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Summary. A rapid Generalized Method of Bisection for solving Systems of 
Non-linear Equations is presented in this paper, based on the non-zero 
value of the topological degree. Further, while the method does not com- 
pute the topological degree, it takes care of keeping its non-zero value 
during the bisections and thus results in a fast bisection algorithm. 

Subject Classifications: AMS(MOS): 65H10; CR: G1.5. 

1. Introduction 

The author of [4] in his paper gave an efficient degree computation method 
for a generalized method of bisection (GMB), for the solution of non-linear 
systems of equations of the form: 

F" =0" =(0, 0 . . . .  ,0), (1) 
with 

F ' = ( f t , f e  . . . .  ,f.): ~ c ~('--+IR", 

where: ~ is an n-dimensional region in P," and ~ its closure. 
In the above paper, the author, in fact, improved F. Stenger's [6] method 

for the calculation of the topological degree d(F", ~,  0") of F" at 0" relative to 
~.  And, then, by repeated computation of the topological degree he produced 
an algorithm for the solution of non-linear systems of equations in a way that 
is a generalization of the method of bisection. 

In this paper we further improve the algorithm by introducing the concept 
of an admissible-polygon through which we remove all calculations concerning 
topological degree, which as is known, is quite a time-consuming procedure 
and in fact a weak point of the algorithm given in [4]. In addition, we produce 
a priori error bounds of the method of bisection, which, by the way, was not 
given in [4]. Lastly, we deal with three typical well known test cases and give 
the detailed algorithm for solving non-linear systems. 
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2. The Admissible n-polygon 

Notation 2.1. In this paper  we shall usually use the following sets: 

~ - - { 1 , 2 , 3  . . . .  ,2"}, ~ = { 1 , 2 , 3  . . . .  ,2" -1} ,  ~ = { 1 , 2  . . . . .  n} 

and superscripts to denote dimension and subscripts for indexing. 
In the development  of our analysis the concept  of the admissible n-polygon 

will play a fundamental  role. To define it we first introduce the tool of the n- 
complete  matrix. 

Definition2.2. An n-complete matrix Jg ,= (Ci j ) ,  lEVI', j s g  is a 2 " x n  matrix 
with elements in each row the respective coordinates  of the vectors of the 
Cartesian product :  

I~I ( - 1 ,  1 ) = ( - 1 ,  1 ) x ( - 1 ,  1 )x . . .  •  1). 
i=1 

Obviously there are m a n y  matrices J / ,  and in our analysis we can use any 
one of them. Yet we are going to choose the one whose selection appears  to be 
more  natural  than the others, since it will be closely related with the sequence 
of the natural  numbers  1, 2, 3, ..., 2 ~. More  specifically, let B~' be the n-digit 
binary forms of the numbers  i - l ,  i e~U. Then, we formulate  a 2"x  n matrix 
Jg*,  with entries in row i, i e 3v', the digits of B 7. Finally, in the matr ix  sO/*, we 
replace each zero element by - 1  and thus we come up with a new matr ix  J//,, 
which we call the n-complete matrix. By construction, it is obvious that  the n- 
complete  matr ix  ~r depends only on the dimensionali ty of the problem,  and 
so, for example,  when n = 1, 2 we have respectively: 

B ~ = I  tB~J = --*Jr = ' 

] [ i] =01 I B ~ I  l 0  ~ 51  
B~ = 10~s/g* = I B m [  =L1 --* Jr'2 = B~ 1 " 

B ~ - - l l  LB]A L1 1 

Definition 2.3. Let P" be an n-polygon [3, 4] with 2" vertices. Suppose further 
that  F " = ( f l , f z  . . . . .  f ,) :  P " ~ I ~ " ~ I / " .  Then we define the vector of signs of F" 
relative to a vertex X k, 5~(F", Xk), by: 

o c~ (F", Xk) = (sgn f l  (Xk), sgn f ;  (Xk) . . . .  , sgn f ,  (Xk)), 

and the matrix of signs of F" relative to the vertices X k, ke"U by: 

5" = [SP(F ", X 0  v , 5P(F ", X2) v, ..., 5~ ", X,,) v . . . . .  ~9~ ", Xz.)V]v; 

of course, the matr ix  of signs 5 p is a 2" x n matr ix  such that  its m-th row is the 
vector  5~ ", X,.). 
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Finally, the function sgn(t), t ~ I1 is the known sign function with values: 

1, if t > 0  

sgn (t) = 0, if t = 0 

- 1 ,  if t < 0 .  

Now, we can proceed with the definition of an admissible n-polygon. 

Definition 2.4. An n-polygon with 2" vertices, P" c l l"  is called an admissible n- 
polygon relative to F"=( f l , f 2  . . . .  , f , ) :  P " ~ R " ,  iff the matr ix  of signs of F" 
relative to its vertices is identical with Jr 

In an admissible n-polygon we define the following concepts. 

Definition 2.5. A proper 1-simplex is a 1-simplex ( X p, X q) with extreme points 
the vertices Xp and Xq of an admissible n-polygon P" relative to F": P " ~ " ,  iff 
the corresponding coordinates of the vectors 5P(F ", Xp) and 5P(F ", Xq) differ 
from each other only in one case. 

Definition 2.6. A polygon which is constructed by 2"-  1 vertices of an admissible 
n-polygon P" relative to F": P " ~ , "  will be called the r-th side of P", and will 
be denoted by H r, iff for all vertices Xk, k ~  the corresponding vectors 
5e(F", Xk) have their r-th coordinate  equal to each other. Moreover ,  if this 
c o m m o n  r-th element is - 1  (or 1) then the H r will be called negative (or 
positive) r-th side and will be denoted by H r_ (or Hr+). 

The  following two lemmas  will be useful in our analysis. 

L e m m a 2 . 7 .  In each admissible n-polygon P" relative to F " = ( f l , f 2  . . . . .  f,):  
P " - ~ " ,  there are n positive and n negative sides. 

Proof. According to Definition 2.6, a side should be created by 2"-1 vertices 
Xk, ke~/~ such that  all the vectors 5e(F",Xk), k~U~ have a c o m m o n  coor- 
dinate which, of course, can be the 1-st, 2-nd . . . .  , n-th coordinate,  which again 
can be either - 1  or 1 (see Def. 2.2). Consequently,  there will be 2n sides, n 
negatives and n positives. []  

L e m m a  2.8. Each side II~ -1 of an admissible n-polygon P" relative to F" 
= ( f l , f 2  . . . .  ,fn): P"--*~" is itself an admissible (n-1)-polygon relative to F~ -1 

= ( f , ,  f2 . . . .  , f , - l , f~+t  . . . .  , f , ) :  H:  - * - ~ R " -  1 

Proof. According to Definition 2.6, the ( n -  1)-polygon H~"-* has 2"-1 vertices 
Yk, ke~t/~ �9 In addition, the coordinates  of the vectors 5r yk) for all k e  ~/~ 
are easily derived f rom the corresponding to vertices Yk rows of J/L,, if we 
delete the elements of the r-th column. Finally, we can easily check that  these 
coordinates  are identical with the corresponding elements of the ( n - 1 ) -  
complete  matrix J / , _ l .  Consequently according to Definit ion2.4,  the side 
/ / , - t  is indeed an admissible ( n -  1)-polygon. [ ]  

Theorem 2.9. Let (Xi ,  i ~ ~ )  be the ordered set of vertices of an admissible n- 
polygon P" relative to continuous F " = ( f l , f  2 . . . . .  f,):  P " c R " + I / "  and such that 
0"=(0,  0 . . . .  , O)r F"(b(P")), (b(P") is the boundary of P"). Suppose that 2, {Hi}i= 1 is 
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the set of its sides and .~ = {S~,~ 1, i -- 1, 2 . . . .  ,2 n, t = 1, 2 . . . .  , tl} is a finite set of 
( n -  1)-simplexes Si",~ 1, on the boundary of P" such as" 

(i) the boundary of P', b(W), is given by: 

2 n  ti 

b ( P " ) = Z  Z $7,~ -a, 
i = 1  t = l  

(ii) they have disjoint interiors, 
(iii) they make b(P") sufficiently refined relative to sgn(F") and 
(iv) the extreme points of each S"-1 i,t are vertices of H i. Then, the topological 

degree of F" at O" relative to P", d(F", P", O"), is equal to +_ 1. 

Proof. According to the Recursion Formula [6, 4] the following relationship: 

d(F", P', 0") = ~ d(F~- x, S~- 1, 0"- '), (2) 
k l e J l  

holds, where: F~ -1 =(f2, f3  . . . . .  fn): b(P") ~ p J - 1  and f l  is the set of indices 
such as k 1 ~ 1  iff f l  > 0  on S~,~-~ ~ .  

Moreover, from Definition 2.6 it is apparent that the side I/1+ is the only 
side of pn where f l > 0  on it; therefore, all S "-~, k t ~ J l  are constructed by k l  

vertices on H a +. On the other hand, we have, 

6e(F",X2,)=(1, 1, ..., 1, 1) and 5e(Fn, X2 ._0=(1 ,  1, ..., 1, - 1 ) ;  

consequently, the last and the last but one vertices of pn, X2" and X2,_ 1, 
belong to Hi+ .  Lastly, according to assumption (ii) of the theorem there 
should be only one (n-1)-simplex, say S~,~ -1, which includes both X2, and 
X2,_ 1. Then, by means of the Parity-Theorem [4], we obtain: 

mk 1 

d(F~ -~, S~,~ -~, 0n-~) = ~ Par (~(S~,~, 2 F~- 1)), (3) 
t = l  

mk 1 

where: n -  I - -  S n -  2 b(Sk, ) -  ~ k~,t" 
t = l  

Furthermore, we observe that the range simplex . -2  ~(Sk~,t , F~- ~), with 

mk~ 
n - X  n - 2  b(Sk~ ) =  ~ Skr,,, 

t = l  

is the only one which is usable; consequently, combining (2) and (3) we have: 

d(F n, P", O n) =d(F'~- ', S~- ~, 0 n- 1 ) .  (4) 

Finally, by repeated use of the above procedure we eventually get: 

d(Fn, Pn, On)=d(F,]-~,~n-1 t~n-l~_ = d ( F 2 2 ,  S 2 02), (5) 
~k*/ ~ ~ ] - -  " ' "  k ' n - 2 '  

2 where the three vertices of the 2-simplex Sk~_~, namely X2., X2._ 1 and X,, are 
such that the functions values satisfy: f i>0 ,  i=1(1)(n-2) .  Also the fn-1 < 0  on 
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X r, because if f ,_  1>0  on X~ then we easily get: 

5e(F",Xr)=-O~ .) or 5e(F",X,)=Se(F",XE,_I), 

which means that two rows of the n-complete matrix are identical, but this is 
absurd. Consequently f ,_ ~ <0  on X~; therefore either 5"(F, 2_ 2, X , ) = ( -  1, 1) or 
5p(F2 2, X ~ ) = ( -  1, -1) .  Moreover, from (5) we have: 

3 

d (F,,2- 2, SZk*._ ~, 02) = Z Par (~(S~.._ ~, ,, F2z)). 
i=1  

So, either 

, 2 [i i] d(F~ 2, S2 O - ) = P a r . ~  =1 or d(F~_ SZ 02)= Par k*n 2' ' k*~-- 2' - -  

(6) 

[] Combining (5), (6) we get: d(F", P", 0")= _+ 1 which proves the theorem. 

Next, we are going to set up an algorithm for creating admissible n- 
polygons P" relative to F": P"--+I(", which, in turn, will be used for the 
initialization of our rapid generalized method of bisection. To do this, we need 
a way of locating admissible polygons, as well as the means of specifying, for 
each vertex, its associated proper 1-simplexes, that are to be subdivided by the 
process of bisection. The following lemma will facilitate the whole procedure. 

Lemma 2.10. Suppose that Xi, i ~ ~Y', are the vertices of an admissible n-polygon 
pn relative to Fn: p , ~ n .  Then (a) for each vertex X i there are exactly n other 
vertices X k such as the 1-simplexes (Xi,  XR) , k ~ :  are proper 1-simplexes, and 
(b) the subindexes k are given by k = i - 2 " - i C i j ,  ia~U, j E 8  and Cij are the 
elements of the n-complete matrix ~l  n. 

Proof. According to Definition 2.5 the 1-simplex ( X  i,Xk) will be a proper 
simplex iff the corresponding coordinates of the n-vectors oW(F",Xi) and 
5P(F ", Xk) differ from each other in only one case, which of course, can be 
either the 1-st, or the 2-nd . . . .  , or the n-th coordinate, that proves part (a) of 
the lemma. Next, for tackling the other part of the 1emma we take the i-th and 
the k-th rows of the n-complete matrix ~/ . ,  with k = i - 2 " - J C i j ,  i ~ l  :, j e 8  and 
we are going to prove that the corresponding elements of the rows differ from 
each other, only in the j-th column. Ind~cd, by definition, we easily get i - k  
=2"-JCij, or ( i - 1 ) - ( k - 1 ) - - 2  " - j  Cii, with Cij= _+ 1. Therefore, the difference 
of the orders (i - 1) and ( k -  1) will be an integer power of 2, multiplied by C~ i, 
so the n-digit binary expressions of (i - 1) and (k - 1) will differ from each other 
in only one digit of the same order, in fact, in the j-th most significant digit, 
for j ~ 8. Consequently, on the basis of the correspondence we have set up 
among the elements of ~ ' ,  and the binary digits, we conclude that the rows i 
and k of J/g, will be different only in the elements of the j-th column, for j e g, 
which proves part  (b) of the lemma. [] 
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3. Constructing Admissible n-polygons 

The procedure for constructing admissible n-polygons is based on the following 
three algorithms: 

(a) The algorithm for setting up the n-complete Matrix ~/l, [see 8]. 

(b) The algorithm for computing an initial n-polygon, with vertices whose 
coordinates are given by the corresponding elements of the rows of the 2" • n 
matrix ~ defined by: 

where: 
- X  in i~//~, j ~ ,  ~=(g~j), g i j -  ~, 

. ~=(b l j ) ,  b i j=t~Jhj ,  i , j ~ ,  

in n X ~" --(X~", X~" . . . . .  X. )~ P. arbitrary initial point, (hi, h2 . . . .  , h.) arbitrary step- 
sizes in each direction, ~ '*  the associated matrix of the n-complete matrix ~ ' ,  
(see Def. 2.2), and 6] the well known Kronecker's delta. 

(c) The algorithm for applying a modified version of the bisection method in 
that we have produced and is very suitable in this case. 

Next, we give a detailed description of all the steps of the algorithm for the 
construction of admissible n-polygons, while the algorithm itself follows. 

First, we set up the n-complete matrix J / , ;  with the help of Lemma 2.10 we 
can find the orders of vertices of an admissible n-polygon, as well as the 
positions of the extreme points of its proper 1-simplexes. Then, we take an 
initial arbitrary point X~"eR" and arbitrary stepsizes (ht,h2, . . . ,h,) in each 
coordinate direction and on the basis of them, we construct an initial n- 
polygon. Afterwards, we locate the positions of those pairs of vertices which 
are going to be extreme points of proper 1-simplexes, of the above admissible 
n-polygon. Then, for each one of the above pairs, say the (i,j) pair, we take the 
corresponding vertices of the initial n-polygon, that is the pair (Vii, Vj), which by 
construction is such that their corresponding coordinates differ from each other 
only in one case. Next we compute the points of intersection of F" and 
(F~, Vj) and by suitable perturbation of the intersection of F" and (V i, F./) we 
change the initial n-polygon in such a way that an admissible n-polygon may 
eventually emerge; if not, then we continue with another pair and the process 
goes on. 

Example3.1. (see F. Stenger, p. 36). Suppose n=2,  FE=(X2-4y ,  y 2 - 2 X  
+4Y), (X]", Xi2") =( - 2 ,  -0.25), (hi,h2)=(4,0.5) the arbitrary stepsizes, and e 
- 10- z the desired accuracy. 

We first find the 2-complete matrix Jr/2: 

- 1  
~ 2 =  1 - " 

1 
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Next we compute matrix ~ by N = ~ # + J / * ~ ,  with: 

i -0 .25 

fq = -0.25 

-0.25 

' ~ '  = ' ~ = 0.5 

Therefore the vertices of the initial 2-polygon are: 

Va = ( - 2 ,  -0.25), V 2 = ( - 2 ,  0.25), V 3 =(2, -0.25), V 4 =(2, 0.25). 

Next, we check if the initial 2-polygon is an admissible 2-polygon; to do this, 
we form the matrix 5~ of signs of F 2 relative to the vertices 1/1, Vz, V 3 and V 4 : 

o= 

- sgnf l (V 0 sgnfz(V 0- 

sgn f l  (V2) sgn f2 (V2) 

s g n f l ( ~ )  sgnfz(V 3) 

_sgn f l  (V4) sgn fz (V4). 

and compare it with ~2" Since they are different the initial 2-polygon is not an 
admissible one. Therefore, we should find suitable points, V*, in R2 such that 
their ~t~(F 2, V*) produce those rows of Jr which are missing in 5O. Points V* 
should lie on the 1-simplexes whose extreme points are those vertices of the 
initial 2-polygon which correspond to the positions of the pairs given by: 

Zl  =(1, 2), Z 2 =(1, 3), Z 3 =(2, 4), Z4(3 , 4). 

So, the above 1-simplexes are: 

s l = < v ~ , v ~ > ,  s ~ = < v ~ , v 3 > ,  s ~ = < v ~ , v 4 > ,  s 1 = < v 3 ,  v4>. (7) 

On the other hand, points V* should also lie in neighborhoods of the points of 
intersection of F 2 with the 1-simplexes S~, S~, S 13, S~. Thus, for the first 1- 
simplex (1/1, V2) and functions f~ and f2 we find that there is no intersection 
point, while for the intersection of the 1-simplex (V~, V3) and F a we find a 
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point of intersection which is proven to be of no use. Finally, for the com- 
putation of intersections of F 2 = ( f l , f z )  and (V2, V4).. we observe that the 
second coordinate of the vertices V 2 and V 4 remains constant; therefore, we 
should consider the function fl  as function of its 1-st variable only and so we 
solve the equation: 

f~(X, 0.25) ~ X  2 - 1 =0.  (8) 

The solution X* of (8) is recommended to be computed in the interval [ - 2 ,  2) 
with accuracy e=10  -1 and by the following modified bisection method [see 
8]: 

X.+ 1 =X.+sgn( f~(Xo)  ) sgn(fa(X.))h/2 "+1, n=0,  1 . . . .  

with X 0 = - 2  and the interval length h equal to 4. 
So, we find X * = - I  and consequently points V* are given by: 

V* = ( - 1 - e*, 0.25) and V4* = ( - 1 + e*, 0.25), (9) 

with e* =0.1 >e. 
Next, we test whether points V* and V* are vertices of the admissible 2- 

polygon under construction. To do this we form the vectors: 

and 
5 f ( F  2, V*)=(sgn f~( -1 .1 ,  0.25), sgnf2 ( -1.1,  0.25))=(1, 1) 

5e(F 2, VZ)=(sgn f~ ( -0 .9 ,  0.25), sgn f2 ( -0 .9 ,  0 .25) )=( -  1, 1) 

and check if any of them coincide with any row of ~/2 which is not already 
present in 5a; indeed, we find that only 5~(F 2, V*) coincides with the second 
row of ~t' z (which does not exist in 50). 

Now, to find the intersection of f2 with (V 2, V4) we follow the same 
procedure and find successively: the equation: f2(X, 0 . 2 5 ) = - 2 X +  1.0625, the 
point of intersection: (X*, X~")=(0.53, 0.25), the points: V2** =(0.43,0.25) and 
V** =(0.63, 0.25), the vectors: 5e(F 2, I/"2"*)=(-1 , 1) and 5~ 2, V**) = ( - 1 ,  -1).  
In this case, only the vector 5~(F 2, V**) coincides with the 1-st row of Jh' 2 
(which is not present in S). 

Now, we observe that all the missing rows of Jg2 have appeared; therefore, 
the process is concluded and an admissible 2-polygon is the one with vertices 
V,***, V*, V 3 and 1/1; so: 

p2- - (V**,  V*, V 3, V,). 

Note that any three of the vertices of p2 do not belong to the same 1-simplex. 

Algorithm 3.2 (Creating an admissible n-polygon) 

1. Input e, n. 

2. Compute the n-complete matrix jg ,  =(C/i ). 

3. Compute initial n-polygon and store its vertices in matrix ~ =(r/j). 

4. Set all entries of a 2" x n matrix ssq =(a/j) equal to zero. 

5. Compute for each row R i of ~l the vector 5~ ~, Ri) and compare it with the 
rows of Jr if it is identical with any row of ill. then s t o r e  R i in the 
corresponding row of ~ ,  otherwise continue with the next row of ~.  
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14. k ~ k + l ;  if k = n  

15. u ~ u +  l; i f  u = n  

16. v * - v + l ;  if v = n  

17. I f  Z,,=O then e 1 

- - / ~ 1  " 

6. I f  there is any row of  d with elements equal to zero, go to next step; 
otherwise go to step 23. 

7. Find the orders of  the extreme points for  all n2"-1 proper 1-simplexes Sg 

8. j ~ O ,  k ~ O ,  u',-O, v~-O, l~O. 

9. j ~ - j +  l, p ~ S ) ,  q*--S]. 

10. For all i= l (1 )n  execute steps 11 and 12. 

11. I f  rp, i:t:rq, i and rp, e=%, d Vds{1 ,2  . . . .  , f , . . . , n }  then continue, otherwise 
return to step 10. 

12. h~--[rp, l - rq ,  i[ 
t~-min {Irp, il, ]%il} 
Xa~--rp, d, Jor all d e  {1, 2 . . . .  , F, ..., n} 
Xi~-t .  

13. For all m=l(1 )n  execute: 
Find a zero of  f m ( X 1 , X  2 . . . . .  X i . . . . .  X , )  within the interval (t, t+h)  and 
store it in Zm; if  there is no zero put Zm*-O. 

go to step 20, otherwise continue. 

go to step 18, otherwise continue. 

go to step 15, otherwise continue. 

~ 0 ,  else ~t~-~ and compute B k . . . .  ~-Zuq-e  1 and B k . . . .  +-Zu 

18. l ~ l +  l, if l = n  go to step 14, otherwise continue. 

19. yk,j,?--Bk, k,t store it in o?___j 
# .~*. Yk, j,l'~-Bk,k,i store it in 

20. I f  j # n 2 " - 1  go to step 9, otherwise continue. 

21. Compute for each row Yi of  ~ the vector ~ (F" ,  Yi) and compare it with the 
rows of  Jg,,  i f  it is identical with any row o f  Jg,  then store Yi in the 
corresponding row o f  d ,  else try again with the next row of  ~ until 
exhaustion. 

22. I f  there is any row of  d with elements equal to zero put Y ~ - Y *  and go to 
step 21; otherwise continue. 

23. Output d .  

4. The Fast Generalized Method of Bisection 

The fast generalized method of bisection that we are going to develop in this 
section is based on the topological degree theory and especially on the follow- 
ing properties: If P" is an n-dimensional polygon and F": P"--*I/" is con- 
tinuous, with F"(X)~O"  V X e b ( P " ) ,  then, there is at least one root of the 
system F"=0" within P", provided that d(F",P", 0")#0;  note that if the to- 
pological degree is equal to zero then no conclusions can be drawn because 
more information is needed [-1, 2, 5]. So, although the topological degree plays 
a considerable role in the existence theory yet its value does not constitute a 
precise count of all the roots of the system. Furthermore, in a root finding 



132 M.N. Vrahatis and K.I. lordanidis 

algorithm based on degree theory the exact computation of the topological 
degree can be avoided, since the keeping of its non-zero value is sufficient to 
secure the location of the root. That is exactly what we do in our algorithm; 
we delete all computing concerning topological degree and take care to pre- 
serve its non-zero value during the iterations, thus gaining tremendously in 
speed over previous attempts. 

The description of our algorithm goes as follows: 
Suppose P" is an admissible n-polygon relative to F": P"--*~", and let b(P") 

be sufficiently refined relative to sgn(F") [3, 4, 6, 7]; then Theorem 2.9 in- 
dicates that P" includes at least one root of the system, so we shall construct 
our bisection algorithm in such a way that the new refined n-polygon P" to be 
an admissible one. To do this we bisect all proper 1-simplexes of P" in the 
following way. 

Let <Xi, Xj )  be a proper 1-simplex of P" where: 

Xi=(Xi l ,X~2  . . . .  , X i ,  ) and X j = ( X j l , X j 2  . . . .  ,Xj , ) ;  

then we define the point: 

B = ((X i 1 .3ff X j  1)/2, ( X  i 2 -]- X j 2 ) / 2  . . . .  , (Xin + Xjn)/2)" 

Next we distinguish the following three cases: 

(a) If the vectors 5~ ", B) and 5~ ", Xi) are identical then we replace X i 
by B and the process continues with the next proper 1-simplex. 

(b) If the vectors 5e(F ", B) and 5e(F ", X j) are identical then we replace Xj 
by B and the process continues with the next proper 1-simplex. 

(c) Otherwise, the process continues with the next proper 1-simplex. 

Lemma 4.1. Let P" be an admissible n-polygon relative to F": P"~N" .  Suppose 
further that the new bisection method is applied to one proper 1-simplex of P". 
Then the new n-polygon P" is an admissible one. 

Proof. Let <X~, Xj> be the proper 1-simplex which is going to be bisected; 
then according to the bisection procedure we described before we take the 
midpoint B=(X~+Xj) /2  and, of course, either any of the two end-points will 
be replaced by B or no change will take place. In the latter case the lemma is 
obvious, while in the former case, let us further suppose that vertex X~ is 
replaced by B, then the vectors 5g(F", Xi) and 5P(F ", B) will be identical and 
therefore the matrix 5e. of signs of F" relative to the vertices of P". will coincide 
with the matrix 5p of signs of F" relative to the vertices of P" and consequently 
since by hypothesis P" is an admissible n-polygon, so is P" [] , "  

Remark 4.2. From the above lemma it is apparent that the refined n-polygon 
P" includes also at least one root of the system (see Theorem 2.9). 

Definition 4.3. Let <Xi, i e ~ >  be the ordered set of all vertices of an admissible 
n-polygon P" relative to F": P"--*I/". Then a diagonal D of P" is the 1-simplex, 
say ( X  k,Xm>, such that all the components of the vectors 5P(F ", Xk) and 
5e(F", Xm) are different from each other. 
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Lemma 4.4. Let (X~, ie~t/~) be as in Definition 4.3. Then (a) for each vertex X k 
there is exactly one other vertex X m such as the 1-simplex (Xk,  Xm) is a 
diagonal of P", and (b) the subindex m, Vke~U1 is given by m = 2 " +  1 - k .  

Proof. According to Definition 4.3 all the components of the vectors 5e(F ", Xk) 
and 5~(F ", Xm) are different from each other; consequently the k-th and m-th 
rows of ~ ' ,  must differ from each other in all entries; therefore (Xk, X, , )  is a 
diagonal of P". Moreover, since the values of the entries can be either 1 or - 1 

the above diagonal is unique. Next, to prove part (b) of the lemma, we observe 
that the given relationship can be written as: 

( k - 1 ) + ( m - 1 ) = 2 " - l ,  

or, if we make use of the n-digit binary forms, 

" B "  - Bk+ . ,--111...1 

which means that the two rows of ~ ' ,  differ from each other in all correspond- 
ing components; thus the lemma is proven. [] 

Definition 4.5. Let (X~, i e ~ )  be as in Definition 4.3. We define as an estimate 
of the solution of the system F" = 0", the midpoint of a diagonal of P". 

Definition 4.6. Let (X~, i e ~ )  be as in Definition 4.3. We define as the diame- 
ter, A(P"), of P", the length of the longest proper 1-simplex of P" (distances are 
measured in Euclidean norms), while the length of its longest 1-simplex is 
defined as the mesh of P',  m(P'). 

Now, we are in a position to determine the minimum number of bisections 
that are required by the method in order that the new n-polygon P" which is 
obtained at the end is such that its diameter A (P,) is less than a predetermined 
number e. 

Lemma 4.7. Suppose that P" is an admissible n-polygon. Then, the minimum 
number v of bisections of the proper 1-simplexes of P" which are required in 

p .  obtaining a P" and such that A( . )<e  is given by: * 

v > log (A (P"). e- 1)/log 2. 

Proof. Let (X~,X~) be such that A(P")=IIX~-XjIIz. Then we bisect any 
proper 1-simplex of P" obtaining thus a refined admissible n-polygon P].  We 
claim that the diameters of P" and P] satisfy the relationship: 

A (P') 
- - _ <  A (P]). (10) 

2 - 

To do this we distinguish the following two cases: 

I) Suppose that after the bisection the initial proper 1-simplex (X~, X~) of 
P" is unchanged in P].  Then A(P~) will be either greater than or equal to 
A (P"), which, of course verifies (10). 

II) Suppose that after the bisection the (X~, X j)  changes into (X~, X*)  (or 
equivalently into (X*, X j)). This can happen if either (X~, X j) or a neighbour- 
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ing proper 1-simplex (say (X i, Xk)), is bisected. In the first case we shall have 

either A (P]) = II X, - X* tl 2 - II X, - Xjll 2 (because of bisection) or A (P]) > I[ Xi 
2 -Xj[12 ; both verify (10). 

In the second case, let (X j, Xk) be the neighbouring proper 1-simplex 
which is bisected. Then, by using norm properties we have (see Fig. 2): 

xt • 
Fig. 2 

o r  

o r  

IIX~-X~'ll= > t lXi-X/I  ~-I lXj-X~lb2,  

IIX~-Xkll2 
IIX~-XTIt2>llXi-Xjll2 2 ' 

IlXi-X~.ll2>llX~-Xjll [IX~-X/12 (since IIXi-Xslq2>llXj-Xkll2), 2 2 

o r  

[iXi_Xy[12> IlXi-Xjll2 
2 

Then, obviously: 

IlXi-Xsll 2 _m (P") 
A (P])> IIX~-X~ll2> 

2 2 

which proves (10). 

(by definition), 

The procedure continues with new bisections, giving thus, at the k-th 
bisection, the relationship: 

A (p~,) > A (2Pn). (11) 

Finally, if the v-th bisection produces P~ satisfying: 

then from (11) we have: 

~(P~)_-<~, 

_ p ~  > n ~_>~( ,)=~(P)/2, 
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or, by taking logarithms: 

v > log (A (P")- e- 1)/log 2, 

which proves the lemma. [] 

Furthermore, we can easily prove the following two lemmas [see 8], which 
provide bounds on the mesh of an admissible n-polygon and on the estimate of 
the solution. 

Lemma 4.8. Suppose that (Xi ,  i ~ U )  is as in Definition 4.3 and that A(P")<e. 
Then m(P") <ne. 

Lemma 4.9. Let P" be an admissible n-polygon relative to continuous F", such 
that A(P")<_-e. Suppose that r is the midpoint of the longest diagonal of P" and 

let r. be the exact solution of the system F"=O". Then Hr-r.H2 < 2 .  

In addition, it is easy to prove [see 8] that the new generalized bisection 
method (with the same assumptions as in [7]), is also an impartial subdivision 
method. Moreover, according to Theorem 3.4 of [7], after a finite number of 
iterations of the new generalized method of bisection applied to the boundary 
b(P"), of an admissible n-polygon P" relative to continuous F", the boundary 
b(P") will be sufficiently refined relative to sgn(F"). 

Finally, we proceed with the algorithm of a generalized bisection method. 

Algorithm 4.10. (A  Generalized Method of Bisection) 

1. Read e, e*. 

2. Store the vertices Xi, i ~ ~e" of pn, also store the rows Ci, i e ~U of J/In. 

3. Find the orders of all proper 1-simplexes 1 2 (Sp, Sv), p = 1(1)n2 "-1 

4. For all p = l ( 1 ) n 2  n-l ,  execute: 
i~S~,  j~-S 2, compute Dp = [IXi -X~ll 2. 

5. D ~-max {Dp}, compute v = [log (D. e- 1)/log 2] + 1. 
P 

6. t~-0, m~0,  k~0 .  

7. t ~ t  + l, if t=v  go to step 14, otherwise go to step 8. 

8. m~-m+ l, if re=n2 "-1 go to step 7, otherwise go to step 9. 

9. d~O, i~S~,  j ~ S  2, compute B=(XI+Xj ) /2 ,  also, compute the functions 
evaluations F"(B). I f  Ife(B)<=e*[ for all e e g  stop with B as the approximate 
root, otherwise compute the 5P(F n, B). 

10. k ~ k +  l, if k=2" then go to step 8, else go to next step. 

11. I f  5~(F",B)=Ck then go to step 12, otherwise return to step 10. 

12. g ~ X k ,  X k ~ B  , if k~ei and k . j ,  go to step 13, else go to step 8. 

13. d ~ d +  1, if d > 2  then go to step 8, otherwise B ~ 2 X k - - g  and go to step 9. 

14. Find the maximum diagonal and take its midpoints as the approximate root. 

The "relaxation" which takes place in steps 12 and 13 is discussed in [8]. 
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5. N u m e r i c a l  E x a m p l e s  

T h e  A l g o r i t h m s  3.2 and  4.10 were  p r o g r a m m e d  in F o r t r a n  IV on  a C r o m e m c o  
sys tem III ,  and  m a n y  example s  were  t r ied  in several  d imens ions .  O u r  ex- 
pe r i ence  is tha t  the  a l g o r i t h m s  b e h a v e d  p red i c t ab ly  and  re l iab ly  and  the resul ts  

were  qu i t e  sat isfactory.  So, T a b l e s  1, 2 and  3 i n c o r p o r a t e  the  va r ious  s tages in 
o b t a i n i n g  so lu t ions  of  three  wel l  k n o w n  test  cases;  namely ,  the ones  by Rosen -  

brock ,  B r o w n - C o n t e  and  Powel l .  
In  the  a b o v e  tables,  "V~j" indica tes  the j - t h  c o m p o n e n t  of  the i- th ver tex  of  

the  ini t ia l  n -po lygon ,  "Xi j '  ind ica tes  the  j - t h  c o m p o n e n t  of  the  i - th  ver tex  of  

the  admiss ib le  n -po lygon  P", " S i j "  ind ica tes  the  j - t h  c o m p o n e n t  o f  5~(F", Xi) , 
" r "  ind ica tes  the a p p r o x i m a t e  so lu t ion  of  F " = 0 " ,  "B.C." indica tes  the  maxi -  
m u m  n u m b e r  of  b i sec t ions  cycles of  the  p r o p e r  1-s implexes  of  P" in o rde r  to 
es tabl ish  t he  roo t  w i th  p rec i s ion  "e" ,  "N.B."  indica tes  the  b i sec t ions  cycles and 
"F.E." ind ica tes  the  to ta l  n u m b e r  of  func t ions  e v a l u a t i o n s  for the gene ra l i zed  
m e t h o d  o f  b isect ion.  

Table 1. Experiment in two dimensions 
F 2 =(10(X 2 -X~), 1 - X  0 [Rosenbrock] 

i ~1 ~2 X ,  Xi: Sil S~z r, 

1 - 5  - 5  1.05 - 5  - 1 - 1 0.9999999 
2 - 5  4 -2.05 4 - 1  1 0.9999999 
3 4 - 5  1.05 4 1 - 1  
4 4 4 -1.95 4 1 1 

A(P") =9.518932 B.C. =27 F.E. =98 e = 10 -7 N.B. =24 

Table 2. Experiment in three dimensions 
F3=(3Xl +X2+2X2-3,  - 3 X l  +5X2 +2X1X3-1, 25X1X2+20X3+12 ) [Brown-Conte] 

i Vii Vi2 Vi3 Xi l  Xi2 Xi3 Sil Si2 Si3 7" l 

1 - 1  -0.5 - 2  1 -0.5 -0.45 - 1  - 1  - 1  0.2900523 
2 -1  -0.5 1 0.45 -0.5 1 - 1  - 1  1 0.6874306 
3 -1  1 - 2  - 1  1 -1.53 - 1  1 -1  -0.8492385 
4 - 1  1 1 - I  1 1 - 1  1 1 
5 1 -0.5 - 2  1 -0.5 -0.55 1 - 1  - 1  
6 1 -0.5 1 0.55 -0.5 1 1 -1  1 
7 1 1 - 2  - 1  1 -1.63 1 1 - 1  
8 1 1 1 1 1 1 1 1 1 

A (P") = 3.30498 B.C. = 25 F.E. = 297 e = 10- 7 N.B. = 24 
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Table 3. Experiment in four dimensions 
F 4 =(X 1 + 10X2, ]/5(X 3 -X4), (X 2 -2X2) 3, ] / ~ ( X  1 -X4) ) [Powell] 

137 

i Vii Vi2 Vi3 Vi4 Xil  Xi2 Xi3 Xi4 Sil Si2 Si3 Si4 ri 

1 -0.2 -0.15 -0.16 --0.15 -0.2 -0.15 0.14 0.19 -1  - 1  - 1  -1  -0.0000001 
2 -0.2 -0.15 -0.16 -0.60 0.3 -0.15 0.14 0.19 - 1  - 1  - 1  1 0.0000000 
3 -0.2 -0.15 0.14 --0.15 0.3 -0.08 -0.16 0.60 -1  - 1  1 -1  0.0000001 
4 -0.2 -0.15 0.14 -0.60 0.3 -0.08 -0.16 -0.15 - 1  - 1  1 1 0.0000001 
5 -0.2 0.15 -0.16 -0.15 -0.2 -0.03 0.14 -0.15 - 1  1 - 1  -1  
6 -0.2 0.15 -0.16 -0.60 0.3 -0.08 0.14 -0.15 -1  1 - 1  1 
7 -0.2 0.15 0.14 -0.15 -0.2 -0.15 -0.09 -0.15 - 1  1 1 -1  
8 -0.2 0.15 0.14 -0.60 0.3 -0.15 -0.09 -0.15 -1  1 1 1 
9 0.3 -0.15 -0.16 -0.15 -0.2 0.15 0.14 0.19 1 -1  -1  - 1  

10 0.3 -0.15 -0.16 -0.60 0.3 0.15 0.14 0.19 1 - 1  - 1  1 
1l 0.3 -0.15 0.14 -0.15 0.3 0.02 -0.16 0.60 1 - 1  1 - 1  
12 0.3 -0.15 0.14 -0.60 0.3 0.02 -0.16 -0.15 1 - 1  1 1 
13 0.3 0.15 -0.16 -0.15 -0.2 0.07 0.14 -0.15 1 1 - 1  - 1  
14 0.3 0.15 -0.16 -0.60 0.3 0.02 0.14 -0.15 i 1 - 1  1 
15 0.3 0.15 0.14 -0.15 -0.2 0.15 -0.09 -0.15 1 1 1 - 1  
16 0.3 0.15 0.14 -0.60 0.3 0.15 -0.09 -0.15 1 1 1 1 

A (P") =0.912689 B.C. =24 F.E. =553 e=10 -7 N.B. = 18 

In  the  cases whe re  no  roo t s  of  F"  laid w i th in  the ini t ia l  n -po lygon ,  the 
A l g o r i t h m  3.2 gave  co r rec t  results.  

6. Conclusions and Assessment 

T h e  fast gene ra l i zed  m e t h o d  of  b i sec t ion  we have  ana lysed  in this pape r  

c o m p a r e s  f avou rab ly  wi th  o t h e r  m e t h o d s  of  b i sec t ion  [3, 4, 6 ] ;  its g rea t  

a d v a n t a g e  be ing  tha t  since it does  no t  c o m p u t e  t opo log i ca l  degrees  at all, as 
the  o the r  m e t h o d s  do  in each  i te ra t ion ,  its speed is qu i te  r emarkab le .  M o r e o v e r  
it keeps  the  a d v a n t a g e s  of  the  o t h e r  m e t h o d s ;  tha t  is it needs  in the  e v a l u a t i o n  

of  the va r i ous  func t ions  thei r  signs only  to be  correct ,  it can  be  app l i ed  for 
non-d i f f e ren t i ab le  func t ions  a n d  does  no t  requ i re  ca lcu la t ions  of  der ivat ives .  

O u r  m e t h o d  has  also go t  the  advan t ages  of  the  t r ad i t i ona l  b i sec t ion  me th -  
od,  tha t  is we can  k n o w  b e f o r e h a n d  the  n u m b e r  of  i t e ra t ions  tha t  a re  needed  

for the a t t a i n m e n t  o f  the  r o o t  to a p resc r ibed  accu racy ;  as well  the  s ta r t ing  
e s t ima te  of  the  r o o t  has  no t  go t  to be  near  the root .  

F u r t h e r m o r e ,  the  analysis  of  the  m e t h o d  is such  that  its gene ra l i z a t i on  to 

h ighe r  d i m e n s i o n s  is qu i t e  t r iv ia l ;  in fact  ou r  a l g o r i t h m  is fully a u t o m a t e d  and  
handles  the  d i m e n s i o n a l i t y  of  the  p r o b l e m  jus t  as a p a r a m e t e r ;  so the  a lgo-  
r i t h m  can  be  used as a s t a r t ing  p r o c e d u r e  for o b t a i n i n g  g o o d  a p p r o x i m a t i o n s  

o f  roo t s  whi le  for f iner  r e f inements  we swi tch  in to  o the r  me thods ,  for which,  as 
we  know,  g o o d  ini t ia l  a p p r o x i m a t i o n s  a re  a c o n d i t i o n  sine q u a  non.  
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Note Added in Proof 

Answering question raised by the first referee we compiled the following comparative table which 
enriches the numerical evidence of the paper, and for which we are thankful to the referee. 

Comparative table for localizing a solution within a region 

Method Dim Number of Comments 
F.E. 

2 -  3 -  

Kearfott's 12 16 Min 
GBM 992 2152 Max 

Our 4 8 Min 
RGBM 12 32 Max 

The numbers shown are produced with respect to the 
3 problems examined by the author in [4] 

The numbers shown refer to any problem and are 
produced from the easily derived formulae Max F.E. 
=(n + 1)2", Min F.E. = 2", where n is the dimensionality 
of the problem 


