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The Fixed Point Index of Fibre-Preserving Maps 

Albrecht Dold (Heidelberg) 

0. Introduction 

For B a topological space, there is the category of spaces over B 
whose objects are maps p: E--* B and whose morphisms (maps over B) 
are continuous maps f :  E~ - +  E 2 such that P2 f =  Pl. We treat fixed point 
questions in this category. We make only mild assumptions on B (para- 
compact, locally compact), but more serious ones on p: E ~ B (namely 
ENRs;  cf. (1.1)); roughly speaking, we allow fibre bundles p: E--~B 
with fibre a euclidean neighborhood retract, and more generally, piE': 
E'--~ B, where E' is a fibrewise neighborhood retract of such a bundle 
p: E-~B.  

We consider maps f :  V-~ E over B, where V is an open subset of E 
(pf=piV), whose fixed point set, Fix(f)={v~V[f(v)=v}, lies properly 
over B, i.e., p[ Fix ( f )  is a proper map. Such an f is said to be compactly 
fixed. Two such maps are said to be equivalent, fo ~Jl ,  if there is a com- 
pactly fixed map over B x [0, l] whose parts over B x {0}, B x {1} agree 
with f0, f~. Let FIX B denote the set of equivalence classes I f ] .  Taking 
topological sums makes FIX~ into a commutative monoid, and our 
main result (4.3) asserts 

FIXB~ 0 (BOpt), = 7~stable 

the Oth stable cohomotopy group of B e a  point. 

This result has some interest also in the classical situation where B 
is a single point (hence E an ENR and f :  V ~  E a map with compact fixed 

o (B|176 and the passage to point set). Then r~,abl~ 
the equivalence class, f~--~ I f ]  E FIXr, ~2~, becomes the Lefschetz index. 

rC~table(B@pt ) the For general B again, we therefore call [ f ] ~ F I X B =  o 
index o f f  too. Going further still, if h is any multiplicative cohomology 
theory (with unit), we denote by l ( f )= lh ( f ) eh~  the image of I f ]  
under 7z*ablr and call this also the index o f f  (in h). We 
establish its main properties, mostly in analogy to the classical case 
B--pt. 

The actual procedure in this paper is however in different order: 
After a preliminary section (w 1) on the ENRs-notion we give (in w 
a direct definition o f l ( f ) e  h ~ B in more familiar terms, and we list its main 
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properties (e.g., invariance under ~). The next section (w 3) essentially 
shows that 1: FIX B--~ rcOtabl~(BOpt) is surjective, and w 4 proves injec- 
tivity. The last section (w contains complementary remarks and 
problems. 

1. Euclidean Neighborhood Retracts over B (ENRB) 
Let B denote a topological space. A continuous map p: E---, B is 

called a space over B. If p: E---~B, p': E'---~B are spaces over B then a 
continuous map f :  E ~  E', such that p ' f = p ,  is called a map over 13. 
Spaces and maps over B form a category, Zot%, with an obvious homo- 
topy structure (homotopies over B, or vertical homotopies), In particular, 
we have the notions o fa  subspace over B, a (neighborhood) retract over B, 
cofibration over B, and many other analogues from ordinary topology 
(compare [7, 8, 2], et al.). For every space Y the product B • Y is a space 
over B with respect to the first projection; this will always be understood 
in the following. 

(1.1) Definition. A space over B, say p: E - - , B ,  is called a euclidean 
neighborhood retract, abbreviated E N R  B, if there is a euclidean space IR", 
a continuous function z: B x F,"--, [0, 1], and maps E i ,  z -  1 (0, 1] " ,  E 
over B such that r i=idE.  In other words, if (up to homeomorphism 
over B) E is a fibrewise retract of a numerically ~ defined open subset D 
of some B x IR". 

These ENRB's are the objects on which we shall study fixed point 
theory in the following sections. In the present section we list some 
elementary properties of ENRR's, mostly without proofs, or with indi- 
cations only. In order to simplify the formulations we assume throughout 
the paper  that B is paracompact. 

(1.2) Proposition. I f  p: E--~ B is ENR B then E is paracompact . -  Indeed 
B • IR" • IR is paracompact  because B is. The set z -~ (0, 1] of(1.i) embeds 
as a closed set into B • 2 1 5  IR via (b, y)~--~(b, y, 1/z(b,y)), and E is a 
closed set in z -  1 (0, 13 via i. [ ]  

(1.3) Proposition. B • IR" is ENR B. Every numerically open 2 subset o f  an 
ENR n is ENR n. Every closed neighborhood retract over B of  an ENR B 
is E N R  w []  

(1.4) Proposition. I f  E --~ B is ENRn and B' ---, B is a continuous map then 
E x n B ' - - * B '  is ENRs,.  I f  p: E---~B is ENR n and q: F---, C is ENRc  then 
p • q: E • F--~ B • C is ENRB• c. I f E - - ~  B and E ' - + B  are E N R  B then so 
is E •  B. [] 

i Fo r  many  purposes ,  D could  be an arbitrary open subset of B • IR". If B is metr ic  then 
every  open subset  of B • IR a is of the form z -  1 (0, l ]. - If B is a single point  then E N R 8 = EN R 
(el. [4] ,  W.8). 
2 i.e. of the form r - l ( 0 ,  1] for some r, as  in (1.1). 
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The definition of a cofibration over B uses the same words as the 
usual definition with all maps  taken over B, and so does the charac-  
terisation of cofibrat ions (over B) as being "ne ighborhood  deformat ion  
retracts";  compa re  [11, 2], et al. In particular, we get the following 

(1.5) Proposition. I f  p: E -* B is E N R s  and D is a closed subset o f  E, 
with inclusion map i: D---~ E, then i is a cofibration over B if  and only i f  
pi: D---* B is E N R  8. [] 

The proper ty  of  being a cofibration is a (numerably-)local one 
(cf. [3]). The same result holds over B; combined with (1.5) it gives the 
following 

(1.6) Proposition. I f  D is a closed subset of  B x IR" and if  every point 
of  D has a neighborhood in D which is ENRB then D itself is ENRB. [ ]  

(1.7) Proposition. I f  n: D--~ B is a continuous map and D is a f ini te  union 
k 

of  open subsets, D =  U D,. such that every nv=nlD~ is E N R  B then n itself 
is E N R  n. ,.=a 

This  becomes  a special case of (1.6) if we can embed D over  B as a 
closed subset into some B x lR". But every D~ embeds (cf. (1.2)), and if we 
shrink the covering {Dr} a little we can assume that the embedding of D~ 
extends to a m a p  iv: D,, ---, B x IR "v over B. Then 

{ i ~ }~ :  D - - ~  B x IR" '  x IR"~ x " '" x IR "~ 

embeds  D. [ ]  

(1.8) Corollary.  I f  rt: D ~ B is a locally trivial fibration of  f inite type 
whose f ibre is an (ordinary) E N R  then 7z is E N R  n. 

k 

Indeed, the assumpt ion  gives D =  U Dr, where D r =  By x F, B~ is a 
v=l. 

numerical ly  open set in B, and F is an ENR.  [ ]  

Conversely,  if p: E ~ B is ENRB then every p -  ~ b (where beB)  must,  
of course, be an ENR.  Also, 

(1.9) Proposition. I f  p: E --, B is a proper map and is E N R  R then p is a 
Hurewicz-fibration. 

Proo f  By Definit ion (1.1), we have E ~ B x IR", and a vertical neighbor-  
hood retract ion r: D---, E. For  every y e E  there are open sets Vyc B and 
W r ~ IR" such that  y~ (Vy x Wy)~ D. Pick a point b E B; as p-~ b is compact ,  
finitely m a n y  of the sets ~ x W~. ( yep-~  b) cover p - t  b. If V is the (finite) 
intersection resp. W the union of the corresponding V r resp. W r then 
p-~ b ~ (Vx W ) c  D. Since a vertical retract of a fibration is itself a fibra- 
tion, we see that  p l r ( V x  W): r ( V x  W)---, V is a fibration. If we can show 
that r ( V x  W ) = p - t U  for some ne ighborhood U of b, U c  V, then we 
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know that pip-1 U: p-1 U ~ U  is also a fibration, hence p is locally 
(with respect to B) a fibration, and therefore also globally. Now, the set 
Y= E c~ (V x W) is clearly open in E, and ( p - l b ) ~  Yc r (V x W). Since p is 
proper it is closed; hence p ( E -  Y) is closed in B, and br  Y). There- 
fore U = B - p ( E -  Y) is an open neighborhood of b, and 

p-~ U = ( E - p - I  p ( E -  Y))~ Y c r ( V x  W). [] 

A general ENRB, p: E--,  B, need not be a fibration (any numerically 
open subset E of B x Ill" is ENRn). However, locally (with respect to E) 
it always is a fibration, in the following sense. 

(1.10) Proposition. I f  p: E--* B is ENRB then for every point yeE there 
are open neighborhoods Y of y in E and U =p(Y) of p(y) in B such that 
plY: Y--* U is a Hurewicz-fibration. 

This is just about what the first part of the proof of (1.9) shows: 
Every yeE has a neighborhood in E which is a vertical retract of some 
Vy x Wy, and vertical retracts of fibrations are fibrations. [ ]  

One can now ask which local (w.r.t.E) fibrations E ~ B are ENRn. 
I did not much pursue this question; the following is a partial answer. 

(1.11) Proposition. I f  p: E-+ B is locally (w.r.t.E) a fibration and if E 
and B are (ordinary) ENR then p is ENRs.  

Sketch of Proof. Embed j: E-+B• j(y)=(p(y),y). Since E and 
B • E are ENR this is a cofibration and therefore admits a neighborhood 
retraction r: W-~E, r j= id ,  where W is an open neighborhood of jE in 
B • E. The two maps n: W~ B • E proj, B and pr: W--, B may not coin- 
cide, but they agree on jE. Since B is ENR they are homotopic rel. jE in a 
neighborhood ofjE, which we denote by the same letter I4/.. I fp  is (glob- 
ally) a Hurewicz-fibration then we can lift the homotopy (rel. jE), with 
initial position r. The final position of the lifted homotopy is a new 
retraction r': W---,E with pr'=n, i.e. a retraction over B. Therefore, p is 
ENR B by (1.3). - In general, p is only locally a fibration, but then we can 
apply (1.6). [] 

(1.12) Corollary. Every submersion 3 p: E ~ B  of Cl-manifolds with 
countable bases is E N R n - b e c a u s e  it is locally a (trivial) fibration, by 
the implicit function theorem. [] 

2. The (Fixed Point) Index-Homomorphism 
(2.1) As before, we consider euclidean neighborhood retracts over 
B (ENRB), say p: E--~B. We assume B to be locally compact and para- 
compact, or equivalently, a topological sum, B = O B~, each summand 

2~A 
3 = C 1_map whose rank equals dim (B) at every point of E. 
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of which is a countable union Bz= ~) B{ of compact spaces B~. We 
j = l  

consider continuous maps f:  V---, E such that V is an open subset of E, 
and p f=p lV .  Such a map (over B) is said to be compactly f ixed if 
p[ Fix (f): Fix09---, B is a proper map, where Fix (1) = {v ~ Vlf(v}= v}. 
I.e.,fis compactly fixed if (p- ~ K) c~ (Fix 0c)) is compact for eve~ compact 
KmB. In close anaIogy to [4], VII.5 we shall now define an index- 
homomorphism Is: h B--~ hB, where h is any general cohomology theory. 
Ifh is a multiplicative cohomology theory and 1 e h ~ B the unit element then 
1 ~ ) = t i ( 1 ) e h ~  is also called the index off;  in this case, we'll find that 
I f ( x l = I ( f ) v  x for x~hB.  

(2.2) As in [41 or [9] we first treat the case E = B x IR", p = projection. 
If K c B  is compact then (Fix(D)c~(Kx IR") is compact and therefore 
contained in a set K xD x, where D~clR" is a ctosed bali around the 
origin. If B is a countable union of compact sets this easily yields a 
positive continuous function p: B~(0 ,  + oo)clR such that 

Fix ( f ) c  {(b, y)eB x IR"[ [lyll <p(b}} --E,. 
The same is true for general B =@B a because we can choose pIBx for 
each ), independently. Clearly (E-Ep) is a weak deformation retract of 

(B x lR", B x (tR"-O))= B x (IR", IR"-O), 
hence 

h(E, E -  Eo)_~h(B x (IR", IR"-O)}. 

We also remark that Fix(f) is closed in E (and not only in V) because 
this is locally so, namely in every K x IR", where K c B is compact. There- 
fore (E, V, E - Fix (f)} is excisive, i.e. h(E,E-Fix(D) '~h(V,  V-Fix(f)) .  
Using these isomorphisms we now define the index homomorphism by the 
following composition 

Is: h~B~hJ+"(Bx (IR", IR"-O)) { ' -~hJ+"(V,  V-Fix(f)} 

(2.3) ~ hJ+"(E, E -  Fix (J))---, ha+"(E, E -  E o) 

~ hJ+n(B x (IR n, lR"-O)) g hJ B, 

where d' is the n-fold suspension isomorphism, and (l - f ) :  V-~B x lit", 
( t - f }  (b, y)=(b, y - t p  (b, y)}, with ~p the second component off ;  f(b, y)= 
(b, (b, y)). 

We now list some properties of I I.  Proofs are only given if they are 
sufficiently nontrivial, sufficiently different from corresponding proofs 
in [4], VII.5, and used in the sequel of this paper. 

(2.4) Localization in E. I f  W is an open subset of  V such that Fix ( f )~ W 
then f l  W is compactly fixed, and l fl w = I f .  [] 
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(2.5) Localisation in B. The index homomorphism ]i factors as follows: 

hB--~h(B, B ' )~hB ,  where B '=B-p (F ix ( f ) ) .  

In particular, the composition of I / with h B--~ h B' vanishes. 

Sketch of Proof. Let E ' = p - I B  '. Then we can modify the defining 
sequence of maps (2.3) from the 4th term on as follows: 

h j +" (E, E - Fix (J)) ---* h i+ "(E, (E - E,) w E') -~ h j + ~((B, B') x (IR", IR" - 0)) 

~hJ(B, B')--~hJB. [] 

(2.6) Units. I f  s: B--, E is a section of p then the index homomorphism of 
sp: E--* E agrees with the identity map ofhB. [] 

(2.7) Additivity. I f  V= V1 w V 2, a union of open sets, such that f l2= 
f[ V 1 c~ V 2 (and f )  is compactly f ixed then fi = f] Vl , f 2 =f]  V2 are compactly 
fixed, and I:+I:12=I:~+If2.  [] 

The next property (2.8) of the index homomorphism concerns its 
behavior under a change of bases, i.e. a continuous map fl: B'--,B, 
where B' is also locally compact and paracompact. We have a commuta- 
tive diagram 

V ' c E ' ~ B '  

V c E  v ,B 

where E'= B' • E =  {(b', y)~ B' x Elfl(b')= p(y)} , V'= B' x R V= fl{ ~ (V), 
and p', fit, fly are the projections. 

(2.8) Naturality in B. Let 

f ':  V'-*E', f (b ' ,y l=(b' , f (y));  i.e. f l e f '= fSv ,  p'f'=p']V'. 

Then f '  is also compactly fixed, and 

fl* o I: = I:, o fl*. 

This follows by writing the defining sequence (2.3) for I: under the 
defining sequence for I:,, and inserting appropriate vertical arrows fl* 
everywhere. [] 

(2.9) Homotopy lnvarianee. I f  g: W---,F is a eompactly fixed map over 
B x [0, 1], with projection F - * B  x [0, 1], and/fgt: W~ --, F~ is the part ofg 
over B x {t} =B,  then Ig=lgo.fOr all te [0, 1]. 

Indeed, the part ofg over B x {t} = B, namely gt, is obtained from g by 
the change of basis it: B ~ B x  [0, 1], i,(b)=(b,t), in the sense of (2.8). 
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Therefore, i * l~=lg i* .  But i* is isomorphic, and i*=i*,  hence I g =  
i* Ig (i~)-~ =I~o" [] 

(2.10) Multiplicativity. U'f: V---,E and f :  V ' - - ,E  are compactly f ixed 
maps over B then so is f • : V x B V'--, E x B E', and 

I : •  ol :.  

This follows from (2.14). We shall only need the following special case. 

(2.11) Stability. lye: IR--~ IR is constant (say e(t)=0) then f x e: V x I R - ,  
E •  (as a map over B with respect to E x I R - - , E  v , B )  is compactly 
fixed, and 1: • e = l y. 

This follows by writing the defining sequence (2.3) for I :  under the 
defining sequence for l:•  and inserting vertical arrows o everywhere 
except at the ends hB. Remark that (t • i d ~ - f  x e)= (1 - J )  x ida. [] 

(2.12) Commutativity. Assume p: E---~B, p': E ' -+B are ENRB, let 
U ~ E, U' ~ E' open subsets, and f: U ~ E', g: U'-* E continuous maps over 
B. I f  gf'. f -  1 U' --, E is compactly f ixed then so is fg:  g-  1 U -* E', and 

I fg  = Igf .  

Using 2.11, the proof is as for [4J, VII, 5.9. [] 

(2.13) Naturality in h. I f  T: k - ~ h  is a natural transformation of  
cohomology theories then IT T =  TI~, where I~, I~ denotE, the respective 
index homomorphisms. [] 

(2.14) The Index Element (Proposition and Definition). U h  is a multi- 
plicative cohomology theory then I:: h B - * h B  is a homomorphism of 
h B-modules, i.e. 

I f ( x ) = I : ( 1 ) , ~ x ,  for all x ~ h B ,  

where 16 h~ B is the unit element. 

The element I:(1) ~ h ~ B (which completely describes I:) is called the 
index off, and is denoted by I(f), or In f f )  when appropriate. 

Proof  In the sequence (2.3) which defines I :  all homomorphisms 
except o" are induced by maps over B, and are therefore hB-homomor- 
phisms. The suspension isomorphism a of a multiplicative cohomology 
theory has the form + a = - •  with s=a(1) ,  and 
_ + a " = -  x s x s . . . x s =  - xs"; compare 3.1. But 

x x : = ( x x  1)~(1 x s " ) = ( p * x ) v ( 1  •  

hence a " = -  x s" is also an hB-homomorphism. [] 
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So far we have deveIoped the index theory only for the special 
ENRB-spaces B x Ill". But using commutativity (2.12) we can extend it to 
the general case as in [-4] VII, 5.10. I.e., 

(2.15) Proposition and Definition. I f  p: E---, B is any ENR B, and V c  E 
is an open subset then every continuous map J: V--,E over B admits a 
decomposition f: V- ~ , U P , E over B, where U is open in some B x N, ~. 
I f f is compact ly fixed then so is g = ~ [3: ~-  1 V-~, B • IR", hence I~: h B ~ h B 
is defined. Moreover, I~ depends only on f not on the decomposition f =  ~ ~. 

By definition, I i = I , t  3 is the index-homomorphism o f f  (resp. I(]')= 
I ( ~ ) e h ~  B the index o f f  if h is multiplicative). All the properties (2.4)- 
(2.14),formulated above for the special cases, continue to hold for the general 
case. [] 

3. T h e  I m a g e  o f l  in hOB 
If h is a multiplicative cohomology theory, what is the image of 

f~-~I(f); i.e., which elements in hOB occur as indices of compactly fixed 
maps over B? We'll see that precisely the stably spherical ones do. We begin 
be recalling the term "stably spherical" and related notions. 

(3.1) Let s ~ h 1 (IR, IR-  07--- ~1 $1 denote the image of 1 e h ~ (p t) under 
the isomorphisms h~176 IR-O), where p t = a  point. 
Then the general suspension isomorphism ~ for h is given by multipli- 
cation with s, and its n-th iterate o ~ is given by multiplication with s n, 
where s" = a n (l) is the image of I ~ h ~ (p t) under 

h~ ", IR"-  0) ~ h" (S"). 

This takes various forms, e.g. 

~" = ( - x s"): h ~ B-~  h" (B x (IR", tR" - 0)) = h" (B x Ill", B x (lit" - 0)) ,  

~ " = ( -  xs"): h ~ 2 1 5 2 1 5  

~ " = ( -  xs"): h~ 

(a", p*): h ~ BOh" B~-h"(B x S"), 

where p: B x S"--,B denotes projection. 

(3.21 Proposition and Definition. For y~h ~ B = h  ~ (B 0 p t) the following 
properties are equivalent. 

(a) There is a map q,,: N"(BOpt)-- ,S" ,  for some n, such that 
0 *  s" = o ~ (y) .  

(b) There is a map ~b: (B x S", B x p t)--, (S", p t), for some n, such that 
0 ; '  (s") = o ~ (y) .  
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(el There is a map Oc: B x S"-* S", for some n, such that 

(~* (s") - a" (y)) ~ i m (p*). 

(d) There is a map ~d: (B x Ill", B x (Ill" - 0))-* (IR", IR" -O) , f o r  some n, 
such that ~t* (s") = a" (y). 

If one, and therefore all of these properties hold then y is said to be 
stably spherical. - The proof is easy, and is left to the reader. []  

(3.3) Another way of describing stably spherical classes is via stable 
cohomotopy groups J - rCstableX--limrc(zk-dx, sk), where ~ on the right 
denotes homotopy classes, and Z = suspension. These constitute a reduced 
cohomology theory (cf. [6], p. 10), i.e. the groups 7~X= rc~t,ble(X | pt), 
and corresponding relative groups, form a cohomology theory 7, and 
~'J-- G,~ble3. The suspension isomorphism a: ~fi X ~ ~,J + ~ Z X  agrees with 
the obvious isomorphism ~ ~ Tcj+[ ~c"- stable X = stable ~ ' ~ "  This cohomology theory 
is multiplicative, with unit element 1 e?~ o o = Gtablr (S)  represented by 
the identity map of S ~ Similarly, s" = a"(l)ey" S" = n~t,ble S" is represented 
by the identity map of S". The cohomology theory 7 has the following 

(3.4) Universal Property. I f  h is any cohomology theory, and aeh  ~ (pt), 
then there is a unique transformation of  cohomology theories ~: 7---*h such 
that ~: 7(pt)--~h(pt) takes 1 into a. 

I~ particular, if h is a multiplicative cohomology theory then there is a 
unique (multiplicative) transJormation of  cohomology theories ~:: 7 ~ h  
such that e(1)= 1. In other words, }, is the initial object in the category of  
muttiplicative cohomology theories. 

This is fairly obvious since 7 is represented by spheres, with universal 
elements s"=a"(1). Explicitely, i fxe  ~~ - j 7 X -  Gt,ble X has the representative 

: _r.- ~ X--* S" then fi (x) = r J-" ~* r (a) ~ hJ X .  In particular, if h is multi- 
plicative then e(x)= a J-" ~* (s"). This together with (3.2)(a) shows 

(3.5) Proposition. I f  h is a multiplicative cohomology theory then 
y6h  ~ B = h O ( B @ p t )  is stably spherical if and only if Y is in the image of  
~ : 7~ B - ~  h~ B. [] 

The following lemma is used in the proofs of (3.7) and (4.8), but is also 
of independent interest. 

(3.6) Lemma. Let f:  V-~ E be a compactly f ixed map over B, as in (2.1). 
Then there exists a neighborhood W c V of Fix (f) and a compactly f ixed 
map f f : E x I R - - ~ E x l R  over B such that Fix0C')=Fix(J)x{0}, and 
f '  (w, t) = (f(w), O) for w ~ W, t~ IR. In particular, f '  is a globally defined 
compactly f ixed  map with the same index as f (cf. (2.1 t) and (2.4)). 

Proof  Assume first E = B x ] R " ,  with projection maps p: E-- ,B ,  
q: E--~ IR". Put ~o=qf: V-+lR ~. Then Fix f f )={y6Elq) (y )=q(y)} ,  and we 
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have to construct  W and cp': E • IR---~IR" x IR such that  

{q;(y, t)=(q(y), t )}-~ {q~(y)=q(y) and t = 0 } ,  

and rC'(w,t)=(q~(w),O) for w~W. Choose  a cont inuous  function ~: 
E ~ [ 0 ,  t ]  such that  ~-1(0) is a ne ighborhood  of E - V  and W = v - I ( I )  
is a ne ighborhood  of Fix (f). Define q0': E x tR-~ IR" x IR as follows. 

,, t , _ f [q (y ) -~ (y ) (q (y ) -q ; (y )  ), t + l - T ( y ) ( t + l ) ]  if y~V, 
q~ tY, I-~[q(y) ,  t + l ]  if y ~ - l ( 0 ) .  

Fo r  y ~ W = T - I ( 1 )  we have q0'(y, t )=  [~o(y),0], as required. If cp'(y, t )=  
[q (y), t] then compar ing  second componen t s  shows z (y) 4: 0, hence y ~ V; 
therefore compar ing  first componen t s  gives ~ (y) (q (y) - qo (y)) = 0, hence 
q (y) = cp (y), hence y~  Fix (J) and r (y) = 1 ; compar ing  second componen t s  
again  gives t = 0 .  Altogether ,  qo'(y , t )=[q(y) , t]~q(y)=q~(y)and t = 0 .  
The  converse  is clear. 

This takes care of the special case E = B x lit", which is all we need for 
the proofs  of  (3.7) and (4.8). The general case is reduced to the special 
case by ret ract ion a rguments  as in (2.15); we omit  the details. [ ]  

(3.7) Theorem.  Let h a multiplicative cohomology theory, and B a locally 
compact paracompact space. The elements of  hOB which occur as indices 
of compactly f ixed maps over B are precisely the stable spherical ones; i.e. 
the image of  I coincides with the image of  e: xOt,bl e (B 0 P t) ~ h ~ B. 

Proof Let x =  IO0sh ~ B; we have to show that  x is stably spherical 4. 
By the very definition (2.15) of  I ( f )  we can assume that  f is of the form 

f:  V---, B x IR", where V is open in E = B x lit". By L e m m a  (3.6) we can 
assume that  f is globally defined, i.e. f :  B x R " ~  B x IR". Consider  then 
the following d iag ram 

h ~ B~-h"(B x (]R", IR" " ~,- rl* -O))~_h ( E , E -  Eo) , - - -  h"(B x (N", IR"-O))~-h~ O 

h~ x (IR ~, I R " -  01), 0* h" (IR", I R " -  0) _~h~ t), 

where Ep and (l - f )  are as in (2.2) and (2.3), q denotes  the second project ion 
and 0 :  (B x IR ", B x (N ~ -  0 ) ) ~  (IR ", lR ~ -  0) is defined as follows. 

[ z - q f ( b , z ) = ( q ( z - f ) ) ( b , z )  for llzll > p ( b ) ,  

~ ( b ' z ) = l ~ ( q ( t - J )  ) (b ,p(b) -~ ,~)  for ,,z[]<p(b). 

'~ As the referee points out, this is immediate from (2.13) and (3.5). I've retained the proof 
because it is instructive and the diagram (3.8) is also needed for the converse. 
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In words, ~b agrees with q(t -J ') on the exterior of the tube E,, and radially 
extends q0-f) l /~p from the boundary/~o to the interior of Ep. The two 
maps q 0 - f ) ,  ~b: (E,E-Eo)~(IR",  IR"-OI are homotopic rel. (E-Ep), 
by linear deformation. Therefore, 0- f )*q*=~b*;  furthermore, 
~b(B x (IR"-0))~ (IR"-01. This explains the diagram (3.8), and shows that 
it is commutative. Following leh ~ along the upper row gives I(f)=x, 
by Definition (2.3), (2.14) of If/'). Following 1 along the lower row then 
shows that x is spherical, by (3.21 (d). 

Assume now x eh~ is spherical. Then a"(x)= ~* (s") for some n and 
some map ~: B x (IR", ~ " - 0 ) ~ ( I R " ,  IR"-0). Define f: B x IR"~ B x IR" 
by f(b, z)= (b, z -  ~b (b, z)). Then Fix (J)= {(b, z)]~b (b, z)= 0} = q,- ~ (0), and 
this is contained in B x {0}, hencefis  compactly fixed. The diagram (3.81 
above now shows x=l(J) (using a"(x)=~b*(s"), and the definition 
of ICf~). [] 

4. Homotopy Invariance as the Fundamental Property of I; the Monoid FIXa 

If h is the cohomology theory defined by stable cohomotopy groups 
then, trivially, every class yeh~ is stably spherical (cf. (3.5)) hence 
f~-,l(f) is surjective by (3.7). We now show that it is also injective up to 
homc~opy, i.e. if I fro) = I (f~) then f0 ,/1 are equivalent in the sense of (2.9). 
In order to emphasize the cobordism character of this result we introduce 
the "monoid of fixed point situations" FIX, ,  as follows. 

(4.1) Definition. If B is a locally compact paracompact space let ~B 
denote the set of (fibrewise homeomorphism classes of) compactly fixed 
maps f: V ~ E  over B, in the sense of (2.1). Two elements of ~B, say 
)Co: Vo--~Eo and f l :  VI-~Et, are called equivalent, in symbols fo~ f t ,  
if a compactly fixed g: W--~F over B • [0, 1] exists, as in (2.9), such that 
go=fo,  g~ =f~. This is an equivalence relation in ~B (transitivity by 
glueing); the equivalence class of f is denoted by If] ,  and the set of equiv- 
alence classes by FIXB= ~B/~ = {[-/']}" 

If fl : Vl --~ E1 ,f2 --~ E2 are in ~B then so is the topological sum fl Qf2: 
Vt �9 V2--~Et O E2. Addition ~ is compatible with ~ ,  and therefore 
induces an addition + in FIXB, namely U~] + Ef2] = ~1 | This turns 
FIX~ into a commutative associative monoid with neutral element [_,07. 
If h is a multiplicative cohomology theory then the index (2.15) defines 
a map I: q~B-+h~ This map is compatible with ~ by (2.9), and is 
additive by (2.7). Therefore I defines a hornomorphism (denoted by the 
same letter) 

(4.2) I: FIXB--~ h~ l [ f ] = I ( ~ ,  

and the main result of w w 3-4 is as follows. 
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(4.3) Theorem. Ifh is rhe cohomology theory defined by stable cohomotopy 
groups (cf. (3.3)) then (4.2) is isomorphic, i.e., 

I: FIXs"~rc~ pt). 

As remarked above, we know already (3.7) that I is surjective. We 
now prepare the proof of injectivity by some preliminary considerations. 

(4.4) Lemma. Iffo: Vo --, Eo,fl : V1 --, E1 are compactly f ixed maps ot, er B 
such that Eo is a numerically open 2 part of El, Fix (fl ) c V o ~ VI , and fo (v) = 
f l(vj  for ve V o, then fo ~ f l .  

Proof F =  E o x [0, 1] w El • (0, 1] is an ENRB• ~o. 1j, 

w =  Vo • [0, 1 I v  v~ • 1] 

is an open subset of F, and g=( /ox id , f~  • W - , F  is a compactly 
fixed map over B • [0, 1] whose parts over B • {0} resp. B • { 1 } are fo 
resp.f~. []  

i 
(4.5) Assume now E = D  q ,B are ENR n, and E is a fibrewise retract 
of D, i.e. there exists r: D--+E such that r i = i d ,  q i r = q .  Then i has the 
(fibrewise) homotopy extension property over B (compare [2], Chapter I), 
Therefore, the mapping cylinder 

Z = { ( y , t ) e D x  [0, l ] jy~E or t=0}  

is a retract over B of D• [0, 1]. In particular, Z - * B ,  (y, t)r--,q(y), is an 
ENRB (cf. (1.3)).-In the following, we'll sometimes identify D with 
{(y, t )sZI t=O},  and E with {(y, t ) e Z l t = l } .  

(4.6) Lemma. With the notation of(4.5),/fg: W ~  Z is a compactly f ixed 
map such that g ( W ) c  D=  {(y, t jeZl t=O} resp. g ( W ) c  E =  {y, t)eZlt  = 1} 
then g~(go=g[Wc~D:  Wc~D---~D) resp. g ~ ( g l = g t W ~ E :  Wc~E--~E). 

Proof If g (W) ~ D consider the space 

F =  {(y, t, z)eD x [0, 1] • [0, 1It(y, t ) eZ  and t <  r}. 

The map 
p : Z x [ O ,  1]-+F, p(y , t , r )=(y ,  Min(t ,r) ,r) ,  

is a retraction which is fibrewise with respect to (y, t, r)~-~(q(y), r). With 
respect to this projection F is therefore ENRn• u. Furthermore, 
(Wx [0, I ] ) ~ F  is an open subset ofF,  and 

y: ( W x  [0, 1])~F--~F,  7(y , t , r )=(g(y , t ) , r )  

is a compactly fixed map whose parts o v e r ,  = 0  and r = 1 agree with go 
and g, hence go ~g-  
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If g (W)~  E we replace F by 

{ ( y , t , z ) e D x  [0, 1] x [0, 1] l (y , t )eZ  and t > r } ,  

and proceed asbefore.  [ ]  

(4.7) Lemma.  As in (4.5), let i: E ~ D  be ENR~ a~d r: D---~E a retraction 
over B; r i=  id, q i r= q. I f  f: V-* E is a compactly f i xed  map over B then 
so is f ' = i f r :  r -1 V--~O, and f ' ~ f .  

Proof. Clearly F i x ( f ) =  Fix(D, so f '  is compactly fixed. Consider the 
mapping cylinder Z c D  x [0, 1] over B, as in (4.5), and the retraction 
s: Z ~ D, s (y, t) = y. Define 

( s - l r  - 1 V ) x  [0, t ] - ~ Z  x [0 ,  I], by (y, t,t)~--~(f'0,),r,~). 

This is clearly a compact ly  fixed map over B • [0, 1]. Its parts over r - 0  
r =  1 are equivalent w i th f '  resp.f, by Lemma (4,6). H e n c e f ' ~ f .  [ ]  

(4.8) Proposition. Every element ~ of  FIXu has a representative c~f the Jbrm 
f: B x IR"-~ B x JR" such that 

(i) l l y - ~ o ( b ,  y)}l = Ilsll, 
(ii) q) (b, 2 y) = 2 (p (b, y) 

for  all be  B, ye  IR", Ae IR + --- [0, + :~), where p is the second component oJ f  
i.e.f(b, y) = (b, ~o (b, y)). - Note  in particular that (i) implies Fix (f) = B x {0}. 

Proof  If E is an E N R  B then, by definition E is a retract over B of a 
numerically open 2 subset D of some B x IR m, say E ~ ~ D ' , E. Every 
compact ly  fixed map g: V-~ E is equivalent, by (4.7), to g' = i g r: r -  1 V---, D, 

and this (by (4.4)) is equivalent to the composit ion r -  ~ V ~  D c  B • IR ~, 
which we still denote by g', By (3.6), there is an open neighborhood 
W ~ r  -1 V of Fix (g') and a compactly fixed g": B x IR "+1 ~ B  x 1R "+~, 
such that F i x ( g ' ) = F i x ( g ' ) x  {0} and g"(w,t)=(g'(w),O) for w e W .  The 
former implies (by (4.4)) that g"~g"]  W • IR, the latter implies (4.7) that 
g"[ W • lR ~g ' ]  W, and this (by (4.4) again) is ~ to g'. 

So far we've shown that every ~ e F I X  u has a representative g" of the 
form B x I R " ~ B  x lR"; it remains to achieve (i) and (ii). Recall (2.2) that 
there is a cont inuous positive function, p: B--,(0, +9o)  such that 
F i x ( g " ) c E p ;  in other words, all fixed points in {b} x IR" have norm 
smaller than p(b). Under  the homeomorphism (b,y)~-*(b, 2p(b)y)  the 
map g" t ransforms into a new map, denoted by g: B x IR"--+B x IR" 
again, all of whose fixed points have norm smaller than 1; in fact, 
Fix (g) c E�89 

Now we proceed somewhat  as after (3.8). We let ~9: B x IR ~ --, IR" the 
second componen t  of g, thus g(b, y)=(b,O(b,y)) .  Then 

Fix (g) = { (b, y) lt# (b, y) = y}; 
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and q,(b, y ) = y ~  JtYlt < 1. We define a map O over B • [0, 1] as follows. 

G:Bx[O.  1]xlR"-- ,Bx[O, 1]xIR% G(b,t,y)=(b.t.'g(b,t,y)). 

where ~ :  Bx  [0, 1] x R"--*IR ~ is given by ~t'(b, t,y)= 

(1 - t )  [y-et(y)+gJ(b, et(y))] + t [ y -  t{Y[[ e~ (et(y)-O(b, e~(y))] for JlYJ) >_- i ; 

(1 - t) O (b, y) + t [ y -  Ilyll e~ (e, (y ) -  ~, (b, e~ (y))] for I)yll < 1, 

x 
aad e,(x) stands for ( 1 -  t ) x + t  ~}j- ;  note that y = 0  implies 7'(b, t, y)= 

(1 - t) 6 (b, y), and ItYl) = 1 ~ e,(y) = y. We have 

Fix(O)= {(b, ~, Y)I ~(b, t, y)= y}. 

If(b, t, y)e Fix(G) and I/Yl[ > 1 then the definition of ~ shows 

(1 - t) [~p (b, e, ( y ) ) -  e, (y)] + t JtY 1[ e, [~ (b, et (y ) ) -  et (y)] = 0; 

since [~ (b, e, (y)) - e, (y)] # 0 for IlYll > 1, this means 

(1 - t)]]~ (b, e, ( y ) ) -  e~(y)l) + t lly}l = 0.  

which is impossible. Thus FixfG)c  {(b, t,y) I JlYl] ~ 1}, hence G is com- 
pactly fixed. The part of G over t = 0  agrees with g (Go--g), the part of G 
over t=  1, say G1 =f ,  is given by f(b, y)=(b,  q~(b, y)) with 

q~(b, y)=y-JJYlJ e, [el  ( y ) - ~  (b, e, (y))]. 

This clearly satisfies (i) and (ii), and f,-~ g represents ~. []  

Proof of  Theorem 4.3. It suffices to show injectivity of I. Let ~, r/~ FIXB 
such that I~=Iq.  Choose representatives f :  B x l R m ~ B x l R  ", 
g: B x IR"--, B • IR" of ~, q as in (4.8); in particular, I ( f ) =  l(g). But the 
index I(f)~rc~tab~(BG p t) of a map f :  B x I R " ~  B x IR" as in (4.8) (i.e. 
with properties (i), (ii)) is precisely the stable homotopy class defined by 
~o~: B • ~, or rather by q~s--~o~lB• B x S m - ~ - . S  m-', 
where O is the second component o f f ( f  (b, y) = (b, ~o (b, y))), and r  (b, y)=  
y -qo  (b, y); this is clear from the definition of the suspension isomorphism 
in rc~..b~~ and the definition of I. Therefore the maps q)s : B x S  '~-~ --.S ~'-~, 
~0 s" B x S"-'---. S ~- ~, corresponding to f, g, must represent the same 
element of n~b~(B(~pt), i.e, for some p, v > 0  such that m + v = n + #  

the maps @s)  *nid: B x S"-  t +~ __~ S"-  t +,, 

(q,s) .~ id: BxS"- I+~ ~ S  "~l+~' 
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are homotopic, where *B denotes the (fibrewise) join with S"- ~ resp. S ~- ~. 
By radially extending these maps from spheres to all of euclidean space 
we can also say that 

is homotopic to 

cp~ x id :  Bx]R.m+~'---~]Rm+'~=]Rm x]RV 

~ xid:  B x l R " + U ~ " + u  =IR" x IR~' 

by a homotopy 

0: Bx[0 ,  l]x]Rk---+IR k, ( k=m+v=n+l~)  

such that ]lOib, t, Y)I[ = IJY][ (and O(b, O, y)=(~o~ x id)(b, y), O(b, l, y)= 
(r x id)(b, y)); in particular, O(b, t, y)=0  ~ y=0.  Define 

D: B • 2 1 5  k, D(b, t, y)=(b, t, y -O(b ,  t, y)). 

Then D is a compactly fixed map over B x [0, l] (in fact, Fix(D)= 
Bx[0 ,  1]x {0}) whose parts over Bx {0} resp. Bx {1} agree with 

f x  {0}: (B x l R ' ) x  IR~'~(B x IR")x IR " 
resp. 

gx  {0}: (Bx IR") x ]R"-* (B x lR")x IR", 

where {0} denotes the constant map zero. Therefore f x  {0} ~g  x {0}. But 
f x  { 0 } ~ f a n d g x  {0}~g by (4.7), hence ~=q. [] 

5. Remarks and Problems 

(5.1) Axiomatic Characterisation of the Index. This is just what (4.3) 
provides: I f  J is a function which assigns to every compactly f ixed 
f :  V--* E over B an element d( f ) ,  invariant under homotopy (2.9), then J is 
determined by its values on a set of representatives for the elements of 

0 nstaUe (B | p t), more accurately, by its values on maps 

f: BxIR"--~B• /(b, zt=(b,z-r z)), 

as at the very end of Section 3 (or as in (4.8)), where r ranges over a set of 
representatives for nOab~e (B | p t). 

Any such J is also invariant under localisation (2.4), is commutative 
in the sense of (2.12), etc. In other words, homotopy-invariance alone 
(plus suitable normalisation on the special f above) suffices to characterise 
the index; all the other properties are consequences. If one is willing to 
assume additivity (2.7) as an axiom then one needs normalization only 
on a set of special f representing generators for T[sOtable (B(~ p t). 

Even in the classical case where B = p t  and n~ this 
result is of interest: It says that the classical Lefschetz fixed point index 
20 Inventiones math, Vok 25 
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for ENRs is characterised by homotopy-invariance alone together with 
normalization. For  normalization one can take the power maps z ~--+ z" of 
the circle $1= {ze C[Izl = 1}, putting J(z ~-~z")= 1 - n. Or if one assumes 
additivity then it suffices to normalise on the ideatity map of a point. 
Note however that "homotopy-invariance" has to be understood in the 
sense of (2.9) (or of [1]), and not just in the more usual sense of topology 
(compare also [5]). 

(5.2) The problem of calculating the index or of proving a Lefwhetz- 
Hopf type theorem is very intriguing. The Lefschetz-Hopf-theorem should 
express I ( f )  in terms of f * :  hE--+ hE provided f :  E---* E is a globally 
defined (compactly fixed) map over B and p: E --+ B is proper (or at least 
im(f)--+ B is proper). I don't  know whether there is such a theorem in 
general, i.e. whether I ( f )  is determined by f *  (if f is globally defined 
and p is proper). Certainly one would have to use the module structure 
of hE over hB and the fact that f *  is a homomorphism of hB-modules. 
One is led to try the Lefschetz-trace A f * e  h~ of the hB-endomorphismf*. 
I convinced myself that it does coincide with l ( f )  for some simple 
examples of ENRBs, such as (5.3) below. But in general A f*  may not 
even be defined (if hE is a complicated hB-module); when it is defined 
I still don't  know whether it always agrees with l ( f ) .  

If h = H is ordinary cohomology then, of course, A does give the right 
answer but the result is not new because then 

l ( f )~H~  7Z)= Uom(HoB , 7Z) 

is the classical index of p - l b - o p - l b ,  viewed as an integral valued 
function of beB. In this context Knill's Theorem 1 in [9] should be 
mentioned; it deals with ordinary (co-)homology only but it provides 
a computable invariant (under ordinary homotopy, not --~) which is 
richer than l ( f )~  H~ (B; Z). 

(5.3) Example. Let B = S  1 = { z e e [ I z f  = 1}, and consider the map 

f :  B x S x --* B x S 1, .f(b, z)= (b, b" z). 

This is a globally defined compactly fixed map over B, and p: B x S ~ ~ B, 
p(b, z)=b, is proper. I have verified geometrically (and not without 
pains) that [ f ] ~ F I X B  is the non-zero element of ~stable0 S 1 =7l 2. On the 
other hand, for any cohomology theory h the hB-module h(B x S ~) has 
the basis {1| l |  and 

f * ( l |  1| f * ( l | 1 7 4  

where ~ e h -  t (point) corresponds to v* (s2)eh 2 S 3 under 3-fold suspension, 
and v: S 3 --+ S 2 is the Hopf-map. (In order to understand the term 7. s one 
suspends f and calculates (Z f)*, remembering the Hopf-construction.) 
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It follows that the trace o f f*  equals A(f)=(~. s)~h ~ st ;  in particular, 
ifh is stable cohomotopy then - o 1 A ( f ) -  [~] errstab e S . 

(5.4) The example above raises other questions, too. Suppose, for 
instance, G is a Lie group operating on a compact manifold M. Then 

G x M--~ G x M,  (g, z)~--~(g, g . z), 

is a compactly fixed map over G; it represents (by (4.3)) an element of 
rCsOable(G@pt), resp. of o ~Zst,b~ e G if )~M = 0. Are these interesting elements, 
in particular if M = G and the operation is by left translation ? 

(5.5) As stable cohomotopy is isomorphic, via the Pontrjagin-Thom 
construction, to stably framed cobordism ~2~, we also get from Theo- 
rem (4.3) an isomorphism of FIX,  with Q~r B. It should be easy to describe 
this isomorphism directly (without cohomotopy) by geometric con- 
structions in the spirit of Quillen's geometric description of complex 
cobordism (cf. [10], Section 1). In fact, the very definition (4.2) of FIX B 
and some of the arguments in w are clearly cobordism style. The 
question arises whether fixed point theory or cobordism might profit 
from this connection. 

References 
1. Browder, F.E.: On continuity of fixed points under deformations of continuous 

mappings. Summa Brasih Math. 4. 183 I9l (1960) 
2. tom Dieck, T., Kamps, K.H., Puppe, D.: Homotopietheorie. Lecture Notes in Math- 

ematics 157. Berlin-Heidelberg-New York: Springer 1970 
3. Dold, A.: Die Homotopleerweiterungseigenschaft ist eine lokale Eigenschaft. 

Inventiones math. 6, t85-189 (1968) 
4. Dold, A.: Lectures on Algebraic Topology. Heidelberg-New York: Springer 1972 
5. Dold, A.: Eine geometrische Beschreibung des Fixpunktindexes. To appear in Archly 

der Mathematik, fall 1974 
6. Hilton, P .  General Cohomology Theory and K-Theory. London Math. Soc. Lect. 

Note Ser. 1. Cambridge Univ. Press 1971 
7. James, I. M.: Ex-Homotopy Theory I. Ill. J. of Math. 15, 324-337 (1971) 

Overhomotopy Theory. INDAM Symposia Math. IV, 219-229 (1970) 
8. Kamps, K.H.: Kan-Bedingungen und abstrakte Homotopietheorie. Math. Zeitschr. 

124, 215-236 (1972) 
9. Knilt, R.J.: On the Homology of a Fixed Point Set. Bull. Amer. Math. Soc. 77, 184-190 

(1971) 
10. Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod 

operations. Advances in Math. 7, 29-56 (1971) 
11. Strom, A.: Note on Cofibrations II. Math. Scand. 22, 130 I42 (1968) 

A. Dold 
Mathematisches Institut der Universit~it 
D~6900 Heidelberg 1 
Im Neuenheimer Feld 288 
Federal Republic of Germany 

(Received December 12, 1973) 
20* 


