)
which is determined by the mesh-degree combination X = (4, p), where
4: {0=xi<x{<xf<<xjsn=1}
p: (p1.p3s - D)

in which p? is the polynomial degree on the interval I =(x2,,x?),
i=1,2,...,m(4). Furthermore, we denote

hiAE|1iA|=~xiA—xiA—-1

h(4)= max hf.
1<igm(d)

The points x? will be called the nodal points, the intervals I the elements. The
restriction of S(Z) on 4 will also be called an element and p{ the degree of the
element I2. For the mesh 4 we will often write x? € 4 or I? € 4, etc., which will not
lead to any misunderstanding. The number m (4) will be called the cardinality of the
mesh 4. Obviously, we have

m(4)

N=dim(S)= 3 pf—1.

i=1
If there is no confusion we will drop the superscripts and write p;, I, x;, etc.; also we
write m for m(4).

It is well known that in the case of our model problem e(x;) =0 and ||,
= ||€’|| ,,- Therefore our problem reduces to studying the approximation questions
on every element separately. We denote the local error on a mesh interval I = [a, b],
associated with polynomial of degree p, by

“e”E(I) =E,()=E,[aq, b].
From Part1, we have the following theorem

Theorem 1.1. Let E, (I;) be the local error of the finite element solution of the model
problem (1.1),

Li=x-1, %] ri=—=—"7m—— Vx I/XI =, h
l/xi+ l/xi—l

13

=X X1
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then

ha 1/2
(11)~ P 1.2)
D
If0<r,.2<1—1, i=2, then
ha_z 1/2 r1.7,+1 a 1
E, ()~ ——— " ( +(1—r?)“‘“2)- (13)
8 ]/l—riz pi Pl
1
If1—=—<r?<£1,iz2 then
pi
p+1—a 1
Ep,(I) /’la l/szl—/z‘<p—a:—l/7+(1—ri2)a_”2>. (14)

In the inequalities (1.2)-(1.4) the symbol &~ means that the ratio of the left and the
right hand side is bounded above and below by equivalency constants which merely
depend on a.

Remark 1.1. 1If r; is not close to 1, then (1.3) may be written as
1—r2\o7 1ty
E (I)~h 12| —L —. 1.
NI ( 3 ) p;, (1.5)

Also we quote the following theorem from Part (which is translated into the
energy norm |le||g):

Theorem 1.2. Let x be given and x > 0, {1} be a family of intervals containing x. Then

. E,(I) 1
|}tlm mj,m Cla,p) i (1.6)
where
ol (o) |sinmu| 'p+1-0a)
Clop) = ()] @

Vr 421/ 2p+ 1T (p+1/2)

This limit is uniform with respect to x=¢, ¢ > 0.
We will write

1
ED=Cap) U o= (xe])

and denote =
by asymptotically equal.

2. The h Version of the Finite Element Method

2.1. The Optimal Rate of Convergence of the h Version

The 4 version assumes that the polynomial degree p of the elements is fixed; thus the
number of degrees of freedom is

N=mp-—-1
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where m is the number of the elements. For simplicity, we let
N=mp. 2.9
The rate of convergence of the 4 extension is never better than N 2. We have

Theorem 2.1. Let o > 1/2 be non-integer, then there is a constant C = C(a, p) > 0 such
that for any mesh A={0=x,<x; <+ <x, =1}

llellg= CN™7. 2.2)
Proof. Let h,=x;— x,_,. By Theorem 1.1 we have for i = 2:

hg—l/Z rip+1-—u 1
C(a) T 0<r?gl——0
1 xm 12 p+1
E,[x;-1,x]2 Lyt | (2.3)
Clo) ™17 2 1———<r2gi
(a) pz - p+1 _rl =
where
. ]/X ]/Xl 1 l
]/X + th 1 ‘
h; h;
Since ¥, = ———————2 -, (2.3) gives
(l/xi + in—1)2 4’
p+ 1/2
E lxi-1,x]12 C@) m Cla,p) ET112. 2.4
Thus
“3“%2 Z Ep[xi-'l’xi]z 2 C(%P)Z Z hi2p+1-
i=2 i=2
The right-hand side takes minimum ifand only if 4, = A; = --- = h,,. Since one must
have h, — 0 in order to obtain |le|; — 0, we can assume that /4, < /2 and then
1 .
hig—__, (122)
2m

It follows that
llellg= Cla,pym P =C(a,p) N ?

where C(a, p) is a generic constant only depending on « and p. [

In the following, we first discuss the performance of the general graded mesh,
then the special mesh graded by the grading function g(x) = = xP (f > 0) (which will
be called radical mesh). The uniform mesh is a special case of the radical mesh with

p=1.

2.2. The Graded Mesh

g(x) is called a mesh grading function if the nodal points of the mesh are such that

xi=g<~’%> i=0,1,2,...,m
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We shall assume that the grading function satisfies the following conditions:
(G1) g(0)=0, g(1)=1.
(G2) g is continuous and strictly increasing.

We will confine ourselves to the special case
(G3) geCH(0, 1) C°[0,1].

The continuity of g leads to

Lemma 2.1. Let A be given by the grading function g(x), satisfying (G1) ~ (G3), then

lim max |[;|]=0

m—-wo 1Zism

where m = m(A) is the number of intervals in A. [

Let e,, be the error function of the finite element solution with a mesh of
cardinality m graded by the grading function g(x) and |le|| .., denotes the error in
energy norm on [a,b] € L

Lemma 2.2. Let 0 <a<b<1, then

b 1/2
lim 77 e llg e,y = C(2. ) {5 [g' OF " [g(n)] 2+ ‘”}

where
of (o) |sinma Fp—uau+1)

Vn 40 2p+1T (p+1/2)

Proof. Let m — oo, then by Theorem 1.2 for x = a one has

1/2
”em”E(a,b) g{ Z Ep [xi—l’xi]z}
[mg™ " (@] i < (mg™ (b))

hi2p+1 1/2
zC(a,p){ }

2(p+1
e~ @) 2T me ey XY
N R 172
m)m
=C(,p) Z NIRRT
CRCHECSO)
m

1 b 12
= CoP) {j [g' D17 [g(0]” 2"’“‘“&} . O

Clo,p)= 2.5)

Lemma 2.3. Suppose that
1
(G4) JlePP g 2% 1 ¥dt < oo
0
and

1
(G5) g(t)=o<tm> as t—-0
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then
1/2
lim m"llemIIE=C(ot,p){} FEGIRan| (t)]‘z“’“_“’dt} . (2.6)

0

Proof. Under condition (G4), it is clear that

1

172
y}l_l"l;ln mP ”emHE(a_1)= C(Oﬁ,p) {j [g’(t)]2p+1 [g(z)]—Z(p+1—rx)dt}

a

for any a > 0. Thus it suffices to show that for any ¢ > 0, there is a > 0 such that
lim m? |le, |z, <é-
m- oo

In fact, by Theorem 1.1 we have E, [x;_,, x,1 S C, (o, p) ki =12 ¢P*1 7%, thus

[mg=! (@)]+1

"em”%(o,a)é Z Ep [xi—lsxi]z
i=1

h2 . [mg"fz)]-e—l S k. 2(p+1—a)
é Cl ((X,p) { la_ + hi &= (—-_—_.—_‘—l_—:“‘> }
i=2 (1/751'—1 + l/xi)z

e I et m2p+1-0)
[ 2 - -
h; x; 57 .

i=2

é Cl (aap) {h%a-l +
Thus by (G4), (G5) we obtain

lim (m? |le, |z 0.a)
m- oo

P

— 2a—1 a
§ Cl (OC,P) {llm (md—l/Z . g<;’1’;>> + j‘[g/(t)]Zp-*—l [g(t)]—l(p+1‘a)dr}
m- 0

= Cen g OF )20 .

By (G4) we only need to choose a small enough and (2.6) follows. [
Lemma 24, Let

= i g(x)""g (x)"dx
with
6=20~120,n=2p+1,
geCY(0,1)nC°[0,1]
and
g(0)=0,g()=1,

g(x) is strictly increasing.
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Then the functional I[g] has a unique minimizer

g(x)=xP
with
B_ﬁ_p+1/2
To o—1/2°

Proof. Let G=g°". Then

G’=%g"”’”1g’ (z0)

=Z— [e" " (&)1

Ilg)=] [ﬁ G’(x)T dx
G) [6" ()"
g

Thus

Hence it suffices to consider the minimizer of the functional

JIGl=([G'(x)]" dx

Ot’w-a

with the condition
GO)=0,G(H)=1,
GeCL(0,1)nC°]0,1],

and G (x) is strictly increasing.
By the standard variational method, we have

1
8JIG]= [n[G' ()] ' 6G dx.
0

This implies

G’ (x) = const.
thus
G(x)=Cx+C,
since G(0)=0, G(J)=1, we obtain
G(x)=x.
Hence

g (9 ="

619

2.7)

(2.8)
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It is easy to show that G (x) == x is actually a minimizer of (2.7).
This shows that g(x) = x"° is the unique minimizer of I{g]. O

Remark 2.1. Lemma 2.4 gives immediately

1 n
minJ[g]= [ (x"°)"~" (E x("/“)_1> dx
> g

_ n n— p+1/2 2p+1 (29)
_<E>‘<a~1/2> - B

Theorem 2.2. Among all grading function g(t) satisfying (G1) ~ (G3)

We now can state

. p+1/2
8op(X)=x* with [3=a_1/2 (2.10)
is the optimal one. Precisely, with this grading function the limir
] p + 1/2 p+1/2
"}13130 m”|le,llg = C(a, p) <a—1/2 (2.11)

attains the minimum.

Proof. Obviously, if

: a—1/2
gl = Jlg P [g0) 20 ) dr= 40 ornﬂgQ%> »0,

then the rate of convergence for this mesh grading function g(x) is worse. Thus one
needs only to consider the grading function which satisfies (G4) and (G5). In this
case, Lemma 2.3 gives

lim m? el = 4(2,p) U (gD

Lemma 2.4 shows that the functional 7 [g] has a unique minimizer g, (x) defined by
(2.10), and the theorem follows. [
Remark 2.2. As p —» o, we have

p+1/2\PF12 NaF(oc) |sin 7| Vz—;pp—a+1/2
C(a, ) ((X — 1/2) = 1/; [4(& _ 1/2)]p+1/2 (2.12)

and with N = mp, (2.11) leads to

2p—a+1/2

V4

lells = C(2) GG NP

(2.13)

2.3. The Radical Mesh
Let us consider now special graded mesh given by the grading function

g(x)=x?#, (B>0). (2.14)
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‘We have the following theorem:
Theorem 2.3. For the radical meshes given by the grading function (2.14):

1) if B>~ 1/2,then

C p+1/2
lim ml’nemnfﬁ% 2.15)

m?” el
lim
m- oo ]/[

In 1) and 2) C(a, p) is given by (2.5).

. p
3) lfﬂ<m, then

——2E = C(a, p) pP 12 (2.16)

lim mP*" 12 e, |l = Cy (o, B,p) (2.17)

where 0 < C, (, B, p) < o0 (it has a more complicated expression than C (o, p)).
Proof. Let g(x) = x*, then
Gx)=[g' (OP? ! [g(x)]72PT1™

— ﬁ2p+1 x(2zx-1)ﬁ*(2p+ 1},

GeL,(0,1)ifand onlyif § > P 175 , and in this case the conditions (G4), (G5) are

we have by Lemma 2.3:

satisfied. Thus for > " ~p 17

1
lim el = Cloup) {77 70070

1/2

C(oc,p)ﬂ”“z (218)

~Y@a-Df-2p

we cannot use the previous lemma. Instead, we compute the

V4
I <
nthecaseﬁ__a_l/z,

estimates of the errors directly. Denoting by q, (i) the coefficients of the Legendre
expansion of the solution on [x,., X;], we have

Ep [xi—lsxi]2_ Z a (l)2 +1

n=

If i=1, then (cf. [1] Theorem 1)

=X @~ Y2 o (a)? |sinna| F(n—a+1)(2n+1)
|a()|—(—2‘ T I'n+a+1)

Bla—1/2) —
() o feE S we

. 2a~1

Ta+oa+1)
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where
2ol (@)? |si
Co(a)=l/ o (<x7)r !smnccl.
Therefore
1 fla=1/2) ® (Ta—a+1) 2
E,[0,x]= (E) Cola) {;p (m) (n+ 1/2)}
1 Bla—1{2}
= Ag (o) (;1)
where
0 T'in~— 1 2 1/2
0<A0,p(a)sco(a){§ (M) (n+1/2)} <o,
because
_ 2
(M) (n+1/2);}~1g;1*q and 4a—1>1.

If i = 2, we have by Theorem 1.1

£ [xi—1, xi]é C(aap)h?_-lﬂ rip+1~a

)4
where
ty .
hi=x;—x;_ = (’T;l“) [# — (i~ 1)}

and

l'ﬂ/Z — (i-— 1)ﬂ/2

PR G—n
Hence
[mfe=12 ”em“E(x,,l)]z = Z E oy, %] mbET VAR = Z b}

i=2 i=2

where

b;=b(x, f,p,1)
SClapfif — - P2 pprise
{\P+ 112~ Ba-12)
é C(a) ﬁap) (;)
Clearly, if l9<_1’1 5o then p+1/2~fa—1/9>1/2 and A, (. f)= 5 b2
<. Thus 2~V ~

lim m* e~ P e, [z = {4, (@) + 4, , (@ By} < 0.

m- o
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We now consider the case = P 7 The above result shows that
o —

m 1/2
mf =1 { Z Ep+2 [xi—uxi]z} - Al.p+1(a1 B < oo
i=2

as m— 0. The terms a,,(¢) in the expression for E, [x;_,, x;]* are (cf. [1], Theorem 1)

2 A\ "2 ol () |sinwa| '(p—a+1) ot g r?) 2_“w
5 Ve -zt Tp+1/2) " Pt 2p+1

1 \fl-1/2)
[( > Cz(a,p)(iﬂ—(i—1)”)“'”2ri’"““djp.a-x(r?)]

2

N2 —
() 2p+1

where
ol () |smre|] I'(p—oa+1)
C, (@ p) = i ok .
: 471 yYn y2p+1 T(p+1/2)
Therefore
© 1 Bla—~1/2) 2 m b
il C, (o,
£ o0& ewn] £
where
=~ =) R R, ()
B p—a+ti
xpeliz (—) i~ asi— 0.
4
By a calculus lemma
fim 2% = lim 22— 2n=t
m- o Z, moow Zy " Zpay

T oo and the right-hand side limit exists), we obtain

y b ﬁp-i—l/z 2
= m mb, =\ 5=a=7 | -

(provided y, T 0, z,

Ringk
o
N

lim
m- o0 m 1 m-
2
Hence we conclude
5 p
. mPlle,llg A(ZJp 2 i=1 ! A% +1 172
——— = 2P C , apTl

lim lim lnm+ 2(%P) 1nm+ Inm

pt1/2

= C(@.p) frmrrr = Cap) 72 O
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Corollary 2.1. For uniform meshes:
1) if p<a—1/2, then

. Cla,
llm mp”em”E=J:’L‘
m = o0 V2a—1-2p
2) if p=o—1/2, then
tim " 1enls _ iy
mes lnim

3) if p>a—1/2, then

lim ma—‘l/Z Hem”E:B(a’p)

where C(a, p) is given as before by (2.5) and 0 < B(a, p) < 00.

Proof. One only needs to notice =1 in this case. [

(2.20)

(2.21)

(2.22)

Remark 2.3. Although there is no simple expression for C, («, p, 8) in (2.17), we can

obtain various estimates. Because for i > 2,
P2 (i—1)52 22 1
SR = 2T

are bounded away from 1 (8 fixed), we have (see Remark 1.1)

hi a—1/2 1—"12 a—1 rip
Ep[xi—l,xi]gcl(a) <‘2‘> ( 2, ) ;;a (p— )

ol (o) |sinma)|
%3
1\#
hi=xi_xi—1=(z> [iﬂ_(i_1)ﬁ]

1—r?  2[i(—-D]"

1

2r, P —G-1F"

with C, (0) = . Because

we have for some constant C(x) >0,

— P
P E [y, 0] S C@) Y/ F == G- D1
(this inequality holds for any m and p, 7). Thus

C(CX)Z m )

i=

it

Let =1, then by using inequality
(1-x)fz1-px

(mPeUDE [x | x]}? < = PR (R VU TN ) A
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we have

[iﬂ _ (i _ 1)lz’] [l'(i— 1)]ﬂ(a— 1) ri2p

B )2pt+1 2p(—1)
_ ! ! -8 (22— 1)
= 1V N

i i

2p+1
jFRa-1)-(2p+1)
= 42p )
14
If1<B< h
—ﬂ—a-—l/Zt en
m @ 1
jPRa-D-2p+D g [ xB2e-D-Cp¥Dygy —
thus
a1 e | < )42 +C(<X)2 par+t 1 172
mlE= 140, p P 47 2p—Ba—1)

where 4, , is the same as in (2.19) and
1 1 )2 1
Ao, =C(0 { T2 2} =C(°‘)W'

4

Therefore we obtain for 1 £ f <
a—1/2

1 1 prtiz
mba=112) ”em”E§C(a)maX{ 2012 _ oo }
Vp—Bl—172) 477"

especially when =1, p>a—1/2, we have

1 1 1
m* 12 e, | C(a)max{ 5, ———— }
£= P Yp—a+1/24°P

3. The h-p Version

We shall discuss now the A-p version of the finite element method.

The h-p version increases the degree vector p simultaneously with the number m
of the elements.

In this section we will deal only with some special combinations of mesh and
degree vector. The discussion of optimal rate of convergence for general mesh-
degree combinations is postponed to the next section.
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3.1. The Geometric Mesh with Linear Degree Vector

Suppose that the mesh 4 is
A={0=x,<x, <x,< " <Xx,=1}
with
x;=q", 0O0<g<l1, i=1,2,...,m.
We will hereafter call the mesh a geometric mesh with ratio g. In this case

= @_ l/)i:i _1= l/il =r, foralli’s. (3.1
I/xi + I/xi—l 1+ ]/q

Let
2=D1,P2>-»Pm)

be the corresponding degree vector to the mesh. Then we have by Remark 1.1

He”}zz zI:q(m—l)(az—I/Z):r + <1 _ r2>2(a—1) i |:(qm—i _ qm—i+1)a¢—1/2 rp']Z
p! 2r i=2 4

2m—1)(a—1/2 1 o (2a=1)(1 =) ,.2p;
=gq m-1)@-1/ ){p4a_2+(1 _q)qa 1 Z —}
1 i

=2 Pizal
Denote
1 B m q(2a~1)(l—i)r2p,~
Emp)=—rg—=+U-p¢ ' Y ——5—, (3.2)
Dy i=2 p;
lells =n(m,p)=q@~ VD™D &(m,p)'12. (3.3)

Clearly, for each N> 2, there is m 22 and a degree vector p™ = {p{™}1* | with

Y. p{™ = N such that

i=1

n(m,g""))=min{n(k,g)l2§k§N, Y pi=Np2= 1}-
i=1

Our first question is about the structure of p™ as N — co. In order to simplify
the problem we extend & (m, p) to the domain
D,={peR"|p;>0,i=1,2,...,m}.

Let N> m, and

ZPi=N}-
i=1

D, y= {g eD,,

For each N = 2, consider the minimization problem:
Find (my, p™) with p™» e D,, \ such that

n(my, p") =min{n(k,p)|2£ k< N,peD; y}.
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Since for each m, D,, y is a connected open set of an (m — 1)-dimensional hyper-
plane of R™, and
n(m,p)z0, VpeD,y

n(m,p)—>c, asp—p,edD,, y

it follows that for each 2 < m < N, one can find a minimizer p™" of n(m,-) and
P™ ™) necessarily satisfies the following conditions obtained by Legrange multiplier

method:
0&(m,p™") _ —(4a-2)

apl = (p(lm,N))4a*3 + 2'IN =0 (3-4)
Fi , (m,N) oy (m,N)l .
(ma‘-;. ) _pcqesni” (p(f,’,;!m)zﬁrl ) e =0G=2...,m)  (3.5)

where C= (1 —¢)¢>*~2. We find then my which minimizes the error.

We will call the sequence {p™v}%¥_, the sequence of the optimal degree
distributions. Clearly, an integer degree distribution p™ which satisfies p¥ = 1 and
[pY — pim9| <1 will give a good rate of convergence which will be close to the
extended case.

For the (extended) optimal degree distributions we have

Theorem 3.1. 4s N — o the optimal degree distribution tends to be linear with a slope
Ing
=(@—1/2) —.
So=(=1/2) 72
This means, precisely, that for each fixed i=1,2,...,

lim [an':'v"li‘P%”l;_l]= So -

N-w

Proof. First we notice that as N — oo it is possible to obtain a rate of convergence

e~<Y¥ for some C > 0. This will be proven in Theorem 3.2. From the expression

of #(m, p), it is easy to see that if my or max p{™ is bounded by some number,
- 18igmy
then we cannot achieve a rate of convergence better than N7 for some ¢ > 0.

Therefore, for the optimal degree distribution we must have

max pim—
15ismy

as N— 0. In fact, we can obtain an even stronger conclusion that for each
i=1,2,3,... fixed:
p,—> o0 (as N— o0,

which follows from

(&= 1/2)(i = 2) p2pmy
-4 e,

n(m,p) > p
- @;1"21)2
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By (3.5) one has

1
r2p1"'u) (plgm,,,) In— + OC)
— ~ Ui r
Cq (2a—1) (p.(mN))Za‘F I = }‘N

foreach N2 2,i=23,..., my.
Let py(x), 0 < x < o0 be the function implicitly defined by the equation

r2ew) (pN (x)iIn ! + oc)
-Qa—1)i r
2 (35))20er !

Consider the range of the function

2y (yln1+ oc)
r

g =4 — y2<z+1

Cq =Ay.

for any 4 > 0. Since lim g(y)= + oo, hm g(»=0, g: (0,00)— (0, c0) is onto.
y—0*

Thus for any Ay > 0 (3.6) is solvable, and by mmplicit differentiation we find:

-1

rx<pN(x)ln1+<x+ 1/2)
, Ing r
PN(x)=(°‘—1/2)m 1+

Py @i (i +)
3.7)

This is well defined for all p(x) > 0.
Observe that py(x) >0, py(Q)=p{™ for all 2<i< my. We obtain that if
my—i—1=<x=<my—i then
P SN ) =P (3.8)
By mean value theorem
P = pim = piy (Cn.1)

for some my—i—1= ¢y ; < my—i. Since for any i > 0 fixed by (3.8)

I%EH;PN@NJ) =+,

it follows from (3.7) that

—i-1

I
lim (i), — ) = o = (@~ 1/2) ”q. O
N-w v

We now consider the case when a geometric mesh and linear degree vector are
adopted. By this we mean

—1i

X =q"
[t+s@-1)] (i=1,2,...,m).
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{The value s> 0 will be called the slope.) In this case we can let

2
N= ‘f’;i . (3.9)
We have then

Theorem 3.2. For the geometric mesh with ratio q combined with a linear degree
vector of slope s, we have:

1) if s > 54, then

lells ~ C(a, g, 5) ¢ 2V, (3.10)

2) if s<s,, then
lelly ~ C (. q,5) V2N (3.11)

3) if s=s,, then
lelly ~ C(a, g)e” Vi TPNVZinainr, (3.12)
where r = i :; 1/2 and sy = (a0 —1/2) Z—Z is the optimal slope in the sense that the

exponential rate attends maximum (with same q).
Furthermore, the optimal geometric mesh and linear degree vector combination is
given by

=(1/2-1)
{;’“Pzél/_l' ) (3.13)
In this case
llell = C(a) [(Y/2 — 1)? Ve 1/DN, (3.14)

In (3.10) ~(3.14), the equivalence constants depend on (0,4,5), (¢, q) and o
respectively.

Proof. We have by (3.3)

m (Za*l)(l-—i)r2(1+s(i—1))}1/2

a gm—1a—1/2) — @1 1
lells = {”(1 DI L T si- )

m e(i—l)(Zslnr——(Za—l)lnq) 1/2
=gm-DE=1/2) {1 +(1-g¢ Y } (3.15)

S (A +sG-1)*
If 2slnr — Qu—1)Ing <0, ie.,
s> @ YDna _

0
Inr

the sum in the bracket converges as m — oo, thus

lellg = Cl(a, g, )gm~De—112)

_ Cq(a—l/Z)VZN/s .
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If s<sq, i€, 2sinr—(2a—1)iIng > 0, the quantity in the bracket is of order

e(m— 1)(2sinr—(2a—1)Ing) — r2s(m— 1) ,~(m—1)(2a—1)

q

(as m — o0), thus
”e”E x C(a’ q, s)rs(m—l)

=CrVoN,

2Ninr
@=1/2) (@~ 12} ing

el ~C(a, g)q

If s =354, (3.15) gives

= Ce~ V@—1/DN Vzinginr

We now show that s = s, gives a better rate of convergence and hence it is the
optimal slope. Indeed, we have: if 5 > s,, then

q(a—I/Z) VZN/s — e(a—l/Z)lnq VINJs > e(a-—l/l)lnq VZN/SO —e” V@—~1/2)N V2[nqlnr;

if s < s, then

pVZSN _ onr VISN o inr VIS,N _ ,= V= 1/2)N V2Tnlnr .

Thus in either case, the rate of convergence is not better than that when s=s,.

Now suppose with each g we associate its optimal slope s,. Then it can be seen
readily that the optimal rate of convergence (among those with geometric mesh and
linear degree combination) is achieved if the quantity

1-V4q

1+ ]/ q

reaches its maximum. By the lemma of K. Scherer and R. DeVore [2,3] stated
below, the function y (¢) has a unique maximum at ¢, = (]/5 —1)?, and

w(go) =2[In(y/2— DI

Therefore we conclude that the optimal-geometric-mesh-linear-degree com-
bination is given by

w(q)=Inqinr=Ingln

q=go=(y2-1)7?,

and
—1/2)1
smsy =B YDindo_
I 1-Vaq
n———
1+1/40
thus

llellg = C(x)e™ Va—1/2)N Vain(Vz-1)2
=C@[(Y2-1)?]Ve TPV,
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The important lemma we quoted from [3] is

Lemma 3.1. (K. Scherer and R. DeVore). For xe(0,0) the function F(x)
(1227 (0 < 6<1) has a unigue mini tx= —l"”/z_l)f which
=\175)° - s a unique minimum at X =Xo =——~—-, for whic
In{y2 —-1)

F(xo)=(}/2-1) ™3 . In particular, if 6= V2 —1, then F(x)2 1/5_ 1; the
equality holds if and only if x=1.

Corollary 3.1. The function

w(x)=Inxln G;%) 0<x<1

has a unique maximum at

x=x,=()2-1)?
for which

v (xo)=2[In(Y2 - D

Proof. Let x = 6% with §= /2 — 1, we obtain

1 5)’ y
w(x)= w(ézy)~ln521n< 5y> .

y

. 1-—- . .. L .
Since indé? <0, < has a unique minimum at y = 1 implies y (62*) has a unique

1407
maximum at y = 1, thus y(x) has a unique maximum at x = x, =62 [J

Remark 3.1. For the optimal combination of geometric mesh and linear degree
vector, the estimate (3.14) can be written as

||e”Eze—1.76261/(a—1/2)N . (3.16)

We will see in Section 4 that this exponential rate of convergence is the best possible
one. Thus we may say that this mesh-degree h-p version is the near optimal one.

An important case is the bisected geometric mesh, i.e., ¢ = 1/2. If we choose the
optimal slope for this mesh, i.e., we choose

ln1/2 In2
o 1—1/1/ —lD=a, 2in(1+ 1/2)
1+1/f

=0.3932 (¢ — 1/2),

(@—=1/2)

then we have

lelly xe™1-5632VE=1/DN (3.17)



632 W. Gui and 1. Babuska

If for g =1/2, we choose s=1. Then

~0.9803 (x~1/2) VN if o< 3.0432
”W“Ez{e i -

o= 2:4929 l/ﬁ’ if o> 3.0432.

(The above estimates have equivalence constants depending only on «.)

3.2. The Geometric Mesh with Uniformly Distributed Degree Vector

We now consider the case that the polynomial degree is p on every element. This is
important in the higher dimensional case for it makes it easier to construct
conforming basis functions and to deal with data management process. We will
show that this mesh-degree combination can also give an exponential rate of
convergence and has a similar feature as in the case of the linear degree vector.

Theorem 3.3. For the geometric mesh with ratio q combined with uniformaly
distributed degree p, the relation between the optimal choice of p and the number of
elements m in the mesh is asymptotically linear, i.e.,

psym (as m— )
with s, being the same as in Theorem 3.2.

Proof. We have by (3.3)

a—1

2a—-1)(m-1) 1— m 1
HeHEz{q Pr +( qgaq rr Y q2(a~1/2)(m-z)}
P p i=2

{q(la—l)(m—l) (1 _q)qa{—l (1 ___q(2a—1)(m~1)) r2p}1/2

p4az-—2 + 1— an—l pZa

Clearly, to obtain |le||—0 as N — oo it is necessary that p — 4+ 00, and an
exponential rate of convergence is achieved if and only if both m and p tend to + co.
The optimal rate of convergence for a given ¢ is obtained by minimizing the
function

(2a—~1)ym

f("’l,P)=qu+ Cr?»

under the constraint mp = N.
By Lagrange multiplier method the necessary condition is
a f q(Za ~1)m

%=(2a——1)lnq }W_T—ﬂ.p=0

and
of  2a—2gqm

5p—-— ) —b—ﬁq—+Cr2p2lnr—im=0.
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Therefore
Qa=0ing yyym_,_ 20=24%"D" 2Chr ,,
Tt 4 =h=—— e T
20—2]¢%* V™ 2Cinr
[(2&—1)nq+ - :lp“_l = r2e,
or

QRa—1)yming+20—2
2Cinr

m[(Zoz - 1)17“14—0(1%52)]=p[21nr+0<%1)£>].

As m, p— oo, we have

(2a—1)mlnq+ln|: :|=2plnr+lnp2°‘.

Hence

ng
p:(oc—l/Z)mm=som. O

Theorem 3.4. For the geometric mesh with ratio q and the uniformly distributed
degree p related with the number of elements m by p = sm, we have
1) if s> 5,4, then

qw—l/z)m
llellg = C(a, 9) W; (3.20)
2) if s<s,, then
AN
llellg ~Cla, 9) —==; (3.21)
V sN*®
3) if s=s,, then one gets optimal rate of convergence for a given q
e—l/(az—l/Z)N Vinring
llell ~ C(a, q) (3.22)
VN°
where
_(@—=1/2)Inq r_1—][q
0 lnr s 1 + l/q L]
and

oc=min (2 —1,0).
The optimal combination is also given by
q=qop=(]/§_ 1)2

s=5,,=2a~1.
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Similar to the linear degree vector case, for the optimal combination we have

(Y212 mRe

VN

In the above, the equivalence constants depend on (o, q), o respectively.

lellg =~ C(=) (3.23)

Proof. Let p=sm, then (3.19) becomes

q(2a—1)(m—1) r2p 1/2
llell %{——F——+C(a,q) *;}
E P4 2 p2

q(Za—l)VN—/s p2VsN Y172
~ C(o, q) { Gy + (sN)“}
If 5> 5., then
q<2a—1>v~_/s<q(2a—1>m=e-zm_—m
= p2V5N o ,2V5N
thus

q(a~ 1/2}VN/s

llelly = C(a, q) —]/T_-N“—‘l
If s < 54, then

q(Za—l)VN/s < q(2a—l)l/N/so — p2V5 N - p2VsN

thus

PV
lells = Cla, q) ——=.

VsN*
. . Ing .
Clearly the optimal factor s is s =5, = (o — 1/2) T for which

e—]/(a—l/zw Vinring

VsN°

lells = C(a, 9)

with ¢ = min (2a — 1, a).

By the corollary of Lemma 3.1 we see the optimal g is also g, = (1/5 —1?*asin
the linear degree vector case. [
Remark 3.2. We have:

For g=g,=(Y2-1? s=sy=2a—1.

”e”E ~ 1 e—1.2464 Via—1/2)N , (3.24)

o =min (2o —1,)
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For ¢=1/2, s=s5,=0.3932(x — 1/2),
-1.1054 V= T/IN

lellg ~ = (3.25)

VN°

c=min(2a—1,x).

Forg=1/2, s=1.

1 oeontan
e VOVN i 5 < 3.0432
1

lells ~ (3.26)

e LT62TVN if o> 3.0432.
VN

One can see that the exponent is exactly 1/ ]/ 2 times the exponent in the linear
degree vector case. (The above estimates have equivalence constants depending on
o only.)

3.3. The Uniform Mesh

Now we consider uniform mesh with a degree vector selected arbitrarily. In this case

X; = L. Since Y, p;=Nand p, = 1, we have m < N, p, < N. A very rough estimate
m .

i=1

shows that
x— 12 1 1
”6”12_—2_ Ep [xOs X1] P~ p%d_l = m’_l/zpf“_l 2 NI - 3.27

Therefore for uniform mesh the rate of convergence is never better than an
algebraic one regardless of the degree vector.

3.4. The Optimal Rate of Convergence for Uniformly Distributed Degree Vector

We know from Section 2.2 that for a fixed degree p as the numb r of elements
m — oo the optimal graded mesh is a radical mesh with the grading function x*,
= p+1/2 .

oa—1/2
geometric mesh is not optimal. We can expect that using the optimal radical mesh
would give a better rate of convergence. We will study therefore the envelope of the
error curves of the optimal radical meshes.

Therefore the h-p version with uniformly distributed degree the

Theorem 3.5, There is an h-p version with uniformly distributed degree which has the
error estimate:

1 e~ 4e Va=1/2)N =_1_e-1~4715 Ve-LDN (3 28)

Vﬁa—uz Vﬁa—l/z

llells =
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As N— oo, the meshes tend to be geometric with a ratio g =e™ % = 0.5820,
and the relation between degree p and the number of elements m tends to be linear;
p=dje*(a—1/2)m=0.5413(a — 1/2) m.

Proof. By Remark 2.4 the optimal radical mesh has a rate of convergence

2p—at+1/2

14
e N= .
lelle~ Gy V=P
Let x=4(x—1/2) N, 6 = o — 1/2, we now seek the envelope of the family of curves
pr—a
fop =t (3.29)

where p is considered to be the parameter. To this end we need to solve the
simultaneous equations

y=f(x,p)
0
a—f (x,p)=0
D
where
0
aﬁ p <2I”P+2—;—lnx>
Thus
o (ep)’
—=ln ,
Y/ X
Since x =4(x —1/2) N > oo implies p — oo, we see that
G
L1,
x
thus
e e
and
el VX sevemmw

V_/e ﬁa—1/2

(with equivalence constant depending only on ).
Since N = mp, we get

Vx (a—1/2)m (m— ),
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1
Table 1. |lefl; x —— e * VA~ 12N
NU

Method q s K [
1 I
G-mesh q (a—1/2) gk ]/2lnq Inr 0
L-degree Inr
L 0.3932(x—1/2) 1.5632 0
(Y2-1)? 20—1 1.7627 0
I — .
G-mesh q (a—1/2) -4 Vinglnr min (e, 26— 1)
U-degree Inr
: 0.3932 (x—1/2) 1.1054 min (¢, 20— 1)
(V2-1) 20—1 1.2464 min (&, 20— 1)
R-mesh
U-degree e~ 4e? 4/e? (@ —1/2) 1.4715 a—1/2
q and s are

asymptotic values

and fori=1,2,... fixed
m—i B i 4/ez(a—.1/12)2m+1/2 u )
xm—i= = 1—— @ / e d (e /ez)l (m“’ OO)

m

Thus the mesh tends to be geometric with a ratio g =e~ %=, []

Remark 3.3. We can obtain a more precise asymptotic relation between p and m:
4 e2 1
p=_(—(a—12)ym+@=1/2)+ - (@—=T/2)— =+ (3.30)

Remark 3.4. One sees that the rate of convergence given by (3.28) is better than
using geometric mesh. The mesh is a radical one, which has a very strong refinement
in the neighborhood of the singularity:

i i i 4mfe?
X =l—) =|— .
m m

In summary, for our model problem the /-p version can achieve an exponential
rate of convergence. The geometric mesh with a ratio ¢= (ﬂ —1)? combined
with a linear degree vector with a slope s =2a — 1 is near optimal. The same ratio
qg= (]/ 2 — 1)? is also best for the geometric mesh with uniform degree vector. This
optimal ratio (]/ 2 —1)? is independent of the strength of the singularity. The
following table gives a summary of the various A-p extensions. We express the rate
as

”e” ~ 1 e-xV(az-l/Z)N
E TV.O'
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and

R-mesh — the optimal radical mesh,

G-mesh — the geometric mesh,

L-degree — the linear degree vector,

U-degree — the uniform degree vector,

q — the ratio for a geometric mesh,

s — the slope for a linear degree vector or the factor in the

relation p = sm for the uniform degree vector.

4. The Optimal Rate of Convergence
for Arbitrary Mesh-degree Combination

We now answer the equation what is the possible optimal rate of convergence in all
possible mesh-degree combinations.
Let S= (4, p) be an arbitrary mesh-degree combination and

m(4) 1/2
é”(Aag):{ Z Ep,[xi—19 xi]z}
i=1

be the error in energy norm of the finite element solution of the model problem

(1.1).
Define for N>k

EN!k=inf{é”(A,p)"§1 p;=N, m(A)=k}, (4.1)

if N<k, let Ey , = oo (N be an integer). In what will follow we make the following
convention:
w-0=0.
Clearly, Ey , is the minimal error among the combinations having k elements with
the number of degrees of freedom being N.
Furthermore, we define

Ey=inf {Ey .}, 4.2)
kz1

and Ey is then the smallest error of the errors related to the mesh-degree
combinations having the same degree of freedom N.

For simplicity we allow the degenerated case, i.e., x;_, = x;, for some 1<
< m(4). Clearly, this will not change Ey , and Ey.

In Section 3 we already found an upper bound for Ey:

Ey< Cla)ghe V2% (4.3)
where g, = (}/2 — 1) To obtain the lower bound of Ey is more difficult. In [3], K.

Scherer solved the problem for L, approximation. Out of his result we can easily
obtain a lower bound for Ey:

Eyz C@N™ 3D gfeimv,
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Therefore the upper bound (4.3) is optimal in the sense of the exponential decay
factor.
Using ideas of [3], we will give a direct proof of an improved lower bound of Ey:

CREELE (4.4)

EyzC(») 90

1
VR

The idea of the proof is to study the operator & which transmits the sequence
{En.i}%=1 to {Ey . }5=1- From the monotonicity of this operator one can
construct a lower bound for Ej.

For our model problem E [a,b] ([a,b]e4) is the error of best L,-
approximation of x*~! on [a,b] with polynomial degree p—1. From this
observation one can easily obtain

Lemma 4.1, For />0
E,[Aa,Ab]=2*"'2E [a,b]. [] 4.5)
We now observe that £(4, p) is a continuous function on a compact set
{1, %0, s X g3 P1P2s - > PII0SX ST, 1 SpEN}

with the constraint

k
i=1
We have

Lemma 4.2. For any k, N given (k £ N), there are mesh-degree combinations X
= (4, p) for which Ey ,, Ey are actually attained. []

Lemma4.3. Let E, .| (N = k+ 1) is achieved with (4, p) where
A={0=xSx; =SS X4, =1}

b= (P15P25-++sPr>Pi+1)

k+1

m&)=k+1, ¥, p;=N,
i=1

then

2 L 2(=1/2) 2
Ejev1 =% EN—pM,k

+E,  [x,1]. (4.6)
If Ey is achieved with (A, p) given above, then
E3=x} VB, +E, [%.1F. @)
Proof. 1t is easy to see from Lemma 4.1 and Lemma4.2 that for 1 >0
EI[‘J}:‘I‘(’ Ab] /141— 1/2 EI[\?:If]

E}[\;.a, lb] — )’a— 1/2 EI[\‘;’ b
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where Ef-P1 and EY " are defined similarly as Ey , and Ey but on [¢,5] < [0, 1]

instead on [0, 1].
Suppose that Ey , ., is achieved with (4, p), then

k
EN,k+1=_Z [xz lax] + pm[xk,i]z

2 (BN, P+ B, [x, 1T

N=DPys1,k

— y2(@—1/2) 2
Xk EN Prsrnk Pun[xk’il

—ZE 1, X1+ E, %, 112
;EN,k+1

k
where {0 = x{ < x{ < S x=x} and {p},...,pi} with 3 p/=N—p,,, are the
i=1

mesh and degree vector for which ER- 3! . is achieved.
Similarly, if E, is achieved with (A 1_)), then

k
= z Epi i—15%; ]2 pk“[xbl]z

> (E[O_J;kkln)z Pkn [Xk’ 1]2
= XZ(a 12 E]%, Dy Pk +1 [xk’ 1]2
k’
2 l 1: p,,,[xkal]z
= E}
where {0=x{2x] < < x;. =x,} and {p},...,p;} are the mesh and degree

vector for which Ei-*! is achieved. It may happen that k' % &, but still
Prer
»
2 pi=N-pg;. U
i=1

From this lemma we get immediately
Lemma 4.4. For N2 2,
B} o= inf {&*VE},+E[a1]%) .5)

0=ast
1SvEN-1

Ei= inf {a** " 'EZ_,+E,[a,1}*} 4.9)
0<as1
1SvEN-1

and there are pairs (a,v) for which these infima are actually achieved. []
We now define the operator J as follows:

Definition 4.1. Suppose {ey}¥-; =e is a non-negative, non-increasing sequence
(which may also take the “value” o). Let u=a — 1/2(>0) be given. Define

(Te), = (4.10a)
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(Zey= inf {(a*ey_,)*+E [a,112}"2, Nz2,  (410b)
0sas1
1SvEN~1

with the convention oo - 0 = co, where (e)y = ey is the N-th component of e.
Clearly, the operator < has the following properties:

Lemmad4.5. 7 is well defined for any non-negative, non-increasing sequence e
= {ey )} ¥=1,andforany N = 2, there exists a pair (a, v) for which ( T e)y = {(a*ey_,)*
+E,[a,1?}. O

Lemma 4.6. 7 maps non-negative, non-increasing sequence {ey}w-, to a non-
negative, non-increasing sequence I {ey} %~ , andit is monotone,i.c.,if e, < e, , then
Te, < Te,. (The inequality is used in the componentwise sense, i.¢e., ¢, < e, if and
only if €’ < e for all N, where e;={e{}5.,, i=1,2).

Proof. Let my = (7 e)y, and suppose that there is a pair (a,,v,) such that
my={(a}ey_,)* +E, [a,, 1]*}'"
and suppose that for (a,,v;)
myy={(a5ey_, )’ +E, [a,, 1}
By definition we have
(TOy1=mysy S{aley_, 1) +E, la,, 117}17
= {(a’f eN—v1)1+Evl [a,, 1]2}1/2
= my = (Te)y.
Suppose now e, < e,, and for some pairs (a;,v,), i =1, 2,
mf) ={(a;ey)_,)" + E, [a;, 177}'2.
We then have
(Fe)y=miy = {(atey),)* +E, [a;, 17}

<{(atey) ) +E, la,, 117}

<{(ateyl, +e,la,, 1712

=mP =(Te,)y.
Remark 4.1. By Lemma 4.6 the power of the operator 7 is also well defined:

Tle=e
Tre=T(IT" te).
Lemma 4.7. Let E,, E, , be defined as before. Then
Ezv:igf;{f"{Ev,l}ﬁx)N}, Nz1. (4.11)

Proof. By Lemma 4.4, it is clear that

(9—{Ev,k 30=1)N=EN,k+1>
k=1,2,...; N=22).
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Thus
EN=ig€{EN,k}=ig£{(m{Ev,1}\?}=l)N}’ (nz1).

The relation holds trivially for N=1. [
From the lemma, we easily obtain the following important corollary which
allows us to find a good lower bound for Ej:

Lemma 4.8. If e = {ey)¥=, is such
1) (Te)yzey
2) ey< Ey,=Ex[0,1]

then ey < Ey, for all N.
Proof. By Lemma 4.6, 1) implies

ey =(T"e)y, for n=z0, N21
and by 2) we obtain

eNé(W{Ev,l}\?;l)Na (all n= 0).

Therefore ey < inf {( 7"{E, }32 )} =Ey. O
nz0
We now are about to find a fine lower bound for Ey. Recall Theorem 1.1 that for
[a,bled, and r= M
Vb+ Va
1) ifo<rr<l —-1~, then
p+1

b— a—1/2 .pt+t1l—a 1
Ep[a,bléc(oc)( 2 - <pa_1/2+(1—r2)“'1/2>

V1-r? r*

2) ifl——l——<r2=_<_1, then
p+1

z—1/2 prrie 1 2ya~1/2
Ep[a,b];C(oc)(b—a) W m‘l’(l'—r) .

Let A= % then

_ 1— I/I "
(b—a)s=br(1 — A)r=br(1 + /A =) = brre
1+ /4
These inequalities may be written together as

p+1/2

E,[a,b]= C(a)b*

(p=a—1/2) (4.12)

T

with 7 =max {2a — 1, ¢}, and if we know that ¢ <r <1 — ¢ for some ¢ > 0, we can
obtain 7 =« (in this case constant depends also on ¢).
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We are interested in the special case of (4.12) when b=1:

rv—1/2

E,la,1]=2 Cy(w) 7 =max (&, 20 — 1), (4.13)
-vT
ife<r<£1 —g, then Vo1
Ev [a, 1] g CO (0(, 8) Va » (414)
where r=r(a) = 1- 1/2
1+Va
We now state our main result:
Theorem 4.1. Ey has a lower bound of the form
el
ex=C() — (4.15)

YN*
with p=o—1/2(>0), go=(}/2 — 1)

Proof. It suffices to show that there is a constant C = C(), such that {ey} {° satisfies
the conditions of Lemma 4.8.

Note 1

Ey = Ey[0, 1] zWZJ_V—ﬂ
since
N A N2GVEN 0 as No o,
Ey 1

we can find a constant C, (x) > 0 such that ey = Ey | for C C (), N= 1.

If we can show 7 {ey} %1 = {ex} -1, then Lemma 4.8 claims that ey is a lower
bound of Ey. Therefore it now suffices to show that for some 0 < C < C, (),
(independent of N) one has:

2 I3 2
< < ng) g( Ca qK"‘”‘V’> +E [0 1], (4.16)

NI e

This must hold for all 0 <a<1, 1 <vE N—1. (4.16) is equivalent to

n—vy

2
a“\/ N ™ 0= Vi) o ¢=2 /N gs VI B [0 1P 21, (447)

For simplicity we denote:

x=1a, o=4u, 6=Vg=VY2-1, y=C72

then0<x<1,0>0,0<d<1,y=C,(x)" 2, we can write (4.17) as
i
by (x,v)=x° (N—A_fv) SV =VaN) |y Nu§=2VeN | [x2 1]

-2 Vov

o —

=x° <L> SYN=Y+VN L uNug=2VON E [x2 1221,  (4.18)

-V

We must show (4.18) holds for 0= x=1, 1SvSEN-1, Nz1.
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First, we claim that there exist e =¢(x) > 0, y, =y, (2, &) > 0, such that

VN oo VN

if ——>¢ or ——<¢ and y=vy,,
v v

then
¢N (xa V) é 1 .
There are two cases:

JN

Casel. —<e.
v

-2 l/a-v

N YV . 7=
If <N v) x7SVN-YHVE 5 1, then ¢y (x, N) =1, otherwise we have

N u —Zl/rr—v _l/o'_v
12(27—‘) x7é N‘“+Vﬁ>x"6 VN

thus
v 1

x< VN <§Vee, (4.19)

and if e > 0, then x - 0.
Note that if x is small enough, then

N .
Thus there is ¢, > 0, such that for0 < ¢ < ¢; and L < ¢ we obtain by using (4.18),
(4.13) and (4.19): v

On (%, V) ZyN#S~2VoN E [x2,1]?

2y
27Co(0) N# 27§ 2VoN 1-x !
= 0 1+x

1 2v+1)x
2 7Co(@ N* 27872V (§>

v

1 2v+1)é
g,yco(a)Nn—Zta—ZV;ﬁ(_g_) VaN

1
2 VaN +2vens .m0

=7Co@N*"25 vew

v

v 1 e
=9Co (@) N*~ 25 2V (l “(vew 3 VW)"”)

In1/9

with K=W> .
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v 1
Because ——=——— + 00 as ¢ —» 0, we have
]/oN ]/as

v

1
(——X:+ ~__>51/3ﬁ_,0 as &—0.
VoN 21N

Thus there is ¢, =&, () > 0, such that for 0 <e¢<¢, and

Therefore
(M) ZyCo(a) N# 22572 VaN (1-1/2)
=7Co () N+~ 2757 VoN

However, N*~2:5~ VN _, 4 o0 as N— +0; hence there is y1 =71 () > 0, such
that for y = vy,

yCo() N* 225 VoN > 1

. N
Hence for 0 <& <min(gq,¢,), y=y,, and K—< g, we have ¢y (x,v) = 1.
v

N
Case?2. 1—/~——>.8_1.
v -2 V;v
As before, if x* DVN"1+VN > 1 then $y(x,v) =1, otherwise we have

x< 8VoN

Therefore we can assume that
v

{—x>1-5N
and obtain

Gy (x, V) ZyN#S2VN E [x% 1]2

) 3 VoN 1—x 2v+1
> -2t §5-2 Ve - -

v

1_51/(:_17 2v+1
gvco(a)N"'Z‘é'ZW(—-—z )

1-6-2
—4C, () Nu_zt(s—zwmﬂzvn)ln( 2'/"”>/1n5
=7Co

1-5-1
<L+ 1__>In _VGN
—2y/aW\1- VoN 2yoN 2 g

ind

=7Co(@N*"* 6
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. v
In this case, one has ——=<&— 0 as ¢ — 0, and because

VN
1-—¢°
li =
e11r(1)sln< 5 > 0,

: , N
there is ¢; = g3 (2) > 0, such that if 0 <¢ < ¢, and 1/— > ¢!, then
v

v

( v 1 ) 1—oVeN
—— + — | In

VoN 2VeN 2
nd

Hence ¢y(x,v)ZyCo(x)* 276" VeN Again, we see that if y>vy, with 0<¢
<min (g,,&,,8&;) We get ¢ (x,v) = 1. This proves our claim.

VN

It remains to analyze the case ¢ £ —~— < ¢~ ! with ¢ > 0 chosen above. We claim
v

1A
N -

that in this case there is y, =y, (¢) > 0 such that if y =y, then ¢y {x,v)= 1.

-2 m
As before, if x*8 V¥ "+ V¥ > 1 then Py (x,v) = 1. Otherwise we have

v &

oN

Ve =y, <1. (4.20)

=
HA
<
3
A

On the other hand, if we have
yN* 62V B [x2 12 211,

then we also get ¢y (x,v) 2 1. Therefore we can only consider the case

1— 2v+1
1>y N*872VoN Ey[x*,1P 29 Co () N* 22672 VoN (-1 +§> :

As was proved, for y =y, we have
yCo(@) N* 2757 VN 2 1,
Thus

ind
(2v+1)ln_x‘

o

v

51/0_-ﬁ> l—x 2v+1
= \d+x

(The last inequality is obtained by using Lemma 3.1). Hence
— Iné Ind
< g3y 2
VNS (@2v+1) e S 3y Ty
and thus

3
x26 VN =y,>0. (4.21)
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Therefore we can restrict ourselves to consider only the case 0 <y, x5, <1.
This allows us to use estimate (4.14) in which = = a. Consequently, we obtain:

Va v

- .]V 2a 1 1—x 2v+1
>x%5 VN 1/ - -2 VoN
¢N,v(x’ v)_x +VCO((X’8) ( v ) I/N (1+x> 5
Vo v

1—n 1 -2 yen+220ne
>x°0 YN +9C,(a, 8)82"‘<~—~1—>—_5 nx
0 1+n, ]/N

(4.22)

VsN
1— _
Denote C(x, &) = Co(x, ) 6** (I——'ll) Suppose that x°6 V¥ <1 (otherwise
dn(x,v) = 1), we find + 1,

/

Ind—Inx>0.

Va
Using the inequality for x > 0:
e *>1-2x,
e&>1+x,
(4.22) gives

Ve v 2vln5
alnx— ino 1 2 VoN — ln"
dn(x,v)ze &l +VC(a,e)ﬁ ( )

2|/equ5y
=e 7 +9C(a,8) —=1 "F

VN
1 2]/0'_]\;[?15
g1—20y+?c(dsﬁ)ﬁ<l+~—l;{x—y>
ol
>1+<yC(oc €) Vn”5_2>

2

. né . . .
Since %> 0, it follows that there is y, > 0, if y = y,, then
2

yC(a, €) ?—IZ/H%?—%'>O.
Choose y = max(y,,7,) = y(«), we will conclude
dn(x,M) 21
forall0<x<1,1£v£N-1, Nz 1. This completes our proof. []

Remark 4.2. In K. Scherer’s theory (see [3]) the operator 7 is defined differently. It
is based on the fact that the local errors are equilibrated in the best L -
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approximation. From this fact it was shown that the optimal mesh-degree

combination tends to be a geometric mesh with ratio g, = (]/ 2 —1)? associated
with linear degree vector with slope s, = 2o — 1. More precisely, as N - oo one has

xm—i—*q:.)
Pm—i— Pm—i—1 > 200—1
fori=0,1,2,....

5. The Numerical Performance of Various Versions of the FEM

The problem as before we will consider

—u=s (5.1)
u(0)=u(1)=0
with solution
u(x)=x*—x.

The relative error in the energy norm is denoted by |e||. We are mainly
concerned with the relation between ||e|| and N the number of degrees of freedom.
(In the graphs, N will always be the abscissa and || e}| the ordinate, but with different
scales.)

5.1. The h-Version (£ =0)

(1) The A-version with uniform mesh
Let 1

Em=Em(a9p)=W9 (P*“_l/z)a a>_1/2 (52)

(¢ = min (p, « — 1/2), p the polynomial degree and m the number of elements) be the
estimate of the error as in PartI. We denote

lell
C,= E,
the “‘numerical constant” of the estimate. By Corollary 2.1, C,, converges to a limit
C(a,p) as m— o0, and C(a,p) is bounded above and below by constants (> 0)
which only depend on a. It possibly has another limit when p — co.
Table 2 shows the results for « = 0.7 and p = 1, 4. Fig. 1 shows the graph in the
log N — log || el| scale for & = 2.9. Because N & mp the error E,, can also be written in
the form ’

Em=Nup21-u~l *

Since 2a —1 — p = a — 1/2 > 0, an increase of degree of element reduces the error.
This is also clearly shown in Fig,. 1.
(2) The h version with radical mesh
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Table 2. (2 =0.7)

m p=1 (u=02) p=4 (u=02)
lel Cn llel Cn

2 0.3742 0.4298 0.2168 0.4336
4 0.3262 0.4304 0.1887 0.4335
8 0.2840 0.4305 0.1643 0.4336
16 0.2473 0.4306 0.1430 0.4335
2 0.2153 0.4306 0.1245 0.4335
64 0.1874 0.4305 0.1084 0.4336
128 0.1632 0.4307 0.09435 0.4335
256 0.1420 0.4305 0.08214 0.4335
512 0.1237 0.4307 0.07151 0.4336

I._ 1 T TTTTTT T T T TTTTT T T TTTTvY

Ll ot

JEETY AT

log lell

M|
1t

Y 3
L1 1 g1l L Ll T

| 10 100 1000
N
Fig.1

Let the mesh grading function (see Section 3.1) be

g(x)=x*

xi=g<;;~> i=0,1,2,...,m.

%, if pFfa—1/2)

then

Let

E,=E,(o%p)=

Vinm i = pa—12)
m

where g = min (p, (e —1/2)).

649

(5.3)
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Table3. («=1.1,p=2)

m f=2 (u=12) B.=3333 (u=2)
itell Cn llell Ca
2 0.1776 E-1 0.04080 0.1658 E-1 0.07966
4 0.7859 E-2 0.04148 0.5570 E-2 0.07569
8 0.3440 E-2 0.04171 0.1691 E-2 0.07505
16 0.1500 E-2 0.04179 0.4869 E-3 0.07486
32 0.6533 E-3 0.04181 0.1360 E-3 0.07481
64 0.2844 E-3 0.04182 0.3721 E-4 0.07474
128 0.1238 E-3 0.04182 0.1004 E-4 0.07468
256 0.5390 E-4 0.04183 0.2684 E-5 0.07470
512 0.2346 E-4 0.04183 0.7115 E-6 0.07468
m Bop=4.167 (u=2) B=5 (u=2)
flelt Cn llell Ch
2 0.1998 E-1 0.07792 0.2410 E-1 0.0964
4 0.6480 E-2 0.1037 0.7865 E-2 0.1258
8 0.1822 E-2 0.1166 0.2162 E-2 0.1384
16 0.4818 E-3 0.1233 0.5585 E-3 0.1430
32 0.1238 E-3 0.1268 0.1411 E-3 0.1445
64 0.3137 E-4 0.1285 0.3541 E-4 0.1450
128 0.7894 E-5 0.1293 0.8861 E-5 0.1452
256 0.1980 E-5 0.1298 0.2216 E-5 0.1452
512 0.4959 E-6 0.1300 0.5540 E-6 0.1452

According to Theorem 2.3, the numerical constant

Jlelh
m = Em

converges to a limit C(«, f,p) as m — 0.
The same theorem shows that the optimal rate of convergence m ™ ? occurs for

B> ? We will say

a—1/2° __P
e a—1/2
is the critical . The optimal B is given by
8 _p+1)2
T a—1/2

which gives the minimum of the limit C(«, §, p).
Table 3 and Fig. 2 show the accuracy for different f’s when o =1.1 and p =2.
Figure 3 shows the accuracy obtained by different p and optimal mesh.
Table 4 shows the mesh parameter of the optimal radical meshes (m = 256).
Table 5 shows the ratio |le||/|e]|,, for different f’s where |le||,, is the error for

B=Bop-
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We see that only for low accuracy it is good to use underrefined mesh. For an
accuracy about 19 the use of higher elements with overrefined mesh is
advantageous. However, for highly unsmooth solutions (« is small) the refinement
for both critical and optimal S is so strong that there are difficulties with the
implementation (see Table 4).

5.2. h-p Version

(1) Geometric mesh with linear distributed degree vector (G-L)
In this case ¢ denotes the ratio of geometric mesh and s the slope of degree
vector. For each ¢ the optimal slope s is given by

l —
s0=(a—1/2)% G:L%).
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Table 4. Mesh parameters

o y4 Bc ﬁnp ﬁ = ﬁc ﬂ = Bop
|1|min |I|max |Ilmin ‘Ilmax

0.7 1 5 7.5 9.09 E-13 1.94E-2 8.67 E-19 2.89E-2
2 10 125 8.27E-25 3.84 E-2 7.89 E-31 4.77 E-2
3 15 17.5 7.52 E-37 570 E-2 717 E-43 6.62 E-2
4 20 22.5 6.84 E-49 7.53E-2 6.53 E-55 8.43 E-2
5 25 27.5 6.22 E-61 9.32E-2 5.93 E-67 1.02 E-1

11 i 1.667 2.5 9.69 E-5 6.50 E-3 9.54 E-7 9.74 E-3
2 3.333 4.167 9.39E9 1.30 E-2 9.24 E-11 1.62 E-2
3 5 5.833 9.09 E-13 1.94 E-2 9.95 E-15 226 E-2
4 6.667 7.5 8.81 E-17 2.58 E-2 8.67 E-19 2.89 E-2
5 8.333 9.167 8.45 E-21 3.21E2 8.40 E-23 3.52E-2

Table 5. [lell/{lell,, ?=2)

o m B
1 4 7 10©@ 12,508 15 flellop
0.7 2 0.94 0.67 0.71 0.97 1.00 1.03 0.6383
4 1.45 0.69 0.61 0.75 1.00 1.13 0.3609
8 3.41 1.07 0.68 0.74 1.00 117 0.1336
16 10.82 2.09 0.91 0.80 1.00 1.16 0.0394
o m B
1 2 33339 416799 5 7 fiel,,
1.1 8 6.15 1.89 0.93 1.00 1.19 1.87 0.1996 E-1
16 15.34 3.41 1.01 1.00 1.16 1.82 0.5278 E-2
32 39.38 5.27 1.10 1.00 1.14 1.79 0.1356 E-2
64 102.6 9.07 1.19 1.00 1.12 1.77 0.3436 E-3
128 268.9 16.25 1.27 1.00 1.12 1.76 0.8647 E-4
256 705.3 27.15 1.35 1.00 1.12 1.75 0.2169 E-4

The rate of convergence is then
q(a—l/Z)VZN/s lf S>S0
Ey=Ey(o,q,9) =1 rV?% if s<s, (5.4)
e * Ve DN if 5=,

where k= |/2Inginr and N stands for the number of degrees of freedom of
the finite element spaces. The optimal rate of convergence is achieved when

g=(}/2 —1)? #1.7627. (Cf. Theorem 3.2).
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Table 6. (G-L, 2 =0.7)

g=03 g=03
k=1.5632 s=0.07864 k=17211 5=0.1957
N lell Cy N llelt Cy
2 0.3742 2.024 2 0.3427 1.018
5 0.2509 1.198 9 0.1120 1.127
10 0.1357 1.238 15 0.5717 E- 1.127
15 0.8525 E-1 1.278 26 0.2299 E-1 1.164
20 0.6695 E-1 1.526 36 0.1154 E-1 1.169
44 0.7184 E-2 1.185
4,,=0.1715 g=0.1
k=17627 s5=04 k=1.7366 s=0.7032
N llell Cy N llell Cy
2 0.3187 0.9718 2 0.3063 0.9187
11 0.7518 E-1 1.027 10 0.7443 E-1 0.8677
25 0.1962 E-1 1.010 18 0.3149 E-1 0.8496
46 0.4929 E-2 1.035 35 0.8374 E-2 0.8287
66 0.1736 E-2 1.049 57 0.2244 E-2 0.7898
81 0.8671 E-3 1.046 75 0.9246 E-2 0.7709
.:_ T T TTTTTTIT T L ¥ T T T T E
E q=0.5, ]
i $=0.07864 ]
‘O_| E \\ 3
— E q=03, 3
g : q:O'I s=0.1957 :
@ $=0,7032
£ 107k 3
2 \,q =0.1715 3
- N\ $=0.4 ]
[ a=0.7
3 r 1:0.3424 b
IO— = =
i 1 1L reranl 1 1 i e 1 1 |
| 10 50 {00
N
Fig.4
The numerical constant
llell
CN =
EN

is bounded above and below by constants which depends only on «, ¢ and s.
Table 6 shows the performance of the A-p version for various g and corre-

sponding optimals s for = 0.7. Figure 4 drawn in 1/ N —log|le| scale shows
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Table 7. (G-U, «=0.7)
4=05 g=03
k' =1.1054 s5=0.07864 k'=1.2170 5=0.1957
N fiell Cy N Iteil Cy
2 0.3742 0.9596 2 0.3427 0.9431
5 0.2509 1.331 12 0.1002 1.575
10 0.1357 1.450 33 0.2554 E-1 1.980
26 0.6246 E-1 2.430 45 0.1063 E-1 1.552
32 0.4153 E-1 2.289 64 0.6815 E-2 2.273
40 0.2451 E-1 2.032 80 0.2798 E-2 1.687
q,,=0.1715 g=0.1
K'=1.2465 s5s=04 k' =1.2280 s5=0.7032
N llelt Cy N lkell Cn
2 03187 0.8935 2 02130 0.5932
15 0.6935E-1 1.550 20 04110E1 1.367
32 0.2160 E-1 1.707 35 0.1530 E-1 1.368
55 0.6905E2 1.753 63 05131 E2 1710
78 0.3140E-2 1.983 88 0.1964 £2 1.626
112 0.1031E2 1.961 108 0.1166E2 1.807

the error behaviour of this case. Figure 5 shows the accuracy for various s, and
optimal g and « = 0.7. In the used scale the error behaves linearly. The slope shown
in the figure characterizes the theoretically best rate of convergence.

(2) Geometric mesh with uniformly distributed degree vector (G-U)

In this case the degree p is a multiple of the number m of elements:

p=sm.

(5.5)
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The rate of convergence is given by
q(a-1/2)1/7%
l/lea—l
pV/Ns
Ey=Ey(a,q,5) = — §< S
N VSN“
1 .
— eK V—-1/2)N S=SO
V/sN°

where 6 = min (&, 200 — 1)

,k' = }/Inqlnr, s, is the optimal factor in (5.5) which is the

same as the optimal slope in the (G-L) case:
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so=(a—1/2)19 pol=Va
inr 1+ Vg
(Cf. Theorem 3.4.)

Note the exponents in (5.6) are the same as in (5.4) but multiplied by 1/}/ 2. The
optimal ¢ and s of the geometric mesh are

g=(}2—-1)* and s=20-1.

Table 7 shows the accuracy and the values of the numerical constant for o = 0.7,
various ¢ and corresponding optimal s.

Figure 6 shows in the ]/N — log |le]l scale the behaviour of the method. Figure 7
shows the accuracy for various s when the ¢ is optimal, the error behaviour linearly
and the slope shown in the figure characterizes the maximally possible rate of
convergence.

In Section 3.4 it was shown that the curves for radical meshes (p fixed and
m — o0) have an envelope p. If we let p be a parameter which tends to oo, this
envelope has slope

g Va—1/2/in10 (~1.4950 for a=1.1)
in the 1/ N~ logilel| scale. Figure 8 shows the envelope of the error curves for

optimal radical meshes when p increases. The slope shown in the figure is the
optimal rate of the h-p version with uniform p.
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