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Summary. Two families of mixed finite elements, one based on triangles 
and the other on rectangles, are introduced as alternatives to the usual 
Raviart-Thomas-Nedelec spaces. Error estimates in L2(t?) and H-~(O) are 
derived for these elements. A hybrid version of the mixed method is also 
considered, and some superconvergence phenomena are discussed. 
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I. Introduction 

The object of this paper is to introduce two families of space of mixed finite 
elements for second order elliptic problems. Over triangular decompositions of 
the domain these spaces will lie between corresponding Raviart-Thomas spaces 
[12, 14], will be of smaller dimension than the Raviart-Thomas space of the 
same index, and will provide asymptotic error estimates for the vector variable 
(i.e., the one for which mixed methods are designed to approximate well) of the 
same order as the corresponding Raviart-Thomas space. In addition, if the 
Fraeijs de Veubeke [-8, 9] relaxation of the continuity of the normal com- 
ponent of the vector variable across interelement edges is introduced and an 
extension [1] of the Lagrange multiplier enforcing this continuity is made, then 
in all cases except for the lowest degree space in our family, the resulting 
superconvergent approximation of the scalar variable is asymptotically of the 
same order as that for the similarly modified version of the Raviart-Thomas 
method. 

Our rectangular elements differ considerably from those of Raviart  and 
Thomas, in that our vector elements are based on augmenting the space of 
vector polynomials of total degree k by exactly two additional vectors in place 
of augmenting the space of vector tensor-products of polynomials of degree k by 
2k+2  polynomials of higher degree. We also use a lower dimensional space for 
the scalar variable. The improved behavior of our elements over the Raviart- 
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Thomas elements listed above for triangular elements is valid for the rect- 
angular elements, as well. 

In the remainder of the Introduction the triangular elements will be de- 
scribed and a more precise summary of our results in this case will be 
presented. The rectangular case will be presented in Sect. 5. 

Consider the Dirichlet problem (vectors will be denoted by bold face) 

Lu= - div(a g radu)=f ,  x~f2, (1.1 a) 

u=  - g ,  x~a f2, (1.1 b) 

where f2 is a bounded domain in R 2 with smooth boundary dI2 and a=a(x )  is 
a positive, smooth function on the closure of f2. (In all that follows, L can be 
replaced by L u = - div (a o grad u + a i u) + a 2. grad u + a 3 u, provided that the cor- 
responding Dirichlet problem is solvable; see I-5, 6] for such an extension for 
the Raviart-Thomas method.) Let 

c = c(x)= a(x)- 1, (1.2a) 

q = - a g r a d  u. ( 1 . 2 b )  

Then, as usual for mixed methods, the operator L can be factored to give the 
first order system 

c q + g r a d u = 0 ,  x~O, (1.3a) 

d i v q = f ,  x~f2, (1.3b) 

Let V=H(div;f2)={v~L2(f2)ldivwL2(f2)} and W=L2(f2). The weak form of 
(1.3) appropriate for the mixed method is given by seeking {q, u}~V x W such 
that 

(cq, v ) -  (div v, u) = (g, v.n),  v~V, (1.4a) 

(div q, w) = (f, w), w~W, (lAb) 

where (. ,  .) indicates the inner product in L2(~2) or LZ(f2) and ( . ,  . )  that in 
L2(dO) and n is the outer normal to t~f2. 

Let ~hh = {T} be a triangulation of f2 such that 

i) if Tc f2 ,  T has straight edges, 
ii) if T is a boundary triangle, the boundary edge can be curved, 

iii) all vertex angles exceed some 0 o > 0, 
iv) if T I n T 2 ~ r then T 1 c~ T 2 is either a vertex or a full edge of each, 
v) d i a m ( T ) = h  T, max hr=h. 

T 

We construct our triangular finite element spaces as follows. First, let k be a 
positive integer and let Pk(T) denote the restriction of the set of all polynomials 
of total degree not greater than k to T. Then, set 

V(T) = Vk(T) = Pk (T), (1.5 a) 

W(T) = W k- X(T) = Pk- 1 (T), (1.5b) 

.A[ (T) = .Alk(T) = Vk(T) x W k- I(T). (1.5c) 
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Then, let 
V h = Vh k =V(k,  Jhh)= {veV [vlre~Uk(T), TeJh}  (1.6a) 

Wh=Whk-'=W(k--l, Jhh)={wlwlreWk-l(T), Ts~h}, (1.6b) 

~ h  = " ~  = ~ ( k ,  ~hh)=V~ x Wh k- 1. (1.6C) 

Recall that, in (1.6a), veV if and only if v.n e is continuous across interior edges 
e. The space ~'~ over Jhh will be our family of mixed finite element spaces over 
triangles, and we seek {qh, Uh} e'/gk such that 

(cqh , V)-- (div v, Uh)= (g, v.n), v~V k, 

(divqh, w) = (f, w), weWh k-1. 

(1.Ta) 

(1.7b) 

Let us compare j / k  with the corresponding Raviart-Thomas space ~-~h k, 
which is constructed as follows. Let k be a nonnegative integer, and let [12, 14] 

Rk(T) = Pk(T) G x Pk (T), (1.8 a) 

Sk(T)=Pk(T); (1.8b) 

then form ~hh k in the same manner as was used above for jc, k. Then, 

Note that 
~i~k-- l cJgkC~Jhhk, k > l. 

d im~k(T)=�89 + 7k +4), 

dim R k (T) x S k (T) = dim ~,k (T) + 2 k + 2 ; 

(1.9) 

thus, the dimension of the s p a c e  ~ h h  k is significantly larger than that of .,gk, SO 
that the solution of the linear algebraic system associated with ~gk is simpler 
than that associated with ~ J h  k. 

The solution of the algebraic problem associated with (1.7) can be sim- 
plified by the introduction of a Lagrange multiplier to enforce the continuity of 
the normal component of qh across interelement boundaries [1, 8, 9]. Let {e} 
denote the collection of edges of all triangles TeJhh. Let 

Mh=Mk={mlmleePk(e) if e c O  and mle=O if ec~f2}, (1.11a) 
and let 

~ =  ~k  = {vlvlreVk(r), Te~hh}" (1.1 1 b) 

Note that, if Ve~h, veV h if and only if 

(v.nr,  m)0r= 0, meM k, (1.12) 
T 

where ( . ,  ")or indicates the L2(OT) inner product; (., ")r will indicate that in 
LE(T). Then, following Fraeijs de Veubeke [8, 9], we alter (1.7) to seek 
{lth, Uh, ma}e3Vhh k X Wh k- 1 X M k such that 

(Cqh,V)--~.(divv, uh)TT~,<v.nT, mh)oT=<v'n,g>, Ve3~hh k , (1.13 a) 
T T 

(div qh, w)r = (f, w), wE Wh k -  1, (1.13 b) 
T 

~, (qn.nr, p)0r = 0, p e M  k. (1.13 c) 
T 

(1.10a) 

(1.10b) 
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As a consequence of (1.12), the function qh resulting from (1.13) coincides with 
that coming from (1.7), so that the pair {qh, Uh} of (1.13) is the same as that of 
(1.7). Note that the parameters for the two qh'S are not the same, as the 
dimension of ~k  is larger than that of Vh k. 

The original object of the modification (1.13) was to permit the easy 
elimination of the qh-parameters (and, subsequently, the uh-parameters ) from 
the system of linear algebraic equations representing (1.13). The system remain- 
ing for the mh-parameters is positive-definite [1], in place of the indefinite 
(saddle-point) system for (1.7). Arnold and Brezzi [1"1 noticed that the La- 
grange multiplier corresponding to m h for the Raviart-Thomas method con- 
tains new information about the scalar variable; a local post-processing of the 
pair {u h, mh} leads to a function * * uh, uh ITePk+ I(T), such that 

Ilu -u*[[o < K [lu[lk+ 2 +O~,o hk+ 2, (1.14) 
while 

[lu-uhllo<Kllul{~+x+O~.o h~+l, u n ~  k. (1.15) 

We shall show that a similar post-processing can be applied to the solution of 
(1.13). For k>2,  we shall see that (1.14) holds in our case, even though the 
direct approximation u h to u is limited by the estimate 

Itu--un[lo < gllUl}k hk, Uh~Wh k-l,  k> l. (1.16) 

For k=  1, u~Lr6PI(T) and 

Ilu=u*IIo<Kl{ull2 h2, k = l .  (1.17) 

A summary of our convergence results in L2(f2) and those for the correspond- 
ing Raviart-Thomas spaces is given in Table 1; it should be noted that a 
portion of the estimate given by (1.14) for the Raviart-Thomas spaces must be 
derived in a different way (as given below in the case of our spaces) than that 
employed in I-1"1. We shall derive error estimates in H-S(f2) as well; see Sect. 3. 

Table 1. Asymptotic error estimates in L 2(O) 

IIq- qhl[o K [Iqllk§ 1 hk+ 1 K [Iqllk§ ~ h k+ x 

Ilu -uhll o K Ilull kh k K liuHk+ 1 +,~.oh k+ 1 
Ilu-ul'l[0 K llullk + l _~k. , h  k + 2-a~'~ K ][UI[k + 2 hk + 2 

Throughout this paper we shall consider only the case in which the degree 
k is constant over the triangles T e N ;  however, it is possible to vary k over the 
triangles. Elsewhere [3], we shall develop transitional elements for both tri- 
angular and rectangular elements and discuss resulting procedures. Also else- 
where [4"1, we apply our elements in two different ways to problems of linear 
plane elasticity. 
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2. Projections and Approximations 

The analysis of our mixed methods will be simplified I-5, 6] by the existence of 
projections Hh=FI~: H(div, f2)~ V~ and Ph=Phk-x: Lz(f2)~ Wh k-~ such that the 
following diagram commutes: 

H(div, K2) div ~' L2(~:.~) 

Vh k div , Wh k 1 , 0  

These projections will be constructed locally (i.e., on each T e ~ ) .  Let Ph k- x be 
the L2-projection onto Wh k- 1, so that 

(w--phk-Xw, z)r=O, zePk_a(r), T~5~h. (2.1) 

Then, it is well known that 

iiw_Ph~-XwLl_s~Q(~ ,,, = ~zcs+ma/= (2.2) "" j ,  T ~  ! 
T 

for O<s<k and O<j<k, where the index - s  indicates the norm in H-S(O), 
which can be taken here to be the space dual to either HS(f2) or H~(f2). 

The definition of Ilk(T)=H~[T will take two forms, one for straight-sided 
triangles and the other for a triangle with one curved side. First, let T have the 
three straight edges el, i= 1,2, 3. Let Bk+I(T)={P~Pk+I(T)[PIeT=O} 
=)q ~.223Pk_2(T), where the 2i's are the barycentric coordinates of T. Then, let 

((v-Hk(T)v).ne,,z)e=O, z~Pk(ei) , i=1 ,2 ,3 ;  (2.3 a) 

(v-Hk(T)v, grad w)r =0, W~Pk_ I(T); (2.3 b) 

(v - Hk(T)v, curl b)r = 0, beBk+ x (T). (2.3 c) 

Next, let e 3 be curved. Then, define Hk(T) through the following degrees of 
freedom: 

((v-Hk(T)v)'ne,, Z ) e  ' =0, zePk(el), i= 1, 2; (2.4a) 

(div (v - Hk(T)v), W)r = O, wePk_ 1 (T); (2.4b) 

(v--llk(T)v,z)r=O, ze{yePk(T)ldivy=0 and y . n = 0  on elue2}. (2.4c) 

Lemma 2.1. The degrees of freedom (2.3) or (2.4) determine Hk(T) uniquely. 
Moreover, if I-lkh[T=Hk(T) for Te~-~h , then Ilk: H(div; f2)--+ V• and 

div//~ = Ph k-x div (2.5) 

on H(div; f2). Finally, for l < r < k + l ,  -- 

iiv_/i~vllo__<Q( Z 2 2, x/2 IIvlI,,ThT) �9 (2.6) 
T 
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Proof. Let V6Pk(T ) have vanishing degrees of freedom given by (2.3). Then, v.n r 
=0  on aT. Since divwPk_ I(T), 

(div v, div v) = - (v, grad div v)r + (v. nr, div v)0 r = 0, 

Ob 
and div v=0. Thus, v=curlb, where b~Pk+~(T) and ~T=v-n=0,  where t is the 

unit tangent vector along ~T, so that b can be taken to lie in Bk+ ~(T). Thus, 

II v o 2 r = (V, curl b)r = O, 

and v=0;  consequently, (2.3)determines Flk(T) on straight-sided triangles. 
Next, let T be a boundary triangle, and let v~Pk(T ) have vanishing degrees 

of freedom for (2.4). Then, v -n=0  on e~ we~ and divv=0 on T. Thus, (2.4c) 
implies that v = 0, as was to be shown. 

Now, note that (2.3a) and (2.3b) imply that (2.4b) holds on straight-sided 
triangles; thus, 

(div (v - H~ v), w) = 0, we W~- 1. (2.7) 

Note also that, since d ivvy=  W~h-t, 

(divv, w--ehk-lw)=O, vE:V k, (2.8) 

so that (2.5) holds. Finally, (2.6) follows from the Dupont-Scott [7] form of the 
Bramble-Hilbert lemma, since the vertex angles of the triangles in ~ are 
bounded below. 

3. Error Analysis for the Mixed Method 

Let us turn to the analysis of the error in the procedure of (1.7). Set 

dh----q--qh, eh =/-/~,q-- qh, z h = ~ k - l U - - U h  �9 (3.1) 

Then, subtracting (1.7) from (1.4) and applying (2.8) leads to the error equa- 
tions 

(cdh, v)--(div v, zh)=0, v~V~, (3.2a) 

(div d~, w) = 0, w~ Wh. (3.2 b) 

Our error analysis will follow the development described by Douglas and 
Roberts [6], following Johnson and Thom6e [17]; i.e., we shall base our 
argument on the duality lemmas to follow. 

Lemma 3.1. For s>O, 

I[zhl I _<K[lldhl[ohmi"~+x,k+a)+ Ildivdh[[ohmin(s+2,kl]. (3.3) 

Proof. Let ~,~H'(D), and let q~H~+2(f2)c~H~(g2) be such that L*q~=~b. Then, a 
calculation I-5, 6] shows that 

(Zh, ~) = (C dh, a grad q~ - Hh (a grad q~)) + (div d h, q~ - Ph q~), 
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so that (3.3) follows from (2.2), (2.6), and the assumed elliptic regularity for the 
Dirichlet problem for L*. 

Lemma 3.2. For  s > O, 

II div d h II - s  -<- K II div d h 1[ 0 hmin (s, k). (3.4) 

Proof.. Let r Then, by (3.2b), 

(div d h, (o) = (div dh, ~p -- w), w e  W h, 

and (3.4) follows from (2.2). 

Lemma 3.3. For  s ~ O, 

[[dh[g-5 =< KEi] dhl[ 0 hmin ('~'k + 1) _[._ Ildiv dhll 0 brain(s+ l,k)']. (3.5) 

Proof. (The argument below is simpler than that given in [6].) Let q~eHS([2). 
Then, using (3.2b) and then (2.7), 

(cdh, ~) = (cdh, Hh~) + (cdh, q,-- F/h ~o) 

= (div I I  h ~p, Zh) + (C d h, ~p -- H h r 

= (div (p, zh) + (c dh, (p -- H h q~), 
so that 

I(Cdh, q'){----< II ~o[IA/Iz,[I -s+ 1 +/Idhll o hman~S'~§ lq.  

Hence, (3.5) follows from (3.3). 
Now, let us bound IJdhllo and IIdivd, llo. In (3.2a) take v = % :  

(c %, %) = (div d h, Zh) -- (C (q -- H h q), %) = -- (c (q - H h q), %), 
so that 

II%llo <Kl lq- - / /hq[ to  
and 

IIdhllo < Ilehllo + Ilq-~qllo_-<K IIq[I,h r , l_<r_<k+l .  (3.6) 

Next, note tha t  
(div eh, w)=(d ivd , ,  w)=O, w e W  h, 

so that div % = 0. Hence, 

][divdhl lo=Udiv(q-Flhq)[Io~K]ldivql l ,h  r, O<_r<_k. (3.7) 
Thus, 

[ lu-uhl l  _~_-< Ilzhll _~ + I l u -  Ph ~ -  l u l l -5  
~K[llq[Jrlhmin(rl,k+ 1)+min(s+ l , k+  1) 

+ II d i v  q IIr hmin ('' k) + rain(s+ 2, k) 

+ Ilullrhmi"("k)+mi~'k)], 

where h->-1. This can  be simplified by using the elliptic regularity for the 
Dirichlet problem for L*. Then, it follows that ([gjj= [[g[[nJ(0a)) 

I l u - u ,  l l_~<K(l l f l l ,_2+lgl~_~/2)h  "+~, 2 < r < k + 2 ,  O < s < k - 2 .  (3.8) 
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Similarly, 

t]q-qh[] _s < K[[lq[[,1 h~i~(~"k + 1)+,~i~(~,k+ 1)+ I[div qt[ ~h ~i"(~' k)+~i~(s+ t,k)] 

<g(llf l l~_l+lgl~+l/E)h "+~, l < r < k + l ,  O < s < k - 1 .  (3.9) 
Finally, 

Ildiv(q-qh)[l_~<Klldivql{~h'+~--Kllflt~h'+~, O<r<<_k, O<s<k .  (3.10) 

Theorem 3.4. Let {qh, Uh}eV~ • Wh k-1 be the solution of the mixed finite 
element method (1.7). Then, the estimates (3.8), (3.9), and (3.10) hold for the errors 
u -  u h, q - q h ,  and div (q-qh), respectively. In particular, 

I[u--uhll_k+ IIq--qn[l-k+l+ Ildiv(q-qh)ll-k~K(tlfHk-blg[k+3/2) h2k (3.11) 
and 

II uh -P~u I[ o < Q(I} f ][ k + [glk+ 3/2) hmin(k + 2, 2k)o (3.12) 

4. Analysis of the Hybrid Form of the Mixed Method 

The object of this section is to associate with the Lagrange multiplier m h, 
which was introduced to relax the continuity requirement on the normal 
component of the vector veV~ (i.e., to produce a hydrid-mixed method), and 
the scalar variable u h a new approximation u* to u such that u - u ~  is more 
rapidly convergent to zero than u - u h .  The development here is closely ana- 
logous to that of Arnold and Brezzi [1]. In particular, we begin with an 
argument quite similar to that of Theorem 1.4 of [1]. Let 

2 Imhlo,h= ~ m 2 11 nllO,e, (4.1 a) 
e e l 2  

Imhl2_x/z,h= ~ lellmhtlo 2 ,, (4.1b) 
e C ~  

where lel denotes the length of the edge e. Also, let Qh=Q~ be the projection 
operator defined locally by L 2 (e)-projection onto Pk(e) for e c f2. 

Lemma 4.1. I f  {qh, uh, mh}~-V~ X Wh k - I  • Mkh is the solution of (1.13), then 

Ilmh_Qkhullo,e<g{h~/2llq--qhllo, r+h~X/2LIp~-lu--uhllO, T } (4.2) 
and 

Imh -- Q~u[_ 1:2,h < K {h l[ q - qh 13 o + [I P~- 1 u - u h I[ o}. (4.3) 
Moreover, 

1 % -  Q~u[_ 1/2,n < K(II f Ilk + [glk+ 3/2) hk+ 2 . . . .  (2- *, 0) (4.4) 
for k >_ l. 

Proof. The estimate (4.3) follows immediately from (4.2) and the assumed 
vertex angle condition for the triangles. The bound (4.4) follows from (4.3), 
(3.~, and (3.3). Thus, it suffices to prove (4.2). 

Let e c l J n T  and define a vector v~V~ having support in T by requirin~ 
that 

V.ne=mh--Q~u on e, (4.5 a) 

V.nT=0 on d T \ e ,  (4.5b) 
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(V, grad w)r = 0, WePk- 1 (T), (4.5 c) 

(v, curl w)r=0 , weBk+ I(T); (4.5 d) 

the existence and uniqueness of v is assured by Lemma 2.1. Moreover, a simple 
scaling argument shows that 

hT IIvLI 1, T'4-ItVNo, T < Kh  1/2 Ilmh--Qkhullo,~. (4.6) 

Now, use v as the test function in (l.13a): 

(Cqh, V)r-- (div v, Uh) r + (mh, m h -- QhU)e ----- O. 

Since 
(cq, v)r-(div  v, U)r+ (u , m h - - Q h U ) e = O ,  

it follows that 

lira h --OhuNg,~ = (m h --u, m h --QhU)e=(C(q--qh), V)r- (div v, Zh)r, 

and (4.2) follows from (4.6). 
Let us recall some extension maps introduced by Arnold and Brezzi [-1]. 

Lemma 4.2 [1]. Let k be a nonnegative even integer. Then, there exists a map 

3 
Rk+ I(T): [ I  L2 (ei) x L2(T) --* Pk+ 1 (T), 

i=1 

u~ = Rk + l ( T) {mh, Uh}, given by 

Moreover, 

(u*--mh,  p)~=O,  pePk(ei), i=1 ,2 ,3 ;  (4.7a) 

(U~--Uh, P)r=O, pePk_z(T),  for k>2.  (4.7b) 

[lU~I[O,T~K[[lUhI[O,T+h~/2 ~ I[mhllO,e~ ]. (4.8) 
i=1 

Arnold and Brezzi proved Lemma 4.2 only for straight-sided triangles. 
Since our boundary triangles can have a curved edge, we need to note that the 
same degrees of freedom continue to define u*SPk+I(T) uniquely, at least for 
small h, since as h ~ 0  the curved edge deviates from the line segment joining its 
end point by O(h2). Hence, the matrix generated by (4.7) remains nonsingular 
for small h. An application of the argument of Dupont and Scott [7] shows 
that (4.8) continues to hold on the boundary triangles, again for small h. (We 
shall assume that h is this small in the argument below.) 

Arnold and Brezzi did not find a simple expression for a corresponding 
map for odd k; however, for k=  1 and k=3 they found the following maps, 
which also satisfy (4.8). For k=  1, let R2( j  -) be given by letting u*lreP2(T) be 
determined by the relations 

(u*-mh, 1)e =0, i=1,2,3; (4.9 a) 
(u* - u  h, p)T = 0, P~P1 (T); (4.9 b) 
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this definition of R2(3  -) so given for completeness only, as it is not used below 
to extend m h and u~ when k =  1. For  k = 3 ,  let U*qrePg(T ) be given by 

(u*-mh, p)~=O , p~P2(ei), i = 1 , 2 , 3 ;  (4.10a) 

(u* - u  h, P)r =0,  peP2(T). (4.10b) 

For  k ~ { 0 , 1 , 2 , 3 , 4 , 6 , 8  . . . .  }, let R k+l denote the extension of the corre- 
sponding R k+ l (T )  to all TE~'~h, and let 

~R~,. {mh, b/h} , k = 1, (4.11) 
u*=l.R~,+l{mhuh}, k = 2 ,  3,4,6, 8 . . . .  ; 

interpret m R as - g  on edges ei~ 0f2. Also, set 

~Rh 1 {u, u}, k = I, (4.12) 
uh* = [R~ +l {u, u}, k = 2, 3, 4, 6 . . . . .  

It is easy [1] to see that  

Nu_u~llo<=~gllullzh2, k = l ,  (4.13) 
[Kl lu  h k+2 k = 2 , 3 , 4 , 6 ,  

k + 2  ' . . . .  

Set 
z * - , , *  �9 ~* (4.14) h - -  t *h  - -  ~ h  " 

The cases k =  1, k=3 ,  and k even must be considered separately. Let us start 
with k =  1, so that  

(z'~, 1)e=(mh--Q~ 1)e=(mh--Q~u, 1)e,, i=  1,2,3,  (4.15) 

as ((Qh ~ -Q~ 1)e =0,  for e lcf2 .  If eic~312, (z~', 1)e ,=0.  Thus, by (4.8), 

3 

tlz~llo, r<gh~/2 ~, IlQlu-mhllo,e,, 
i = 1  

and, by L emm a  4.1 and (4.4), 

[]z*[[o<K(Iffl[t +lgls/2)h 2, k = l .  
Thus, 

Ilu-u*llo<K(llflll +lg[s/z)h 2, k = l .  

Next,  let k = 3. Then, 

( Z~, P)e, = (ran- Q 2u, P)e, = (mh- Q3 U, P)e,, 
and 

(z*,p)T=(Uh--Ph2U, P)r, peP2(T). 
Consequently,  

, ( 2 1 / 2  
Ilzhllo, r=K[ l luh - -Ph  ullo, r+hr llmh--Q~ullo,or]. 

By (3.3), (3.6), (3.7), and (4.4), 

{Iz~llo<K(llflla+lglg/2)h 5, k = 3 .  

p~P2(el), i= 1, 2, 3, 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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By (4.13) and (4.19), 

Iiu-u~llo~K(tlflla+lglg/2)h 5, k=3.  

Finally, let us consider the case of positive, even k. Then, 

so that 

k u 
<Z*, P>e, : <mh-- Qh , P>e,, pSPk(ei), i= 1, 2, 3; 

(z*,p)T=(Uh--Phk-au, P)T=(Uh--phk-lu, p)T, p~Pk_z(T), 

and 
,, ~hk + 2 [Iz*llo <=K(llfHk + sk+3/2, , 

as in (4.19) above. Thus, 

[lu--u*lloNK(Nf]lk+lg[k+a/2)h k+2, k = 2 , 4  . . . . .  (4.21) 

The results above can be summarized in the following theorem. 

Theorem 4.3. Let the function u~ be defined by (4.11). Then, 

(g( l l fNl  +lgls/2)h e, k = l ,  (4.22) 
[pu-u~llO < lg (Nf[  I k+2 k + lglk + 3/2)h , k = 2 , 3 , 4 , 6  . . . . .  

We have left to show that a function u~, U*IT~Pk+I(T), can be associated 
with our approximate solution {qh, Uh, mh} such that the inequality (4.22) holds 
for odd k> 5. Presumably, ad hoc choices of degrees of freedom can be found 
for each such k, in the somewhat unlikely event that someone wants to use 
polynomials of these degrees. However, for all k > 2, it is possible to offer as an 
alternative procedure a local version of the Nitsche [-13] procedure. 

Now, let T ~  and define U~,U~IT~Pk+a(T ), triangle-by-triangle as the 
solution of the equations 

A(u*, p)= A., r(u*, p)= (a grad u*, grad P)T -- (a ~ ,  p 
\ cn lOT 

-(u*, '~p\ .-1 
a Un/2oT + ~nT (u*, P)o~ 

= ( f P ) r -  r + a h r l ( m h ,  P)or (4.23) 

for pePk+~(T), where a is a constant depending on k+  1, the coefficient a, and 
the minimum angle constraint for Te~hh. We shall outline the proof of the 
following theorem, since its proof is just a variant of the usual proof of the 
convergence of the Nitsche method on all of O. 

Theorem 4.4. Let k > 2 and u* be defined triangle-by-triangle by (4.23). Then, 

IlU--U~llo ~=K(l l fHk  nt-lglk+ a/E)h k+2. (4.24) 

(4.20) 

iiz, tro, v~K[lPUh_Phk-lullo, T+h~/eHmh k -Qhutlo,o~] 
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Proof Recall that the Nitsche form A, while not coercive over Hi(T), is 
coercive over Pk+ 1 (T) for sufficiently large a. In particular, 

A(p,p)>p(llgradpll2,r+hrl 2 IlPll 0,0r), pePk~ I(T), (4.25) 

for a fixed choice of such a. The error equation for (4.23) is 

~p 
A(u-u* ,p )=(mh-u ,a~n)or+ahr l  (u-mh, p)or 

~P\ -1 = mh--Qk,u,a~n/or+ah r (u--mh,P)or, pePk+l(r), (4.26) 

where Q k  is the U-projection on each edge into Pk(e) with respect to the 
weight function a. Take fiSPk+l(T), shift u to p*, and choose p=a-u*: 

A(a-u~, a - u * ) = A ( f ~ - u ,  r l -u~')+ rnh--Qh,, ,a ~--~(u--u*) or 

+ oh~ 1 (u - m  h, fi -u~)or. (4.27) 

By the same inverse property as was used to show (4.25), plus properly 
choosing ~ to approximate u on T and applying Lemma 4.1, we see that 

a(f i-u~,d-u~)< z 2k+Z z u z K[llu][k+2, rh + [Iq--qh[[O,r+hr 2t[Ph k+lu-  hllo, r],  (4.28) 

from which it follows that 

~ {  grad(u_u~,)jl2o r+h~Xllu_u, Jl2,or}<K{llf}]2+ _,2 ~l.Zk+Z g l k + 3 / 2 3 n  , k>2. 
r (4.29) 

It is now appropriate to use a version of the standard duality argument, on 
each triangle separately, to develop an U-estimate for u--u*. Let 

- div(a grad q0 = ~ - u * ,  x~T, (4.30a) 

rp = 0, x ~  T, (4.30b) 

so that [l~Otlz,r<--_K[lfi-u*llo, r and [[(plll,r<Kll~Ol[z, rh, as the piecewise-linear 
interpolant of tp on  T vanishes. Hence, 

II a - u *  Ij g, r = A ( ~ -  u *, ,P) 
____KA(a-u*, a-u*) 1/z ira-u* 1[o, rh; 

consequently, the desired bound (4.24) follows easily. 
The choice of  a Galerkin-like procedure such as (4.23) is quite natural to 

find u~' since we are looking for an approximation to the scalar variable u and 
have the right-hand side of  the differential equation and an accurate approxi- 
mation to u on the edges of the triangles. Note that Theorems 4.3 and 4.4 
complete the justification of Table 1. 

We should like to remark that, while the usual reason for choosing a mixed 
method is to obtain the vector variable q accurately, the solution of the mixed 
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method clearly contains information about the scalar variable to an order in h 
that would permit evaluating - a  grad u~' to find a second approximation of q 
of the same order of accuracy as that given by qh- 

Let us consider the algebraic equations generated by (1.13). The system 
takes the form (where the triple {qh, Uh, mh} is represented by the parameters 

{~'h, "h, "~h}) 
d~h + ~uh + c ~ h  = g, (4.31 a) 

"~J* qh = f ,  (4.31 b) 

oK, qh = 0. (4.31 c) 

The matrix sr is block diagonal, with positive definite diagonal blocks of size 
dimVk(T). The first step in the solution of (4.31) consists of eliminating qh, 
leading then to an equation of the form 

~ *  d -  1 N , h  + ~ ,  ~ , -  1 c ~ h  = f , .  (4.32) 

The matrix N * ~ r  is again block diagonal, with blocks of the size 
dim W~- 1, and Uh can be eliminated to produce a system of the form 

~ h = f " .  (4.33) 

The matrix @ is symmetric positive definite; its graph connects the parameters 
for ~h on an edge e to those for ~h on the other four sides of the two triangles 
containing e. A variety of iterative or direct methods can be employed to find 
the solution of (4.33), from which qh, Uh, and u* (if needed) can be evaluated. 
The advantage of the procedure outlined above (over and above the possibility 
of finding u~') instead of treating the linear equation arising from the standard 
mixed method (1.7) is that ~ is positive definite in place of the indefinite 
system for (1.7). 

If the Raviart-Thomas-Nedelec method is modified [1] to correspond to 
(4.31), the resulting matrix ~ has exactly the same structure as the one above; 
however, both of the elimination steps for ~h and uh involve blocks of no- 
ticeably larger size than those above. 

5. Rectangular Elements 

Our rectangular elements are based on polynomials of some fixed total degree, 
rather than of the same degree in each variable; consequently, the local 
dimension of our space is much smaller than that of the corresponding Ra- 
viart-Thomas space. Let ~ = { R } ,  where the rectangles R are such that 
diam(R)=hR<h and the ratio of the side lengths of R is bounded by a 
constant independent of R and h. Let k > 1. 

We again base the scalar space on Pk- 1 : 

W k- 1 (R) = ~ _  1 (R). (5.1) 

We would like to use vector polynomials of degree k for our vector space; 
however, this choice fails the stability condition I-2] necessary for optimal 
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order estimates. Thus, we augment these polynomials by adding a space of 
polynomials of degree k + 1 of dimension two. Let 

V k (R) = Pk (R) �9 Span (curl x k + i y, curl x yk + 1). (5.2) 

Again, define ~gk=Vkx Wh k-1 through the analogue of (1.6) and then seek 
{qh, Uh} e~lk satisfying (1.7). The analysis of this resulting mixed method is 
faciliated, as before, by the existence of projections Hk: H(div, O ) ~ V  k and 
phk- 1 : L2(f2) ~ Whk- a. As before, let Ph k- 1 denote LE-projection: 

(w--phk-Xw, z)R=O, ZePk_l(R), Re~hh. (5.3) 

Next, let Hk[R be defined by the following degrees of freedom when R has no 
curved edge: 

((q--llkq)'ne,,p)e=O, pePk(e,), i=  1,2,3,4; (5.4a) 

(q--//kq, V)R =0, VePk_ 2(R). (5.4b) 

If R has one curved edge, assume that this edge is labelled e4. Then, we can 
modify (5.4) in a fashion similar to (2.4). Let Ilk be determined on such a 
boundary element by the relations 

((q-- ii~q)'ne,, P)e,=O, 

(div (q - Hkq), w)R ----- 0, 

(q  - -  H k q,  V)a = 0 ,  

p~Pk(el), i= 1, 2, 3; (5.5a) 

W~Pk_ I(R); (5.5b) 

ve {y6Vk(R): div y = 0  

and Y.nR=0 on e 1 we 2 u e3}. (5.5c) 

Lemma 5.1. The degrees of freedom of (5.4) or (5.5) determine II k. Moreover, 
divHk=ph k-1 div as a map from H(div; f2) to Wh k-l, so that 

(div (el - H k r w) = 0, w e W k-  1, (5.6 a) 

(divv, w--Phk-lw)=O, VeVh k . (5.6 b) 
Also, 

tlq-H~q[lo<=Kl[qtprh', l _ < r _ k + l ;  (5.7a) 

[[w-pk-lwll_ <=K[lwllr h'+s, O<_s<_k, O<_r<_k. (5.7b) 

Proof To establish unisolvence for (5.4), it suffices to treat the case R = [0, 1] 2. 
Let qeVk(R) have vanishing degrees of freedom. Since q = (ql, q2) with 

q ~ (x, y) = a 1 yk + a2 X yk + q'l (x, y), 

q2(x, y)=bl  xk +b2xky + q'2(x, y), 

where the degrees of q'l and q~ in y and x, respectively, are less than k, it 
follows from (5.4a) that aa=a2=bl=b2=O, so that q contains no terms com- 
ing from the curl of xk+ly or x y  k+l.  It then follows from (5.4a) that q . n = 0  on 
0R. Thus, 

qx =x(1-x)q~(x ,y) ,  q'~ ~Pk_ 2 (R), 

and (5.4b) implies that ql vanishes. Similarly, q 2 = 0 ,  and the projection is well- 
defined. 
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Next, note that 

(div (q - Hkq), w)R = -- (q -- Hkq, grad W)R + ((q-- Hkq).n, W)e R 

=0, W e P k _ I ( R  ), 

and that div Vk(R) = Pk- 1 (R). 
Now, let R be a boundary rectangle. It suffices to take R having vertices at 

(0,0), (1,0), (0, 1), and (~, 1), so that e 4 connects (1,0) and (~, 1). As above, if 
q~W(R) has vanishing degrees of freedom (5.5), (5.5a) applied to the upper and 
lower edges of R implies that b 1 = b 2 = 0  and q2=0  on these edges. Also, ql 
vanishes on the edge x=0 ,  so that q.nR=0 on e l ~ e 2 w e 3  . Moreover, (5.5b) 
forces divq to vanish, so that (5.5c) implies that q = 0 ;  i.e., H k is uniquely 
determined on a boundary rectangle. 

Since (5.6a) holds rectangle-by-rectangle, the remainder of the lemma fol- 
lows easily. 

A glance through the development of Sect. 3 shows that the arguments 
there used only the properties (5.6) and (5.7) and not the specific form of the 
spaces V k and Wh k- 1. Hence, the error estimates of Theorem 3.4 are valid when 
the space based on triangular elements is replaced by one based on rectangular 
elements or, in fact, one based on mixing rectangular and triangular elements, 
since they have been designed to fit across straight-edges parallel to one of the 
axes. 

It is again possible and profitable to introduce a hybrid version of the 
mixed procedure for rectangular elements. Again let~hh k denote those vectors 
lying in Vk(R) for all Re~hh, and let M k be the set of functions reducing to 
polynomials of degree k on each interior edge and to zero (or - g ,  when being 
used later to extend m h and u h to u*) on boundary, edges. Let {qh, Uh, mh} again 
denote the solution of (1.13), now for rectangular elements, and note that 
Lemma 4.1 is valid also for the rectangular case. 

The Lagrange multiplier m h can again be exploited to produce a supercon- 
vergent approximation u* to u. The local Nitsche procedure (4.23) can be 
applied to the rectangular decomposition, and the error estimate (4.24) can 
again be derived for k>  2; in fact, the proof of Theorem 4.4 covers this case. It 
is also possible to give an analogue of the Lemma 4.2 of Arnold and Brezzi in 
the rectangular case, this time for all k > 1. 

Lemma 5.2. Le t  

Qk+ I(R ) = Pk +1 (R) 03 Span {x k+ 1 y, xyk+ 1, qg+ 1}, (5.8) 
where qk+l(x,y)={xk+2y--yXyk+2, k odd, k_>_ 1, (5.9) 

x k + 2 _  k+2, k even, k__>2. 

Let u*eQ k+ I(R) satisfy 

(u~ - mh, P)e, = O, 

(u~ - uh, w)R = O, 

p~Pk(el), i= 1, 2, 3, 4; (5.10a) 

w e Pk- 3 (R) + Span (1 k_ 1 (x)  I k_ 1 (Y)), (5.10 b) 
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where lk_ 1 is the Laguerre polynomial (or, more precisely, the uhraspherical 
Gegenbauer polynomial ~k-r'r [10]) of degree k - 1 ;  i.e., on the interval I--1, 1], 
these polynomials are orthogonal with respect to the weight function 1 - t 2 : 

1 

S li(t)lj(t)(1 -- t2)dt = ~ij, (5.11 a) 
-2 

lo(t ) = 2-  2/2. (5.11 b) 

Then, u~ is uniquely determined by the degrees of freedom (5.10) and 

[lu*[lo,R <=g {llUhl[O,R-t-h~/2[lmhllO.OR}. (5.12) 

Proof The number of degrees of freedom is �89  
=dim Qk+l(R); thus, the lemma will follow if we can demonstrate unisolvence. 
For  this purpose we can take R to be the square [ - 1 ,  1] 2 and renormalize 
Ik- 1 so that l k_ 1 (1) = 1. 

Consider first the case of even k, and let z~Q k§ ~(R), 

z(x, y)=p(x,  y )+cl  x k+ lY+C2xyk+ 1 +C3(xk+ 2 _yk+ 2), 

with pePk+ ~ (R), have vanishing degrees of freedom: 

(z ,w)e =0,  W~Pk(ei), i=1 ,2 ,3 ,4 ;  (5.13a) 

(z, W)R = 0, W ~Pk- 3 (R) + Span (l k - 1 (x)I k _ 1 (Y)). (5.13 b) 

Let L k denote the Legendre polynomial of degree k on [ -  1, 1], again normal- 
ized so that Lk(1)= 1. Then, (5.13a) implies that 

z[e, = aiLk+ 1 (t) + biLk+ 2(t), i = 1, 2, 3, 4. (5.14) 

In fact, bi=0. To see this, label the top of R to be e 1 and let the remaining 
edges be numbered in the clockwise direction. Assume that b~ = 1. Then, c3= 1, 
so that b 1 = b 3 = l  and b 2 = b 4 = - l .  Then, continuity of z at the vertices 
implies, as Lk§ 1 is odd and Lk+ 2 even, that 

a l + l = a 2 - 1 ,  

- - a 2 - 1  = a 3 + 1 ,  

- - a 3 + l =  - a 4 - 1 ,  

a 4 - 1 = - a ~ + l ,  

from which it follows that aa = a a - 8 ;  hence, hi=0. So, 

z[~,=aiLk+l(t), a l = a 2  = - -a3=  --ag=a. 
Set 

"~k+ 1( X' Y)=XLk+ 1 (Y)+ YLk+ I(X)--xY, (5.15) 

SO that s k+ I(R) and 

z=a*~'k+ 1 +(1 --X2)(1 --y2)w, (5.16t 
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where, a priori, WSPk_2(R ). Let b(x,y)=(1-x2)(1 __y2) and write w in the form 

w(x,y)=q+ ~, crsx"y ~, qePk_a(R). 
r + s = k - - 2  

Since b(x, y)xry ~ contains the factor x '+2y ~+2, which does not belong to Qk+l, 
it follows that w~P k_ 3 and 

w(x, y)= ~ c,fl~(Xlls(y ). 
r + s < k - 3  

Now, apply (5.13b) to (5.16). Since 

(XLk+ I(Y)+ YLk+ I(X), P)R=0 

for PS Pk- 3 (R) @ Span (l k_ 1 (x)I k_ 1 (Y)), 

( -axy+bw,  p)R=O, pePk_3(R)~Span(lk_l(X)lk_l(y)). (5.17) 

The relations of (5.17) can be represented in matricial form as 

where 

1_ ; . . . . . .  0 . . . . . .  

[ Dll 
\ 

I \ 0 
I \ 

B j  I \ \  
I \ 
I 0 \ \  
I \ 
I \ \ D . .  
I 

-__f- 

= 0 ,  
Crs 

(5.18) 

and, if j 4= 3, 

Then, with r = 1, 
1 1 

13(t)Ij(t)dt= ~ (t2-cl)ll(t)lj(t) dt=O, 
- 1  - 1  

1 

I la(t)lj(t) t2dt=O" 
- 1  

All=(xy,  lk l(X)lk_l(y))R= ( )  1 lk_l(t)tdt) 2 (5.19) 

and Du>0.  Consequently, unisolvence follows if A l l , 0 .  Since t=cll(t ), it 
suffices to show that, for odd j  > 3, 

1 1 

Ij= ~ ll(t)lj(t)dt= I ll(t)lj(t) t2dt4~O" (5.20) 
--1 --1 

Assume not; i.e., assume Ij=O for some odd j__>3. Recall the recursion formula 

l,+2(t)=(t 2-cr)Ir(t)-d,lr_2(t ), l 1(0=0. 
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A recursive application of this argument shows that 

1 
lj(t)2dt =0, 

- 1  

a contradiction; hence, I~ 4: 0, j odd. 
This completes the proof of Lemma 5.2 for even k. 
Now, let k be odd. Let 

z(x, y)=p(x, y)--[-Cl Xk+ l y-q-c2xyk+ 1 ..kCa(Xk+ 2y_xyk+ 2), 

pEPk_3(R), be an element of Qk§ having vanishing degrees of freedom. 
Then, (5.10a) implies that 

zle=aiLk+l(t)+biLk+2(t), i=1 ,2 ,3 ,4 ;  

again continuity of z at the vertices implies that hi=0 and a s = a 2 = a  3 = a 4 =  a. 
Now let 

"~/gk+ 1 (X, y)-- Zk+ 1 (x) q- Lk+ 1 (Y) -- 1. 

Then, ~k + l eQ T M  and ~Lf k + l le = Lk + l . Thus, 

z=a~k+~ +b(x,y)w, WePk_ 1 �9 

A similar argument to the one above shows that weP k_ 3, which leads us to the 
following analogue of (5.17): 

( - -a+bw,  P)R=O , pePk_ a(R)OSpan(lk_ l(X)lk_~(y)). (5.21) 

For this case, unisolvence follows if 

A11=(1,1k_ l(X)lk_l(Y))R= ( ~  1 Ik_l(t)dt) 2 

= c o a s t . ( )  1 lo(t)lk_l(t)dt)2=t=O. 

An argument of the same type as above shows that, if 

1 
/ (t)dt=0 

- 2  

for some even j, then l~-0.  Thus, the proof of Lemma 5.2 is completed in all 
cases. 

For  k>2,  let U*IR~Qk+I(R) be determined by (5.10), where {qh, Un, mh} is 
the solution of (1.13). For  k= 1, let u~IR~Q~(R). Then, it is clear that 

i lu_u,  llo < (g(llfllo+[g[a/2)h2 , k = l ,  (5.22) 
=~K(llfllk+lglk+3/2)h k+2, k>2. 

Let is turn to the computational aspects of the method (1.13) associated 
with rectangular elements; i.e., consider the equations (4.31) for the rectangular 
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case. N o t e  tha t  

d i m ~ k ( R ) = ( k + l ) ( k + 2 ) + 2 = k  z + 3 k  + 4 ,  

whereas  
d im ~ J ' k ( R )  = 2(k + 1)(k + 2) = 2k 2 d- 6k + 4, 

which is essent ia l ly  twice  as great.  Thus ,  the  r e d u c t i o n  f rom (4.31) to (4.32) is 

s ignif icant ly less expens ive  for our  e lements  t han  for the  R a v i a r t - T h o m a s  ones.  
Also,  

d i m  W k-  l ( R ) = � 8 9  

versus ( k + l )  2 for the R a v i a r t - T h o m a s  sca lar  part.  Aga in ,  the e l i m i n a t i o n  of  
the uh-paramete rs  is cheape r  for ou r  e lements .  The  m a t r i x  ~ of  (4.33) aga in  has  
the s a m e  s t ruc tu re  for b o t h  ou r  and  the R a v i a r t - T h o m a s  r e c t a n g u l a r  e lements .  
The f o r m  of ~ lends i tself  to the d e v e l o p m e n t  of efficient i te ra t ive  m e t h o d s  for 
the so lu t ion  o f  (4.33); this  issue will be  discussed elsewhere.  
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