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Summary. We present an accelerated version of Cimmino's algorithm for 
solving the convex feasibility problem in finite dimension. The algorithm is 
similar to that given by Censor and Elfving for linear inequalities. We show 
that the nonlinear version converges locally to a weighted least squares 
solution in the general case and globally to a feasible solution in the 
consistent case. Applications to the linear problem are suggested. 
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1. Introduction 

The idea of calculating centroids of systems of masses originated with 
Cimmino's iterative algorithm for the solution of a system of linear equations 
(see 1,4], [7, p. 160] and 1,8, p. 119]). The original method of Cimmino was 
generalized for solving integral equations of the first kind by Kammerer  and 
Nashed I-9]. This generalization and others produced algorithms for the so- 
lution of the convex feasibility problem, which consists in finding a point in the 
intersection of a finite family of closed convex sets. Nashed 1-12] studied the 
behavior of such algorithms in the non consistent case, i.e. when the in- 
tersection of the family is empty. 

There exist several other iterative schemes for solving convex feasibility 
problems. A recent review of these methods may be found in [1]. 

We remark three main advantages of our method. The first, shared by all 
Cimmino-like methods, is that each iterate can be easily implemented in 
parallel processors, which is not the case of sequential methods as 1,t7]. On the 
other hand, as it will explained in Sect. 6, it avoids possibly slow convergence 
due to a large number of satisfied constraints specially near the limit. The third 
advantage is that in many real applications, errors in measures do not guaran- 
tee existence of feasible solutions; therefore approaches which do not rely on 
consistency of the system and algorithms like this, which are capable of 
handling inconsistent systems, are desirable (see e.g. 1-16, 18]). 
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In this paper we study the behavior of the nonlinear version of Cimmino's 
algorithm presented by Censor and Elfving in [2] for solving linear inequali- 
ties. In [3] the same authors generalize the algorithm for solving the convex 
feasibility problem in finite dimension, but adding a factor in the relaxation 
parameter that might cause slow convergence when the number of equations is 
large. In both works the nonfeasible case is not studied. Here, we give a local 
convergence proof, which is global in the feasible case, to a weighted least 
squares solution using original proof techniques. Finally, we suggest some 
applications of the method to the solution of interval inequalities. 

2. The Algorithm 

Let C1,C 2 . . . . .  C m be closed convex sets in IR". Take 0 < 2 i ~  ( l < i < m )  

such that ~, 2,=1. Let P~: R"--,C~ be the projection on C~, i.e. 
i=1 

P//x =arg rain Ilx -yl l ,  (1) 
y~Ci 

where It" I[ denotes the norm induced by the standard inner product in ~", 
( , ). Define P: ~"~F, .  n as 

P x  = ~ 2,P~x. (2) 
m 

i=1 

Since the P{s are continuous, P is continuous. 
For x~lR ~, let I(x)={i:  x r  C~} and C(x) the cardinal of the set l(x). Define: 

#(x) = ( ! ~ x )  2,)- 1 if C(x)>2 

otherwise. (3) 

Let: 

f i x  = x + la(x)(P x - x). 

Consider v i (x) = #(x) 2 i. Observe that, if C (x) > 2 

vi(x)>O V i i i ( x )  

Z vi(x) = 1. 
i~I(x) 

It follows from (2), (3), (4) and (6) that 

I ~ vi(x)Pix if C(x)>2 
f i x  ~- iEl(x) 

( P x otherwise. 

The algorithm is now defined by the sequence: (for a given initial point x~ 

(4) 

(5) 

(6) 

(7) 

x k§ ~ = ~ x  k. (8) 
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3. Auxiliary Results 

In this section we prove some facts regarding the projections P~ and the 
operators P and/~. 

Proposition 1. Let x, y ~ ~". Then, for any i: 

i) [IP~x-P~Yll--< IIx-yll, 
ii) IIP~x-P~yll = l lx-yl [  implies that P~x-P~y=x-y .  

Proof. By the Convex Separation Theorem (see, e.g. [10]): 

( x - n l x ,  p~y-~x)__<0, (9) 

< ~ y - y ,  ~ y - ~ x ) _ _ < o .  (lo) 

Adding (9) and (10), 

IIe~ x -Piyll 2 _<_ %x - y ,  P~ x -P~y> < IIx -yl l  IIe~x -P~yll �9 (11) 

So (i) holds. If HP~x-P~yll = Ilx-yll, then the right hand side of (11) is equal to 
IIP~x - P, yll 2 meaning that equality holds throughout (11). Hence, there exists 
e > 0  such that Pix-Piy=ct(x-y) .  Using again the hypothesis of (ii), ct=0 or c~ 
=1;  in both cases ii) holds. [] 

Proposition 2. Let x, y ~ IR', then 

i) IIPx-Pyll < IIx-yll ,  
ii) IlPx-Pyll =l lx-y l l  implies that P x - P y = x - y .  

Proof. i) 

lIPx-eylb = z, l e x - e y )  s i = ,  z, llp, x - e y l t  

--< ,~i ilx-y[I = I I x - y l [ ,  
i_ 

using Proposition 1.i). 
ii) If IIPx-PyH =l[x-yl[, we have equality throughout the last chain of 

inequalities, so ~ XilIP~x-P~yl/=[Ix-yH. Applying Proposition 1.i) conclude 
that i= 

IIP~x-e~yll=llx-yll for l <_i<_m. 

By Proposition 1.ii), Pi x - P i y = x - y .  Then, P x - P y = x - y .  [] 

Let now define 
F = { x e R ' :  P x = x } ,  

i.e., F is the set of fixed points of the operator P (possibly empty). 

Proposition 3. Let x ~ ~ ' ,  z e F. Then, 

i )  Jlex-zlt <= llx-ztl, 
ii) IIPx-z{l=llx-zl l  implies that xeF.  

Proof, Apply Proposition 2, observing that z=Pz.  [] 
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Proposition 4. Let y, z ~ F. Then Pi z - z = P~ y - y (1 < i < m). 

Proof. Since IIPY-PzI[ = IlY-zll, conclude, as in the proof  of Proposi t ion 2.ii) 
that P~y-P~z=y-z  ( l < i < m ) .  [ ]  

The next proposi t ion needs the following: 

Lemma  1. For any x, y ~ ~", 

m 
<Px - P y ,  y--Py> < Z L 212j((Pix -P~x)-(PiY-PjY), PIY-PjY>. 

i = l j = i  

Proof. Using (9) for any i, 

<Pix-Piy, y-PiY> <O implies <Pix-P~y, y> <<Pix-Piy, Piy>, 

then 

< P x - P  y, y> < ~, 2i<Pix-PiY, Piy>, 
i = l  

summing on i. 
Substracting < P x - P y ,  y - P y >  from the last inequality, we obtain:  

( P x  - P y ,  y - P y >  < ~ 2i <P~x -P~y, P~y> - < P x  - P y ,  Py> 
i = l  

= 2i(Pix-Piy, P~y > 
j i = 1  

i = 1  j = l  

i = 1  

i = 1  

Proposition 5. For any z e F, 

~, ,~, ;~j <P, x -P,y, P,y-~y> 
j = l  

~.i)cj ((Pix -Pjx)-(PLY-PjY), PlY-PjY>. 
j = i  

xel~.", <z - P x ,  x - P x >  <0. 

Proof. Apply Lemma 1 with x = z and y = x, then, 

( z - P x ,  x - P x >  = < P z - P x ,  x - P x >  

<= 
i=1 j=l 

Apply Lem ma  1 with y = z, then, 

o=<Px-Pz, z-pz><= 
i = l j = i  

Adding (12) and (13) together:  

<z-Px, x -Px> __< - ~. ~ 2,)[~ I[(P~x -P~x)- (P~z  -P j  z) H 2 <0 .  
i = l  j f i  

[ ]  

[ ]  

(12) 

(13) 
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Take now J ~  {1, 2 . . . . .  m} and let Q j: Rn___,pn be defined as 

Qj = ~ vi(J)Pix, (14) 
i~J 

where vi(J)= ~2--~-/. So ~ vi(J ) =1. Let Fj={xelR~:  Qjx=x}. It is clear that we 
i~J 

jeJ 
can substitute in Proposition 5 F by Fj and P by Q j, so 

for all x ~ R "  and zeFj, we have that ( x -Qjx ,  z-Qjx)<O. (15) 

Propos i t ion  6. { x ~ P .": /5  x = x}  = F. 

Proof. From (4), since/~(x):l:0. VxeP,. ~. [] 

It follows from Proposition 4 that the set I(z) is the same for any zEF. Let 
I be such set. 

Propos i t ion  7. I f  J :g 0 and I ~ J, then F ~ Fj. 

Proof. Take z~F and let K = { 1 , 2  . . . .  ,m}-J .  Since I~J,  for i~K, Piz=z. So 

Z = P z  = E ~i PiZAf- E ~ i P i z = ( E  "~i)QJZ-[-(E ~i) Z 
i~d i~K ieJ ieK 

=(~ 21)Qjz+(1-~ 2i)z, then Qjz=z. [] 
i~J i~J 

4. Convergence  Resu l t s  

In this section we first characterize F as the set of minimizers of the weighted 
average (with the 21's) of the squares of the distances to the sets Ci. After this, 
we obtain a convergence result for the sequence defined by the operator P and 
finally we arrive to our main convergence result for the algorithm defined by 
the operator/3. 

Define the positive function f :  ~ ( n ~ R  as 

f(x) = ~ 2 i [IP/x-xll 2. (16) 
i = l  

Let G be the set of minimizers of f.  Being a convex combination of distances 
to convex sets, f is clearly a convex function. It follows that G is convex (if 
non empty). 

We define also the sequence: 

yk+ 1 =pyk (k =0, 1, 2, . . .) .  (17) 

L e m m a  2. For any yeP~n, f(Py)< f ( y ) -  IIPy-yll 2. 

Proof. Since P~Py is the closest point to Py in Ci, we have 

IIP~Py-eyll2 < IIP~y-Pyl[ 2 = IIP~y-yll 2 + IlY-Pyll 2 - 2  (P~y-y ,  P y - y ) .  
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Summing on i: 

f(PY) = ~ )~i I[PiPY -PYll 2 < ~ 21 }IPIY -Yll 2 + ]]Y-PYl l  2 - 2  ]]Py -y}l 2 
i =  1 i =  1 

=f(y ) - l lPy-y[ I  2. [] 

As an immediate consequence, we have, 

Corollary 1. f(yk) is a decreasing sequence. 

Lemma 3. For any y~ [[pyk_yk[[ tends to zero as k--*~. 

Proof. From Lemma2, we have that j[pyk--ykl[ <=f(yk)__f(yk--t). By Corol- 
lary 1, f(yk) is a positive decreasing sequence, hence convergent. It follows that 
f(yk)--f(yk-1)~O as k~oo.  [] 

Theorem 1. F - - G .  

Proof. i ) G c F .  From Lemma2, O<=HPy-y[]2<=f(y)-f(Vy). If yeG, f(y) 
-f(Py)<_O. So P y = y  and yeF.  

ii) F c G. Take z eF. Assume, by contradiction, that z~ G. So there exists 
y ~ R" such that f (y)< f(z). Consider the set 

A = {x ~ R": f(x) < f(y)}. 

By continuity and convexity of f ,  A is closed and convex. Let yO be the 
(unique) closest point to z in A. By Lemma 2, f(pyO)<f(yO), so Py~ The 
definition of yO implies now [[pyO_z[[ > [jyO_zj[. On the other hand [[pyO_z[[ 
= LtPy~ < ILy~ by Proposition 2i). By uniqueness of yO, conclude that 
pyO =yO. So pyO _ p z = y O - z .  From Proposition 4, Ply ~ _yO =P~z-z  for any i. 
Hence f (y~ But f ( y~  a contradiction. Therefore 
f ( z )<f (y )  for any yeN" ,  that is to say, zeG. [] 

Corollary 2. If C=,~.=1 C~*O, then F=C. 

Proof. z ~ C  implies that zzC~, Vi, i.e., P~z=z, Vi, equivalent to f (z )=0 .  So C 
=G =F.  [] 

Theorem 2. For any y~ the sequence defined by (17) converges if and only if 
F:#O. When it does converge the limit point belongs to F. 

Proof. If the sequence converges, by continuity of the operator P, it is clear 
that the limit point is a fixed point. Reciprocally, if F+O, suppose zeF,  then 
by Proposition 2i) 

][yk+ 1 -z[[ _< [ly k -z][. (18) 

Therefore [Lyk--zL[ is a decreasing (hence bounded) sequence, then (yk) has a 
convergent subsequence y k ~ y .  By continuity of P, p y k j ~ p y  and [[pyk~ 
-ykjlt2~lIPy-yl]2. From Lemma3,  we get tlPY-Y[I =0, i.e., yeF.  Take for 
any e>0,  an l such that [ly~'-yl[ <e. Now for k>j~ and taking into account 
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(18) we have 
IlY k -YI[ <= IlY j' -Yll <~, 

i.e., yk-oy. [] 

For the sequence defined by (8) we will prove a local convergence theorem 
(similar to Theorem2) which becomes global when C4=0, in which case 
F =  C. First we show that if the sequence defined by (8) converges, the limit 
point belongs to F. This is not an immediate consequence of Proposition 6_(as 
would be the case for the sequence defined by (17)) because the operator P is 
not continuous: note that p takes only a finite number of values. From now on 
(x k) will always refer to the sequence defined by (8). 

Lemma 4. I f  X k ) x, then x~F. 
k ~  

Proof. Since /~(x)>l for all x ~ " :  

i iP xk  _ xkll  < 1 4 x  k) i iP x k _ xkll  = ilxk § 1 _ xklL . (19) 

Taking limits throughout (19) as k--, oe and remembering that P is continuous, 
get 

I I P x - x l l < O ,  i.e., x e F .  [] 

Assume now F:t:0 and let p=�89  for some z~F .  By Proposi- 
i e l  

t ion4, p is independent of z e F .  By convention, p = o e  if I = r  Let B = { x e  
R":  3 z e F  such that IIx-zll  =<p}. 

Lemma 5. I f  x e B ,  z e f ,  then IIPx-zll _<-IIPx-zll <-_ IIx-zll. 

Proof. Take x ~ B .  By definition of B, there exists z ~  such that [Ix-z~ <p.  
Note that if i~I ,  ][x-z~ < IIP~z~176 then x r  Cj, i.e., I c I ( x ) .  By definition 
of P, P x  is equal either to Ql(~)x or to Px .  By Proposition 7, z~F~(~). Also P x  
lies in the segment between P x  and x because p(x)> 1. Since the angle between 
x, /Sx and z is obtuse by (15) or Proposition 5, the statement of the lemma is 
true. [] 

Theorem 3. I f  F 4= 0 and x ~ ~ B, then x k converges to a point in F. 

Proof. Take z ~ F  such that Ilx ~ -z l l  < p .  By Lemma 5: 

IIx 1 -z l l  = [I/~x ~  _-< IIx ~  < p ,  so, x 1 eB.  

Applying recursively the same argument, we conclude that 
i) x k~B,  for all k, (20) 

ii) []xk--z[I decreases (21) 

It follows that (x k) is bounded, so there is a convergent subsequence 

X j k  ~ X .  
k ~ o o  

Since xJk~ B, by (20), we apply again L emma 5, together with (21): 

t lx  jk+l  -z l l  < I/x j"+ 1 -z l [  = tl/Sx ~"-zl l  < I l P x  j k - z l l  < Ilx j~-z l l .  (22) 
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Taking  limits as k ~  th roughout  (22), remember ing  that  P is continuous:  

I Ix-zl [  < I IPx-z l l  < Ilx-eLI, then [[Px-zl[ = I Ix -z l l .  

By Proposi t ion 3, x ~ F. Apply  now L e m m a  5. In view of (20): 

Ilx ~§ - x l l  = 11/Sx ~ - x l l  _-< IIx k - x l ] .  

So [Ixk-xll decreases in k. Since for the subsequence (x jk) we have IIx~k-xll 
) II I1 k - - o o  . So the whole sequence converges k~oo 0, we conclude that  x ~ - x  ~ 0  

to x~F.  [] 

Taking  into account  Theo rem 1 and Corol lary  2, we may  rephrase Theo- 
rem 3 as 

Corol lary 3. I f  F ~O and x~ ~B, the sequence defined by (8) converges to a point 
which minimizes a convex combination (with coefficients ).i) of the squares of the 
distances to the sets C i. 

Observe that  when I = 0 ,  we have  B = R  n. Since 1 = 0  is equivalent to P~z=z 
(1 <i<m),  i.e., C:~0,  by Corol lary  2, in the consistent case Theorem 3 can be 
restated as: 

Corol lary 4. I f  C:~O, the sequence defined by (8) converges to a point in C from 
any starting point x~ ~ R n. 

So, the local convergence result of Theo rem 2 becomes global  in the con- 
sistent case. 

5. Applications 

Although the me thod  studied in the preceeding sections m a y  be used for 
solving general feasibility problems,  it supposes that  or thogonal  projections are 
easy to compute ,  which is not always a realistic hypothesis.  Nevertheless, 
general  proofs for convex sets provide also a theoretical  foundat ion for the 
convergence of the a lgor i thm when applied to the solution of interval inequali- 
ties. 

Let  us consider the p rob lem of  finding x ~ IR" such that  

b x < A x < b  2, (23) 

where A is an m x n mat r ix  (without zero rows), b 1 and b 2 being m-vectors, 
such that  b 1 < b  2. Suppose also tha t  A, b 1 and  b 2 have the form 

b'-- b; b2= A = . , , . (24) 
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where A1,  A z . . . . .  Ap are or thogonal  blocks (i.e., A I A ~ = D  i, D i a diagonal  ma-  
trix, for i =  1, 2 . . . . .  p) and b{, bJz . . . . .  b~ (for j = l ,  2), the correspondent  block 
vectors. We remark  that  this is a practical situation for large and sparse 
problem,  as can be seen in [6, 14]. 

In this case, or thogonal  projections on the convex sets defined by each 
block are very easy to compute .  This is shown in the following, 

Proposition 8. I f  B is an s x t orthogonal  matr ix ,  i.e., (bi)tb j = 0  f o r  i4: j ,  being b i, 
( i=1  . . . . .  s) the nonnull rows o f  B, c t and c 2 s-vectors  such that c t < c  2, then 

i) M = { x e R t : c l < B x < c 2 } 4 0 .  

ii) The orthogonal project ion o f  a point  x e R t on M is given by 

2 = x  - B t D - 2 z ,  (25) 

where D is the diagonal matr ix  (llbXl[ . . . .  , IlbSlh) and z is the vector defined by 

(b ' )*x-c?,  i f  (b'yx>=c~ 

z i = 0 i f  C• <=(bi)'x<=c 2 (26) 

(bi) ~ x - c~ i f  (bi) t x <= c~ 

Proof .  i) By Gale 's  theorem (see, e.g., [11, p. 33]), M4=0 if and only if the 
system: (,') ( B ' , - B t )  y2 = 0  and ( c 2 ) t y 2 - - ( C l ) t y l = l  (27) 

has no solution with yl,  y a > 0  ' 
But (27) means that  

B, (y l  _ y2) = 0 ,  (28) 

and applying B on both  sides of (28) we have that  yl  =y2. Therefore by (27), 

@2 _ c l y y l  = - 1 .  

But c 2 - c  ~ > 0  by hypothesis, then, if y~ > 0 ,  we arrive to a contradiction. 

ii) Observe now that, taking into account  (26), 

B , 2 - c  2 = B x - c  z - z < O (29) 

and 

B s  I = B x - c  1 - z > O .  (30) 

On the other  hand 

s - x  = - B t w + B t f f  (31) 

where w and # are s-vectors defined by 

{ c  ~. - ( b ' ) t x  if ( b ' ) t x = c  2 _ [ ( b i ) t x - c  2 if (b~)t~=c 2 
W i = ' W i = ~ (32) 

0 otherwise,  ( 0  otherwise 
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Now, (29), (30) and (31) are the Kuhn-Tucker conditions for the quadratic 
problem: 

min�89 z subject to c l < B y < c  z, 

and the thesis follows. [] 

With the above results, we can apply algorithm (8) to the problem (23) with 

P i x = x - A ~ D T a z  i for i=1  . . . . .  p, 
z i as in (26). 

For this particular case, it is very easy to prove that the function f is 
piecewise quadratic on a finite number of polyhedral sets; then it achieves its 
minimum as a consequence of Frank-Wolfe's Theorem ([13], Corollary 27.3.1). 
This fact implies that the set F of Theorem 1 is not empty and convergence is 
guaranteed by Theorem 3. 

6. Final Remarks 

The main advantages of the algorithm defined by (8) with respect to simpler 
implementations of Cimmino's method (i.e. with relaxations parameters which 
do not depend upon the point x) lies in the acceleration effect achieved when 
p(x) attains a large value, as compared with the original Cimmino's algorithm, 
defined by the operator P. A first insight into this effect follows directly from 
Lemma 5. Assume x k belongs to B and let x k+l = P x  k, ~k+~ = ~ X  k. Lemma 5 
indicates that ~k+l will be closer to any point in F then x k+~. By a slight 
refinement of Lemma 5 we can get a quantitative estimate of this acceleration 

1 
effect. Take for instance the case of equal weights, i.e. 2~=-- (1 <=i<m). In this 

m 
m 

case /~(x)=c---~ ~. For x e B ,  the obtuse angle property (15) applies and, since 

P x  lies in the segment between x and fix, we get, for any z e F :  

I]fiX--ZI] 2 ~ ]]Px--z][ 2 -  liP x - f i x l l Z = l l P x - z [ ]  2 -  ( & - i ) N P x - / l [  2. 

So our algorithm will generate from x a point which is closer to any point in F 
(in the sense of the square of the norm) than the one generated from the same (~ x by the original Cimmino's method by an ammount at least as large as C ~ )  

- 1 )  I I P x - x l t  2. The factor m-~---1 is strictly positive unless all constraints are 
C(x) 

violated, in which case both algorithms produce the same next iterate. 
If m is very large (in applications such as computerized tomography [1] m 

can be as large as 300,000) and C(x) is much smaller than m, which is likely to 
m 

happen near convergence for inequality constraints, C--~x)-I becomes very 

large as well and the acceleration effect is more significant. 
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Since the matrices in such applications often present no detectable struc- 
ture, it can be expected that the number of active constraints at the solution 
point be small. 

On the other hand, in algorithms with point-independent relaxation param- 
eters, like: 

x k  + 1 = X k ~_ ~ k ( P  X k __ X k) (33) 

convergence is guaranteed only when the relaxation parameters ek satisfy: 

0<81~0~k '<e2<2  ( e l , e 2 > 0 ) .  (34) 

In fact, global convergence for (33)-(34) can be established following a line 
similar to our convergence proof for the algorithm defined by (17) using the 
obtuse angle property of Proposition 5 (see detailed proofs in [5] for the linear 
case and in [15] for the non linear case). 

Let xk~B, .~k+l =/~xk as before and X k + l  as defined in (33) with ct k satisfy- 
ing (34). Following the same argument we get, for any z e F: 

(m 2) Ilxk+I--ZlI2~Ilxk+I--zlI2-- C(x)-- 11Pxk--xkIIE (35) 

i.e. our algorithm produces points closer to F than those generated by (33) as 
long as less than half of the constraints are violated, and much closer when the 
numbers of violated constraints is much smaller than the total number of 
constraints. By the way, the algorithm in [3], although its relaxation parame- 
ters are point-dependent, behaves in the same way as the algorithm defined by 
(33) as compared with our algorithm, when m is large. 

These remarks can be extended to the case of different weights, just by 
counting each constraint with its weight. For instance, if x k+' and fig+ 1 are as 
in (35), ~k+l will be closer to F than X k + l  as long as the sum of the weights of 
the violated constraints is less than one half. 

The algorithms defined by (8) and (33) can be combined in different ways. 
One possibility is to merge them into: 

x k  + 1 = X k At" O~k ( P X k __ x k )  (36) 

with c~ k as in (34) but this variation is unlikely to produce a significant 
improvement over (8). m 

Another possibility is to start with (33) and switch to (8) when C(xk------- ~ 

becomes large and/or the algorithm seems to approach convergence, i.e. [Ix k+' 
--xkI[ is small. This strategy may be effective when C is empty, since the 
acceleration effect of our algorithm (and its own convergence) is guaranteed in 
such a case only when xkEB, i.e. when the sequence gets close to F. 

Regarding global convergence for the algorithm defined by (8) in the 
inconsistent case, the following example shows that further refinement is re- 
quired (see Fig. 1). 

In the situation below, the sequence generated by (8) oscillates between the 
points x k and P x  k. We conjecture global convergence if C(x) in (3) is sub- 
stituted by the cardinal number of the set I(x) defined as I (x )=  {P/x:/]ix 4= x}. 
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:1_<~_<4} 

Fig. 1 
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