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O. Introduction 

It is a well known result of analysis (De Rham [1]) that any solenoidal vector 
field u (V.u=0)  is the curl of a stream vector ~k. This property is used 
extensively in two dimensional fluid mechanics; there ~k being perpendicular to 
the plane of fluid motion, on simply connected domains, it is uniquely defined 
from u and while u has two non trivial components, r has only one. 

* A l s o :  U n i v e r s i t y  o f  P a r i s  13 
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In three dimensions the situation is more complex because qt is not un- 
iquely defined from u unless additional constrained are assigned to ~,. Bernardi 
[2] and Dominguez [3] have studied sufficient conditions on ~ to have unicity 
for each u, when the flow field is tangent to the boundaries, i . e .u ,  n = 0 ;  the 
main idea is to assume that qt also is solenoidal. But it is worth noting that 
such decompositions do not reduce the complexity of the problem of finding u 
since one would trade u unknown with V. u = 0 for ~k unknown with V. ~k = 0. 

Recently, however, a renewed interest for stream vectors ~ can be seen in 
aeronautical engineering (Lacor and Hirsch [4], Sokhey [5], Papaillou [6], 
Amara  [7]) because it appeared that ~ could be a correction to isentropic 
potential calculations. The basic idea is as follows: flows around airplanes, for 
example, at transonic speeds, are well approximated by (H, 7 given): 

V. [ (H- �89  ~/r-1 Vq~] =0 ,  (1) 

u = v~; (2) 

however when strong shocks develop in the flow V • u is no longer small and 
(2) fails; thus in [4] for instance, (2) is replaced by 

u = V ~ + V  x 0  (3) 

and one derives additional equations for ~ from the general equations of fluid 
motion. But is is difficult to find a good set of boundary conditions for qt; this 
problem is related to the unicity of the decomposition (3). 

The purpose of the present work is to study the decomposition (3) when u 
is a given 3-d vector field and ~ is solenoidal. We shall start with the 
homogeneous case u. n=0 ,  thus recalling essentially the results of Bernardi 
[2], Dominguez [3, 8]. Then the case u. n 4 0  is investigated and it will be 
obvious that existence and unicity of ~b and qt in (3) is possible if one solves 
first a Laplace-Beltrami problem on the boundaries. 

In Sect. 2 some applications to aerodynamics are given, the ideas of Lacor 
and Hirsch [4], Sokhey [5], Amara  [7] are extended to general stationary 
inviscid flows. 

Finally, in Sect. 3, a p1 conforming finite element discretization of the 
continuous problem is given. Existence and unicity of the decomposition is 
shown; error estimates are obtained on polyhedral domains for the homo- 
geneous cases. The implementation of the method is studied and some numeri- 
cal results on simple 3-d geometries are presented. 

This paper is intended for numerical analysts and does not assume any 
knowledge of fluid mechanics. 

Notat ions  

12 is a bounded open subset of R 3, usually assumed simply connected with C 2 boundary 
F boundary of 12, n its normal 

simply connected components of F 
HI (12)= {w ~ L2 (12): Vw ~ L2(12) 3} 
nl(12)"={v: viGHl(12), i=l  ...n} 
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H I(O)/R = H 1 (O) quotiented by the constants 
H(V., Q)=  {veL2(12)3: V. v eL2(12)} 
H ( e  x ,  Q) = {V e L 2 (~)3: V x V e L 2 (0) 3} 
H(A,Q)={weH1(f2): AwEL2(O)} 
( a , b ) = ~  a - b d x  

12 

lalo : ( a ,  a) 1/2 

(u | v) u = u~ vj 
~,, v, r n, t, u: vector valued functions of xe f2  
~b, w, q: scalar valued functions of xe f2  

1. The  Cont inuous  P r o b l e m  

Let f2 be a bounded  open set of R 3 with boundary  F. 
Let u be a given 3-d vector  field on ~2. The  basic p rob lem is to find cp and 

~, such that  

u(x)=Vq~(x)+17 x ~,(x) V x ~ f2. (4) 

By taking the divergence of (4) we get 

a~=17.u. (5) 

If we add one of the two N e u m a n n  condit ions 

~r O~r= ~b  = 0  or u . n  (6) 

then q~ is unique up to a constant  and only ~ remains to be found. 
Taking  the curl of (4) yields 

17 x 17 x~=17  xn  (7) 

while (6) and (4) bring: 

n - V •  or 0. (8) 

However  (7) and (8) do not define r even up to a constant.  It  is known that  

V x V x ~ =  - A ~ + V V .  lk V~ (9) 

so t 7 x 17 x is a strongly elliptic opera tor  only on the space of solenoidal vector 
fields: thus Bernardi  [2] adds 

17. ~ , = 0 ;  (10) 

but  even then (8) is a non s tandard boundary  condit ion for Vx  V x ;  the 
natural  one (see the variat ional  formulat ion) is 

~ x n l r = g .  (11) 

The connect ion between (8) and (11) is given by the following lemma.  
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Lemma 1. Assume F Lipschitz continuous, then 

~ ( v x n ) . V w d y = - ~ ( V x v ) . n w d 7  V w~Hl(~2) Vv~HI(Q) a (12) 
T F 

Proof. Use Green's formulae: 

(t 7 x v, ~O) =(V x qt, v)+ ~ (v x n). qtd7 
F 

(V. v, q~)= -(Vq~, v)+~" v. n ~ d ?  
F 

o n  

Sv.17x(gw)dx and SwV.(lTxv)dx. 

See Dominguez [8, Theorem 2.1] for details. [] 

Formula (12) yields the following implication 

q tXnlr=0 ~ n. V x~blr=0; (13) 

so decomposition (4) will be easier when u. n = 0 (see (7)) or when the second 
boundary condition in (6) is used; this will be referred as "homogeneous 
boundary conditions". 

1.1. Homogeneous Boundary Conditions on ~O 

We are now in a position to state the first result on decomposition (4); it is a 
straightforward generalization of the result of Bernardi [2] extended to non 
simply connected domain by Dominguez [8]. 

Theorem 1. Let 12 be a bounded open set of R 3 simply connected, with boundary 
F of class C 2. Let u be a given 3-d vector field of L2(O) 3. 

Let (a be the unique solution of 

(v~,vw)=(u, Vw) VweHl(t?)lR; c~sHI(O)/R. (14) 

Let qt be the unique solution of 

(VxO, Vxv)+(V.O,V.v)=(u, Vxv) VveV;~,eV (15) 
where 

V= {v~Hl(t?)s: v x nJr=0, ~ v. ndT=O V F~ connected component of F} (16) 
Fi 

then 
u = V r  0 in Q (17) 

and 
V. qt =0.  (18) 

Proof. Since the proof is somewhat long, some of the technical points have 
been put in Annexe A. So first we check that (14) is a well posed Neumann 
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problem (in fact (5)+(6b)) because u is in Lz(f2) 3. Thus th is unique in HI(f2)/R. 
Now let us study the 

a) Well Posedness of (15) 

The space V, defined by (16), is a closed subspace of Hi(f2) 3 (continuity of 
traces) and all integrals in (15) exist. The bilinear form in ~ and v and the 
linear form in v, in (15), are obviously continuous on V. From the variational 
form of (9): 

(Vqt, Vv)=(gxqt, Vxv)+(lT. qt, V . v ) + ~ 2 V d y  Vv,~OeV (19) 
ir 

where R is the mean radius of curvature of F, we get 

Iv01~<lV x q,t +lV, q, lo if f2 is convex (R>0). (20) 

It is shown in Annexe A that 0--,IV~,lo is an equivalent norm on V 
(Lemma A1) so (15) is a strongly elliptic problem and qt is unique (Lions and 
Magenes [9], for example). When f2 is not convex the strong ellipticity is 
shown by Lemma A2. 

b) V - ~ = 0  

Let us take v= Vw in (15). To be in V we must have 

0w 
w~H2(O), Vw• ~ - ~ n d y = 0  Vi (21) 

Fi 

condition (21.b) will be replaced by 

wit, = K~ (constant), (22) 

with such w, (15) reduces to 

(V. qt, A w) = 0 V w satisfying (21), (22). (23) 

Therefore to get V. qt = 0 it remains only to show that 

- - A w = f  
Vf~L2(t2) with ~fdx=O 3w~H2(O) with 

w constant on each F~ 

8w 
! ff~n dT=0 u 

(24) 

This may be done as follows: 
Define w ~ and 0 i by 

- A w ~  w~ (25) 

--,d 0 i = 0  Oi[Fj =(~ij" (26) 
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Let 

Then 

and hence 

w =w ~ + ~  KjO J. (27) 
J 

~w Ow~ - -  K dO] 
S ~ - d Y - S ~ - n  d?=~ .  ' . i ~ n d Y  (28) 
F, C H Fi j F~ 

~W~ d~= ~ Kj ! o, OOJ - ~ ~n . ~n dT=Z Kj(VO'' VOj)" 
Fi j 

(29) 

So {K~}j is the solution of a linear system; Lemma A3 shows that the system 
in K is positive definite, up to a constant, so w is defined uniquely, up to a 
constant. 

c) Proof of (17) 

Let 
z =  v,~ + v x O - u .  (3o) 

Then by (15) and (18) we have 

V x z=V xV • xu=O 

Thus there exists ~ (De Rham [1]) such that 

z=V~  in ~ ' (~) .  

But by (30) and (14) we have 

A~=V.z=A4)-V.u=O 
and similarly 

so ~ is constant and z=O. [] 

in fL (31) 

(32) 

(33) 

(36) 

A4'=V'u 

[~-~n]zj=0 ([ ]z j= jump of, through Zj) 

in O-Z 

The result can be extended to non simply connected domains O (Dom- 
inguez [8, Corollary 3.2]). Then 

u = V  x,l, + v4, (35) 

where ~b is found by a problem similar to (14): 

=Z" n = ~ n - u '  n=0 (34) 
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where {Z~} is a set of surfaces linking F i so that ~2-Z is simply connected and 
where {2j} is a set of constants. 

In turn q/is determined by (15) and 

~,. nd~=/~i, (constants). (37) 
F~ 

The decomposition is no longer unique. It is unique when #i are given; 2j are 
adjusted so that V x ~ + g~b = u on 22 The difficulty with such decomposition in 
non simply connected domains comes from the fact that 

V x v = 0  V.v=0  in f2 v . n [ r = 0 ,  (38) 

does not imply v=0  (we used this in c)), (Foias and Temam [-10]). 

Remark 1. From (19) we see that (15) is interpreted by the mixed Dirichlet- 
Fr6chet problem: 

- A O = V x u  in f2 

c~, O .n  
--'~n n - 2 - ~ - 0  on F (39) 

~ •  

Remark 2. We need F~ C 2 to proove strong ellipticity of (15). It seems that this 
property also holds if F is piecewise C 2 only. 

1.2. Non Homogeneous Boundary Condition on 

We shall see in Sect. 2 that it is not always feasible to have non homogeneous 
conditions on qS. Thus in this paragraph we wish to investigate the possibility 
of having q~ defined by 

- A c b = g . u  in f2 
(40) 

~-~n r=O 

and 
u = v ~  + v x ~ .  (41) 

As we pointed out earlier the difficulty is now to find g such that 

~, x n l r=g  ~ n .  g x ~ k l r = u  �9 n .  ( 4 2 )  

Theorem 2. Let f2 be a bounded open set of R 3 simply connected with boundary 
F C2-regular. Let u6H( V . ,  f2) such that 

S u. n d y = 0  for all connected components F i of F. (43) 
Fi 
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If c~ is the unique solution of 

(V(~, Vw)=(V. u, w) Vw~HI(t2)/R; c~EHX(f2)/R (44) 

and if qt is the unique solution of 

(V• Vxv)+(V.O,V.v)=(u,V• VvEV (definedin(16)) 
(45) 

~k~Ha((2) 3, OXn]r=Vq(sl,s2), ~ , - n d ? = 0  Vi 
Fi 

where q{r is the unique solution of the Laplace-Beltrami equation 

(t~q ~w Oq Ow) 
! \Osl Os l+~s2-~s 2 d ? = - ! u . n w d ?  VweHI(F)/R; qeHI(F)/R (46) 

({s x s2} is a set of orthogonal local coordinate system on F), then 

u=  V4~+ V x ~k, (47) 

V. qt = 0. (48) 

Proof. The proof is similar to that of Theorem 1 except for the presence of (46). 
As u~H(V., f2), u.  n is in H-~(F); problem (46) is well posed, and Vqlr is in 
LE(F) at least. Therefore ~b and ~k are well defined by (44)-(45). 

One shows that V- qt = 0 exactly as in Theorem 1. Then let 

~=V(~+V x ~b-u. (49) 

By (45) V x Z=0  so for some ~ we have ~= V~ and by (49) and (44): 

A ~ = 0. (50) 

Now from (49) and (45) respectively 

- I ( ~ ' x n ) "  Vwd7= -~ Vq. Vwdy=Iu. nwd? (52) 
F F F 

where the last equality is due to (46), so finally by Lemma 1 

! ~  wd? ~nn =0  Vw. (53) 

Thus ~ is constant and X=0; this shows (47). 

2. Applications 

2.1. Wings and Airplanes at Small Mach Numbers 

Figure 1 shows a wing W inside a domain of boundary S which is assumed big 
enough to approximate infinity. The flow is assumed incompressible and irro- 
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Fig. L Typical geometry of a three dimensional swept wing in an enclosure which approximates 
infinity. Notice that the domain is simply connected but the boundary is not smooth (edges at the 
trailing edges) 

ta t ional  (no lift): 
V . u = 0  V x u - 0 .  (54) 

Usual ly  Theo rem 1 is used to compute  u as VqS. A n  al ternat ive is to use 
Theorem 2. 

u = v ~  + v • ~, (55) 

but  (44) and (54) give 

q5 = constant .  (56) 

The  flow is assumed uniform at infinity and tangent ia l  to W so 

u.  n l s=  uo~ �9 n u-  nlw = 0 .  (57) 

It is easy to check that  if R the radius  of  S is constant ,  the solut ion of (46) is 

qls = -~uoo . n R  2, q lw=O.  (58) 

Indeed if t~, t z are two o r thogona l  tangent  vectors on S 

Cq2q 
cq_q_q = + �89  R2;  -- + � 8 9  n i =  1, 2. (59) 
~si ~s~ 

Therefore  the flow is de te rmined  by solving (45) only. If S is not  a sphere a 
semi explicit  so lut ion of  the form 

q =(~'t + f i n +  7't x n). u~ (60) 

can be found also where ~', if,  V' are  solut ions of PDEs  in s~ s 2 involving the 
radius of  curvatures  and  the torsion. However  a direct  solut ion of  (45) is 
p robab ly  easier, as we shall  show in Sect. 3. 
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U,n Uout 

Fig. 2. Typical geometry of an axisymetric nozzle; the figure shows a two dimensional section. As 
in Fig. 2 the domain is simply connected but not smooth 

There is also an alternative: since u is uniform at infinity, @ must  be 
asymptot ic  to 

@=( -Ox3 ]uo~x+((1-flo'X3) uo~2+I17,x) uo~ (61, 

\(1-~)x21 \ -#x, I 

where ct, fl, Y are any constants. F r o m  (61), @ x nit can be computed  and this 
value can be used in (45) instead of Vq. While we would still have 

u = V x ~ ,  V.~p=O (62) 

there is no garantee that  n .  V x@=uoo .n  on Foo; this will be true asymptot i -  
cally only. 

2.2. Nozzles at low Mach Numbers 

Figure 2 shows the geomet ry  of a nozzle. Typical  boundary  condit ions are 

U �9 n = u i  �9 n 

= n  o �9 n 

= 0  

where u i and u o are such that  

at intake boundary  I 

at exit boundary  0 

on wall boundary  W 

(63) 

As for wings the flow is obta ined by V x ~ where ~k is the solution of (45). 
However  (46) must  be solved on F and F is not C 2 ! 

In  the p roof  of Theo rem 2, the regularity of F is needed only to prove  Well- 
posedness of (45) and (46). Not ice  that  (46) can also be written as 

t~q t3w) Vq. Vw---ffff n dy=-~u.nwd~ (65) dn r 
where q is extended inside f2 and V is the 3-d gradient.  Thus Theorem 2 also 
holds for F piecewise C 2 only, say, but more  investigations are needed to show 
that  ~ and q are unique. The p rob lem of corners will pop  up also in Sect. 3. 

~u .  ndT=O.  (64) 
F 
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2.3. Entropy Corrections for Potential Compressible Flows 

The stationary Euler equations for ideal gas are 

I 7. (p u) = 0, (66) 

17. (p u Q u) + 17p = 0, (67) 

V- pu (pP- 7 ~ + ~ )  =0 ,  (68) 

p = p~ S (69) 

where u, p, p, S are the velocity density pressure and entropy of the flow. 
Because (66) holds, Eq. (68) gives the enthalpy in the flow from its value at 

infinity: 
P ~ u 2 

H(x) - (70) p ~-1 ~T =H~(z(x)) 

where H~ is the (given) enthalpy on F and z(x) is the upstream intersection of 
F with the stream line that passes at x. Expanding (67) yields 

/ I  2 

- p u  x to+ p 17 ~ +  17 p~S =0  (71) 

where to is the vorticity 

to = V x u. (72) 

Resolving the vectorial product in (71) and using (70) to evaluate U 2 gives an 
equation for to in terms of an unknown function 2: 

to=,~pu -u~ (vn P~-'vs)+[~o]~ 
U 2 • - y - 1  (73) 

where [o9] denotes the jump of the tangential component of 09 across Z. It 
must be remembered that (72) implies V. to = 0 so 

puV,~=V.[~• P~-lVS)] 
- ~ - 1  

(74) 

and finally by taking the scalar product of (71) with u, an equation for S is 
found: u . v s=o. (75) 

Notice that (75) is not valid at shocks because (71) makes no sense at shocks. 
Let us investigate the system (66), (73), (74), (75), (70) when u is decomposed 

by Theorem 1 into 
u= 17th + 17 x qt (76) 

with ~b and qt solutions of (14) and (15). If Ho~ is constant, if there are no 
shocks and if S is constant at infinity, then by (75) and (70) S and H are 
constant and by (73) and (74) to=0 if pto.  u is zero at infinity. So by (15) ~ = 0  
and it is easy to see that (70) and (76) reduce to the transonic equation (1). 
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value 
2. 
3. 
4. 

part). 
5. 

Therefore one may attempt to compute a correction to the transonic 
equation when the conditions stated above are not met (shocks, S or H non 
constant at infinity, o~. u 4:0 at infinity). One may proceed as follows: 

0. Compute a first guess for the velocity u and density p by the transonic 
Eq. (1). 

1. Compute S by (75), the Rankine-Hugoniot conditions at shocks, and its 
at infinity upstream (see [15] for numerical solutions of such equations). 
Compute H from its value at infinity upstream by (69), (70). 
Compute oJ by (73)-(74) and pr u at infinity upstream. 
Compute 1O from o~ by (15) (the right hand side must be integrated by 

Compute a new ~b by solving (66)-(70), i.e. 

V. (H-�89 xOIZ)~j (V4~+Vxqt) =0  

p =(pu)oo" n 

(see [13, 14] for solution methods for (77). 

6. Set u=J74~+g x ~O, 

(77) 

(78) 

p = (79) 
k ~ J 

and start new loop with Step 1. 
A proof of convergence of this iterative process is of course difficult. 

However preliminary tests by Lacor and Hirsch [4], Sokhey [5] and the 
authors [11] indicate that the method works; it is a nice alternative to the 
direct solution of (66)-(69) by time marching methods (see [12] for example). 

Following Amara [7] one could also use (66) to write 

p u = V  x ~'. (80) 

Since p u .n :~0 ,  one would have to use Theorem2 in a similar iterative 
process: 

0. Compute p, u by solving the transonic equation. 

1. Compute qt' by (45)-(46) in Theorem 2, with u replaced by p u. 

2. Compute S, H, r as in Steps 1, 2, 3 above. 
3. Compute a new qt' by solving the non linear problem 

g x 0-1(117 x O'l) V x O ' = ~  (81) 

where p(v) is the solution of (see (79)) 

p , _ l = , - 1  ( l v~) 
7S H - ~  (82) 

and start a new loop with Step 1. 
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Although this method is conceptually more simple, it is difficult to imple- 
ment because of the non uniqueness of the map v~p(v) defined by (82). Also 
Theorem 2 must be adapted to (81) so that ~'  is unique. However it is likely to 
handle better non zero pto.  n or S at infinity. Wings with lift can also be 
treated in this fashion since it corresponds to pto.  u , 0  at the trailing edge of 
W. 

3. Finite Element Approximation 

The decomposition of Theorems 1 and 2 involve a Neumann problem for ~b, a 
mixed problem for qt and a Laplace-Beltrami problem for q. Since this is a 3-d 
problem we shall use the simplest finite element: tetrahedra with piecewise 
affine functions. 

Discretization of ~b by this element offers no difficulty (see Ciarlet [16], for 
example). 

3.1. Approximation of 

Let qt be the solution of (u, $ r  given) 

(V • O, e • v)+(I7. ~,, V. v)=(I7 • u, v) V v e V  

~b-qtr~ V= {v e Hl(f2) 3: v x nlr =0,  S v ' n d y = 0 }  
F, 

where 0 r  is such that 

(83) 

Or" n d7 = 0 V F~ connected component of F. 
r~ 

To discretize (83) one proceeds as follows: 
Assume O h is polygonal and close to f2 and let cg h be a triangulation of t2 in 

the sense that it is a collection of non overlapping tetrahedra {Tk} which cover 
O h and whose vertices never lie in the middle of a face or edge of another 
tetrahedra. 

Then define 

Vh={ve C~ vlr~ is affine; v(qJ) x n~=0 Vj, qJsF I v. ndy=0}  (84) 
ri 

where {qi} are the vertices of c~ n, n~ is an approximation of the normal of I2 at 
qJ: 

n~ ~- n(qJ). (85) 

Now let ~b h be the solution of 

( 17 • Oh, 17 • vh) + ( v .  qt,,  v .  vh) = ( v  • a, vh) v v h E v h 
(86) 
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where 0r~ is the cont inuous piecewise affine vector  field which coincides with 
Or on the vertices of F h. 

A basis for V h may  be constructed f rom the usual basis {w ~} of the P~ 
element:  

let wi(x) be continuous,  piecewise affine on cs h, and such that  

wi(q j) = 6ij; (87) 

let {e/}L2,3 be an o r thonormal  basis of R3; assume for clarity that  the first M 
vertices are internal;  define 

vati- 1)+,(x) = wi(x) e', 

y J+ 2 M I x ~  - -  ~ J ( x  ~ ~aJ 

where 

i = l . . . M ,  (q'~Fh) , l = 1 , 2 , 3  

j>  M, (qiEffh). 

ff~J(x)=wJ(x)-( ~ wl(x)) ~ wJ(x)nJh.n(x)d U ~ n~.n(x)d7  
ql ~ Fi (j) r~ (j) Fi (j) 

(88) 

(89) 

A ~ P = b  

then for h small enough 

IV x ( O -  Oh)lO < C tlOII2,.h; 

Aij=(V • v i, V • vJ)+ (V �9 v/, V. vJ), 

bi =(V • u, r - (V  • 0r . ,  17 • v ~) - (17 .0r . ,  17" r 

A is positive definite because 

' ~ A ~ = I V •  ~ ~kh=0 by L e m m a  A4. (93) 

Therefore  (86) is a well defined computable problem. 
N o w  let us est imate It0--0hII. In all generali ty one ought  to study the 

p rob lem with f2 h 4:f2 or with i soparametr ic  elements. But this leads to technical 
difficulties which would require a separated paper  (see Verfurth [17], for 
example). Thus  we shall assume O h = f2, polygonal  but  still retain n h + n in (86) 
to see how accurately the normal  has to be approx imated  when O h + f2. 

Proposition 1. Assume f2 polyhedral with boundary F and normal n. Let O be the 
solution of(83) and Oh the solution of  (86) with Or=Olr . Assume V • ~k in L~~ 
let {cgh} n be a family of triangulations with all angles greater than ~ > 0  and 
smaller than fl<rc for all h, the largest length of the edges of the tetrahedra. 

i is such that Assume n h 

(S)-', In -n~l  2 wi(x) dy) 1/2 ~ C h 3/2 (94) 
F i 

IV" 0hi0 ~ C II01[ 2,~ h. (95) 

(90) 

(91) 

(92) 

where 

(F~tj) = connected componen t  of F h which contains q J). 
Obviously  v k belongs to Vh; {v k} spans Vh; an independent  subfamily is 

obta ined if one v j per Fj is removed.  Then on this basis (86) is a linear system 
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Proof. Notice  first that  it is not unreasonable  to assume that ~k is in H2(s 3 
even though f2 is pol_yhedral. For  exam_pie if ~ is the solution of (83) on g] = f2, 
f] smooth  and Or = 0  on F then 0 = 0  is the solution of (83) in f2, and  ff is 
smooth.  

F r o m  (83) we see that  

but 

so if we set 

- A  O = 17 x u (96) 

(-AO)vdx=~(17 x ~k. V x v + V .  OV. v)dx 
I2 ~2 

+ ~ ((17 • O) '  (v • n ) - v .  n 17. O) d 
F 

a(O , v )=(V x O, 17 x v)+(17. O, 17' v) 

and r emember  that  17. O = O, we find that  

a(0,  v) =(17 x u, v) + S (17 x 0)" (n x v)d? 
F 

By definition of Oh 

a(0h,  vh) = (17 x n, vh) V Vh ~ Vh, 
therefore 

V v e H I ( Q )  3. 

a(O --Oh, r  = a(~ ' --Zh, ~ ' -  Zh)+ 2a(O--Oh,  Zh--Oh)--a(Oh--Zh, Oh--Zh) 

< a ( 0 - - Z h ,  0 - - Z h ) + S 2 n  x (gh--Oh)" 17 X 0 d ?  
F 

V Xh such that  Zh - Oh e V h. 

Let us take 

Zh(X) = 2  O(q i) wi(x) ' 

Since 0 = Or on F, Z h -  0rh = 0 on F so ;~h- 0h ~ Vh- 
Then 

a ( 0  --~h,  0 --~h) 1/2 ~-~ C II 0ql 2,~ h. 

To  find an upper  bound  for 

I = l ~  n • (Zh--On) 17 • 0aTI  
F 

we notice that  Xh -- 0h ~ Vh implies 

)~h(ql)--Oh(qi)=(Zh(ql)--Oh(qi)) �9 n~n~ Vq i vertex of F. 

But 

n x n~ = - ( n ~  - n )  x n 

(97) 

(98) 

(99) 

(lOO) 

(101) 

(102) 

(103) 

(104) 

(lO5) 

(lO6) 
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I < II 17 x ~11 o~ ~ I~  (lh(q') - - r  " n~(n~ - n )  x nw'l d~ 
F i 

< II 17 x ~11 ~(~ ~ [xh(q')--d/h(q')l 2 w, dT) ~/2 (~ ~ In~, - n l  2 w' dT) 1/2 
. r i  F i  

and by Lemma A 5 and (94). 

__< C lie • ~11 ~o IV(~h--~kh)lo,~h 3/2 

2 < 
[17(Zh --l#h)[0,~ = C a(Xh --~h, Xh --r 

By Lemma A6: 

SO 

I < Cha(x h --~kh, Zh --d/h) 1/2 

< Ch(a(Xh -d/, Xh _ $)t/2 +a(~kh --~k, ~k, -- ~b)t/2). 

Let us put the pieces together; first (110) in (101) yields 

X 2 - C h X < y 2 + C h Y  

X=a(d/h--d/, d/h--~k) '/2, Y = a ( Z h - - d / ,  Z h - - ~ )  1/2. 

where 

So 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

1j2 

< C h +  Y+l / -C-hu  (113) 

Now (103) is an estimate for Y which completes the proof. Notice that the 
hypothesis O l r = O r  appeared only in (102); if it does not hold (102) can be 
modified and the result still be true but the proof is substantially longer. [] 

Important Remark. When f2 has edges it is not  possible to verify (94) unless the 
triangulation is refined in the direction perpendicular to the edge so that the 
mean size of the tetrahedra is h 3/2 in that direction. On a general polyhedral 
domain, n~ may be defined as 

n~= ~, nrk area (TR) / ~ area (Tk). (114) 
Tk ~ {qi} Tk ~ {qi} 

Then (94) is satisfied when n is the normal of a smooth domain f2 which O h 
approximates (all vertices of F h are on F). Furthermore it has the following 
interesting property. 

i given by (114) and ~kr={0, Proposition 2. Let ~h be the solution of (86) with n h 

- x 3 ,  0}. Then ~k h = {0, - x 3 ,  0}. 
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Proof. With Oh = --X3 e2 we have 

(I 7 x Oh, V x vh) + (g- 0h, V' Vh) = I (el x n).  v h d y 
F 

i e 1 area  (Tk) = ~ V h ~ XnTK -- ~ v ~ ( e l x n ~ ) = 0  (115) 
q~eF TK~{q i} 3 q~EF 

i is parallel to i being in V h. [ ]  because V h nh, 

This last proper ty  is quite impor tan t  for external p rob lem like wing com- 
putat ions where S approximates  infinity. Near  S, h is not  expected to be small 
but  ~k h is close to { 0 , - x 3 , 0  } which is an exact solution of the discrete 
problem. 

3.2. Approximation of q 

To approx imate  q we rewrite (46) as 

( aqaw) 
V q V w - - - ~ n  d~=-~u .nwdy  Vw~H3/2(f2)/R; qeH3/2(f2)/R. (116) 

an r 

In  this form q is not uniquely defined on f2 but  its trace on F is unique. Then 
consider O h a polygonal  approx imat ion  of f2, ~h a t r iangulat ion of f2 made  of 
te t rahedra (and F h and 6P h the boundary  of f2 h and its t r iangulat ion 

:.C~h = { Tk C~ Fh : Tk e ~gh}. (117) 

Problem (116) is approx ima ted  by 

(Vq h" Vw h aqh OWh rh ~ \ --a~" On /dT=-~u 'nwhd ~  ~WhGHh 
r .  (118) 

qh ~ H h  = {Wh ~ ca(oh) : WhITh is affine; ~ w h d 7 = 0}. 
Fh 

Note  however  that Oh = Vqh can only be applied in a mean  sense since ~k h is 
piecewise affine. More  complicate  elements for Oh or qh may  be used also 
(Nedelec 1-181). 

A basis for H k is constructed as usual 

WI{X)=Wi(X)-- ~ wid~/~ d~ qleFh. (119) 
rh Yh 

Then (118) is the symetric linear system. 

B q = c ,  (12o)  

Vw . d~, (121) 
r. an an l 

c j =  ~ - u .  n ~ J d y  (122) 
Fh 
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and B is positive definite. Indeed 

q t B q = 0  ~ qlr~nr~ constant ~ q = 0  (123) 

since it has zero mean. 
Error estimates are obtained as for the standard Laplace equation. If b( , ) 

is the bilinear form in (116), if O = O  h then 

b(q - qh, q - q h )  ~= b (q - n h q, q - n h q) 

< l V ( q  --nh q)12r 

C h  2 2 [Iqll2,r. (124) 

So if Vs=(O/Os 1 , c~/c~s2) then 

I gs(q --qh)[ <~ Ch  If q[I 2,r' (125) 

However for polygonal domains q will not be in H2(F); in fact q is not even 
C 1" 

3.3. Numer ica l  Tests 

Problem (86) was tested on the wing problem when W is a portion of wing or 
a sphere, with I 7 x u = 0  and qtr={0, - x a , 0 }  on S and 0 on W. Then (118) was 
solved with u =  {1, 0, 0} and (86) was solved again with Vq and compared with 
the first tests. 

Both linear systems (90) and (120) were solved by the conjugate gradient 
method. Since (90) is big its special structure was used for storage. Indeed from 
(19) (which holds if ~ or v is zero on F) we see that Aij  is also, for some 
suitable indices 

Ai j=(17w z, Vwk)e  n . e m 

Hence A has the following structure 

D 

A =  

0 0 B ~ 
0 D 0 B 2 

0 0 D B 3 

B 1 B 2 B 3 E 

if qi, q~r  (126) 

(127) 

where the last row and column corresponds to boundary indices and where 

_ _  i D i j _ ( V w , V w J ) ;  O k _ D  n j �9 EO = i j i j .  Vw~dx .  "uij-- ij hk, Uh'nhOij '+-nhXnh f VWiX 
D 

(128) 

The first geometry is a section of NACA 0012 cylindrical wing discretized by 
468 vertices (337 on the boundary) and 1,548 elements. Thus the linear system 
is 730 x 730. Typically 30 iterations of conjugate gradients are sufficient to 
reduce the gradient to 10-8 times its initial value. 
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Fig. 3. Domain of computation and stream lines of a flow around a section of wing, computed 
from the rotational of the stream vector 

Note  that the domain is not simply connected but  since the flow is sym- 
metric with respect to the horizontal  plane, calculations could have been 
performed on half the domain (which is simply connected) so the theory is still 
valid. Figure 3 shows some stream lines (lines parallel to u) and Fig. 4 shows 
the stream lines on a vertical plane tangent to the flow. 

In Figs. 5 and 6 the geometry has been deformed; the wing is no longer 
cylindrical so it is a real 3-D flow (still symmetric). Figure 5 shows some stream 
lines computed  by ~O solution of  (86); it is to be compared with Fig. 6 which 
shows the same stream lines when the velocity is computed as the gradient of 
the potential ~b (decomposition of Theorem 1, ~O = 0). On  an element near the 
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Fig. 4. Stream lines in the vertical plane of symetry of the domain of Fig. 3 for the flow computed 
from the rotational of the stream vector 

wing for instance, we obtained 

V x qt=(1.152, -0.014, -0.050), Vq~ =(1.109, 0.0008, -0.001). (129) 

Computing time for ~ was 48" and for 4) 28" on an IBM 3081. 
The second geometry is made of two concentric spheres S and W with 552 

vertices, 184 on the boundaries and 2,300 elements. The linear system (90) is 
1,288x 1,288. The Laplace-Beltrami problem (118) is 184x 184, 7 iterations 
decreased the gradient by a factor of 10 a. 

Figure 7 shows some stream lines projected on the plane z = 0 ,  calculated 
from ~ solution of (86) with ~ r = { 0 , - x a , 0  } (Fig. 7a) or from ~b solution of 
(14) (with g. u=0)  (Fig. 7b) or from 0 solution of (86) with Or=Vq (Fig. 7c). 

Figure 8 is the same case as Fig. 7.c but shown in 3-d. 
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5 

Fig. 5. Stream lines of a real 3d flow around a section of wing computed from the rotational of the 
stream vector (to be compared with Fig. 6) 

Fig. 6. Stream lines of the same flow as in Fig. 5 but computed by the gradient of the potential of 
the flow 

One last check was made to test the effect of the Laplace Beltrami problem. 
We took 

u . n = n  1 on S a n d  W (130) 

so that the continuous problem has an analytical solution 17x q J=(1 ,0 ,0 ) .  
Figure 9 shows some stream lines computed  from I 7 x Oh, ~Oh solution of (86) 
with Or = tTq and q solution of  (118). 

Finally Fig. 10 shows some values of  [V(ohl z as a function of h when f2 is 
the volume between two spheres as in Figs. 7-9. Four  set of tests were per- 
formed 
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Fig. 7a-e.  Some stream lines of a flow around a sphere. The views are from above a the flow is 
computed with the stream vector given on the boundary and equal to {~, - x 3 ,  r b The flow is 
computed as the gradient of the potential, c The flow is computed with the stream vector but the 
boundary conditions are computed by solving the Laplace-Beltrami problem for q 
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Fig. 8. Same as Fig. 7c but a prospect view 
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Fig. 9. Stream lines of a flow computed from the stream vector with boundary conditions com- 
puted from the Laplace-Beltrami problem for q. The flow is theoretically constant  so the stream 
lines are straight lines 

Error charts 
- 033 - 0.75 

J ~--A 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o "~ ~~ -1.5-1"0 ~ ~ ' i  |I ....................................................................................................................... 

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-2.5 

�9 - Error chart I 
O- Error chart 2 
II- Error chart 3 
13- Error chart 
11,- Slope I 

~- Slope 0.5 

Iog h 
Fig. 10. Plots of IV'0hl0 versus h on a log-log scale when 1) n is exact ~b a is computed by the 
Beltrami operator; 2) n is exact but  @a=(1, 0, 0); 3) n is replaced by n h and @a is the solution of the 
Beltrami problem; 4) n is replaced by nn and @a=(1, O, 0). Cases 2 and 4 show an error O(h) while 

cases 1 and 3 indicate O(l/~ ) 
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a) q5 h solution of (86) with u=O, 0r  =(1, 0, 0) and nh=n (error chart 2) or n h 
computed by (94) (error chart 4). 

b) As above but with 0r~ computed by the Laplace-Beltrami system nh=n 
(error chart 1) or n h by (94) (error chart 3). 

Conclusion 

We may sumarize by saying that one can use 3-d stream vectors in aeronautic 
and still be on safe grounds from the point of view of uniqueness and bound- 
ary conditions. At first it seems that the most promising applications will be 
entropy corrections in transonic flows. But even for simple incompressible 
flows, our numerical tests show that the method is feasible and not so much 
more expensive than straight potential calculations. In this line on may find 
that the Kutta-Joukowski condition is easier to apply; however additional 
developpements are needed for non simply connected domains and non C 2 
boundaries. Finally there are other equations of physics where stream vectors 
(or vector potentials) may be used such as Maxwell's equations. 

Appendix A 

Lemma A1 
v~lVvlo,e is a norm on V. 

Proof. We use the Peetre lemma [19, p. 728]: 

AI~Ae(E o, Ei), A z compact,  (A1) 

I[vlle~ +ilAzvlle2) Y v ~ E ~  (A2) 

K e r A x = 0  ~ v~lJAlvllE, is an equivalent norm on E o. 

We take Eo=V, El=L2([2) 9, E2=L2((2) 3, A z the canonical injection of V into 
L2((2) 3 and A x = F  , then 

[Vv[om=0 ~ v=cons tan t  but v x n l r = 0  so v = 0 .  (A3) 

Therefore IVvlo,~ is an equivalent norm on v. 

Lemma A2. Assume (2 bounded, simply connected with C z boundary. Then 

v--,(IV xvl 2 ~+lV" ''12 ~1/2 (A4) 
, " 1 0 ,  $'~! 

is an equivalent norm on V. 

Proof. From Foias and Temam [10] we know that on V 

2 <C([v[o 2s~+[V'v[ 2 a + [ F v ' L 2  ~a/2 (A5) Ilvll1,~= , , " , o , ~ ,  �9 
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By Peetre's lemma again, applied to 

Eo={v~H(V. ,  f2 )~H(V x , g2): v Xnl r=0  , S v . n d y = 0 } ,  
F~ 

E2=L2(O) 3, Alv={V.v, Vxv}, A 2 = 1  E 1 = L2 (0) 4, 

we find that 
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(A6) 

(A7) 

{(V0 ~, VOJ)}ij is positive definite. 

Lemma A4 

v x~p=o v.~p=0 

{K,: ZK,  IF~I =0} (A12) 

[] 

~ qt- n d y = 0 ,  qt x n[ r=0 ~ qt=0. (A13) 
Fi 

Proof. By (A13.a) there exists q5 such that ~/,= V~b. So 

d~b = 0  j = l ,  2 (A14) A =0 

where Sx s z are local coordinates on F. So ~b is constant on each F~: 

dplr = Ki. (A15) 
Now by (A13.c) 

1 
~n ?=K// ~ q ~ d ?  (A16) 

Fi r El O n 

so if on the subspace 

v--*(lV-Vlo2,e+lV x Vlo2 n) 1/2 (AS) 

is an equivalent norm on Eo; that KerA 1 = 0  is seen from Lemma A4 but since 
V ~ E  o we can combine (A5) and (A8) and this gives (A4). [] 

Lemma A3. Let {01}l,u be defined by (26). Then (VO i, gO j) defines a matrix A of 
rank M - l ,  which defines a positive definite bilinear form on {K: s  d =0}. 

Proof 
--dOi=O in f2; Oitr=fij .  (A9) 

Let 
r = S K  i 0 i. (A 10) 

Then by Poincar6 inequality 

,Y,K,Ks(VO', v0s)=lVq~lg =! ~ ~-nd~ 

_>_c! 
>C~.  g l -  ~ . /ilr~l Ir,,I (Al l )  
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SO 
O= ~ IV c~I2 dT (A17) 

1"2 

and ~b is constant on f2; therefore ~ is zero. [] 

L e m m a  A5. Let f2 be polyhedral. Let 2h ~ Vh; let n h be the interpolation operator. 
Then 

(! nh2~ 1/2 C dT) <~1172hlo, o. (A18) 

Proof. If a i denotes the area  of the suppor t  of w i intersected with F, we have  

n h,~h 2 d ~ = S 22 (q') a,.  (A 19) 
F 

Now 

2hZ(q')<2 (-2h(qi)22h(q'))2+2 (2h(Oi) 22h(qJ')Z. (A20) 

So 

nn2~ d7 <= C(12nl2,. + hz [ V 2hIz r) 
F 

< C(1 + h2)[ 172hl 2, r (A21) 

by Poincar6's  inequality (or L e m m a  A2). Finally 

lehlo,r<~h h lehlo, a (A22) 

so the Lemma is proved. [] 

L e m m a A 6 .  I f  all approximated normals nh(q i) are sufficiently near to the 
continuous normals so that all angles (nh(qi), Fw j) are bounded away from zero 
for all h and all i,j on the same element, then: 

Ie~bhl2,o<C(lVxOhlz+lV.~bhl z ) V ~/,n E V h . (A23) 

Proof. Referring to the nota t ion  of  (128) we have 

1170hlo2 ~ = ~  Dij~l i" ~J; (A24) 
ij 

but if ~bh~ V n then ~i is parallel to n~ on the boundary so from (127) we see that 

IV0hl2--fr• ~= Z ,~,,~jn~•215 (A25) 
q~,qJEF [2 

where {2i} are defined by 
i _ _  i ~r )-- 2i nh" (A26) 

Let 
~0O(x) ' -~ = S 2inh w (X). (A27) 
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Then  (A25) shows that  

llT~hl2-lV •176 •176176 2. (A28) 

N o w  on each boundary  te t raedron T with vertices q', qP, q~, q~ (q~ r F) 

17 x 0~ = r r 17" O~ =dr  (A29) 

is an overdetermined linear system in 2,202r;  this 2,, 2a, 2 r are linear in r r ,  d T 
or bo th  and so is VO~ hence 

02 1174,h Io, r < c(117 • 4,~ +t  17 �9 q,~ (A30) 

It  remains to show that  the linear system (A2) is not degenerated and that  C 
in (A30) is independent  of h. 

If  n~ = ng = n~ 4: Vw ~, (6 = ~, fl, 7), then 

V x ~9 ~ =S2~n~, x Vw'=n~ x V(Z2~w~), (A31) 

V. O~ 2,nh ~ �9 Vw'-- n h~. V(S, 2~w') (A32) 
so 

O__ a V ( r , ~ . , W a ) = n h  a 17~0 h - n h x " x  (n h x 17 x ~o + n~ 17. ~o) (A 33) 

f rom which we find that  

o IVqlhlO, r < l ( I V  • T+lV. o ffh 10, T)" (A34) 

When  n~ 4: n~ :4= n~ then we can use a continuity a rgument  and say that  there 
will be a cone of admissible normals  for which (A34) will hold with, say, 1 
replaced by 2. This cone is independent  of h because (A27)-(A28) yield 21 
propor t iona l  to h and linear in r T and dr and therefore 17~o is of order h ~ and 
linear in r r and d T as in (A34). 

If  T has one or two nodes on the boundary  only it is even simpler to prove  
(A34). For  example  with one, (A28) implies: 

2~n~ • 17w ~ = r T (A35) 
so 

117~O~ x 17w'l lrTI/ln~x Vw'l<lrTI/lsin(n~, Vw')[. (A36) 
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