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Correction of Numerov’s Eigenvalue Estimates
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Summary. The error in the estimate of the kth eigenvalue of a regular
Sturm-Liouville problem obtained by Numerov’s method with mesh length
h is O(k®h*. We show that a simple correction technique of Paine, de
Hoog and Anderssen reduces the error to one of O(k®h*). Numerical
examples demonstrate the usefulness of this correction even for low values
of k.

Subject Classifications: AMS(MOS): 65L15; CR: G1.7.

L. Introduction

There has been much recent interest in problems requiring efficient and ac-
curate computation of a long sequence of eigenvalues of regular Sturm-Liou-
ville problems. (See [2] for References.) It is usually advantageous [2] first to
transform the problem to the Liouville normal form

—y'+qy=41y. (1a)
We comnsider the case of essential boundary conditions which may, without loss
of generality, be written as

y(0)=y(m)=0. (1b)

When finite difference methods are used to approximate the eigenvalues,
Ay<Ay<Ay<..., of (1), the error in the approximation to 7, is known to
increase rapidly with k. For example the usual centred difference approxima-
tion to (1a) with uniform mesh length h:=n/(n+ 1) approximates ,,...,4, by
the eigenvalues A{” <...<A{ of the nxn matrix —A+Q where A:=(g;) is
symmetric tridiagonal with

a;:=-2/h% i=1,...,n, ai,i+1==1/h2, i=1,...,n—1 (2)

and Q:=diag[q(x,), ...,q(x,)] where x;:=jh. In this case the errors satisfy |4,
~A4P|=0(k* h?). For example when q=0, A, =k? and A" =4 sin?(kh/2)/h*.
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Recently Paine, de Hoog and Anderssen [8] observed that this known
closed form solution when g=0 could be used to improve dramatically the
accuracy of the computed higher eigenvalues with negligible extra effort. They
showed that, for all ge C* [0, 7] and all a<1, there exists a constant c(a) such
that, for all n and all k <an/h, the approximations

A= 340 + k2 — 45in (k h/2)/h*
satisfy
AP — A S ca) kh?. 3

Although the improvement is obviously greatest for large k, their numerical
results indicate that |1 —1,|<|A" —4,| even for small k. This analysis has
subsequently been extended [1] to the problem with (1b) replaced by the more
general boundary conditions

0,y0)+0,y0)=0a;y(n)+ 0,y (n)=0.

Also Paine [7] has shown that the correction technique of [8] can greatly
increase the efficiency of a certain method for the numerical solution of the
inverse eigenvalue problem.

A deservedly popular technique for computation of the lowest eigenvalues
of (1) is Numerov’s method, which approximates 4,,...,4, by the eigenvalues
AP <. < AP of

—Au+BQu=A4Bu 4

where

Bi=1I+h?A/12 (5)

and I is the identity. Since {[y{{ =0k’ ly,l), j=1,2,..., where y, is the eigen-
function of (1) corresponding to 4,, it follows from Taylor’s theorem that

(—A+BQ -4 B)y,=0(k® h* |ly,ll,)

and hence since, as shown in [3],

1B~ ,=0(), 6
an analysis similar to that in [5], pp. 133-134, shows that
| AP — 2| = Ok h*). )
When g=0 (and hence Q=0), it is readily verified that
—As{" =" Bs\® (8)

where s{”:=(sin(k x,), ..., sin(k x,))T and

. 12[1 —cos(kh)]
M = 2 s cos(kh)]

We show here that the error in the estimates

A= AP 4 k2 — (10)

=k2+0(k® h*). ©
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given by the correction technique of [8] grows more slowly with k than the
error in the original estimates A{®. Specifically we show that, for all functions
qeC*[0,7] and all a<1, there exists a constant c*() such that, for all n and
all k<amn/h, .
AP — A, | < c* (o) k3 b2, (11)
This can be deduced by a modification of the proof used in [8]. We use
instead a slightly different approach which establishes the following stronger
result.

Theorem 1. If qeC*[0,n] then there exists a constant c, depending only on q
such that for all nelN and k=1,...,n,

AL — A <o k* b /sin (k k).

Since o/sin(an) increases monotonically with o for O0<a<1, (11) follows
immediately from Theorem ! and we have as a bonus the formula

c*(o) =cy o m/sin(o ).

The method of proof used here can also be used to show that ¢(o) in (3) has a
similar form.

Although ¢*(«)— o0 as a—1, ¢*(e) increases slowly at first and c¢*()/c*(0+)
is only =/2. This suggests that, if the first k eigenvalues are required, the
choice n=2k (suggested in [8] for the second order method) will be suitable
and numerical results confirm this.

Comparison of (3), (7) and (11) makes it clear that, as an approximation to
A A™ will be better than A for sufficiently large k and better than A for
sufficiently smalil . Our numerical results, which are summarized in Sect. 3,
indicate that the restriction to “sufficiently large k” and “sufficiently small h”
is not serious in practice, at least for reasonably smooth q. In all cases we
found A" to be a better approximation than A{, even for k=1. In all cases
with k<n/2 (as recommended), and most cases with k>n/2, we also found A"
to be a better approximation than A%,

2. Proof of Theorem 1

Since increasing ¢ by a constant increases 4, and A by the same constant, we
can assume without loss of generality (as in [8]) that

}q(x)dx=0.
0

This implies [8] that
L=k*+0(k?. (12)

For notational convenience, the subscript k and the superscript (n) are
Supressed throughout this proof. Thus y denotes the eigenfunction of (1) corre-
sponding to the kth eigenvalue and u:=(u,, ...,u,)" the eigenvector correspond-
Ing to the kth eigenvalue of (4). For any function p: [0,7] >R we use the
notation p;: =p(x,), p:=p'(x)etc,i=1,...,nand p:=(py, ..., p)", p': =@}, ... )"
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Since 4 and B are symmetric commuting invertible matrices
AB '=B 1A=(B~ ' A)". (13)
Hence by (4)
—~u'B lA+u"Q=Au". (14)

Hence Au”y+u?B-'Ay=u"Qy=Alu"y+u”y’ by (1), that is

A=HuTy=u"(y' =B~ A4y). (15)

Since
s'=—k*s (16)

it follows from (15) and (8) that

(A-Du'y=(u—kHu"s+sT(e" =B ' Ae)+e"(e'—B "' Ae), (17)

where
g:=u—s, {18)
e(x):=y(x)—sin(k x) (19)

and hence e=y—s. The following lemmas enable us to estimate the various
terms arising in (17). We assume y normalized as in [8], with analogous
normalization for u, and show that ¢ and e are then O(k~*).

Lemma 1. |&] , £2h7]lqll, llull/sin(kh).

Proof. Subtracting pBu+ BQu from both sides of (4) and multiplying by —{5
+cos{kh)] h?/6 yields

u;_ —2cos(khyu;+u;, | =[5+ cos(kh)]h* [(x—4) Bu+BQu];/6, j=1, ...,rz.zo)

Hence, using an argument analogous to that in the proof of Theorem 2.1 of
[8], it follows from Lemma 2.3 of [8] that

_ [5+cos(km)]h* !
gj—__,—jm_ ig,l sin(k(x; —x ) [(p—A+g,_Du;_y

+10(u —A+g)u;+(u—A+q; ), ,1, j=1,...,n (21)

Since B-'A4 and Q are real symmetric it follows from (4), (8) and standard
perturbation theory (9, p. 102] that

lu—A=10l,=llall, = liqlle- (22)
Hence by (21) and the triangle inequality
le;| <|h?(j —1)/sin(kh) max(ju— A+q;] u,))

<[2( -1 h?/sinkh)] gl llul,
<[2nhfsin(kh)] gl v, since h(j-1)=n O
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Lemma 2. For y normalised as in [8],

e(x)=k™1 f(kz—/l-{—q(t))sin [k(x —1t)] y(t)dt, 23)
0
ex)=0("1Y, j=0,1,2,... (24)
and
e(@=e(n)=€"(0)=¢"(n)=0. (25)

Proof. Equations (23) and (25) are proved in [8] and (24) follows from (23) and
(12) since yV'=0(k)). O

Lemma 3. Let

fi=k*~A+q)y, (26)
x+h
alx, k)= | f(f)sin[k(x+h—1]dt 27)
and )
Ej::o((xj,h)—!—ot(xj, —h). (28)
Then
Ae—Be' —(k* —p)Be=(1+h? u/12) E/kh? — Bf. (29)
Proof. By (23), ¢’ =f—k?e and hence
Be'=Bf—k*Be. (30)

Also by (2), (23), (28) and (9),
kh*(Ae);=k(e;, —2e;+e;_,)

=Tf(t){sin Ck(x;, =] —=2sin[k(x; —0)] +sin[k(x;_, — )]} dt + E;
0

= —h—f—j’f xjjf(t) {sin [k(x;, , —)]+10sin [k(x, — )] +sin [k(x,_ , —5)]} dt +E,
0

= —h? pk[le(x,, )+ 10e(x)+e(x;_ )}/12+(1+h*4/12)E,.
Hence
Ae= —puBe+(1+h*p/12)E/kh?. (31)
Subtracting (30) from (31) and rearranging gives (29). [

Lemma 4. For all ge C*{0, n] there exists a constant ¢, such that

[eT[B~'Ae—e ' +(u—k¥e]|<c, k*h*jsin(kh), k=1,...,n.
Proof. By (28) and (27),

Xp+1

E= | f@©sin{k(x,, _oldi+ | f(©)sin [k(x,_, —t)]de.

X5 xj

Expanding f about x ; by Taylor’s theorem in both integrals and integrating by
parts shows that
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E;=(2/k)[1 —cos(kh)]f;+ {(h?/k) —(2/k*)[1 —cos(k )1} f}'
+O(kR® | £ ,,). 32)
Also Bf=f+h2 Af/12=f+h?£'/12+0(h* | £ ).
Combining this result with (32) and then using the easily verified equation
211 ~cos(kh)](1+h? p/12)=h*p
shows that
(1/k)(1+h? u/12) E,—h*(Bf),= {2/k*) [1 —cos(kh)](1 +h? u/12) —h?} f;
+h?{k™2[1 —(2/h*k*)(1 —cos(kh))] (1 +h?* u/12) —h2/12}fj”
+OM | fD o) =(h*/k>) (= k) f;+ (R [k*) (k* — ) (1 —R* K2/12) f'
+0(R® || f DN ) =0k*1°), (33)
since y—k*=0(k®h*), 1 —h? k?/12=0(1) and
fi@):=FP0x)=0(l P )= O(k?).
Since also
le"(B=! de—e"+(u—k*)e)| <nllel, |B~ '], | Ae ~Be" +(u—k*) Bell,
and n=0(1/h), the result follows from (6), (33) and Lemmas 1 and 3. []
Lemma 5. For all 8e C1 [0, 7],

Y 0., cos(2kx;, IS |0, /2sin(kh), k=1,...,n,

i=0
where X, =+ X4 1)/2 and 6, ,:=0(x; 1 4).
Proof. Since

m—1

;2, 2sin(kh)cos(2k x; . 4)

m-—1
=.Z [sin(Qk x;,,)—sin(2kx;))]=sin(2k x,) and sin(kh)>0

i=0

for 1 £k<n, summation by parts gives

¥ 0, 4c08(2kx;, 3)=0,,, Y cos(2kx;,,)
i=0 i=0

i—1

(0:03—0,_4) Z cos(2kx;,,)

j=0

D= Ip=

(04 3 —0;_y)sin(2k x))/2sin (k).

i

]
-

Since |(0;,, —0;_;)sinQkx)| Sh [|0'] =7 [|0'] ,/(n+1), the result follows. |
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Lemma 6. For all ge C*[0, ] there exists a constant ¢, such that
IsTfl<c,k*h4/sin(kh), k=1,...,n
Proof. Let F(x):=f(x)sin(kx) and let T, F be the approximation to | F(x)dx

(4]
obtained by the trapezoidal rule with subintervals of uniform length h. Then by
(26) FeC*[0,n] and since F(0)=F(m)=0, it follows from the Euler-Maclaurin
summation formula [4] that

sTf=h“ThF=h‘1{j x)dx + Zh"'[F’(n)—F’(O)]
0

B k4
+4—"‘h4 [F"(m) - F"(0)] —h* | B,(x/h) F*(x) dx} (34)
- 0
where, as in [4], the B; are the Bernouilli numbers and B, ..., P, are piecewise
polynomials of period one satisfying
P3+1 on (0,1), B; ;(0)=Ph,, ,(1)=0, j=12,.. (35)

and P(x )= 2,0<x<1
It follows from Lemma 2 that jF {(x)dx=0 and from (1) and (26) that F'(r)

F/(0)=0 and F*()— F"(0) = O(k?). Hence by (34),
|sTf| = |1® }ﬁ(x/h) F@(x)dx|+ Ok hY). (36)
0

Since, by Lemma 2, y(x)=sin{k x}+ 0(1/k) it follows from (26) and (12) that
F®(x)= —8k* g(x)cos(2k x)+ O(k?) (37)
where g:=k* —1+q. Now define
gr(x):=g(x;;,) for x;Sx<x;,,, i=0,..,n
By Eq. (2.9.7) of [4],
IP(x)I={(4)/8n*=0(1) (38)

where { is the Riemann zeta function. Hence by (37),

(=2}

P,(x/h) F9(x)dx =8 k* j B, (x/h)(g* —g) (x) cos (2k x) dx
0

—8k* E P,(x/h)g*(x)cos 2k x)dx +0(k®).  (39)
By (38), 0

f B.(x/h)(g* —g)(x)cos(Qk x)dx
0

<lig* —gllo {(4)/87° <h |Ig'll {(4)/16 7° = O(h) = O(1/k)
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since kh<n. Hence by (39),

j (x/h) F¥(x)dx= —8k* fﬂ(x/h) g*(x) cos(2k x)dx +O(k?). (40)
0 0

Integration by parts using (35) shows that

Xi+y

j B,(x/h)cos(2k x)dx = hj'P(t cos[2k(x,+th)]dt

B,
[sin(k x; . ;) —sin(2k x;)] 5‘(—2W)3[sm(2kxHL )

[cos(2kx; . 1)+cos(2k x;)]

B,
h{4'2kh

1
—sin(2k x;)] _W

+(2kh)~5[sin2k x,, ) —sin(2k x,)1}

o) sinkh) _ sin(kh) _ cos(kh)
T \a12kn) 30 21Qkh’ 6 2(2kh)*

kh

+%}}cos(2kxi+%)
hsm(khj (kh)® _kh
16(khy* | 45 3

1
_ ot(kh)+ﬁ}cos(2kxi+%).

Hence
E B,(x/h) g*(x)cos(2k x)dx
0
= Zgw% j.ﬂﬂ(x/h)cos(ka)
hsin(k h) 1 kh (kh)3 "
= 16(kh)4[ ot(k h) — —+ 3 + ]ZO 143 €082k x; )
hsm(kh) 1 kh (kh)3 mig
=[T6teh® [kah)wﬁ 3 ]2 sin(kh)
by Lemma 3
|prlg il MKn® o
=Bk sty | Voo Mi=apl6 /7
and G(x):=x cos(x)+(—1+x?/3+x*/45)sin(x)= xsnn(x)[cot(x)—l/x+x/3

+x3/45], since it is readily verified by Taylor’s theorem that |G(x)|=M x’
when O<x<m.
Hence

_7(: P, (x/h) g*(x) cos(2k x)dx|Z|m ||g'|| , M k> h*/32sin(k h)|
(1]

<7’ |g'|l, Mh/32sin(kh) since O<kh<m.
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The result now follows from (36) and (40) since O <sin(kh)<kh. O

The proof of Theorem 1 is now easily completed. By (8), (13), (16) and (30),
sT(e"—B 'Ae)=s"(e"+k?e)+(u—k?)sTe=sTf+(u—k?) sTe. Hence, since u”s
+sTe+2"e=uly, it follows from (17) and Lemmas 4 and 6 that

|A= ATyl =4 —2) —(u—k) lu" y|Sc; k* h*/sin(k ) (41)

where c; is the sum of the constants ¢, and ¢, in Lemmas 4 and 6. By Lemmas
{ and 2, lu—s|, and |y—s|, are both O(k~') for large k. Hence, since
(s"s)~ ' =0(h), there exist positive constants k, and c, such that

w'y=c,/h, VkZk,. (42)

Combining (41) and (42) proves the theorem for k=k,. For k<k, the result
follows from the fact that (7), (9) and (10) imply that there exists a constant c,
such that

|A—A Sc kS h*Zes k2 k* h¥fsin(kh). [ (43)

3. Numerical Results

The form of u{™ given by (9), though it simplifies some calculations in the
proof, should not be used in numerical work as it is too sensitive to roundoff.
In the practical evaluation of A by (10) it is better to use the theoretically
equivalent form .

w_ 12sin®(kh/2)

=123 Ssin? (k/2)) (44

which was used in all calculations reported here.

In order to facilitate comparison with the results of [8], we chose the same
functions g in (1) for our numerical examples, namely g(x)=¢* and g(x)=(x
+0.1)~2. We calculated A" and A" for k=1,...,n with n=9 and 19 and for k
=1,...,25 with n=39, 79, 159 for each g and also for k=1,...,4 with n=4 for
g(x)=e*. All results shown were computed in double precision so that the
structure of the error (which is very small for small k k) can be seen clearly.

For g(x)=e* and n=239, Table 1 shows, in order, for k=1,...,20: (i) the
exact eigenvalue A,, (ii) the error 4, —A{in the uncorrected Numerov es-
timates, (iii) the error i, —A in the corrected Numerov estimates, (iv) the
error A, —A™ in the corrected second order estimates of [8] and finally (v) the
ratio (k% —u™)/(4, — A"). For each g and all n, this ratio increased monotoni-
cally with k and was always positive (so that the correction, k*—pu{”, was
always of the appropriate sign), and, for all k<n, was less than one (so that the
correction was too small). Even for k=n, the ratio was less than one for g(x)
=(x+0.1)~2 and so close to one for g(x)=e* that |1, —A™|<|4,_, —A™ |.

To confirm the prediction of Theorem 1, Table2 gives the value of (Ae
—AM)sin(k hy/k* S with g(x)=e* for n=9, 19, 39, 79 and 159. Table 3 com-
pares the error, A, — A", in the corrected Numerov estimates obtained with n
=19, 39 and 79 for q(x)=(x+0.1)"% with the exact eigenvalues in that case.
For ease of tabulation, the errors in Table3 and the three sets of errors in

Table 1 are multiplied by 10°.
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Table 1. Errors ( x 10%) in various estimates with n=39 and g(x)=¢"

k p) (A, —AMx10°> (4, -AMx10° (4, -1 x 103 - )
% x Ay RN T M (o — AP
1 4.8966694 0.00282 0.0027 24 0.0563
2 10.045190 0.04268 0.0325 9.1 0.2380
3 16.019267 0.22720 0.1137 13.1 0.5098
4 23.266271 0.88366 0.2317 124 0.7377
5 32.263707 2.88017 0.3879 113 0.8653
6 43.220020 8.04318 0.5820 10.7 0.9276
7 56.181594 19.6872 0.8158 10.7 0.9586
8 71.152998 43,2849 1.0913 11.0 0.9748
9 88.132119 87.2765 1.4108 11.3 0.9838
10 107.11668 164.024 1.7778 11.8 0.9892
11 128.10502 290917 2.1962 124 0.9925
12 151.09604 491.634 2.6709 132 0.9946
13 176.08900 797.568 3.2082 14.0 0.9960
14 203.08337 1249.40 3.8153 150 0.9969
15 232.07881 1898.85 4.5015 16.0 0.9976
16 263.07507 2810.51 5.2781 17.3 0.9981
17 296.07196 4063.87 6.1589 19.0 0.9985
18 331.06934 5755.41 7.1615 204 0.9988
19 368.06713 8000.64 8.3076 224 0.9990
20 407.06524 10936.3 9.6248 24.5 0.9991
Table 2. Scaled errors, (4, — AL®) sin(kh)/k* h°, with g(x)=e*
n
k 9 19 39 79 159
1 0.069 0.070 0.070 0.070 0.070
2 0.103 0.106 0.106 0.107 0.107
3 0.099 0.106 0.107 0.108 0.108
4 0.081 0.091 0.093 0.094 0.094
9 -0.007 0.043 0.047 0.048 0.048
14 0.028 0.030 0.031 0.032
19 —-0.004 0.021 0.023 0.023
25 0.016 0.017 0.018

The last two sentences of the proof of Theorem 1 suggest that, for k <k, in
(42), (4, — A could initially grow as fast as O(k®) but our examples did not
exhibit this rapid initial growth of error. The maximum of (4
— A™ysin(k h)/k* h*® occurred at k=1 for g(x)=(x+0.1)"% and at k=2 or 3 for
q(x)=¢* (after which it decreased monotonically in all cases) and the increase
in (A, —A®) for k<3 with g(x)=e* was less than O(k*). Indeed our results
indicate that the relative error (4, —A{)/4, increases only slightly with k until
(k h)/sin(k k) begins to increase significantly. We conjecture that for a wide class
of problems the error in A™ is in fact O(k®h®/sin(k h)) and have made some
progress towards proving this. We hope to return to this in a later paper.
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Table 3. Errors (x 10%) in corrected Numerov estimates with g(x)=(x+0.1)"2

k Ay (A, —AM) x 103
n=19 n=39 n=79
1 1.5198658 0.4325 0.046 0.004
2 4.9433098 2.7664 0.293 0.024
3 10.284663 8.6229 0.903 0.073
4 17.559958 19.436 2011 0.162
5 26.782863 36.391 3717 0.299
6 37.964426 60.481 6.095 0.486
7 51.113358 92.608 9.198 0.729
8 66.236448 133.70 13.07 1.029
9 83.338962 184.81 17.75 1.386
10 102.42499 247.30 23.29 1.802
11 123.49771 322.89 29.72 2278
12 146.55961 41394 37.10 2.814
13 171.61264 523.64 45.49 3.412
14 198.65837 656.47 54,97 4072
15 227.69803 818.84 65.63 4,795
16 258.73262 1020.4 71.57 5.584
17 291.76293 1276.4 90.92 6.440
18 326.78963 1614.4 105.8 7.365
19 363.81325 2096.3 122.5 8.361
20 402.83424 141.0 9.432

Comparison of |1, —A™| with the values of |4, ~A| given in [8] and [6]
for n=19, 39 and 79 and k<20 shows that A is more accurate (much more
accurate for small kh) than ™ in all cases when g(x)=¢* and all cases with
k<3n/4 when g(x)=(x-+0.1)"2. This is not surprising since the relative advan-
tage of Numerov’s method is greatest when kh is small and ||| ./lq" ], is
not too large. Since computation of the eigenvalues of (4) requires only slightly
more effort than calculating the eigenvalues of (—A+Q), we recommend that
the corrected Numerov estimates A" studied here be used in preference to the
corrected second order estimates A™ of [8], at least for reasonably smooth g,
provided k <n/2.

The “improvement factor” |4, —A™|/|1, —A™| was always greater for g(x)
=e¢” than for the nearly singular g(x)=(x+0.1)"2 With k=25 and n=79 for
example it was over 3,000 for g(x)=e™ but only just over 150 for g(x)=(x
+0.1)~2, However perhaps of greatest interest is the fact that for both g and all
k and n we found |4,—A®|<|L,—A|. Since the extra work involved in
computing the correction (10) is negligible, we believe the correction is poten-
tially useful even for the lowest eigenvalues.
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