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Summary. In a recent paper, [4], Csordas and Varga have unified and 
extended earlier theorems, of Varga in [10] and Wo~nicki in [11], on the 
comparison of the asymptotic rates of convergence of two iteration matrices 
induced by two regular splittings. The main purpose of this note is to show 
a connection between the Csordas-Varga paper and a paper by Beauwens, 
[1], in which a comparison theorem is developed for the asymptotic rate of 
convergence of two nonnegative iteration matrices induced by two splittings 
which are not necessarily regular. Monotonic norms already used in [-1] 
play an important role in our work here. 

Subject Classifications: AMS(MOS): 65F10; CR: G.1.3. 

Introduction 

The comparison of the asymptotic rates of convergence of nonnegative iter- 
ation matrices induced by two splittings of the same matrix has arisen in 
several recent papers. For example, in a paper by Csordas and Varga, [4, 
Theorem 2], a result is presented that unifies and extends earlier theorems by 
Varga, [-10, Theorem 3.15], and Wo~nicki, [11, Theorem 13], in which the 
iteration matrices are induced by two regular splittings of the same monotone 
matrix. Another recent result is due to Beauwens, [1, Theorem 2.3]. Beauwens' 
theorem compares the asymptotic convergence rates of two splittings of the 
same matrix, but under milder conditions than matrix monotonicity. The 
primary purpose of this note is to derive a link between the result of Csordas 
and Varga and the theorem due to Beauwens. In the proof of his theorem, 
Beauwens uses monotonic norms in the comparison of the spectral radii of 
certain nonnegative matrices. This idea provides an auxiliary purpose for this 
note as we further highlight the use of such norms in proving comparison 
results in the absence of an entrywise ordering between the matrices whose 
spectral radii we wish to compare. 
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For the convenience of the reader we shall now briefly explain some of the 
terminology used in the preceding paragraph. First, an n x n matrix A is called 
monotone if for any n-vector x, Ax>O implies x > 0 ,  where " > "  denotes the 
usual entrywise ordering. A celebrated result due to Collatz, [3], is that an 
n • n matrix A is monotone if and only if A is invertible and A -  1 > 0.  

Second, the splitting of an n x n matrix A into 

A = M - N ,  d e t ( M ) ~ 0  (1) 

is said to be regular if M - 1  > 0  and N > 0  (see Varga, [10], Definition 3.5). 
Regular splittings play an important role in the problem of solving the n • n 
system of linear equations Ax=b.  One numerical method for solving this 
problem can be obtained from (1) by performing the iterations 

xi+ 1 = M - 1 N x i  + M - l b  i=0 ,  1, 2 . . . .  . (2) 

It is well known that the scheme given by (2) converges to the solution x 
= A-  1 b from any initial vector x 0 if and only if the spectral radius 

p ( M -  1N):= max {121: det (21 - M -  1 N) = 0} < 1. 

In this case the asymptotic convergence rate of (2) is given by 

R o~ ( m -  ~ N)-" = - In [ p  ( m  - 1 N ) ] .  

Theoretically, an accepted rule for preferring one iteration scheme over another 
is to select the scheme which yields the larger asymptotic convergence rate. In 
practice, however, additional considerations such as sparsity and conditioning 
may also play an important part in our choice as to which iterative method 
should be adopted in any specific situation. 

Let A be a nonsingular matrix of order n and consider the splittings of A 
into 

A = M  1 - N ,  = M 2 -  N2, (3) 

where both M~ and M 2 are nonsingular. For  convenience we shall employ 
letters of the alphabet to represent the following conditions on these splittings: 

V: (Varga [10], Theorem 3.5. See also [9]) The splittings of A in (3) are 
regular and 

U 2 > Na. (4) 

W: (Wo~nicki [11], Theorem 13) The splittings of A in (3) are regular and 

Mr- 1 > M~- 1. (5) 

C.V." (Csordas and Varga [4], Theorem 2) The splittings of A in (3) are 
regular and there exists an index j > 1 such that 

(A-  1 N1)J A -  1 <(A- 1N2)JA - 1. (6) 

B: (Beauwens [1], Theorem 2.3) The splittings of A in (3) satisfy M;-~ Ni >0 
and M ~ 1 N2 >= 0 and 

(A-  ' N,) 2 =< (A- ' N2) (A-  ~ N,). (7) 
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The next condition may be thought of as a generalized Beauwens/Csordas- 
Varga condition: 

G.B.C.V.: The splittings of A in (3) satisfy the inequalities M { t  Nt >0 and 
M 21N 2 > 0 and there exist indices j > 1 and l> 0 such that 

( A - 1 N j + l < = ( A - ' N j ( A  1 N1)t. (8) 

Observation 1. Let (3) represent two splittings of the n x n nonsingular matrix A 
such that A -  1 N1 >= 0 and A -  a N2 > O. The following tree of implications represents 
the relative strength of the properties introduced above: 

V ~  W ~  C.V.~G.B.C.V. 
B/ 

Furthermore, between none of the properties does the reverse implication hold. 

Proof Verification that V ~  I4,; but that in general W=p V may be found in 
Wo~nicki, [11]. Next, W~C.V. ,  but C.V.=AWis in Csordas and Varga, [-4]. 
The implications C.V. ~ G.B.C.V. and B ~ G.B.C.V. are immediate. The fact that 
B ~ C . V .  follows from the literature. With regard to this, we mention in 
particular examples due to Ortega and Rheinboldt in their work on weak 
regular splittings. (Note: A weak regular splitting is a splitting of A into A = M  
- N with det (M) 4: 0, M -  1 > 0 and M -  a N > 0.) These examples can be found 
in I-6] and [7]. 

Continuing, we next give an example illustrating that G.B.C.V. ~ B. Let 

Then 

and 

But, 

A = [ _ 2  [-2/3 1/3] -1 
1 - ; ] = / 1 / 3  2/3_1 

__[_~ - 3 ~ 2 ] _ [ ;  -12/2] 

M1 N1 

M2 

Ml-lNl=(2/21)[~ 1]/2] and M2 1N2=(2/15)[42 11/2], 
p (M i- 1 5/1)= 4/7 < 3/5 = p (Ms 1 Nz), 

A- IN x=(1~3)[21 71/2] and A -~Nz=(1/3)[42 1121" 

(9) 

(A -1N1) 2 s (A- 1N2) (A- 1N1). (10) 

We shall postpone the proof that there exist indices j > 1 and l > 0  such that (8) 
is satisfied to remark (ii) following the proof of Theorem 2. [] 
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The following lemma contains a very slight addit ion to the statement of 
Theorem 3.13 in Varga, [10]. Its purpose is to give the minimum requirements 
under which our  Theorem 1 can be stated. We shall omit its proof  as it is 
essentially given in Varga, [10, pp. 88-89]. 

Lemma  1. (Varga [10], Theorem 3.13) Let A = M - N  be a splitting for the n x n 
nonsingular matrix A such that M is invertible and M - 1 N ~ O .  Then 
p (M- I  N ) < I  if and only if A-1N>=O. 

We are now ready to state one of the main results of this note. 

Theorem 1. Suppose that A is an n x n nonsingular matrix and that (3) represents 
two splittings of A satisfying the G.B.C.V. conditions. Then 

O<R|  l N2)<=Roo(M~ I Ni). (11) 

Proof. Notice first that the splittings in (3) satisfy the conditions of Lemma 1 
and hence we have that  both p(M(IN1)  and p(M~IN2) are less than unity. 
Without  loss of generality we shall assume p(M~IN1)>O, since there is noth- 
ing to prove otherwise. Under  this assumption we have that M; -1N  1 4:0 so that 
A - i N 1  must also be a nonzero matr ix since 

M~- I N1 =(I + A -  i N1)- I A-1N1. 

This fact will be used implicitly later in the proof. 
In order  to show Roo(MilNE)<Roo(M~IN1) we first note from (8) that  for 

any index k >= 1, 
(A- 1N1)kJ + z= (A- 1N1)J+ Z(A- i N1)(k- i)j 

<= (A- 1N2)J(A - 1 N1)~(A- 1 N~)(k- 1)~ 

= (A-1 N2)J(A-1 N,)J + t(A -1 N1)(k- 2)i 

< . . .  --< (A- ~ NE)ki(A - i  N1) ~ (12) 

Now  let u be an arbi t rary n-vector whose entries are positive. Then  the 
functional 

]{x[{.= inf {-au<-x<-~u} 
a > O  

is a monoton ic  norm on R" which induces the opera tor  norm 

[IA Ilu = sup { I[AXtlu/Ilxtlu}. 

Moreover ,  liali,,=llauil,,. (See, for example, Housholder  [5], and Rheinboldt  
and Vandergraft  [8].) Thus, it readily follows from (12) that 

I[(A- 1 Nx)ki+/ll < }l(a- 1 N2)kJll, II(A- 1 N~)'H u. (13) 

Consider  the following sequences of numbers:  
( i )  I [[(A - 1 l~" "lkJ +11[ 1/(kj)]. oe 

r i o  , ' ~  ~ ' 1 !  Itu J j =  1~ 

(ii) { II(A-1 g2)~j l l2 / t~ i )} j r  1 ' 

and 

(iii) { ] ](A- 1 ~r ~ql 1/(k~)~oo 
~ ' 1 !  Ilu J j =  1 ~ 
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Sequence (iii) has a limit equal to 1, while sequences (i) and (ii) are sub- 
sequences of convergent sequences (e.g., Young [12], Corollary 3.7.3). Hence, 
by the calculus of limits, 

p(A- '  Nx)< p(A- iN2). (14) 

But now (11) follows from (14) in accordance with the spectral inequalities 
developed in Sect. 3.6 of Varga's book, [10]. [] 

Given the inequality in (11) between the asymptotic rates of convergence for 
two iterative schemes, one is often interested in when the inequality can be 
made strict. For two regular splittings or A in (3) which satisfy either condition 
V or condition W, the respective authors of [10] and [11] give conditions in 
their works to ensure a strict inequality between the asymptotic convergence 
rates. Conditions ensuring strict inequality between the asymptotic rates of 
convergence for two iteration matrices induced by splittings of A in (3) which 
satisfy the G.B.C.V. requirements are harder to determine. There are two 
reasons for this difficulty: 

(i) Our proof of the inequality in (11) results from a limiting argument in 
which strict inequalities may not be preserved. 

(ii) Although the matrices A-~N and M - a N  appearing in our theorem are 
nonnegative, we do not assume that A -1, M -1 or N are positive, or even 
nonnegative, thus allowing for cancellations to occur. 

Therefore, it remains an open question as to what additional and appropri- 
ate conditions should be required from G.B.C.V. splittings to obtain strict 
inequality in (11). 

In conjunction with the preceding paragraph we wish to make a few 
observations. First, Csordas and Varga, [4, Theorem 4], obtain a partial 
converse to their Theorem 2, namely: 

Suppose the splittings of the n • n nonsingular matrix A in (3) are regular and 
A-1 >0. I f  

Roo(Mi- l UO> Roo(M21U2) 

or equivalently, p (M 1-1 N1) < p (M~ 1 N2), then for some index Jo >= 1, 

(A- 1N1)iA- i < (A- a N2)iA- 1, Vj >Jo" 

Reason (ii) in the preceding paragraph suggests that if (3) represents splittings 
of A, with A - l > 0 ,  satisfying M~INI>O and M21Nz>O then 
p(M( 1Nx)<P(M21N:) is insufficient to imply even the weak inequality 

(A - 1 N1)J +, ~ (A- 1 N2)J ( A  - 1 Ul )t 

for infinitely many j's and/or rs. (An illustration that this in fact is the case 
may be seen in the example of remark (iii) following Theorem 2.) 

However, a partial converse to our Theorem 1 is possible. For that purpose 
we require simple results from the theory of matrices and their associated 
directed graphs. (See, for example, Varga, [10], and Berman and Plemmons, 
[2].) If B is a matrix of order n, then it has an associated directed graph, or 
digraph, 

G(B) = IV(B), E(B)], 
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where V(B) = {1, 2 . . . . .  n} denotes the set of vertex labels for the graph and E(B) 
is the set of directed edges (i,j), where (i,j) is in E(B) if and only if bu:~O. E(B) 
is often called the graph set of B. 

Suppose B 1 and B z are nonnegative matrices of order n. Then G(B1B2) is 
uniquely determined by G(B1) and G(B2). In fact, (i,j) is in E(B1B2) if and only 
if there exists a k in N = {1, 2 . . . .  , n} = V(Bx)= V(B2) such that (i, k)~E(BI) and 
(k,j)~E(B2). Simple induction on this idea yields the following: G(B p) is 
uniquely determined by G(B). That is, (i,j) is in E(B p) if and only if there exists 
an i - j  path of length p (possibly containing edge repetition) in G(B). 

We are now ready to present our partial converse: 

Theorem 2. Suppose A = M  1-N~ ---M 2 - N  2 are two splittings of a nonsingular 
matrix A such that M 1 and M 2 are invertible and M~ 1N 1 >0 and M21N2>=O. If  
p (M 1-1 N1) < p (M~- 1 N2 ) and the limit 

lim E(A- 1 NE/p(A- l NE)]j = L 
j ~  

exists, then for each index k there exists an index Jk such that 

(A-1N1)~+k<[(A-1N2)J(A-1N1)k]~,, V(s,t)~E k 

Vj>jk, (15) 
where E k is the graph set of L(A-1N1) k. 

Proof. Given that l im[A-1N2/p(A-1N2)]J=L, the discussion prior to the 
j ~  oo 

statement of the theorem implies that there exists an index j~ such that 

g (L) cs g ( [A- 1 N2/P (A- 1 N2)] j), Vj ~>Jk" 
Hence, 

Ek ~_E[(A-1N2)J(A-1N~)k/p(A-1NE)J+k], Vj>=j' k. 
Now, 

lira I-(A- 1 N j ( A -  ~ N1)k/p(A - ~ N2)J+ k]st = [L(A -~ NI)R/p(A - i N2)k]~t, 

J~ ~ V (s, t)EE k. 
But, 

lim [(A-1N~)J+k/p(A-~ N2)J+ k] = 0 
j ~  co 

since p[A-1N1/p(A-1N2)]<I  as p(M;-1N~)<P(M21N2) implies 
p(A-  ~ N1) < p(A-  ~ Nz), a fact which follows from Varga's results concerning 
spectral inequalities [10, Sect. 3.6]. Thus, there must exist an index Jk for which 
(15) holds. [ ]  

Remarks. (i) Suppose A-1N1, A-1N2>O are of order n, p(A-1N1)<p(A-1N2) 
but that A-1 N2/p(A-1 N2 ) is not semiconvergent because, although the elemen- 
tary divisors of A-  1 N2/p(A- i N2 ) corresponding to 1 are linear, it has eigenval- 
ues on the unit circle other than 1. Then, for any ae(0, 1) the matrix 

(A-1 N2 ) (a) = (1 - a) I + aA-1 N2/P (A - ~ N2) 

is semiconvergent and a similar result to Theorem 2 holds for the matrices 
(A- 1N2)(a) and 

(A-1N1) (a)=(1 - a )  I + a A -  I NI/p(A- 1N1). 
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(ii) Theorem 2 now permits us to complete  the proof  that  G.B.C.E~B in 
Observat ion 1 since in (9) p(M~ 1 N1 ) = 4/7 < 3/5 = p(M 21N2), and 

lim [ A -  ~ N2/p(A -~ N2)]J = A -~ N2/P(A- a N2 ) 
j ~  

as [A-~ N2/p(A I N2)]2=A-1N2/p(A-~ N2). Hence,  Ek=E{L(A-~ NOk}={(1, 1), 
(1, 2), (2, 1), (2, 2)} for all k = 1, 2 . . . .  so that  (8) holds for some indices j and 1. 

(iii) Inequalities similar to those of (15) do not in general hold for pairs of 
indices (s, t)r k, for some k, as the following example  illustrates. 

_[-oi~ o.~ 1 o O.Ol 1 
-1 .4 , - [o  o.1, 

m l  N1 

i 06] [o 
L 1 - 1 . 8  0 - 0 . 3  

M2 N2 

Here p(m{- 1NI)=  3/23 < 1/6 = p(m~ 1 ~) ,  

o 
and 

(A-aN1)J+t=[O 0 [ ]  a n d  (A-1N2)J(A-1N1)t=[~ 0,1, 

where " * "  denotes a positive entry. Moreover ,  Ek={(2,2)} for all k = l , 2  . . . . .  
However,  as is easily seen [(A-1N1)J+e]12 > [(A-INz)J(A - 1N1)l]12 for all j >  1 
and l>0 .  

(iv) As a final remark,  we ment ion that  Theorem 1 can be generalized by 
replacing the G.B.C.V. condit ion in (8) by certain norm conditions. It is not 
clear, however,  that  one would wish to do this as, in practice, the burden of 
verifying these condit ions may  be further complicated.  
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