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1. Introduction 

We consider a singular perturbation problem of the form 

ey"-(f(y))' -b(x, y)=  0, 0 < x  < 1, (1.1 a) 

y(0)=A, y(1)=B,  (1.1b) 

where e is a small positive parameter. For solving this problem numerically, we 
derived in [3] the following difference scheme: 

U l  U t  - i 

1 
2h (f(u'+O-f(ul-1))-b(xi' u,) =0,  i=1  . . . . .  N - 1 ,  (1.2) 

u o = A, u N = B. 

Here h denotes a mesh width h=l/N and 4(#) is a function defined by ~(p) 

a(s) ~ s  ) h =/~coth(/0 in which p = ~ - -  p, where a(s)= and p =-'e But we could not 

analyse this scheme in [3]. In this paper, we shall give a L 1 convergence result 
for the scheme (1.2). 

We put the following assumptions on f (y)  and b(x, y): 
H1. f(y) belongs to C2(R) and b(x,y) is in C I ( [ 0 , 1 ] x R ) ,  where R =  

(-00, ~), 
H2. by(x,y)>6>O on [0, 1] • 
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Under these conditions, we show that (1.2) has a unique solution which 
converges to a correct solution of (1.1) in L 1 sense for all values of e. 
Recently, Osher [4] proposed a difference scheme for solving (1.1): 

En(u)] i -~(ui+l-2ui+ i-1 - ~  a (s)ds+ ~ a+(s)ds 
Ul-- ]  

-b(xi,  ul) =0 ,  i=  1 . . . . .  N - 1, (1.3) 

uo=A, uu=B, 

where a(s)=min(a(s),O) and a+(s)=max(a(s),O). This scheme is often called 
Engquist-Osher scheme (E-O scheme) which reproduces essential properties of 
the true solution, especially, interior shocks and boundary layers, very well. 
Our scheme is also sensitive to such phenomena. 

Abrahamsson and Osher considered, in a more recent paper [1], a class of 
monotone difference schemes which include E-O scheme, and proved that the 
solutions of such schemes are of bounded variation uniformly in e. and h. This 
property plays an essential role in obtaining their U convergence result. But 
since our scheme is not of monotone type in the sense of Abrahamsson and 
Osher, their method for getting a uniform bounded variation estimate is not 
applicable to our scheme. We devise in Sect. 4 a method to obtain this 
estimate. We remark there that our method can also be applied to E-O 
scheme. In Sect. 5, we give a L ~ convergence result. We then discuss how our 
scheme relates to E-O scheme. Section 6 is devoted to present some numerical 
results. 

2. Solutions of  the Continuous Problem 

We summarise some known results concerning the continuous problem (1.1), 
which will be needed later. 

Lemma 1. The problem (1.1) has a unique solution y(x) satisfying 

max [y(x)l<max IAI, IBI,~ max Ib(x,0)l - C  o. (2.1) 
0 < x < l  = = O-<x<- i  

Lemma 2. There exists a constant C 1 independent of e such that for the solution 
y(x) of (1.1), 

1 

S ly'(x)[ dx< C 1. (2.2) 
0 

These results have been obtained, for instance, by Lorenz [2]. 

3. Solutions of  our Difference Scheme 

In this section, we shall show the existence and uniqueness of solutions to the 
scheme (1.2). We also seek the range of the solution. 
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Theorem 1. Let y(x) be a solution of (1.1). For a positive constant r to be 
determined later, define an open ball V by 

V = {  v' l ' v - y l l l=h  ~' 'vi-y(x~)l . . . . .  vN)} 

and its closure by V. Then (1.2) has a solution in V.. 

Proof. As a tool of the proof, we use the contraction mapping theorem [5; 
p. 65] as employed in [3]. Choose a positive number k so that 

[1 ( ? )  ] 
k ~ max a(z) coth p + max by(x,z) <1, (3.1) 

Iz[<-_Co+r/h 0 <-x<- 1 
Izl<=Co+r/h 

where C O denotes the constant defined in (2.1). With the above k, we define 

A, i=0 ,  

G h ( U ) [ i :  ui-t-kFh(u)[i, i = 1  . . . . .  N - l ,  
tB,  i=N.  

Introducing two vectors 

u = ( U o  . . . .  , uN) 
and 

Gh(U)=(Gh(U)Io . . . . .  Gn(U)IN), 

we consider an equation of the vector form 

U = Gh(U), (3.2) 

which is equivalent to (1.2). In exactly the same way as the proof  of Theorem 4 
in [3], we can show that for any v and w in V, 

II ah(v)  - Gh(W ) I11 ----< (1 - -  k~i)IIv - -  w II1. 

Namely, the operator G h is a contraction mapping in V with the contraction 
factor 1 - k 6 .  

Next, we shall estimate the local truncation error Fn(y)l ~ to apply the 
contraction mapping theorem to (3.2). F rom now on, the symbol C is used as a 
generic constant independent of mesh points, e and h. Remark in the first that 
Fh(Y)[ i can be decomposed as 

i' 
1 yi+ , (y  , 1 Yi 

2h ~ i + l - s ) a ( s ) d s + ~  ~ (s-y i -1)a ' (s )ds '  (3.3) 
Yi Y I - 1  

where 

Yi+l l Y i  l 1 

Lh(Y)[,=~ P (Y,+I--2yi+Y,-O--a(Yi)  2h b(xi, Yi)" 
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Furthermore, the t e r m  Lh(y)l i may be written as 

J g i + l  

Lh(y)[ i= ~ Ki(t)(a(y(t))-a(yi) ) y'(t) dt 
Xi-I 

X i + l  

+ ~ Ki(t)(b(t , y(t))-b(xl,  Yi)) dt 
X i - 1  

- I 1 + I  2 

in which Ki(x) is given by 

X - - X  i 1 

Ki(x) =lh(zi +.r: F 1) xi+ 1 --X 

with z i =exp(a(yi)p). Such a technique has also been used in I-3]. 
We start with the estimation of Lh(y)l i. For latter use, we put 

Xi+  I 

d,= J ly'(t)ldt. 
X i - I  

The term 11 is estimated as follows: 

xi + I t d s  
tl 11< C ~ Ki(t ) ~x y'(s) lY'(t)l dt 

X i - - I  i 

X i + l  X i + l  

< C  j K,(t) .( ly'(s)ldsly'(t)ldt 
X i -  I X i -  1 

<c 
= h  

X i - 1  ~ X  < X i ,  

where we used the estimate max la'(s)l<C to get the first line, 
Isl ~Co 

inequalities 0 <Ki(x ) < C/h in the last line. 
The second term 12 is bounded by C(d~+h) because of the 

JCi+l  

S Ki(t)dt = 1 and assumption H 1. Therefore, we have 
x l - 1  

d 2 

and the 

equality 

(3.4) 

Next, we shall estimate the remaining terms of (3.3). 
I(/~ coth(#)) ' t< 1 holds for all/1, we have 

<P ta(s)-a(y~)l 
= 2  

Noticing that 

< Cp Is -Yi[" 
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Hence we obtain 

and 

It is easy to get 

and 

y I - I  = h 

~--~ r'* ' ds C d2 (y,+, -s)  a'(s) <= 
r~ h 

~-~ ~ (s -Yi-  1) a'(s) 
Cd~ 

ds < 

Combining these estimates with (3.4) yields 

IFn(Y)l,l <= C + d, + h ) . 

From this inequality, we can derive the estimation of ]IY--Gh(Y)[]I. Indeed, we 
have 

N - 1  

Ily-Gh(y)lll =kh ~, IFh(y)]~[ 
i = 1  

IN-1 N-1 ) 

~=1 dz +hi~=t d,+h <Ck[i_  

< Ck(4C2 + 2 C, h +h), 

N--1 1 
since it holds that y '  d~<2 s ly'(t)[dtN2C 1 by Lemma 2 and that 

i = 1  0 

We thus get 

N - 1  N - 1  2 

i = l  i=  

1 ily_Gh(y)ll~<C(4C2+2C~h+h), 
1 - x  =6 

where r =  1 - k &  Since we can choose the radius r to be larger than the right 
hand side, the contraction mapping theorem is applicable to (3.2), and ensures 
that (3.2) has a solution in ft. This ends the proof of Theorem 1. 

This theorem guarantees the existence of solutions to (3.2), namely, (1.2). 
Next, we shall show that any solution of (1.2) lies in the ball 

W={v=(Vo .... ,VN) I max Ivil~Co}, 
i=O,...,N 

where C o denotes the constant defined in (2.1). 
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Theorem 2. A n y  solution o f  (1.2) lies in W. Moreover ,  (1.2) has only one solution 
in W. 

Proof.  We rewrite (1.2) as follows: 

Ui+l 

Vh(uE= ~ ~(s)cls 
ul 

Ul 

- I ~(s)as-b(x~,u~)=O, i=1 . . . .  , N - l ,  
ui - i  

U 0 -= A ,  u N = B ,  

where we put 

~(S)=h~ ~ P 2h ' 

/3(S)=h~ ~ P -~ 2h " 

(3.5) 

We further apply the change of variables s = (1 - O) u~ + 0 u~+ 1 and s = (1 - O) u~_ 1 
+ Ou i to e(s) and/~(s), respectively, and put 

I 
p~+ 1 = ~ ~ ( (1 -0 )  u, + Ou,+ 1) dO, 

0 
1 

ql ~- ~ ~((1 - - 0 )  Ui_ 1 -]-Oui) dO. 
o 

Then (3.5) may be written as 

Fh(u)]i =Pi+ l(ui+ 1 - -u i ) - -q i (u i - -u i -  1) - b ( x i ,  u/) = 0. (3.6) 

We apply Taylor's theorem to b(x~, ul) and rewrite this equation as 

- q l  u i -  1 +(Pi+ 1 + ql + by(xl, wi)) ui - P i +  1 Ui+ 1 = - -  b(xi ,  0), 

where w i is a number between 0 and uv Since a(s) and fl(s) are positive for all 
s, it holds that p~+l>0 and q,>0. We also have by(x~, w i ) > 6  by assumption 
H2. Therefore, the first assertion follows by the discrete maximum principle. 
The second assertion follows from the fact that the operator G h is a contrac- 
tion mapping also in W. 

This theorem implies that the solutions of (1,1) and (1.2) exist in the same 
range. 

4. Uniform Bounded Variation Estimate 

Abrahamsson and Osher [1] considered three-point difference schemes of the 
form 

L 
h 2 (ul + x - 2 u i  + u~_ 1) - ~  (g(ul + 1, ui) - g ( u i ,  u l -  1)) 

-- b(xi ,  ut) = O, i = 1 . . . .  , N - 1, 

u o = A ,  u N = B .  (4.1) 
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Here the flux function g(u, v) satisfies the consistency condition 

g(u, u)=f(u) (4.2) 

and the monotonicity condition 

g,(u, v)<O<gv(u, v). (4.3) 

They called this type of schemes monotone schemes and proved that the 
solution u=(u 0, ..., uN) to (4.1) fulfills 

N 

2 lUl--Ui-115 C2, (4.4) 
i=1 

where C 2 is a constant independent of e and h. However, our scheme (1.2) is 
not a monotone scheme. To verify this, we rewrite (1.2) in the form 

(ui+ I - b ( x  i, Ul)=O (4.5) 1 --2Ui'+'Ui-1)--~ tl(s) d s -  
" Ul 

in which 

tl(s)= l _ ~  ~ _  p ) . a(s) 

~(s )=1-4  p - - ~ p - - 1  

a(s) 
where # = ~ -  p. If we put 

2 p exp ( - #) 
exp (#) - exp ( - #)' 

2p exp(#) 
exp (#) - exp (  - # ) '  

g(u, v)=~ r/(s) ds - !  ~(s) ds +f(0), 

then (4.5) is reduced to the form (4.1). This flux function fulfills certainly the 
u 

consistency relation (4.2) because of g(u, u) = ~ a(s) ds +f(0)  =f(u). But the mo- 
o 8 

notonicity condition (4.3) is not satisfied, since gu(u, v)=~ t/(u) and gv(u, v)= 

h ~(v) may have both signs. Thus another methods are required to establish 

the uniform bounded variation estimate (4.4) for solutions to our scheme. The 
following theorem gives such one method. 

Theorem 3. The solution u = (u o . . . . .  uN) of  (1.2) satisfies the estimate (4.4). 

Proof. It is convenient to use the form (3.6) instead of (1.2). From (3.6), we get 
for i=2,  ..., N - l ,  

O-~- Fh(U)[ i --Fh(u)[i_ 1 

=Pi+ I(Ui+ 1 --Ui)-kqi- l(Ui- 1 --Ui-2) 

- (Pi + qi)(ul - ui- a) - [b(xi, ul) - b(xi-~, ui- 1)]. 
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Using further the Taylor's expansion 

b ( X l ,  ui) - b ( x  i _ 1,  u i -  1) --- bx(YCi, ui)  h + b y ( x  i _ 1,  ui)  (ui  - ui - a),  

we have 

K. Niijima 

(br(xi- x, ui) + Pi + ql)(ul - ui- 1) 

= ql-  1 (Ui-a - ui- 2) + Pi+ 1 (ui+ a - ul) - bx('21, ul) h. (4.6) 

We now define sgn(z) by 

sgn(z)={o/lZ] forf~ z~=0,z=0. 

On multiplying (4.6) by sgn(u i -u i_  a) and summing the resulting equality over 
i--2, ..., N - 1 ,  we obtain after some changes of subscripts, 

N - a  

(6+ Pi +qi) l u l - u i - l l  
i = 2  

N - - 1  N - - 2  

< ~ Pi[Ul--ui-a[+ ~ q,]ui--ui-a] 
i = 3  i = 2  

+ PN (Us -- US- 1) sgn (u s_  1 -- US- 2) 

+ q a (Ua -- %) sgn (u 2 -- ul) + C 3. 

Here C a is a constant independent of e and h such that Ibx(2 i, u~)l < Ca. Since 
some terms in the above inequality are cancelled out from both sides, we get 

N - 1  

~ tUi--UI-aI-I-PEIU2--Ua]+qN_aIUN_x--UN_2[ 
i = 2  

< C3 +ql(ul  -So) sgn(u2 - u O  +Ps(UN--UN- 1) sgn(uN-a --Us-2)" (4.7) 

We need again (3.6)for i=1 and i = N - 1 .  Multiplying (3.6)for i=1  by sgn(u 2 
- u  0, we have 

P 2 l U 2 - u l l = q l ( u l - U o )  s g n ( u 2 - u O + b ( x l ,  u O s g n ( u 2 - u O .  (4.8) 

Next, we multiply (3.6) for i = N - 1  by sgn(un_ 1 --Us_E) to get 

qN- a [un- 1 -- us-  21 = Ps(UN -- US- 1) sgn (u N_ 1 -- u s -  2) 

--  b (x  s _  a, u s -  1) sgn (u s_  1 - U S -  2)" (4.9)  

Combining (4.7), (4.8) and (4.9) gives 

S - 1  

6 ~_, ] u i - u i _ l J < C a + 2 C , , ,  
i ~ 2  

where C,~= max Ib(x, z)l. The desired result follows from this inequality and 
0 < x < l  
Iz-[6Co 

two estimates lUl -- Uol~ C O + IAI and lu N -  u s_  11< C O + IBI. 
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Our method for proving this theorem can be applied to E-O scheme. It is 
only remarked that E-O scheme (1.3) is reduced to the form (3.5), if we define 
a(s) and fl(s) by e a_(s) 

c~(s) =h2 h ' 

=Lq a+(s) /~(s) h2 h 

both of which are positive for all s. 

5. L 1 Convergence Result 

By virtue of Theorems 2 and 3, we can derive the same L 1 convergence result 
as in [4] and [1]. Let U~(x) be a step function defined by 

U~(x)=ui, xi<x<xi+l, i = 0  . . . . .  N - l ,  

where u=(u o . . . . .  UN) is a solution of (1.2). A key point in our analysis is to 
show that the family { U~} is precompact in L 1 (0, 1), as was so in [4] and [13. 
Although this result was proved by Sanders [6], we shall offer an alternate 
proof of it. 

Lemma 3. The family {U~} is precompact in LI(O, 1). 

Proof. For any 7 > 0, we can choose sufficiently large positive integers n and M 
such that 

Co 
M }-C2~-~n (5.1) 

in which C O and C 2 are constants defined in (2.1) and (4.4), respectively. We 
divide the interval [0, 1] into n equidistant subintervals, and define grid points 
by 

0 = t o < t  I < . . . < t , =  1. 

Define a set S of step functions T(x) having the following form 

m 
T ( x ) = ~  Co, tj<x<tj+l, j = 0 ,  ..., n - I ,  

where m is an integer with LmI<M. This set is finite. We show that any 
element U~ in the family {U;} is approximated by some function in S. For  the 
function U~(x), we introduce an auxiliary step function /.7~(x): 

O~(X)= Ufz(tj) , tj<=x<tj+l, j = O  . . . .  , n - 1 .  

We first show that tT~ is approximated by some function in S. Since 
max IU~(x)l-<__ Co, there exists an integer mj such that 

O<x~ I 

m_j , m-+ l  
M CO <U~(ti)< ~d Co" 
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Therefore, a step function 

mj 
T . ( x ) = ~  Co, t j < x < t j + t ,  j=O . . . .  , n - 1  

gives an approximant of Uh"(x), because it holds that 

ic:(x)- (x)idx= Z f m, u~ ( t ~ ) - ~  Co dx . (5.2) 
o j=o tj M 

Next, we estimate 
1 

J --- S I v~(x) - tT~ (x)l dx. 
0 

The term J may be written as 

n--1  12+1 

J =  Y~ I IU~(x)-U~(tj)l dx. 
j =  0 t j  

The subinterval (t j, t j+l]  includes at most finite mesh points xj. We denote 
them by x j, 1 . . . .  , x j, ,j. We thus have 

t2+ 1 tj+ 1 

J~= ~ I U ~ , ( x ) - U ? , ( t j ) l d x =  ~ I U ~ , ( x ) - u j _ l , , j _ , l d x  
t.t x j ,  i 

= • + I S ~ ( x ) - u j _ t ,  t i _ , l d x  
i = 1  

l j - -  1 

= h ~ l uj , ,  - u j_  1, Ij - ,  I + (tj + 1 - x j, 0 l uj, tj - u j_ 1, tj -11 
i = 1  

_-< luj, l -uj_ l , l~_ , l+  ~ luj, i + x - u j ,  il , 
i = l  

where in the first line we used the fact that Uf , (x )=UF,( t j )=uj_ l ,~ j_ l  hold for 
t j  < X < X j ,  1" Hence we get 

j<l_ ~ lu _u,_al<=C~. (5.3) 
/'/ i =  1 n 

Combining (5.1), (5.2) and (5.3) yields 

1 

I U~(x)-  Ta(x)l dx<~ 
0 

which implies that { U~} is precompact in U (0, 1). 
From this lemma, we obtain the following results. 

Theorem 4. The f a m i l y  {U~} with h ~ O  has a converging subsequence  in /_,1(0, 1) 
to U~. I f  5>0, then U~ is a solut ion o f  (1.1) for  e=g. f i g = 0 ,  then U g is a weak  
solut ion o f  (1.1a) f o r  ~=0. 
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~v from the Proof. By L e m m a  3, we can pick up a subsequence {U~v}~ = ~,2 .... 
family { U~} with h --* 0 such that 

U[,~-*U~ in LI(0, 1) (5.4) 

as ~--*g and h~--*0. For  simplicity, we put  e=e~ and h =h , .  
When  g>0 ,  we shall prove  that  

1 

S I u ~ ( ~ ) - / ( x ) l  a~ =0, (5.5) 
0 

where if(x) denotes  a solut ion of (1.1) for e =2. Define a step function Y~(x) by 

Y~(x) = y~ (xl), x~ __< x < x i + t, i = 0 . . . . .  N - 1 

for the solution y~(x) of (1.1). Then it follows f rom L e m m a  2 that  

1 1 

IY~(x)-y~(x)l d x < h  ~ I j ( x ) l  dx 
0 0 

<= C lh. (5.6) 

We recall here the p roof  of T h e o r e m  1 in which we have obta ined  the est imate 

tl y~ -Gh(y~)IIx -~ < Ck d d~ + h . (5.7) 

x~+ 1 

Since we have d~= ~ ly~'(x)ldx<2h max I j ( x ) l ,  (5.7) yields 
x , _  1 O < x - < l  

1 
1 -~c []y~ - Gh(Y~)][ 1 =< C(r 

with ~:= l - k 6 ,  where C(e) is a constant  such that  lim C(e )=oo .  But since 
e ~ O  

lira C(e)= C(e-)< oo because of g > 0 ,  the contract ion mapp ing  theorem gives 

N - I  

h ~, lu i -y~(xl) I __< C(e)h 
i = 1  

which implies 
1 

I U~(x ) -  Y~(x)l dx < C(e) h. (5.8) 
0 

Combin ing  (5.6) with (5.8) leads to 
1 

I V; (x ) -  y~(x)l dx <__(c, + c(~))h. (5.9) 
0 

In the last, we notice that  
1 

S lY"(x) -ye(x) ldx~O as e ~ g  (5.10) 
0 

which follows f rom the cont inui ty of  y~(x) with respect to the pa rame te r  ~. 
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Thus the inequality 

1 1 1 

S I U~(x)-ye(x)[ d x <  ~ I U~(x)-  U~(x)l d x +  ~ I U~(x)-Y~(x)l dx 
O O 0 

1 

+ ~ ly"(x) -y~(x)l dx 
o 

together with (5.4), (5.9) and (5.10) implies (5.5). 
When g=  0, it is sufficient to prove that  U ~ satisfies the following equation 

1 

I [4)'(x)f(U~ U~ dx=O (5.11) 
0 

for any ~beC~~ 1). To do this, we shall find relations between our difference 
operator F h and E-O difference operator E h. Observing a+(s)=(la(s)] +a(s))/2 
and -a_(s)=(la(s)l-a(s))/2,  the term Eh(U)] i takes the form 

E~(u) [i = ~f  (ul + 1 - 2 u i + u i_ 1) 

11+' i' ] +~-~ (la(s)l -a(s)) ds - (la(s)l + a(s)) ds -b(x i ,  ui). 
ui  u l -  1 

Using this expression, we can get a relation between F h and E h a s  follows: 

Here Rh(u)l i denotes 

in which 

gh(u) l, = Eh(u) l, - Rh(u) l,. 

Rh(u)l i =h~ "'* 2(s) d s -  2(s) ds 
u i - i  

(5.12) 

2 l#(s)[ exp(-[#(s)[)  
; t ( s )  = 1 

exp (l#(s)[) - exp (-[/z(s) I ) 
, ,  a(s) 

with iris)=-- 2 -  p. 

We now extend U[,(x) so that it takes the value u o for - h < x  <0,  and the 
value u N for l<_x_<l+h ,  and denote the extended function again by U[,(x). 
Multiplying Fh(U~)li=0 by h#a(xl) and summing over i = 0  . . . . .  N, we get from 
(5.12), 

N N 

h ~ Eh(U;)l ,~(x,)-h ~" Rh(Uf,)I,c~(x,)=O. 
i = 0  i = 0  

In the same way as in [4], we see that lim h ~ Eh(U~)li#)(xl) equals to the 
h ~ O  I- i =  0 J 
E-+ 0 

left hand side of (5.11). So it suffices to prove that 

l im h R~(U~)[idp(x,) =0. (5.13) 
h ~ O  
e ~ O  
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An easy calculation yields 

N N ui  

h ~, Rh(U~,)[ , 4'(x,)=e ~ ~ 2(s) ds. 4' (x,) - 4' (x,_ x) (5.14) 
i = 0  i=1 . ,- ,  h 

Since 0 < 2 (s) < l a(s)[p/2 < Cp holds, the right hand side of (5.14) is bounded by 

N 14' (x , )  - 4 ' ( x , _  1) 1 
Ch ~ lui-ui_ll 

i = 1  h 

Using further Theorem 3, we get (5.13). This completes the proof. 
The equation (5.13) implies that our scheme is near E-O scheme, though 

the former and the latter are of different type. From the viewpoint of computa- 
tional task, E-O scheme is superior to our scheme. Because integral terms in E- 
O scheme are simpler than in our scheme. However, if we add the condition 
]a(z)l>cr>O for [zl<Co to H1 and H2, we can prove that the solution of our 
scheme converges uniformly in e to the correct solution of (1.1) with O(h) in 
the L 1 norm. This will be shown in the forthcoming paper which is in prepara- 
tion. 

6. Numerical Experiments 

In this section, we shall present some numerical computations. Test problems 
have already been used as numerical examples in [-1, 2] and I-4]. For solving 
(1.2), we adopted an iteration method 

u~V+l)=Gh(U~)), v=0,  1,2 . . . . .  

where the operator G h was defined by (3.2). A parameter  k contained in G h was 
chosen to satisfy the condition (3.1). As the initial guess u ~~ we chose a 
straight line between the boundary values. We performed all computations 
with N = 8 ,  16, 32 and 64 for ~3=10 - 6  

Figures 1 to 4 show computed solutions of the problem 

- 1 2 , ey --~(y ) - y = 0 ,  0 < x < l ,  

y(O)=A, y(1)=B, 

where A and B are given in the table below: 

Fig. 1 2 3 4 

A 1.0 0.25 0.1 -1.0 

B -0.5 -0.4 -2.0 0.5 

Figure 1 shows that numerical solutions have shock layers at x =0.75. The true 
solution also exhibits such a phenomenon at the same point. Figure 2 shows 
that shock layers vanish, but corner layers occur near the two points x=0.25 
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and x = 0.6. In Fig. 3, we can observe a boundary layer phenomenon at the left 
end point. Numerical solutions in Fig. 4 have boundary layers at both end 
points. 

Next, we solved the problem 

ey"-�88 z - 2 ) ) ' - y  =0, O < x < l ,  

y(0) = 1.5, y(1) =B 

whose solution exihibits a variety of phenomena corresponding to the values of 
B (see [2]). To see whether the solutions of our scheme reproduce such 
phenomena or not, we ran our scheme with B below: 

Fig. 5 6 7 8 9 10 11 12 13 14 15 16 17 

B 2.0 0.5 - 1 . 0  -1 .41  -1 .45  - 1 . 5 0  -1 .70  -1 .85  -1 .90  - l . 9 5  -1 .96  -1 .98  - 2 . 0 0  

From numerical results shown in Figs. 5 to 17, we can read the locations 
where boundary, corner and shock layers appear. We can also observe how 
shock points change with the values of B. 

The symbols " A " ,  " I7" ,  " O "  and " - - "  in each figure denote numerical 
solutions for h = 1/8, h = 1/16, h =  1/32 and h = 1/64, respectively. 
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