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Summary. A rapid Generalized Method of Bisection for solving Systems of
Non-linear Equations is presented in this paper, based on the non-zero
value of the topological degree. Further, while the method does not com-
pute the topological degree, it takes care of keeping its non-zero value
during the bisections and thus results in a fast bisection algorithm.

Subject Classifications: AMS(MOS): 65H10; CR: G1.5.

1. Introduction

The author of [4] in his paper gave an efficient degree computation method
for a generalized method of bisection (GMB), for the solution of non-linear
systems of equations of the form:

F'=0"=(0,0,...,0), n
with
Fr =(f1ff27 :fn) ZcR"-R",

where: 2 is an n-dimensional region in R” and 2 its closure.

In the above paper, the author, in fact, improved F. Stenger’s [6] method
for the calculation of the topological degree d(F*, 2, 6") of F" at 6" relative to
2. And, then, by repeated computation of the topological degree he produced
an algorithm for the solution of non-linear systems of equations in a way that
is a generalization of the method of bisection.

In this paper we further improve the algorithm by introducing the concept
of an admissible-polygon through which we remove all calculations concerning
topological degree, which as is known, is quite a time-consuming procedure
and in fact a weak point of the algorithm given in [4]. In addition, we produce
a priori error bounds of the method of bisection, which, by the way, was not
given in [4]. Lastly, we deal with three typical well known test cases and give
the detailed algorithm for solving non-linear systems.
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2. The Admissible n-polygon

Notation 2.1. In this paper we shall usually use the following sets:
v ={1,2,3,...,2", v¥,={1,2,3,...,2""1}, &={1,2,...,n}

and superscripts to denote dimension and subscripts for indexing.

In the development of our analysis the concept of the admissible n-polygon
will play a fundamental role. To define it we first introduce the tool of the n-
complete matrix.

Definition 2.2. An n-complete matrix M,=(C,;), ie?’, jeé is a 2"xn matrix
with elements in each row the respective coordinates of the vectors of the
Cartesian product:

f](—1, D=(~1,1)x(=1,1)x...x(=1 1).
i=1

Obviously there are many matrices .#, and in our analysis we can use any
one of them. Yet we are going to choose the one whose selection appears to be
more natural than the others, since it will be closely related with the sequence
of the natural numbers 1,2, 3,...,2". More specifically, let B} be the n-digit
binary forms of the numbers i—1, ie¥" Then, we formulate a 2" xn matrix
A ¥, with entries in row i, i€ ¥, the digits of B}. Finally, in the matrix .#}, we
replace each zero element by —1 and thus we come up with a new matrix .#,,
which we call the n-complete matrix. By construction, it is obvious that the n-
complete matrix .#, depends only on the dimensionality of the problem, and
so, for example, when n=1, 2 we have respectively:

n=1 B!=0 _ [B! [o F—1
e P R I It I

n=2 B2=00 B2l [0 © -1 -1
B2=01 B2| [0 1 1 1
B=10""= g 7|1 o7 1 1
B2=11 B2] L1 1 [ 11

Definition 2.3. Let P" be an n-polygon [3, 4] with 2" vertices. Suppose further
that F*=(f,, f,, ..., f,): P'"cR">R" Then we define the vector of signs of F"
relative to a vertex X,, & (F", X,), by:

FF", X ) =(sgn fi(X,), sgn fo{X), ..., sgn £,(X,),
and the matrix of signs of F" relative to the vertices X,, ke¥” by:
F=[FLF, X)), LEFEX), ... LF X,) 5.0, FEFLX,)'T

of course, the matrix of signs & is a 2" x n matrix such that its m-th row is the
vector & (F", X,,).
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Finally, the function sgn(t), teR is the known sign function with values:

1, if t>0
sgn(t)=3 0, if t=0
—1, if t<O.

Now, we can proceed with the definition of an admissible n-polygon.

Definition 2.4. An n-polygon with 2" vertices, P"<IR" is called an admissible n-
polygon relative to F"=(f,,f,,...,f,): P">R" iff the matrix of signs of F"
relative to its vertices is identical with #,,.

In an admissible n-polygon we define the following concepts.

Definition 2.5. A proper 1-simplex is a l-simplex (X ,, X > with extreme points
the vertices X, and X, of an admissible n-polygon P" relative to F": P"—>IR", iff
the corresponding coordinates of the vectors & (F", X)) and &(F", X) differ
from each other only in one case.

Definition 2.6. A polygon which is constructed by 2"~ ! vertices of an admissible
n-polygon P" relative to F": P">R" will be called the r-th side of P", and will
be denoted by II,, iff for all vertices X,, ke¥] the corresponding vectors
S (F", X,) have their r-th coordinate equal to each other. Moreover, if this
common r-th element is —1 (or 1) then the II, will be called negative (or
positive) r-th side and will be denoted by II, _ (or I1,.).

The following two lemmas will be useful in our analysis.

Lemma 2.7. In each admissible n-polygon P" relative to F'=(f,f5,...,f):
P"—>R" there are n positive and n negative sides.

Proof. According to Definition 2.6, a side should be created by 2"~! vertices
X,, ke¥] such that all the vectors ¥ (F*, X,), ke#¥] have a common coor-
dinate which, of course, can be the 1-st, 2-nd, ..., n-th coordinate, which again
can be either —1 or 1 (see Def. 2.2). Consequently, there will be 2n sides, n
negatives and n positives. [

Lemma 2.8. Each side II""' of an admissible n-polygon P" relative to F"
=(f1>f2s-r [,): P*>R" is itself an admissible (n—1)-polygon relative to F!~!
=(f1’f27 ""ﬁ_13ﬁ+15 -":vfn): H:_i——)]Rn—l'

Proof. According to Definition 2.6, the (n—1)-polygon IT"~' has 2"~! vertices
Vi, ke¥7. In addition, the coordinates of the vectors & (F~', y,) for all ke ¥,
are easily derived from the corresponding to vertices y, rows of .#,, if we
delete the elements of the r-th column. Finally, we can easily check that these
coordinates are identical with the corresponding elements of the (n—1)-
complete matrix .#,_,. Consequently according to Definition 2.4, the side
"~ is indeed an admissible (n — 1)-polygon. O

Theorem 2.9. Let (X,, i€ ¥") be the ordered set of vertices of an admissible n-
polygon P" relative to continuous F*=(f,, f,, ..., f,}: P"cR">IR" and such that
0"=(0,0, ..., 0)¢ F*"(b(P™), (b(P") is the boundary of P"). Suppose that {I1}}", is
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the set of its sides and 2={S;;',i=1,2,...,2n,t=1,2,...,t;} is a finite set of
(n—1)-simplexes S, 1, on the boundary of P" such as:

Lt

(i) the boundary of P", b(P"), is given by:

2n

Pn)— Z Z St r o
i=11t=1
(i) they have disjoint interiors,
(iil) they make b(P") sufficiently refined relative to sgn(F") and
(iv) the extreme points of each S}7' are vertices of II,. Then, the topological
degree of F" at 0" relative to P*, d(F", P", 8", is equal to +1.

Proof. According to the Recursion Formula [6, 4] the following relationship:

d(F", P, 0"= % d(Fp~', 8¢ om ), (2)
kiefy
holds, where: Ff~'=(f,, f3, ..., f,): b(P)—IR"~! and ¢, is the set of indices
such as k, e #, iff f,>00n S}~ 'e 2.
Moreover, from Definition 2.6 it is apparent that the side II,, is the only
side of P" where f; >0 on it; therefore, all 8}~ !, k e ¢, are constructed by
vertices on IT, . On the other hand, we have,

FELX)=(1,1,...,1,1) and P(F, X, )=(1,1,...,1, —1);

consequently, the last and the last but one vertices of P*, X,., and X,._,,
belong to II,,. Lastly, according to assumption (ii) of the theorem there
should be only one (n—1)-simplex, say Si; ', which includes both X, and
X ,._ ;. Then, by means of the Parity-Theorem [4], we obtain:
Mkl
d(Fy=1, 871, 0= Y Par(R(Sp 7 Fi~ 1Y), 3)

t=1

mkl

where: b(S; ') Z Si?
Furthermore, we observe that the range simplex #(S}; 2, F{~'), with

mict
by )= Z St o
is the only one which is usable; consequently, combining (2) and (3) we have:
d(F*, P", 0"y =d(F;~*, Si L, 07 1), 4)
Finally, by repeated use of the above procedure we eventually get:
d(F", P, 0" =d(F}~*, S5, 0" Y)=...=d(F2 ,, SL _,, 0%, (5

where the three vertices of the 2-simplex S2, ,, namely X ,., X,._; and X, are
such that the functions values satisfy: f;>0, i=1(1)(n—2). Also the f, ;<0 on
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X,, because if f,_,>0on X, then we easily get:
FFX)EL(F', X, or FF,X)ESL(F", X, ),

which means that two rows of the n-complete matrix are identical, but this is
absurd. Consequently f,_, <0 on X,; therefore either #(F? ,, X,)=(—1,1) or
F(F?,, X,)=(—1, —1). Moreover, from (5) we have:

k- 2,00

3
d(F?,, S,fﬁ_z, 0%y = Z Par (#(S} F2 ).
i=1
So, either

1 -1 1 1
d(F? 3, 84_,, 0°)=Par [1 1] =1 or d(F~,,Si_,.0%)=Par [1 B 1] =—1.
(6)
Combining (5), (6) we get: d(F", P", 8")= 11 which proves the theorem. []

Next, we are going to set up an algorithm for creating admissible n-
polygons P" relative to F*: P"—>IR", which, in turn, will be used for the
initialization of our rapid generalized method of bisection. To do this, we need
a way of locating admissible polygons, as well as the means of specifying, for
each vertex, its associated proper 1-simplexes, that are to be subdivided by the
process of bisection. The following lemma will facilitate the whole procedure.

Lemma 2.10. Suppose that X,, i€ ¥, are the vertices of an admissible n-polygon
P" relative to F": P"—>R". Then (a) for each vertex X, there are exactly n other
vertices X, such as the 1-simplexes (X, X,>, ke¥" are proper 1-simplexes, and
(b) the subindexes k are given by k=i—-2""/C,, ie¥, je& and C,; are the
elements of the n-complete matrix M,,.

Proof. According to Definition 2.5 the 1-simplex (X, X,> will be a proper
simplex iff the corresponding coordinates of the n-vectors &(F", X,) and
S (F", X,) differ from each other in only ome case, which of course, can be
either the 1-st, or the 2-nd, ..., or the n-th coordinate, that proves part (a) of
the lemma. Next, for tackling the other part of the lemma we take the i-th and
the k-th rows of the n-complete matrix .#,, with k=i—2””fCij, ie?, je& and
we are going to prove that the corresponding elements of the rows differ from
each other, only in the j-th column. Inducd, by definition, we easily get i—k
=2""ICy;, or (i—1)—(k—1)=2""7C;;, with C;;=+ 1. Therefore, the difference
of the orders (i —1) and (k —1) will be an integer power of 2, multiplied by C;,,
so the n-digit binary expressions of (i —1) and (k —1) will differ from each other
in only one digit of the same order, in fact, in the j-th most significant digit,
for je&. Consequently, on the basis of the correspondence we have set up
among the elements of .#, and the binary digits, we conclude that the rows i
and k of .4, will be different only in the elements of the j-th column, for jeé&,
which proves part (b) of the lemma. [
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3. Constructing Admissible n-polygons

The procedure for constructing admissible n-polygons is based on the following
three algorithms:

(a) The algorithm for setting up the n-complete Matrix 4, [see 8].

(b) The algorithm for computing an initial n-polygon, with vertices whose
coordinates are given by the corresponding elements of the rows of the 2"xn
matrix # defined by:

R=G+MH}B,
where:
G =(g;)), gijzX;n’ iV, je&,
#=(b;), b;=0dih

th;, 1,jed,
X"=(X", X7, ..., X" eR" arbitrary initial point, (h,, h,, ..., h,) arbitrary step-
sizes in each direction, .#} the associated matrix of the n-complete matrix .#,
(see Def. 2.2), and &/ the well known Kronecker’s delta.

(c) The algorithm for applying a modified version of the bisection method in
R that we have produced and is very suitable in this case.

Next, we give a detailed description of all the steps of the algorithm for the
construction of admissible n-polygons, while the algorithm itself follows.

First, we set up the n-complete matrix .#,; with the help of Lemma 2.10 we
can find the orders of vertices of an admissible n-polygon, as well as the
positions of the extreme points of its proper 1-simplexes. Then, we take an
initial arbitrary point X"eIR" and arbitrary stepsizes (h,, h,, ..., h,) in each
coordinate direction and on the basis of them, we construct an initial »n-
polygon. Afterwards, we locate the positions of those pairs of vertices which
are going to be extreme points of proper 1-simplexes, of the above admissible
n-polygon. Then, for each one of the above pairs, say the (i, j) pair, we take the
corresponding vertices of the initial n-polygon, that is the pair (¥}, V}), which by
construction is such that their corresponding coordinates differ from each other
only in one case. Next we compute the points of intersection of F” and
(¥, V;» and by suitable perturbation of the intersection of F" and (¥}, V)> we
change the initial n-polygon in such a way that an admissible n-polygon may
eventually emerge; if not, then we continue with another pair and the process
goes on.

Example 3.1. (see F.Stenger, p.36). Suppose n=2, F>=(X?-4Y,Y?-2X
+4Y), (X", X'7)=(-2, —0.25), (hy, h,)=(4,0.5) the arbitrary stepsizes, and &
=10"? the desired accuracy.

We first find the 2-complete matrix .#,:

-1 -1
—1 1
M=l

1 1



A Rapid Generalized Method of Bisection for Solving Systems 129

53 *
Y%

o5
e
=<

Y .
Fig. 1
Next we compute matrix £ by #=% + 4% %, with:
-2 —025 00
-2 —0.25 01 4 0
=122 —oas |0 |0 o g—[o 0.5]
-2 =025 11

Therefore the vertices of the initial 2-polygon are:
Vi=(-2,-025), V,=(-2025), V;=(2,—-025), V,=(2025).

Next, we check if the initial 2-polygon is an admissible 2-polygon; to do this,
we form the matrix & of signs of F? relative to the vertices V;, V,, V; and V,:

sgn fi (V) sgn f,(V))
sgn fi(V,) sgn fo(V,) _

1
_ 11
a sgn f1(Vy) sgn f5(V3) I
sgn f1(V,) sgn f,(V,) 1 -1

and compare it with .#,. Since they are different the initial 2-polygon is not an
admissible one. Therefore, we should find suitable points, V*, in R? such that
their & (F2, V*) produce those rows of .#, which are missing in &. Points V*
should lie on the 1-simplexes whose extreme points are those vertices of the
initial 2-polygon which correspond to the positions of the pairs given by:

Z,=(1,2), Z,=(3), Z;=2,49, Z,(49.
So, the above 1-simplexes are:
Si=V Vo), Si=(V, Vo), Si=, V), Si=I, V. ()

On the other hand, points ¥* should also lie in neighborhoods of the points of
intersection of F? with the 1-simplexes S}, S}, S}, Si. Thus, for the first 1-
simplex (V,, V,> and functions f; and f, we find that there is no intersection
point, while for the intersection of the 1-simplex <{V,, V> and F? we find a



130 M.N. Vrahatis and K.I. lordanidis

point of intersection which is proven to be of no use. Finally, for the com-
putation of intersections of F?=(f},f;) and (V,,V,>. we observe that the
second coordinate of the vertices V, and V, remains constant; therefore, we
should consider the function f, as function of its 1-st variable only and so we
solve the equation:

fi(X,025)=X%—1=0. (8)

The solution X* of (8) is recommended to be computed in the interval [—2,2)
with accuracy e=10-2 and by the following modified bisection method [sec

8]:
Xy =X, +sgn(fi (X)) sgn (f1 (X )h/2"*!,  n=0,1, ...

with X ;= —2 and the interval length h equal to 4.
So, we find X*=—1 and consequently points V* are given by:

VF¥=(—1—¢%025 and V¥=(—1+¢* 0.25), ©

with e¥=0.1>¢.
Next, we test whether points V;* and V}* are vertices of the admissible 2-
polygon under construction. To do this we form the vectors:

F(F?, V) =(sgn f1(—1.1,0.25), sgn f,(—1.1,0.25)) =(1, 1)
and
L (F2, V) =(sgn f1(—0.9,0.25), sgn f,(—0.9, 0.25)) =(—1, 1)

and check if any of them coincide with any row of .#, which is not already
present in &; indeed, we find that only % (F?, V}*) coincides with the second
row of ., (which does not exist in &).

Now, to find the intersection of f, with (V,, V,> we follow the same
procedure and find successively: the equation: f,(X, 0.25)= —2X + 1.0625, the
point of intersection: (X*, X4 =(0.53,0.25), the points: V;*=(0.43,0.25) and
VF* =(0.63, 0.25), the vectors: & (F2, V}*)=(—1, 1) and L (F?, V}*)=(—1, —1).
In this case, only the vector & (F2, V¥*) coincides with the 1-st row of .,
(which is not present in S).

Now, we observe that all the missing rows of .#, have appeared; therefore,
the process is concluded and an admissible 2-polygon is the one with vertices
VE*, VE V,and Vi so:

P’ =VERVE Vs, V.

Note that any three of the vertices of P? do not belong to the same l-simplex.

Algorithm 3.2 ( Creating an admissible n-polygon)

1. Input ¢, n.

2. Compute the n-complete matrix M, =(C;)).

3. Compute initial n-polygon and store its vertices in matrix R =(r;)).
4. Set all entries of a 2" xn matrix of =(a;;) equal to zero.
s.

Compute for each row R, of R the vector &(F", R;) and compare it with the
rows of M,; if it is identical with any row of .#, then store R; in the
corresponding row of o, otherwise continue with the next row of .
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6. If there is any row of of with elements equal to zero, go to next step;
otherwise go to step 23.

7. Find the orders of the extreme points for all n2"~' proper 1-simplexes Sy
=(85,87).

8. j«0, k0, u<0, v0, [<0.

9. jej+1, pSj, g5}

10. For all i=1(1)n execute steps 11 and 12.

W If r,#r,, and 1, =1, , Yde{l,2,...,i, ...,n} then continue, otherwise
return to step 10.

12, her, =1, |
temin {|r, . Ir, J} X
X1, foral de{l,2,...,i,...,n}

Xt

13. For all m=1(1)n execute:

Find a zero of f,(X,,X,,...,X;, ..., X,) within the interval (t,t+h) and
store it in Z,,; if there is no zero put Z 0.

14, kek+1;if k=n go to step 20, otherwise continue.

15. ueu+1;if u=n go to step 18, otherwise continue.

16. ve—v+1; if v=n go to step 15, otherwise continue.

17. If Z,=0 then &, <0, else &, ¢ and compute B, , ,«~Z, +¢, and B, 6 «Z,
—&-

18. l«I+1, if I=n go to step 14, otherwise continue.

19. y, ;1< By i, store it in %

Vi jBE,  store it in H*,

20. If j+n2""' go to step 9, otherwise continue.

21. Compute for each row Y, of % the vector & (F",Y,) and compare it with the
rows of M,, if it is identical with any row of M, then store Y, in the
corresponding row of «f, else try again with the next row of % until
exhaustion.

22. If there is any row of o/ with elements equal to zero put Y<Y* and go to
step 21; otherwise continue.

23. Output o.

4. The Fast Generalized Method of Bisection

The fast generalized method of bisection that we are going to develop in this
section is based on the topological degree theory and especially on the follow-
ing properties: If P" is an n-dimensional polygon and F": P"-IR" is con-
tinuous, with F*(X)+6" VX eb(P"), then, there is at least one root of the
system F"=¢" within P", provided that d(F", P", 8")%0; note that if the to-
pological degree is equal to zero then no conclusions can be drawn because
more information is needed [1, 2, 5]. So, although the topological degree plays
a considerable role in the existence theory yet its value does not constitute a
precise count of all the roots of the system. Furthermore, in a root finding
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algorithm based on degree theory the exact computation of the topological
degree can be avoided, since the keeping of its non-zero value is sufficient to
secure the location of the root. That is exactly what we do in our algorithm;
we delete all computing concerning topological degree and take care to pre-
serve its non-zero value during the iterations, thus gaining tremendously in
speed over previous attempts.

The description of our algorithm goes as follows:

Suppose P" is an admissible n-polygon relative to F*: P"—IR" and let b(P")
be sufficiently refined relative to sgn(F") [3, 4, 6, 7]; then Theorem 2.9 in-
dicates that P" includes at least one root of the system, so we shall construct
our bisection algorithm in such a way that the new refined n-polygon P, to be
an admissible one. To do this we bisect all proper 1-simplexes of P" in the
following way.

Let <{X;, X ;> be a proper 1-simplex of P" where:

Xi=(X;1, Xigsor X)) and X ;=(X;1, X5, .., X))
then we define the point:
B:((Xn +Xj1)/29 (Xi2+Xj2)/27 R (Xin+Xjn)/2)‘

Next we distinguish the following three cases:

(a) If the vectors & (F", B) and & (F", X,) are identical then we replace X;
by B and the process continues with the next proper 1-simplex.

(b) If the vectors &(F", B) and ¥ (F", X)) are identical then we replace X;
by B and the process continues with the next proper 1-simplex.

(c) Otherwise, the process continues with the next proper 1l-simplex.

Lemma 4.1. Let P" be an admissible n-polygon relative to F": P">R". Suppose
further that the new bisection method is applied to one proper 1-simplex of P".
Then the new n-polygon P, is an admissible one.

Proof. Let (X;, X;> be the proper 1-simplex which is going to be bisected;
then according to the bisection procedure we described before we take the
midpoint B=(X;+ X )/2 and, of course, either any of the two end-points will
be replaced by B or no change will take place. In the latter case the lemma is
obvious, while in the former case, let us further suppose that vertex X, is
replaced by B, then the vectors & (F", X,;) and & (F", B) will be identical and
therefore the matrix %, of signs of F" relative to the vertices of P} will coincide
with the matrix & of signs of F” relative to the vertices of P* and consequently
since by hypothesis P" is an admissible n-polygon, so is P}. [

Remark 4.2. From the above lemma it is apparent that the refined n-polygon
P}, includes also at least one root of the system (see Theorem 2.9).

Definition 4.3. Let (X, i€ ¥") be the ordered set of all vertices of an admissible
n-polygon P" relative to F"*: P"—>IR". Then a diagonal D of P" is the 1-simplex,
say {X,,X,>, such that all the components of the vectors & (F",X,) and
S (F", X,,) are different from each other.
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Lemma 44. Let <X, i€¥") be as in Definition 4.3. Then (a) for each vertex X,
there is exactly one other vertex X, such as the l-simplex (X, X > is a
diagonal of P, and (b) the subindex m,Vke ¥, is given by m=2"4+1—k.

Proof. According to Definition 4.3 all the components of the vectors & (F", X,)
and & (F", X,) are different from each other; consequently the k-th and m-th
rows of .#, must differ from each other in all entries; therefore (X, X, > is a
diagonal of P". Moreover, since the values of the entries can be either 1 or —1
the above diagonal is unique. Next, to prove part (b) of the lemma, we observe
that the given relationship can be written as:

k—1)+(m—-1)=2"-1,
or, if we make use of the n-digit binary forms,
Bi+B! =111...1,

which means that the two rows of .#, differ from each other in all correspond-
ing components; thus the lemma is proven. [

Definition 4.5. Let {X,, ie ¥"> be as in Definition 4.3. We define as an estimate
of the solution of the system F"=@" the midpoint of a diagonal of P".

Definition 4.6. Let (X;, ie ¥ "> be as in Definition 4.3. We define as the diame-
ter, A(P"), of P", the length of the longest proper 1-simplex of P" (distances are
measured in Euclidean norms), while the length of its longest 1-simplex is
defined as the mesh of P, m(P").

Now, we are in a position to determine the minimum number of bisections
that are required by the method in order that the new n-polygon P, which is
obtained at the end is such that its diameter A(P7) is less than a predetermined
number &.

Lemma 4.7. Suppose that P" is an admissible n-polygon. Then, the minimum
number v of bisections of the proper 1-simplexes of P" which are required in
obtaining a P, and such that A(P})<¢ is given by:

v=log(A(P") - e~ Y)/log 2.

Proof. Let (X, X;> be such that A(P")=|X;—X;|,. Then we bisect any
proper 1-simplex of P" obtaining thus a refined admissible n-polygon P}. We
claim that the diameters of P" and P’} satisfy the relationship:

A(P")

=4(P7). (10)

To do this we distinguish the following two cases:

I) Suppose that after the bisection the initial proper 1-simplex (X, X ;> of
P" is unchanged in P}. Then A(P}) will be either greater than or equal to
A4(P"), which, of course verifies (10).

I1) Suppose that after the bisection the (X, X ;> changes into {X,;, X7 (or
equivalently into {X¥, X ;>). This can happen if either <X, X ;> or a neighbour-
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ing proper l-simplex (say (X, X,), is bisected. In the first case we shall have

X —X.
either A(P’{)———l]Xi—X;!‘HZ:M (because of bisection) or A(P})>|X,

—X ||, ; both verify (10). 2
In the second case, let {X;, X,> be the neighbouring proper 1-simplex
which is bisected. Then, by using norm properties we have (see Fig. 2):

X

Fig. 2

1X; =Xl > X =Xl — 11X ;= XF 2

or
X, —X*],> ||X,._Xj||2_w,
or
”Xi_XfHPHXi_XfHZ*M (since | X;—X ;> 1 X;—X,l,),
or
1x,-x31,> 152K

Then, obviously:
“Xi _Xj” 2 =A (Pn)

AP)Z X~ X}, >~ 5

(by definition),

which proves (10).
The procedure continues with new bisections, giving thus, at the k-th
bisection, the relationship:
A(P")
2k

4Pz (11

Finally, if the v-th bisection produces P}, satisfying:

AP =e,
then from (11) we have:
e2AP)24(P")/2,
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or, by taking logarithms:
v2log(4(P")- e~ Y)/log?2,
which proves the lemma. []

Furthermore, we can easily prove the following two lemmas [see 8], which
provide bounds on the mesh of an admissible n-polygon and on the estimate of
the solution.

Lemma 4.8. Suppose that (X, i€ ¥ ) is as in Definition 4.3 and that A(P")<Zs.
Then m(P") <ne.

Lemma 4.9. Let P* be an admissible n-polygon relative to continuous F", such
that A(P") <e. Suppose that r is the midpoint of the longest diagonal of P" and
let r, be the exact solution of the system F"=0". Then ||r—r*||2§—2£.

In addition, it is easy to prove [see 8] that the new generalized bisection
method (with the same assumptions as in [7]), is also an impartial subdivision
method. Moreover, according to Theorem 3.4 of [7], after a finite number of
iterations of the new generalized method of bisection applied to the boundary
b(P", of an admissible n-polygon P" relative to continuous F", the boundary
b(P" will be sufficiently refined relative to sgn (F”®).

Finally, we proceed with the algorithm of a generalized bisection method.

Algorithm 4.10. (A Generalized Method of Bisection)
1. Read ¢, ¢*.
2. Store the vertices X,, i€ ¥ of P", also store the rows C,, ie¥" of M4,.
3. Find the orders of all proper 1-simplexes (S}, 82), p=1(1)n2"~ 1.
4. For all p=1(1)n2""1, execute:
iS), jS2, compute D,=|X;—X| ,.
. Demax {D,}, compute v=[log(D - £~ ')/log 2] +1.
pr

W

. t<0, m<0, k0.

. tet+1,if t=v go to step 14, otherwise go to step 8.

. mem+1,if m=n2""? go to step 7, otherwise go to step 9.

. de0, i8S, j<SZ, compute B=(X;+X)/2, also, compute the functions
evaluations F*(B). If |f,(B)<e*| for all ec & stop with B as the approximate
root, otherwise compute the & (F", B).

10. ke<k+1, if k=2" then go to step 8, else go to next step.

11. If S (F",B)=C, then go to step 12, otherwise return to step 10.

12. g« X,, X, < B, if ki and k+j, go to step 13, else go to step 8.

13. ded+1, if d>2 then go to step 8, otherwise B—2X, —g and go to step 9.
14. Find the maximum diagonal and take its midpoints as the approximate root.

N BN e

The “relaxation” which takes place in steps 12 and 13 is discussed in [8].
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5. Numerical Examples

The Algorithms 3.2 and 4.10 were programmed in Fortran IV on a Cromemco
system I1I, and many examples were tried in several dimensions. Our ex-
perience is that the algorithms behaved predictably and reliably and the results
were quite satisfactory. So, Tables 1, 2 and 3 incorporate the various stages in
obtaining solutions of three well known test cases; namely, the ones by Rosen-
brock, Brown-Conte and Powell.

In the above tables, “V;;” indicates the j-th component of the i-th vertex of
the initial n-polygon, “X;;/ indicates the j-th component of the i-th vertex of
the admissibie n-polygon P”, “S,.” indicates the j-th component of & (F", X)),
“r” indicates the approximate solution of F"=6", “B.C.” indicates the maxi-
mum number of bisections cycles of the proper 1-simplexes of P* in order to
establish the root with precision “¢”, “N.B.” indicates the bisections cycles and
“F.E.” indicates the total number of functions evaluations for the generalized
method of bisection.

Table 1. Experiment in two dimensions
F?=(10(X, —X1%),1-X ) [Rosenbrock]

i Vi V2 X Xz Si1 Siz r

1 -5 -5 1.05 -5 -1 -1 0.9999999
2 -5 4 —2.05 4 -1 1 0.9999999
3 4 -5 1.05 4 1 -1

4 4 4 —195 4 1 1

A(P")=9.518932 B.C.=27 F.E. =98 £=10"" NB.=24

Table 2. Experiment in three dimensions
F3=(3X,+X,+2X}-3, —3X,+5X2+2X,X,—1,25X,X,+20X,+12) [Brown-Conte]

i Vi Via Vis X1 X, Xi3 Sit Siz Sis r

1 -1 —-0.5 -2 1 —0.5 -0.45 -1 -1 -1 0.2900523
2 -1 —-0.5 1 045 -05 1 -1 -1 1 0.6874306
3 -1 1 -2 -1 1 ~1.53 -1 1 -1 —0.8492385
4 -1 1 1 —1 1 1 -1 1 1

) 1 -0.5 -2 1 —-0.5 ~0.55 1 -1 —1

6 1 -0.5 1 0.55 —05 1 1 -1 1

7 1 1 -2 -1 1 —1.63 1 1 -1

8 1 1 1 1 1 1 1 1 1

A(P")=3.30498 B.C.=25 F.E.=297 e=10""7 N.B.=24
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Table 3. Experiment in four dimensions
Fr=(X,+10X,, ]/§(X3 X)) (X,-2X,)% ]/10(X1 ~X,)) [Powell]
i I/il I/iZ V;’S I/1'4 Xil XiZ Xi3 Xi4 Sil Si2 Si3 Si4 ri
1 =02 -015 -0.16 -0.15 -02 -0.15 0.14 0.19 -1 -1 -1 -1 ~0.0000001
2 -02 -015 -0.16 —-0.60 03 -0.15 0.14 0.19 -1 -1 -1 1 0.0000000
3 -02 -0.15 0.14 -0.15 03 —-008 -016 0.60 -1 -1 1 -1 0.0000001
4 -02 -0.15 0.14 —0.60 03 -008 -016 -0.15 -1 -1 1 1 0.0000001
5 ~0.2 015 -016 -015 -02 -003 0.14 —-0.15 -1 1 -1 -1
6 —02 015 -0.16 -0.60 03 -008 0.14 -0.15 -1 1 -1 1
7 -02 0.15 0.14 -0.15 -02 -015 -009 -0.15 -1 1 1 -1
g8 —02 0.15 0.14 —0.60 03 —-015 —-009 -0.15 -1 1 1 1
9 03 —-015 -016 -0.15 ~0.2 0.15 0.14 0.19 1 -1 -1 -1
0 03 -015 -016 -0.60 0.3 0.15 0.14 0.19 -1 —-1 1

—_ e
N R W —

1

03 -015 0.14 —-0.15 0.3 002 —-016 060 1 -1 1 -1
03 -015 0.14 —0.60 0.3 002 —-016 -0.15 1 -1 1 1
0.3 015 ~016 -0.15 -0.2 0.07 0.14 —-0.15 1 1 -1 -1
0.3 015 -016 -0.60 0.3 0.02 0.14 -0.15 1 1 -1 1
0.3 0.15 014 -0.15 —-0.2 0.15 -009 —-0.15 1 1 1 -1
0.3 0.15 014 —-0.60 0.3 015 —009 —-0.15 1 1 1 1

A(P")=0.912689 B.C.=24 F.E.=553 e=10"7 N.B.=18

In the cases where no roots of F” laid within the initial n-polygon, the
Algorithm 3.2 gave correct results.

6. Conclusions and Assessment

The fast generalized method of bisection we have analysed in this paper
compares favourably with other methods of bisection [3, 4, 6]; its great
advantage being that since it does not compute topological degrees at all, as
the other methods do in each iteration, its speed is quite remarkable. Moreover
it keeps the advantages of the other methods; that is it needs in the evaluation
of the various functions their signs only to be correct, it can be applied for
non-differentiable functions and does not require calculations of derivatives.

Our method has also got the advantages of the traditional bisection meth-
od, that is we can know beforehand the number of iterations that are needed
for the attainment of the root to a prescribed accuracy; as well the starting
estimate of the root has not got to be near the root.

Furthermore, the analysis of the method is such that its generalization to
higher dimensions is quite trivial; in fact our algorithm is fully automated and
handles the dimensionality of the problem just as a parameter; so the algo-
rithm can be used as a starting procedure for obtaining good approximations
of roots while for finer refinements we switch into other methods, for which, as
we know, good initial approximations are a condition sine qua non.
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Note Added in Proof

Answering question raised by the first referee we compiled the following comparative table which
enriches the numerical evidence of the paper, and for which we are thankful to the referee.

Comparative table for localizing a solution within a region

Method Dim Number of Comments

———— FE.

2—  3-
Kearfott’s 12 16 Min The numbers shown are produced with respect to the
GBM 992 2152 Max 3 problems examined by the author in [4]
Qur 4 8 Min The numbers shown refer to any problem and are
RGBM 12 32 Max produced from the easily derived formulae Max F.E.

=(n+1)2", Min F.E.=2", where n is the dimensionality
of the problem




